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Abstract

The main concern of this report is to model the daily and weekly forecasting of the currency

in circulation (CIC) for the State of Qatar. The time series of daily observations of the CIC

is expected to display marked seasonal and cyclical patterns daily, weekly or even monthly

basis. We have compared the forecasting performance of typical linear forecasting models,

namely the regression model and the seasonal ARIMA model using daily data. We found

that seasonal ARIMA model performs better in forecasting CIC, particularly for short-term

horizons.
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1 Introduction

Central banks have recently been maintaining price stability through different types of mone-

tary policy instruments. To pursue its objectives effectively, a central bank needs an accurate

estimate of money market liquidity. However, money market liquidity is influenced by several

independent factors that are not under the full control of the central bank. One of the most

important autonomous factors is currency in circulation, which is quite difficult to assess, as it

is strongly influenced by many exogenous factors.

Monetary authorities use liquidity management policies to maintain stability in the money

market. In this sense, projecting money market liquidity becomes necessary. One might ask the

following question: what is money market liquidity and why it is so important to have stable

liquidity of money? Broadly, money market liquidity refers to the balances held by banks on

settlement accounts with the central bank. This term is also used to indicate the condition

needed to maintain the stability in the monetary market needed to equalize supply and demand

for the bank reserves. However, money market liquidity is influenced by several autonomous

factors that are beyond the control of the central banks,-namely government deposits, the

amount of banknotes and excess reserves held by the commercial banks. A considerable change

of these factors increases or decreases liquidity, thereby leading to fluctuations in the money

supply. Most importantly these fluctuations in money supply lead to volatility in daily interest

rates.

Among those autonomous factors, forecasting the currency in circulation is always considered

as the one of the hardest missions of the central banks. Given that the central bank has

the monopoly for distributing the currency, it may not predict the demand for the currency

accurately, since the amount of currency circulated in the economy is influenced by the non-

bank public sector.

Indeed, central banks should focus on forecasting on the currency in circulation(CIC) because

providing an accurate prediction for the CIC would enable the central bank to plan monetary

policy strategies in advance so they can manage liquidity efficiently. In addition, having accurate

forecasts of CIC helps to stabilize the money market in the short run, it definitely helps to

decrease volatility in money market rates, thereby resulting in higher economic growth.1 Given

that Qatar economy has been growing enormously -parallel to the increase in oil price all around

the world-, the demand for the CIC in the economy has been accelerated. Figure 1 shows the

currency issued by Qatari Central Bank between the years 2002 and 2007. The increasing trend

1Lower volatility in the interest rate encourages domestic investors to participate more in the real sectors as
well as helps foreign portfolio inflows to the domestic economy. Both channels will result in higher economic
growth.
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in CIC can be observed clearly. Nevertheless, forecasting the CIC creates important advantages,

The QCB bank did not undertake a similar study earlier. This paper is the first study that

forecasts the CIC for the State of Qatar.

In this paper, we attempt to forecast the daily CIC in the State of Qatar by using recent

forecasting techniques. In particular, we investigate daily, and weekly liquidity forecasts for

currency in circulation by employing linear forecasting techniques and, most importantly we

consider the effect of Islamic calendar and Gregorian calendar together on forecasting the CIC

for the state of Qatar.

Currency in circulation is the most important autonomous factor in the context of liquidity

management, both in terms of size and volatility. Thus, researchers try to develop forecasting

methods that will minimize the forecast errors. By innovations in the forecasting techniques, re-

searchers have obtained accurate estimations in recent years.2 For example, Cabrero et al. (2002)

modeled the daily series of banknotes in circulation in the context of managing of the European

monetary system. Empirical models in that paper relied on two liquidity forecasting approaches:

seasonal ARIMA method and Structural Time series. Cabrero et al. (2002) noted that the error

in forecasting banknotes in circulation never exceeds 1 billion Euro in either models mentioned

above and they concluded that econometric models are able to explain an important part of

the variation in the currencies in the circulation. Hlavacek et al. (2005) forecasted the CIC for

Czech Republic using both linear (ARIMA) and non-linear techniques. Their study provided

satisfactory forecasts using the ARIMA models both for long-term and short-term horizons.3 In

addition, they developed a new non-linear technique for forecasting a daily series for the CIC,

the feed-forward neural network model. They concluded that ARIMA model provides satisfac-

tory forecasts for the CIC, however, feed-forward neural network model is a better model for

analysis of time series of CIC, compared to the ARIMA model.

Some papers forecasted the CIC based on the theory of transaction and portfolio demand for

money. Black et al. (1997) studied the CIC by currency demand function during the early 1990s

of New Zealand, by using seasonal ARIMA models. Although the number of their observations

are limited, they obtained satisfactory results by employing the model. In a recent study,

Dheerasinghe (2006) forecasted the currency in demand for Sri-Lanka with monthly, weekly

and daily data sets for years 2000 to 2005. For different frequencies, the linear regression

forecasting method provides satisfactory estimations for the currency circulation in Sri Lanka

the results are extremely satisfactory for the out-of-sample forecasts.

2Although almost all central banks forecast the CIC in their economies, only a few central banks publish
liquidity forecasts. The literature on this subject is, therefore limited.

3Short term horizon refers to forecasts are done for at most two weeks ahead, and long term horizons correspond
the forecasts more than two weeks ahead.
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The remainder of this paper is structured as follows. Section 2 documents how we derive

the CIC and how we create dummy variables for calendar effects. In Section 3 we document the

linear forecasting methodologies used for forecasting CIC. Section 4 evaluates the linear forecast

models for different time horizons. Section 5 offers our conclusions.

2 Data

2.1 The Calendar Effect

In most of Islamic countries, socioeconomic and cultural events are arranged considering both

the Islamic and Gregorian calendars.4 Considering the State of Qatar which is a regular and

secure applicant of the Islamic calendar to social and economic life, we expect that economic

life will co-move with the islamic events. To give an example, the household consumption will

increase during the month of Ramadan. In particular just before the Eid-ul-Fitr and the month

of Dhul Hijja on the account of Islamic Pilgrimage (Hajj), household consumption is anticipated

to increase substantially. Between Eid-ul Fitr and Eid-al-Adha and after Eid al-Adha during

the month of Shawwal, consumption is expected to decline, however, even though we observe a

marked rise in consumption again just before Eid-al-Adha.

Determining the effect of Islamic calendar on the economic life is even harder, because the

Islamic calendar and Gregorian calendar are different. The Islamic calendar is lunar, having 354

or 355 days per year; however, the Gregorian calendar is having 365 or 366 days in every year.5

Observations of the religious days or months on the Islamic calendar can not be converted to

the same day of the Gregorian calendar for each year. Giving an example, if Ramadan starts

on September 13 in Gregorian calendar this year, next year the first day of Ramadan will be

September 2 or 3. Another important confusion between the calendars is that Islamic societies

follow calendar based on observations; the religious authorities announce the beginning of the

Islamic month Ramadan after sighting the new moon one day before. Thus, ex-ante conversion

of the Islamic dates to Gregorian dates may produce some errors. Besides, the actual effect

of the very beginning of Ramadan on the economy may not be observed accurately. For the

State of Qatar, western countries which universally follow the Gregorian calendar, form the

majority of Qatar’s economic partners. Therefore, the State of Qatar considers the Gregorian

4 However, the dominant is not same for all islamic societies. Some Islamic and secular countries, including
Albania, Bosnia-Herzegovia and Turkey, have been using the Gregorian calendar extensively in arranging social
and economic life(holidays, weekends); the religious holidays are also taken into account before the holidays are
announced. Nevertheless, Middle Eastern and North African countries take references to the Islamic calendar to
arrange the holidays as well as the weekends.

5The earth rotates around the sun in 365 days and 6 hours (1 year). These six hours are collected and counted
as one extra day in every four years.
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calendar to some extent but not as much as western countries. Furthermore, the State of Qatar

is quite different when demographic factors are considered. State of Qatar is not a homogenous

national state instead, Qatar’s population is quite heterogenous.. According to 2004 Census

data, 25% of the population of Qatar is Indian whereas 20% is from Pakistan, only 20% is the

local residents. Qatar’s population breakdown obliges us to consider the calendar effects in a

more detailed way. To get a better estimate, we take into account the national and religious

holidays of those non-citizen residents located in Qatar that might affect consumption in the

economy.

2.2 Currency In Circulation

In Qatar, the currency outside the banks consists of all banknotes in the national currency that

economic agents, i.e. residents, companies and non-resident workers, keep for a certain time for

transaction purposes as well as the store value. This amount includes all banknotes and coins in

Qatari Riyal(QR).6 When the currency is returned to the banks, it is considered to be a part of

a commercial bank’s reserve with the QCB. From this point of view, an increase within bank’s

vaults reflects the increase in the reserves with the QCB. Accordingly, the CIC is calculated as

follows;

Total printed banknotes and coins in Qatari Riyal

− Cash in the commercial and Islamic banks vaults

= Currency outside the banks

Figure 1 indicates the currency issued by QCB between years 2002 and 2007, expressed in

logarithmic terms. As expected, CIC follows and increasing trend in this time interval, which

can be attributed to the growing demand for cash in accordance with the positive economic

growth of the State of Qatar. The seasonality of the CIC as being observed is identical for this

period. In other words, the peaks and troughs of the CIC fall on almost same calendar days in

those years. This finding suggests the existence of the seasonality in the CIC data. Figure 2

shows the log-linearized and lag-differenced CIC for State the of Qatar.7 At first glance, we

noted that the time series of CIC appears to be stationary. Most importantly, the fluctuations

in the daily observations of CIC gets smaller in the most recent years, which prompts us to have

6 Starting 1992, there were 4 different editions of Qatar Riyal, named Issue 1 through Issue 4. We obtained
the amount of each currency edition and added them all to form the aggregate currency issued by QCB.

7 Unless otherwise specified in this report, lag differenced the CIC is equal to CICt−CICt−1.
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better forecasts.

3 Empirical Models

The time series of CIC with its regular patterns and large number of observations, is an ideal

candidate for the application of time series analysis for forecasting its future values. Prior to

this paper, the QCB had not used any formal statistical model for forecasting the CIC. First

of all, it is appropriate, to set up a baseline model, that describes the dynamics of the CIC in

the form of multiple linear regression model. Later, we apply standard ARIMA methodology

to develop a second model that contains both the regression model variables and the seasonal

ARIMA model.

We use both models to forecast the CIC. To create accurate forecasts, it is necessary to

formulate the CIC’s weekly, bi-weekly, monthly and annual patterns. It is also important to

consider the effects of holidays, weekends, and religious and national days on currency holding.

The variables employed in the models are selected according to these criteria.

3.1 Regression Model

To perform the regression model, we need to have a stationary series. Therefore, we use the

Augmented Dickey-Fuller (1976) test to see if the CIC series is stationary or not. The following

table contains the stationary test results for CIC.

Table 1: The Stationary Test for Currency in Circulation

ADF Test

Currency in circulation 0.16

∆Currency in circulation -10.11

The Augmented Dickey-Fuller test is implemented to test if the series is stationary or not.

The null hypothesis is CIC has unit root.(not stationary) The alternative hypothesis is

CIC has no unit root (stationary). The second row presents stationary test results of

first differenced CIC variable. The critical values for 1%, 5%, and 10% for ADF test are

–3.43, –2.80, and–2.57.

Since the CIC fails the stationarity test, we take the first difference of the variable (CICt-

CICt−1) and use that variable as the left-hand side variable in the regression model. The
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regression model expressed in the first difference of the log of currency in circulation is;

∆yt =

11∑
i=1

αiMi,t +

4∑
i=1

βWi,t +

k∑
i=1

θi(B)δi,t +

j∑
i=1

γiOi,t + ki,t + εt. (1)

where yt is the level of currency in circulation at time t, εt is the error term at time t, and M,

W,δ, k, O refer to the seasonal effects in the following way:

• Intra-weekly effect(W ): For each weekday (i=Sunday, Monday ... Thursday) we define

a dummy variable at time t as having a value of 1 and if the day at time t is day i, or 0

otherwise.

• Monthly effect (M ): In the model, we assume that for each calendar month changes

of CIC are stable, but on different levels. According to that, for each calendar month i

(i=Jan,...Dec) we define: Mi=1 if month i is at time t, 0 elsewhere.

• Holidays (δ): This is matrix of dummy variables for holidays and important days in the

calendar for the State of Qatar(Ramadan, Eid-al-Adha, Eid-ul-Fitr, New year...). θi(B) is

the polynomial of the dummy variable B, where B is the standard backward shift operator.

The Term θi(B) captures the change in the currency level before and after the holiday i.

• Outliers (O): In the analysis of the residuals, the largest outliers are identified and their

possible effect on other parameters is removed with dummy variables. Formally, if there

is an unexplained high residual at time t, we control that calendar date with a dummy

and name it as an outlier.

• Intra-monthly effect (k): Previous literature has defined intra-monthly seasonality as

a linear combination of trigonometric functions:

kt =

p∑
j=1

(aj ∗ sin
2jπ ∗mt

Mt
+ bj cos

2jπ ∗mt

Mt
), (2)

where mt stands for the day of the month and Mt stands for the days of a given month.

The parameter p defines the number of different frequencies that we use in modelling the

intra-monthly dynamics. Alternatively, we model the intra-monthly effect with dummy

variables for each day of the month(total of 31 variables).

The parameters in the equation (1), αi, βi, δi, γi and coefficients of the polynomial θi(B)

have been estimated by the ordinary least squares(OLS) methodology. The coefficients are listed

in Table 5. We follow the General to Specific (GS) approach to determine the lags of holidays,

national and religious days for the State of Qatar. Table 2 also contains the effects’ of the
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holidays, national and religious days and the days before and after these important dates. For

example, for Eid-al-Adha, we provide a polynomial that is multiplied by a backshift operator,

(ω0I+ω1B+ω2B
2...+ω5B

11)∗B−7). This indicates that, starting from the seven working days

before the first day of Eid-al-Adha, we include the preceding days that are statistically significant

and we include up to four business days following Eid-al-Adha in the regression.8 Lastly, Table 5

contains the parameters of the regression coefficients, and some test results for the goodness of

fit of the regression model for forecasting. We provide results of the adjusted R-square, Akaike

Information Criterion (Akaike (1974)), and the Schwarz information criterion (Schwarz (1978))

tests for the regression results. The results of these tests are optimal in accordance with GS

methodology. When we run the regression model, we add fifteen days preceding and following

of the important dates to the regression model. By dropping the preceding days and following

days that are not statistically significant, we derive the final version of the regression model

that has the best forecasting performance- has the highest Adjusted R-square and lowest AIC

and SIC test results.

Table 2: Seasonal Factors and Shocks Included in the Regression Model & Seasonal

ARIMA Model

Seasonal Factors and Shocks ωi(B)

RAMADAN (ω0I + ω1B + ω2B
2... + ω5B

5) ∗ B−4

EID AL-ADHA (ω0I + ω1B + ω2B
2... + ω5B

11) ∗ B−7

EID AL-FITR (ω0I + ω1B + ω2B
2... + ω5B

7) ∗ B−6

LAST DAY (ω0I + ω1B + ω2B
2) ∗ B−2

THANKSGIVING (ω0I + ω1B + ω2B
2) ∗ B−2

JULY 1 (ω0I + ω1B) ∗ B−1

AUG 1 (ω0I + ω1B) ∗ B−1

3.2 Box-Jenkins Methodology & the Seasonal ARIMA Model

Time series analysis has been widely used in economic forecasting, particularly by central bank

researchers to forecast the main economic indicators in the very near future. As previously

mentioned the times series of CIC, with its regular and seasonal patterns and large number of

observations, is a perfect candidate for applying of times series techniques for forecasting the

CIC for short-term and long-term horizons. The Box-Jenkins methodology used in analysis and

forecasting is widely regarded to be an efficient forecasting technique, and is used extensively,

especially for univariate time series. This methodology is actually based on Wald’s theorem

8 Please note that we construct the working days following Eid-al-Adha and Eid-ul-Fitr starting from the last
day of the Eid-al-Adha and Eid-ul-Fitr. In other words, when we consider the first working day after Eid-al-Adha,
this means one working day after the last day of the Eid-al-Adha vacation.
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(Hamilton 1994) which states that any weak stationary process can be broken down into au-

toregressive (AR) and moving average (MA) processes,. According to Box-Jenkins model (also

known as ARMA), a time series with an ARMA process of orders p and q can be written in

the following form:

yt =

p∑
i=1

αiyt−1 +

q∑
i=1

βiεt−1 + εt. (3)

The ARMA process is not only applicable for the weak stationary process. Researchers

may also apply the ARMA process including various trends, seasonal and other deterministic

or stochastic components. Box and Jenkins (1976) and Bell and Hilmer (1983) suggested the

integrated ARMA models, namely ARIMA models, following Box and Jenkins (1976). The

integrated ARMA model has been used extensively for the non-stationary time series. To our

best knowledge, recent central bank research papers including Cabrero et al. (2002), Hlavacek

et al. (2005) and Basac et al. (2006) used the seasonal ARIMA models and obtained accurate

estimations for the CIC.

Simply, the linear ARIMA model is represented as follows:

yt = Dt +
θ(B)

φ(B)∆(B)
εt. (4)

In the model, yt refers the currency in circulation in logarithmic form, and Dt represents

the regression component:

Dt =

s∑
i=1

di,t, (5)

whree s is equal to the number of calendar variation effects, and di,t is a function of all seasonal

factors. The second part of the Equation(4) contains the ARIMA components: B is the back-

shift operator, and θ and φ are the moving average and autoregressive operators, respectively.

∆ is a difference operator, depending on the frequency of the difference.9 Finally, εt is assumed

to be an independent and identically distributed(iid) stochastic process with zero mean and a

variance of σ2.

ARIMA models are, in theory, the most general class of models for forecasting a time series

that can be made stationary by transformations such as differencing and logging. When we

use quantity forecasting, such as the liquidity position, the model will generate valid results.

Accordingly, we applied the integrated ARMA models, to eliminate this stationarity problem.

In fact, the easiest way to think of ARIMA models is as fine-tuned versions of random-walk

9For example, (1-B) indicates one lag difference from the observation(Yt−Yt−1), whereas (1−B261) indicates
Yt−Yt−261
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and random-trend models. Fine-tuning consists of adding lags of the differenced series and/or

lags of the forecast errors to the prediction equation, as needed to remove any last traces of

autocorrelation from the forecast errors.

When comparing the empirical performance of linear models for predicting seasonality in

daily time series, the ARIMA-based approach should be used in short term forecasting. The

forecasting performance of the ARIMA model has been assessed by the previous studies, indicat-

ing that it provides valid “out-of-sample” forecasting, particularly for the models that included

seasonal patterns.

The regression model performed in the previous section documents the effects of the impor-

tant calendar dates and the preceding and following business days on the amount of currency

issued by QCB. However, the correlogram of the residuals of the regression model indicates that

the residuals have some seasonal, autoregressive and moving average patterns. This motivates

use of the seasonal ARIMA model.10

3.3 Building a Seasonal ARIMA Model

To build an accurate seasonal ARIMA model, we need to start with the raw CIC data itself. The

ACF shows a linear decline while the PACFs show significant spikes at different periods. After

taking the first difference of CIC, the ACF started to decline but some other patterns (weekly

and seasonally) still exist. For example, starting from the first PACF observation, we observe

significant spikes at every fifth observation. This refers to some weekly patterns. In this case,

keeping the series integrated with the first difference (I(1)), we can try other ways to eliminate

the patterns in the data. Next, we integrated the series with I(261). This means a 261-day

period (annual) difference, allowing us to get rid of the seasonal differences in the dataset. The

stationary ACF and PACF plot reveals that integration of order 1 (I(261)) and CIC solves

the stationarity problem. Besides, the patterns on the plot are also eliminated . However,

the significant spikes in the plots indicates that we need to work on the auto regressive and

moving average part of the CIC. In detail, we observe that first seven of PACFs and ACFs are

significant. We then decided to use; ARIMA(6, 1, 6)261.11 This representation indicates that

this is an AR(6), MA(6) model with the time series being integrated by I(1) and I(261). The

significant spikes remaining on the plot are on the order of 22th, 36th, 44th, 48th, 65th. Some of

the remaining spikes are very intuitive. When we look at the 22th order of AR, it is nothing but

the one-month lagged value of CIC(21-22 working days in a month). The 44th order of AR is two

10 For the sake of brevity, we did not report the correlogram of the residuals of the regression model. The
correlogram figures would be available upon request.

11ARIMA(6, 1, 6)261 corresponds to the series integrated once I(1) to make it stationary. To get rid of the
seasonality, we integrated it one more time with I(261) and we added AR(6) and MA(6).
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months’ lag of CIC, similarly, the 65th order of AR is the three month lagged value of CIC. We

remodel the CIC by taking these spikes into account. Therefore, the model will be formed as:

ARIMA(6, 1, 6)261 with AR(22), MA(22), AR(36), MA(36), AR(44), MA(44), AR(48), MA(48),

AR(65), and MA(65). Now, ACF and PACF do not contain the any significant spikes, and the

residual are stationary as expected. In the end, we form a seasonal ARIMA model that we

can apply to get valid forecasts. By the way, it is worth noting that we applied more than 100

different types of seasonal ARIMA model which were slightly different from the ARIMA model

above. This model has been selected because it is most valid model with respected adjusted

R-square, and Akaike Information criteria and Schwarz Information criteria results.

After selecting the correct seasonal ARIMA model, we apply the calendar effect dummy

variables (previously used for the regression model) to the seasonal ARIMA model and get the

following function:

yt =

12∑
i=1

αi ∗Mi,t +

4∑
i=1

β ∗Wi,t + kt +

k∑
i=1

θi(B)δi,t +

j∑
i=1

γi,tOi.t + ηt, (6)

where:

η =
θ(B)

φ(B)∆(B)
εt. (7)

The deterministic component has been explained in the previous section. According to the

selected seasonal ARIMA model: the seasonal difference will be:

∆(B) = (1 −B)(1 −B261). (8)

The lags of the MA and AR processes were chosen with respect to the seasonal ACF and

seasonal PACF diagrams. The moving average operated model for Equation 6 is as follows:

θ(B) = 1 + θ1B
1 + θ2B

2 + θ3B
3 + θ4B

4 + θ5B
5 + θ6B

5 + θ7B
22 + θ8B

44 + θ9B
48 + θ10B

65.

(9)

Finally, the autoregressive operator model for forecasting currency in circulation:

φ(B) = 1 + φ1B
3 + φ2B

6 + φ3B
7 + φ4B

4 + φ5B
5 + φ6B

6 + φ7B
22 + φ8B

44 + φ9B
48 + φ10B

65.

(10)

In fact, this representation is nothing a the re-written form of ARIMA(6, 1, 6)261 with AR(2),

MA(22), AR(36), MA(36), AR(44), MA(44), AR(48), MA(48), AR(65), and MA(65). Table 6

contains the parameters and test results for the goodness of the fit of Seasonal ARIMA model for

forecasting the CIC. We will discuss the appropriateness of the model in the following section.
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4 Evaluation of Forecasts

The main purpose of the models described above is to forecast CIC in time horizons. Therefore,

it is so important to evaluate the out-of-sample forecasts. Accordingly the, models’ parameters

are estimated for the period 1/1/2002-12/31/2006. The out-of-sample forecasts were imple-

mented for year 2007 and then compared with the actuals. We re-estimated the models with

each new observation and forecasts were stored. The series of forecasts were then used to cal-

culate the forecast errors in order to choose the best model. Figure 3 and Figure 5 contain the

out-of-sample forecasts of the regression model and the ARIMA model, respectively. Figure 4

and Figure 6 contain the residuals difference between actual observations and forecasts for the

sample period defined above. By simply comparing Figure 3 and Figure 5, at first glance it

is observed that Figure 5 contains better forecasts than Figure 3. Similarly, in Figure 6, the

forecast errors of the ARIMA model have obviously an narrower range compared to the forecast

errors of the regression model held in Figure 5, which might be seen as an initial evidence that

the ARIMA model is more appropriate for forecasting the CIC.

Table 3 contains the performance of the forecast estimations with the Diebold-Mariano test

results. The first column contains the horizon of the forecasting. H=5 means that we forecast

the CIC for five working days ahead using the given methods. The second column contains the

actual amount of currency issued by the QCB in million QR. The ARIMA column represents the

seasonal ARIMA forecast for the given horizon period. Similarly, the REG column represents

the forecast amount for the given time horizon in million QR. In the table, we forecast the CIC

for different time horizons starting from one day ahead to 261 days ahead. Table 3 helps us to

comment on the ranges of the forecast errors. The ARIMA model implemented for the first five

working days suggests that the forecast error has a range of 20 million QR to 65 million QR.

For the same time horizons, the forecast error of the regression model has a range of 35 million

to 131 million QR. When we implement the ARIMA model to forecast six to ten working days

ahead, the forecast error has a range of 14 to 73 million QR whereas, the regression method’s

forecast errors have a range of 19 to 76 million QR at the same time horizon. The forecast errors

of both methods increases significantly with a longer time horizon. The error in forecasting the

CIC one year ahead(261 working days) is 121 millions QR with the ARIMA method and 112

million QR with the regression methods. In addition, the Diebold-Mariano test is used for

testing the equivalence of the different forecasts. In the table, the last column contains the p-

value of test results of the Diebold Mariano test statistics.12 The table shows that the forecasts

12The null hypothesis for the Diebold Mariao (1995) test is Ho: The forecasts provide statistically same
values and alternative hypothesis is that H1: The forecasts provide statistically different values. p-value in the
last column contains this statistics. Intuitively, the lower the p-value, the higher the rejection rate of the null
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are statistically different values from each other, although for the horizon period of 5 to 10 days

we could not see that difference clearly ( When H=5 p-value is 0.06, and when H=8, p-value

is 0.07. For forecast horizons above 10, one can observe that the forecasts provide statistically

significant different values from each other.

Table 3: Evaluation Statistics for Regression Model and ARIMA Model

Horizon (h) Actual (million QR) ARIMA (million QR) REG (million QR) D-M p-value

1 5265.45 5199.61 5134.33 0.01

2 5150.66 5114.19 5102.85 0.05

3 5037.41 5099.12 5115.22 0.05

4 5037.41 5056.88 5078.47 0.04

5 4928.02 4908.13 4893.11 0.01

6 4902.02 4916.22 4921.43 0.02

7 4883.13 4898.83 4904.92 0.04

8 4906.13 4879.37 4871.07 0.07

9 4928.06 4874.11 4852.28 0.03

10 4842.74 4878.19 4903.55 0.02

15 4803.65 4823.41 4832.05 0.02

20 4758.88 4724.44 4744.55 0.03

60 5339.14 5312.14 5208.21 0.06

130 5498.94 5438.55 5432.54 0.08

261 5819.98 5699.79 5708.22 0.01

Notes.In the first column, H refers to the the forecast horizon. H=5 means that, the forecasts are implemented for five working days ahead.

The second column refers to the actual amount of currency issued by the QCB in million QR. The third column represents the forecast

estimation with ARIMA Method for the given time horizon. The fourth column represents the forecast estimation with the regression method

for the given time horizon. The last column contains the Diebold-Mariano test p-values. In this test we test if the forecasts are statistically

different from each other.

Table 4 contains the RMSE estimations for the forecast models. As we can observe, the

ARIMA model generally has lower forecast error rate than the regression model, which again

confirms the appropriateness of the ARIMA model over the regression model for the CIC fore-

casting. Another finding is that, for both models, the forecast errors do not increase significantly

with the forecast horizon when we limit the forecast horizon to 10 days. When forecast horizon

is greater than 10 days, the forecast error increases remarkably for both forecast models.

5 Concluding Remarks

In this paper, we forecast the currency in circulation issued by the QCB by using linear fore-

casting methods. Comparing the linear methods, the seasonal ARIMA model provides better

estimates for short-term forecasts. The range of forecast error is always less than 100 million

QR with the seasonal ARIMA methodology for short-term CIC forecasts, the error terms of re-

hypothesis.
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Table 4: RMSE for Regression Model and ARIMA Model

horizon(h) ARIMA RMSE REG RMSE

5 0.374 0.379

6 0.376 0.378

7 0.363 0.374

8 0.371 0.377

9 0.391 0.384

10 0.413 0.432

15 0.41 0.435

20 0.405 0.427

60 0.421 0.446

130 0.483 0.504

261 0.531 0.613

Notes. RMSE(Root of mean squared error) is a frequently-used measure of the differences between values predicted by a model or an estimator

and the values actually observed from the thing being modeled or estimated.

gression methodology is higher though. For long-term forecasts, both models suffer from larger

forecast errors. Since we did not use non-linear techniques to forecast the liquidity, we do not

know how appropriate those models are for forecasting the CIC. In the future, it will be suit-

able to forecast the CIC, using a non-linear forecasting method, the feed-forward neural network

method and to evaluate the forecasting performance of the linear and non-linear methods and

document the best method for different forecast horizons.
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Table 5: Determinants of the Currency Issued by QCB

Constant −0.003∗∗∗ SUNDAY 0.005∗∗∗

6BEIDFITR 0.006∗ THURSDAY 0.004∗∗∗

7AEIDADHA 0.002 TUESDAY −0.003∗∗∗

7BEIDFITR 0.003∗ NOVEMBER 0.003∗∗∗

7BEIDADHA 0.0001∗∗∗ RAMADAN1 0.003
APRIL 0.001∗ SEPTEMBER 0.003∗∗∗

Dec 22 −0.002∗ 1BAUG1 0.002
Dec 23 0.001∗ JULY1 0.001∗

Dec 24 -0.001 1BJULY1 0.004
Dec 25 0.0004 THANKSG –0.0001
Dec 26 0.007∗∗ VALENTINE –0.001
Dec 31 0.001∗∗∗ JANUARY 0.001
EIDALADHA1 0.01∗∗∗ 6BEIDADHA 0.012∗∗∗

EIDALADHA2 0.004 5BEIDADHA 0.01∗∗∗

EIDALADHA3 0.001 4BEIDADHA 0.01∗∗∗

EIDALADHA4 0.004 3BEIDADHA 0.02∗∗∗

EIDALFITR1 0.02∗∗ 2BEIDADHA 0.04∗∗∗

EIDALFITR2 0.01∗∗ 1BEIDADHA 0.018∗∗∗

EIDALFITR3 0.004 5AEIDADHA 0.003
FEB 0.001 4AEIDADHA −0.009∗∗∗

FIRST DAY 0.011∗∗∗ 3AEIDADHA −0.012∗∗∗

SEPT 3 0.001 2AEIDADHA −0.022∗∗∗

JULY 0.001 1AEIDADHA −0.02∗∗∗

JUNE 0.001 6AEIDFITR −0.01
LAST DAY 0.02∗∗∗ 5BEIDFITR 0.001∗

MARCH 0.004∗∗∗ 4BEIDFITR 0.02∗∗

MAY 0.003∗∗∗ 3BEIDFITR 0.03∗∗

MONDAY −0.006∗∗∗ 2BEIDFITR 0.03∗∗∗

1BEIDFITR 0.011∗∗∗ 1AEIDFITR –0.004
4BRAMADAN 0.01∗∗∗ 3BRAMADAN −0.001
2BRAMADAN 0.002∗∗ 1BRAMADAN 0.0002∗

1ARAMADAN 0.003 4BTHANKSG –0.001
3BTHANKSG –0.002 2BTHANKSG –0.007
1BTHANKSG –0.001 3BVALENT 0.003
2BVALENT –0.001 1BVALENT –0.008
LAST DAY 0.013∗∗∗ 2BLASTDAY 0.007∗∗∗

1BLASTDAY 0.013∗∗∗ JANUARY 1 –0.001
OUTLIER 0.232∗∗∗

R-square 0.38 Adjusted R-square 0.37
Sum of Square RESID 0.16 Schwarz criterion –6.14
Akaike Info Criterion –6.36

Notes: The dependent variable is the first difference of logarithms of currency issued by State of Qatar for the between 2002 and 2006. The
regression equation is

∆yt =

11∑
i=1

αiMi,t +
4∑

i=1

βWi,t +
k∑

i=1

θi(B)δi,t +

j∑
i=1

γi,tOi,t + ki,t + εt.

• All variables listed above are the binary dummy variables. These variables take 1 for the particular calendar day and take zero
for elsewhere. For instance, JANUARY 1 takes one when it is January 1 (or the first business day after the January 1) and zero
elsewhere. Likewise, the JANUARY dummy variable takes 1 for the business days of January and 0 elsewhere.

• XB stands for X working days before the particular holiday or important day. For instance, 2BEIDADHA means that two business
days before the first day of Eid-al-Adha.

• XA stands for X working days after particular holiday or important day. For instance, 2AEIDADHA means that two business days
after the last day of Eid-al-Adha.

• LAST DAY stands for the last business day of the month and, similarly FIRST DAY stands for the first business day of the month.

• THANKSG stands for Thanksgiving Day which only celebrated in US.(It is the third Thursday of every November.)

• VALENT stands for valentine Day (14 of February in the Gregorian calendar).

• OUTLIER corresponds the big amount of error terms in the regression that is not explained by the calendar effect variables.

• ∗∗∗,∗∗ and ∗ denote 1 %, 5%, and 10 % significance level respectively.
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Table 6: Determinants of the Currency Issued by QCB

Constant −0.003∗∗∗ SUNDAY 0.005∗∗∗

6BEIDFITR 0.006∗ THURSDAY 0.004∗∗∗

7AEIDADHA 0.001∗∗ TUESDAY −0.003∗∗∗

7BEIDFITR 0.003 NOVEMBER 0.003∗∗∗

7BEIDADHA 0.0001∗ RAMADAN1 0.003
APRIL 0.001∗ SEPTEMBER 0.003∗∗∗

AUGUST 0.0001 AUG1 0.001
Dec 22 −0.004 1BAUG1 0.002
Dec 23 0.002 JULY1 0.001∗

Dec 24 -0.0004 1BJULY1 0.004
Dec 25 0.0004 THANKSG –0.0001
Dec 26 0.007∗∗ VALENTINE –0.001
Dec 31 0.001∗∗∗ JANUARY 0.001
EIDALADHA1 0.01∗∗∗ 6BEIDADHA 0.012∗∗∗

EIDALADHA2 0.004 5BEIDADHA 0.01∗∗∗

EIDALADHA3 0.001 4BEIDADHA 0.011∗∗∗

EIDALADHA4 0.004 3BEIDADHA 0.013∗∗∗

EIDALFITR1 0.01∗ 2BEIDADHA 0.017∗∗∗

EIDALFITR2 0.01 1BEIDADHA 0.018∗∗∗

EIDALFITR3 0.004 5AEIDADHA 0.003
FEB 0.001 4AEIDADHA −0.009∗∗∗

FIRST DAY 0.011∗∗∗ 3AEIDADHA −0.012∗∗∗

SEPT 3 0.001∗ 2AEIDADHA −0.022∗∗∗

JULY 0.0006 1AEIDADHA −0.019∗∗∗

JUNE 0.001 6AEIDFITR −0.001
LAST DAY 0.02∗∗∗ 5BEIDFITR 0.001∗

MARCH 0.004∗∗∗ 4BEIDFITR 0.014∗∗∗

MAY 0.003∗∗∗ 3BEIDFITR 0.017∗∗∗

MONDAY −0.006∗∗∗ 2BEIDFITR 0.026∗∗∗

1BEIDFITR 0.011∗∗∗ 1AEIDFITR –0.004
4BRAMADAN 0.01∗∗ 3BRAMADAN −0.001
2BRAMADAN 0.002∗ 1BRAMADAN 0.0002∗

1ARAMADAN 0.003 4BTHANKSG –0.001
3BTHANKSG –0.003 2BTHANKSG –0.007
1BTHANKSG –0.003 3BVALENT 0.003
2BVALENT –0.004 1BVALENT –0.008
LAST DAY 0.007∗∗∗ 2BLASTDAY 0.007∗∗∗

1BLASTDAY 0.010∗∗∗ JANUARY 1 –0.001
OUTLIER 0.30∗∗∗

AR(1) 0.32∗∗∗ MA(1) 0.31∗∗

AR(2) −0.05∗∗ MA(2) 0.02∗∗

AR(3) −0.07∗∗ MA(3) 0.11∗∗

AR(4) 0.10∗∗ MA(4) 0.12∗∗

AR(5) 0.04∗ MA(5) 0.12∗

AR(6) 0.09∗∗ MA(6) 0.12∗∗

AR(22) 0.06∗∗∗ MA(22) −0.04∗∗

AR(44) 0.22∗∗ MA(44) 0.06∗∗∗

AR(48) 0.12∗∗∗ MA(48) 0.03∗∗

AR(65) 0.04∗∗∗ MA(65) 0.07∗∗∗

R-square 0.65 Adjusted R-square 0.653
Sum of Square RESID 0.11 Schwarz criterion -6.49
Akaike Info Criterion -6.71

Notes: The dependent variable is the log of banknotes and coins issued by State of Qatar for the period between 2002 and 2006. The remaining
coefficients are not listed in the table due to space constraint.

yt =
11∑
i=1

αi ∗Mi,t +
4∑

i=1

β ∗Wi,t + kt +
k∑

i=1

θi(B)δi,t +

j∑
i=1

γi,tOi.t + ηt

η =
θ(B)

φ(B)∆(B)
εt.

∆(B) = (1− B)(1− B261
).

The moving average operated model for the equation as follows;

θ(B) = 1 + θ1B
1

+ θ2B
2

+ θ3B
3

+ θ4B
4

+ θ5B
5

+ θ6B
5

+ θ7B
22

+ θ8B
44

+ θ9B
48

+ θ10B
65

φ(B) = 1 + φ1B
3

+ φ2B
6

+ φ3B
7

+ φ4B
4

+ φ5B
5

+ φ6B
6

+ φ7B
22

+ φ8B
44

+ φ9B
48

+ φ10B
65
.

For the definition of the variables see Table 5.
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