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Zero Variance Markov Chain Monte Carlo
for Bayesian Estimators

Antonietta Mira* Reza Solgil Daniele Imparato®

March 10, 2011

Abstract

A general purpose variance reduction technique for Markov chain
Monte Carlo (MCMC) estimators, based on the zero-variance princi-
ple introduced in the physics literature, is proposed to evaluate the
expected value, iy, of a function f with respect to a, possibly unnor-
malized, probability distribution 7. In this context, a control variate
approach, generally used for Monte Carlo simulation, is exploited by
replacing f with a different function, f. The function f is constructed
so that its expectation, under =, equals pf, but its variance with re-
spect to m is much smaller. Theoretically, an optimal re-normalization
oy exists which may lead to zero variance; in practice, a suitable ap-
proximation for it must be investigated.

In this paper, an efficient class of re-normalized f is investigated,
based on a polynomial parametrization. We find that a low-degree
polynomial (1st, 2nd or 3rd degree) can lead to dramatically huge
variance reduction of the resulting zero-variance MCMC estimator.
General formulas for the construction of the control variates in this
context are given. These allow for an easy implementation of the
method in very general settings regardless of the form of the tar-
get /posterior distribution (only differentiability is required) and of
the MCMC algorithm implemented (in particular, no reversibility is
needed).
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Conditions for asymptotic unbiasedness of the zero-variance esti-
mator are derived in the general setting of zero-variance principle. A
central limit theorem is also proved under regularity conditions.

The potential of the new idea is illustrated with real applications
to Bayesian inference for probit, logit and GARCH models. For all
these models, CLT and unbiasedness for the zero-variance estimator
are proved.

Keywords: Control variates; GARCH models; Logistic regression;
Metropolis-Hastings algorithm; Variance reduction.

1 General idea

The expected value of a function f with respect to a, possibly unnormal-
ized, probability distribution 7

B [ fx)m(x)dx
Hr = [ m(x)dx (1)

is to be evaluated. Markov chain Monte Carlo (MCMC) methods estimate
integrals using a large but finite set of points, x*,i = 1,--- , N, collected
along the sample path of an ergodic Markov chain having 7 (normalized) as
its unique stationary and limiting distribution fiy = Zfil f(x")/N.

In this paper a general method is suggested to reduce the MCMC error by
replacing f with a different function, f, obtained by properly re-normalizing
f. The function f is constructed so that its expectation, under m, equals fif,
but its variance with respect to 7 is much smaller. To this aim, a standard
variance reduction technique introduced for Monte Carlo (MC) simulation,
known as control variates (Ripley 1987), is exploited.

In the univariate setting, a control variate is a random variable, z, with
zero (or known) mean under 7, and correlated with f(z): o(f,z) # 0. By
exploiting this correlation, a new unbiased estimator of uy, with lower vari-
ance, can be built. Let a € R and define f(x) = f(z) + az. By construction,

=y and 0(f) = 0(f) + a0%(2) + 2a0(f, 2).

Minimizing o?(f) w.r.t. a gives the optimal choice of the parameter

_a(f,?)
 o%(2) ] (2)



that reduces the variance of o(f) to (1 — p*(f,2)) o*(f). Therefore fi; :=
25\; f(x;)/N is a new unbiased MC estimator of ftf, with variance

7 (i) = 50 (F) = 5 (1= P(12) *(1) < 0°() = 0% (i)
This idea can be extended to more than one control variate.

In the rest of this section we briefly explain the zero-variance (ZV) prin-
ciple introduced in (Assaraf and Caffarel 1999, 2003): an almost automatic
method to construct control variates for Monte Carlo simulation. To this
end, an operator, H, and a trial function, v, are introduced. H is required
to be Hermitian (a self-adjoint operator, real in all practical applications)
and

H+/7 = 0. (3)

For H = H(x,y), the weaker condition

/H(X, y)V7(y)dy =0 (4)

is needed. The trial function 1 (x) is a rather arbitrary function, whose first
and second derivatives are required to be continuous. The re-normalized
function is defined to be

(5)

As a consequence of (1) and (4) uy = pj, that is, both functions f and f
can be used to estimate the desired quantity via Monte Carlo or MCMC
simulation. However, the statistical error of the two estimators can be very
different. The optimal choice for (H,), i.e. the one that leads to zero
variance, can be obtained by imposing that f is constant and equal to its
average, f = g, which is equivalent to require that o( f) = 0. The latter,
together with (5), leads to the fundamental equation:

[ Hexy)wi)dy = /ARG~ a ()
In most practical applications equation (6) cannot be solved exactly, still, we

propose to find an approximate solution in the following way. First choose
H verifying (3). Second, parametrize ¢ and derive the optimal parameters
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by minimizing o?( f) The optimal parameters are then estimated using a
first short MCMC simulation. Finally, a much longer MCMC simulation is
performed using /i instead of fiy as the estimator.

Previous research in the statistical literature aims at reducing the asymp-
totic variance of MCMC estimators by modifying the transition kernel of the
Markov chain. These modifications have been achieved in many different
ways, for example by trying to induce negative correlation along the chain
path (Barone and Frigessi 1989; Green and Han 1992; Craiu and Meng 2005;
So 2006; Craiu and Lemeieux 2007); by trying to avoid random walk behav-
ior via successive over-relaxation (Adler 1981; Neal 1995; Barone, Sebastiani,
and Stander 2001); by hybrid Monte Carlo (Duane, Kennedy, Pendleton, and
Roweth 2010; Neal 1994; Brewer, Aitken, and Talbot 1996; Fort, Moulines,
Roberts, and Rosenthal 2003; Ishwaran 1999); by exploiting non reversible
Markov chains (Diaconis, Holmes, and Neal 2000; Mira and Geyer 2000), by
delaying rejection in Metropolis-Hastings type algorithms (Tierney and Mira
1999; Green and Mira 2001), by data augmentation (Van Dyk and Meng
2001; Green and Mira 2001) and auxiliary variables (Swendsen and Wang
1987; Higdon 1998; Mira, Méller, and Roberts 2001; Mira and Tierney 2002).
Up to our knowledge, the only other research line that uses control variates in
MCMC simulation follows the seminal paper by (Henderson 1997) and has
its most recent developement in (Dellaportas and Kontoyiannis 2010). In
(Henderson and Glynn 2002) it is observed that, for any real-valued function
g defined on the state space of a Markov chain { X"}, the one-step conditional
expectation U(x) := g(x) — E[g(X"™!)|X™ = x| has zero mean with respect
to the stationary distribution of the chain and can thus be used as control
variate. The Authors also note that the best choice for the function g is
the solution of the associated Poisson equation which can rarely be obtained
analytically but can be approximated in specific settings. A related technical
report by (Dellaportas and Kontoyiannis 2010), further explores the use of
this type of control variates in the setting of reversible Markov chains were
a closed form expression for U is often available.

In (Assaraf and Caffarel 1999, 2003) unbiasedness and existence of a
CLT for the ZV estimator are not discussed. The main contribution of this
paper is to derive the rigorous conditions for unbiasedness and CLT for the
ZV estimators in MCMC simulation. We also demonstrate that for some
widely used models (probit, logit, and GARCH) under very mild condition
(existence of MLE), the necessary conditions for unbiasedness and CLT are
verified.



The paper is organized as follows. In Sections 2 and 3, different choices of
the operator H and the trial function v are presented. In Section 4, expres-
sions for the control variates are explicitely found, depending on the set of
trial functions considered. The optimal control variates, that is, the optimal
parameters which give maximal variance reduction for particular classes of
1 are discussed in Section 6. Sections 5 and 7 deal with the mathematical
conditions which ensure that the optimal ZV-MCMC estimators are unbi-
ased and obey a CLT. Sufficient conditions are given and verified, that will
be verified in the final examples discussed in Section 8: Probit, Logit and
Garch models in a Bayesian framework. The simulations show that, even
by considering a low-dimensional parametric class of trial functions, a huge
variance reduction can be achieved.

2 Choice of H

In this section guidelines to choose the operator H, both for discrete and
continuos settings, are given. In a discrete state space, denote with P(x,y)
a transition matrix reversible with respect to 7m (a Markov chain will be
identified with the corresponding transition matrix or kernel). The following
choice of H

Hixy) = | S (PO y) - = )] @
satisfies condition (4), where §(x—y) is the Dirac delta function: d(x—y) = 1
if x =y and zero otherwise. It should be noted that the reversibility condi-
tion is essential in order to have a symmetric operator H(x,y), as required.
With this choice of H, letting ¢ = 1 /\/7, equation (5) becomes:

f(x) = f(x) = Y P, y)[d(x) — d(y)].

The same H can also be applied to continuous systems. In this case, P is
the kernel of the Markov chain and equation (7) can be trivially extended
to the continuous case. This choice of H is exploited in (Dellaportas and
Kontoyiannis 2010), where the following fundamental equation is found for
the optimal ¢: E[t)(x;)[xo = x] = puy — f(x). It is easy to prove that this
equation coincides with our fundamental equation (6), with the choice of H



given in (7). The Authors observe that the optimal trial function is given by

o

D(x) = Y [E[f (xa) %0 = X] — ], (8)

n=0

that is, 1; is the solution to the Poisson equation for f(x). However, an
explicit solution cannot be obtained in general.
Another operator is proposed in (Assaraf and Caffarel 1999): if x € R?
consider the Schrodinger-type Hamiltonian operator:
d
1 o
H=—— + V(x), 9)

2i:18_a:3

where V(x) is constructed to fulfill equation (3): V = #Aﬁ and A
denotes the Laplacian operator of second order derivatives. In this setting,

f(x) = f(x)+ % These are the operator and the re-normalized function

that will be considered throughout this paper. Although it can be applied
only to continuous state spaces, this Schrodinger-type operator shows several
advantages with respect to the operator (7). First of all, in order to use (7)
the conditional expectation appearing in (8) has to be available in closed
form. Secondly, definition (9) does not require reversibility of the chain.
Moreover, this definition is independent of the kernel P(x,y) and, therefore,
also of the type of MCMC algorithm that is used in the simulation. Note
that, for calculating f both with the operator (9) and (7), the normalizing
constant of 7 is not needed.

3 Choice of 9

The optimal choice of ¢ is the exact solution of the fundamental equation
(6). In real applications, typically, only approximate solutions, obtained
by minimizing o?( f ), are available. In other words, we select a functional
form for v, typically a polynomial, parameterized by some coefficients, and
optimize those coefficients by minimizing the fluctuations of the resulting f.
The particular form of ¢ is very dependent on the problem at hand, that is
on 7, and on f. In the examples first, second and third order polynomials are
considered. As one would expect, the higher is the degree of the polynomial,
the higher is the number of control variates introduced and the higher is
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the variance reduction of the estimators. It can be easily shown that in a d
dimensional space, using polynomials of order p, provides (dzp) — 1 control

variates.

4 Control Variates

In this section, general expressions for the control variates in the ZV method
are found. Using the Schrodinger-type Hamiltonian H as given in (9) and
trial function ¢(x) = P(x)y/7(x), the re-normalized function is:

x 1
f(x) = f(x) = 5AP(x) + VP(x) - 2, (10)
where z = —iVInw(x), V = <6%1, e %) denotes the gradient and A =

Z?Zl 88—;2 is the Laplacian operator of second derivatives.

Hereafter the function P is assumed to be a polynomial. Two special
cases, that will be used in the examples discussed in the second part of the
paper, are now considered. As a first case, for P(x) = 2?21 ajz; (1st degree
polynomial), one gets:

fx)+a'z.

Similarly for quadratic polynomials, P(x) = a’x+1x” Bx. The re-normalized
f is :

Fx) = £x) = 51r(B) + (a+ Bx)T5 = f(x) +87y,

where g and y are column vectors with 3d(d + 3) elements defined in the
following way:

e g := [al bT cT|T where b := diag(B), and c is a column vector with
2d(d — 1) elements; The element ij of the matrix B (for i € {2,...,d},
and j < 1), is the element $(2d — j)(j — 1) + (i — j) of the vector c.

o y = [z" u” v7]" where u :=x %2z — 31 (where “«” is the Hadamard

product, and 1 is a vector of ones), and v is a column vector with
+d(d — 1) elements; z;z; + ;2 (for i € {2,...,d}, and j < i), is the
element 1(2d — j)(j — 1) + (i — j) of v.



5 Unbiasedness

In this section general conditions on the target 7 are provided that guarantee
that the ZV-MCMC estimator is (asymptotically) unbiased. Let 7 be a d-
dimensional density defined on a bounded open set €2 with regular boundary
0f). Then, using integration by parts in d dimensions, we get

V) B e 1

— ) =E, |—=| == YV —/7VY] - ndo. 11

<ﬁ VT 2 8(2[ | (1)

From this equality, it can be proved that, if ¢» = P/, a sufficient condition
P

OP(x) = 0, for all x € 02 and j =

to get an unbiased estimator is 7(x)

1,...,d. When 7 has unbounded suppo]rt, the formula of integration by
parts cannot be used directly. In this case, a sequence of bounded subsets
(B,)- is to be constructed, so that B, ). In this case, a sufficient condition
for unbiasedness is

lim 7VP -ndo = 0.
r—+00 9B,
By reducing all the previous computations for d = 1, a simple condition
can be derived in the univariate case. If Q = [l, u], where u,l € R := RU=+to0,
it is sufficient that

— 2 () =2 (), (12)

which is true, for example, if %W annihilates at the border of the support.

These results mean that, in order to get unbiasedness, one should consider
trial functions ¢ whose partial derivatives are zero on the set 90Q* := {x €
02 : m(x) > 0}. For all the examples discussed in Section 8, the ZV-MCMC
estimators have been found to be unbiased for any choice of (polynomial) P.

In the seminal paper by (Assaraf and Caffarel 1999) unbiasedness condi-
tions are not explored since, typically, the target distribution the physicists
are interested in, annihilate at the border of the domain with an exponential
rate.

The following example shows how crucial the choice of trial functions is
in order to have an unbiased estimator, even in trivial models.

Example 5.1 Let f(z) = x and 7 be exponential: m(x) = e sy If
P(x) is a first order polynomial, condition (12) does not hold. Moreover, this
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choice does not allow for a ZV-MCMC' estimator, since the control variate
z = —%%ln 7(x) is constant and o(x,z) = 0. Howewver, to satisfy equation
(12) it is sufficient to consider second order polynomials. Indeed, if P(x) =
ao +a1w + axx? equation (12) is satisfied provided that a; = 0. Therefore, the
minimization of the variance of f can be carried out within this special class.
Note that higher order polynomials, whose derivative annihilate at zero, can

provide ZV-MCMC' estimators with greater variance reduction.

6 Optimal coefficients

In this section variance reduction is discussed in the ZV context and the
optimal choice of ¢ is found for some special cases. Note that, if at least one
of these hypotheses does not hold, o?(f) may be infinite or undefined:

Al: 0%(f) < oc0;  A2: 02(@) < 0.

ﬁ
Therefore, from now on, both Al and A2 are supposed to hold. As al-
ready observed, the ideal Zero Variance ) cannot be usually explicitly found.
Therefore, a particular subset of v is considered, which is typically a para-
metric class, and ¢2(f) is minimized within this class. However, we need to
verify that this optimal solution still gives appreciable variance reduction. In

the following proposition a useful criterion is stated in order to have variance
reduction.

Proposition 6.1 Under conditions Al and A2,

f@)HY\*®
() = *(f) M (13)

(=)

\/E

In particular, if ¥(z) = P(z)\/7(x) and d = 1, equality holds if and only if
/ F@)[P'r + P = % / (P")2r + w FOPPI] (1)

Proof: By definition of f, it follows that

() = o™(f) + <(H72f) > +20(f.02). (15)



Fist of all, observe that we can always assume ((7)2> > 0, since this

T
second moment is zero if and only if Hiy = 0, but in this case f = f. As a
consequence, (13) easily follows from (15) because, for any x,y with = # 0,
Hy
NG
result. Moreover, equality in (13) holds if and only if x = —y. Now, when
d = 1, observe that

<(%)2> = i / [(P")*m + —(P,)jr(”/)z +2P'P'r],

a(f,%) = —%ff(x)[P”ijP’ﬂ’].

Therefore, equality in (13) holds if and only if condition (14) is satisfied. W
Whenever condition (14) is satisfied, o%(f) is certainly smaller than o2(f).
Of course, this is true if ¢ solves the fundamental equation and therefore f is
constant and the ideal result of zero variance is achieved. However, a variance
reduction is guaranteed even if o%( f ) is minimized within a particular class

of functions v or, equivalently, class of P.

H
we have z + 2y > —y?/x. Taking x := ((Tw)z) and y := o(f, —=) gives the
T

6.1 Special case: polynomial trial functions
In the sequel, the case of polynomial trial functions is discussed.

1. Univariate 7. For the sake of simplicity, the target 7 is first supposed to
be univariate. Therefore, univariate polynomials are considered. Con-
stant polynomials P € P := {P(z) = ¢, ¢ € R} are not interesting,
since in this case Hiy = 0, so that f = f. Consider the class of first
order polynomials P := {P := ay + a1z, ag, a; € R}. In this case,
Equation (14) becomes [ aif(z)7" = aily/2, where Iy := [(7')?/7 is
the Fisher information of m with respect to the location parameter. I
is supposed to be finite, otherwise, A2 does not hold. If one intro-
duces the control variate z = _1%7 then the optimal parameter is

a; = —o(f,z)/c?(z). This is just the solution (2), obtained by mini-

mizing the variance of f when only one control variate is considered.

Moreover, if f(x)m annihilates at infinity, integrating by parts the solu-

tion a; = —2(f") /1y, for arbitrary ay, is obtained. The solution a; =0

is meaningless, because it reduces to the case of constant polynomials.
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7

This example may be generalized for classes of higher-order polynomi-
als. However, although theoretically it is not difficult to minimize the
variance, stronger integrability conditions and computational problems
appear. These issues are due to the integral [(P')*(7')?/m appearing
in the right side of Equation (14). When P is a polynomial of order ¢,
this integral involves, in turn, the computation of different integrals of
the kind I, := [a™(7')*/m, for n = 1,...,¢, that are expected to be
finite in order for ((Hv/y/m)?) to be finite.

. Multivariate 7, linear polynomials. Generalizing the previous setting to

d-dimensional target distributions, d control variates z; (1 < ¢ < d) are
needed and f is equal to f(x) = f(x) +aTz, where z = [z, ---, zgT.
The optimal choice of a, that minimizes the variance of f (x),is a =
—Y_to(z, f), where 3,, = E(z227) and o(z, f) = E(zf). We anticipate
that conditions under which the ZV-MCMC estimator obeys a CLT
(Section 7) guarantee that the optimal a is well defined. In ZV-MCMC,
the optimal a is estimated in a first stage, through a short MCMC
simulation. When higher-degree polynomials are considered, the same
optimal formula for the coefficients associated to the control variates
is obtained, provided that an explicit formula for the control variate
vector z has been found.

Central limit theorem

Conditions for existence of a CLT for fiy are well known in the literature
((Tierney 1994)):

Theorem 7.1 Suppose an ergodic Markov chain {x"}, with stationary dis-
tribution w, and a real valued function f satisfy one of the following condi-

tions:

The chain is geometrically ergodic and f(x) € L**°(w) for some
0> 0.

B2 : The chain is uniformly ergodic and f(x) € L*(x).
Then

85 =B [(F) = pp)"| 42D B [(FK" = pip) (F) = )]
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1s well defined, non-negative and finite, and
. L
VN (fig — pg) = N(0,53). (16)

Therefore, the ZV-MCMC estimator obeys a CLT provided that the re-
normalized function f satisfies one of the integrability conditions required in
B1 and B2. By the definition of f, this implies, in turn, that the control
variates z; = 852]_“ and the trial P(x) satisfy some integrability conditions,
which depend on the choice of P(x). More precisely, from (10), AP and
VP -z should belong to the space L?*°(7) when the chain is geometrically
ergodic.

In the following corollary, the case of linear and quadratic polynomials P
(used in the examples in Section 8) is considered.

Corollary 7.2 Let ¢(x) = P(x)\/7, where P(X) is a first or second degree
polynomial. Then, the ZV-MCMC' estimator fif is a consistent estimator
of s which satisfies the CLT equation (16), provided one of the following
conditions holds:

C1 : The chain is geometrically ergodic and x¥z; € L**(x), for all i,j €
{1,....d}, for all k = {0,deg P — 1} and some § > 0.

C2 : The chain is uniformly ergodic and x%z; € L*(m), for all i,j €
{1,...,d} and for all k = {0,deg P — 1}.

It should be noted that, in the case of linear P, if f € L*(r) and the Markov
chain is uniformly ergodic, then a sufficient condition to get a CLT is

(a% 1n(w<x)))2] <00, Vi

If the Markov chain is only geometrically ergodic, the stronger condition

(55 1n<7r<x>>)2+5] <o,

for some 6 > 0, is needed. The quantity m; is known in the literature
as Linnik functional (if considered as a function of the target distribution,
I()) since it was introduced by (Linnik 1959) and is related to the Fisher

mj:]Eﬂ-

Ex
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information and to the entropy. It has been shown in (McKean 1966) that,
for univariate distributions, finiteness of /]| implies finiteness of the entropy
of . The Fisher information (in a frequentist setting with scalar parameter

B) is:

I(B) = E

(%mw;m)ﬂ _ / W(; 5 (%W(ﬂf;ﬁ))zw(z;ﬁ)dm-

If 5 is the location parameter, i.e., if 7(x; 8) = h(x— (), the equality %h(m—
B) = —Zh(z — B) implies

/m (%w(%@)fdm — /m (%W(x;ﬁ))zdi’f-

Therefore, m; is interpretable as the Fisher information of a location family
in a frequentist setting. It has been proved that all the estimators discussed in
the examples in Section 8 obey a CLT. In most cases, an explicit computation
is the only way to discuss finiteness of m;. However, for particular models,
simpler conditions can be found. In the following section, the case of the
exponential family is discussed.

7.1 Exponential family

Let 7 belong to a d-dimensional exponential family:

m(x) oc exp(f - T(x) — K,(8))p(x), (17)

where 3 € R? is the vector of natural parameters, T = (11, T3,...,Ty) is
the sufficient statistic, K,(f) is the cumulant generating function and p(x)
is a reference measure. The following theorem provides a sufficient condition
for a CLT for ZV-MCMC estimators when the target belongs to the expo-
nential family and a uniformly ergodic Markov Chain is considered. Similar
results can be achieved when the Markov Chain is geometrically ergodic, by
considering the 2 4+ § moment.

Theorem 7.3 Let 7 belong to an exponential family as in (17), with p(x)
01

such that aogp € L*(x), for j =1,...,d. Then, the Linnik functional of w

L

is finite if and only if % € L*(m), for all j,k=1,2,....d.

13



Proof: By a direct computation, we get

on Op oT
e T - K “r il
o = (3T = K,(3) | 4 5
so that
Ologm(x) _ 1 0m _ or 10p
or;  wox; dx;  pox;)
The thesis follows immediately since, by hypothesis, 8%;73 € L?(m). |

Remark. In general, it can be hard to verify the hypothesis of Theorem 7.3
involving the reference measure p(x). However, in most well known expo-
nential models p(x) = 1, so that this condition is trivially satisfied.

Example 7.1 The Gamma density I'(«, 0) can be written as an exponential
family on (0,+00), where p(z) = 1, K,(8) = —alogf, and the vector of
parameters and the sufficient statistic are equal to: = (0,a—1) and T(z) =
(—x,logx), ifa#1; =60, T(x) = —x if a = 1. Since p = 1, hypotheses of
Theorem 7.3 are satisfied. Therefore, it is sufficient to study the gradient of
the sufficient statistic. If « = 1, T'(z) = —x, whose derivative is constant and
trivially belongs to L*(m). If a # 1, we need to check wether 1/x € L*(r).
To this end, we should study the finiteness of

+00 1 +00 1 +o0 1
/0 ;W(x)d:v x /0 ;xa_l exp(—0z)dx = /o pres exp(—0x)dzx,

which is finite if and only if o > 2. Therefore, the Gamma density I'(a, 0)
has finite Linnik functional for any 6 and for any o € {1} U (2,400). Under
these conditions, a CLT holds for the ZV-MCMC' estimator.

8 Examples

In the sequel standard statistical models are considered. For these models,
the ZV-MCMC estimators are found in a Bayesian context; from now on,
the target m = 7(/3|x) is the posterior distribution in a Bayesian framework.
Numerical simulations are provided, that confirm the effectiveness of vari-
ance reduction achieved, by minimizing the variance of f among polynomial
functions. Moreover, conditions for both unbiasedness and CLT for f are
verified for all the examples.
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8.1 Probit Model

Let y; be Bernoulli r.v.’s: y;|x; ~ B(1,p;), p; = ®(x} ), where 3 € R?is the
vector of parameters of the model and ® is the c.d.f. of a standard normal
distribution. The likelihood function is:

1(Bly,x) H (xTB))" [1 - e(xFp)] ™.

As it can be seen by inspection, the likelihood function is invariant under
the transformation (x;,y;) — (—x;,1 — y;). Therefore, for the sake of sim-
plicity, in the rest of the example we assume y; = 1 for any ¢, so that the
likelihood simplifies: {(Bly,x) oc [, ®(x/ ). This formula shows that the
contribution of x; = 0 is just a constant ®(x! ) = ®(0) = %, therefore,
without loss of generality, we assume for all i, x; # 0. Using flat priors, the
posterior of the model is proportional to the likelihood, and the Bayesian
estimator of each parameter, 3, is the expected value of fi.(8) = () under
m(k=1,2,---,d). Using Schrodinger-type Hamiltonians, H, defined in (9),
and ¥ (8) = Pi(B8)/m(B), as the trial functions, where Py(f) = ijl a;rB;
is a first degree polynomial, one gets:

T Hyw(B) ; - i
fkw)ffk(ﬁw—ﬂ(my’){) f(ﬂ)+; ik

where, for j =1,2,...,d,

_ _ = Z xz]¢

because of the assumption y; = 1 for any 1.

To demonstrate the effectiveness of ZV in this setting, a simple example,
(Douc, Guillin, Marin, and Robert 2007), is presented. The bank dataset
from (Flury and Riedwyl 1988) contains the measurements of four variables
on 200 Swiss banknotes (100 genuine and 100 counterfeit). The four measured
variables z; (i = 1,2,3,4), are the length of the bill, the width of the left
and the right edge, and the bottom margin width. These variables are used
in a probabilistic model as the regressors, and the type of the banknote y;,
as the response variable (0 for genuine and 1 for counterfeit). The model is
the one outlined at the beginning of this section. Now, for k = 1,...,d, the
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optimal (in the sense of minimizing the asymptotic variance of the resulting
MCMC estimators) vector of parameters a; should be found. To this end,
a short MCMC simulation (of length 2000, after 1000 burn in steps) is run,
and the optimal coefficients are estimated: &, = —3_16(z, 8;). The Albert-
Chib sampler (Albert and Chib 1993), that is a Gibbs sampler for GLM, is
used to run the Markov chain. Then, another MCMC simulation (of length
2000, and independent of the first one) is run, along which f;(ﬁ) is averaged.
The MCMC traces have been depicted in the left plot of Fig. 1. The blue
curves are the trace of fp (ordinary MCMC), and the red curves are the
trace of ﬁ (ZV-MCMCQ). It is clear from the figure that the variances of the
estimator have substantially decreased. Indeed the ratio of the Sokal estimate
of the asymptotic variances (Sokal 1996) of the two estimators (the ordinary
MCMC and and ZV-MCMC estimates) are between 25 and 100. Even better
performance can be achieved by a using second degree polynomial to define
the trial function. In the right plot of Fig. 1 the traces of ZV-MCMC with
second order P(x) have been depicted along with the trace of the ordinary
MCMC. As it can be seen from the figure, the variances of the ZV estimates
are negligible. In this case the ratio of the Sokal variances of two estimators
are between 25,000 and 90, 000.

8.2 Logit Model

In the same setting as the probit model, let p; = lii(w where 8 € R? is

the vector of parameters of the model. The likelihood function is:

o <M(00005) (o) 0

By inspection, it is easy to verify that the likelihood function is invariant
under the transformation:(x;, ;) — (—x;,1 — ;). Therefore, for the sake of
simplicity, in the sequel we assume y; = 0 for any 4, so that the likelihood
simplifies as 1(8ly,x) o []i_;[1 + exp(x} 8)]"'. The contribution of x; = 0
to the likelihood is just a constant, therefore, without loss of generality, it
is assumed that x; # 0 for all 7. Using flat priors, the posterior distribution
is proportional to (18) and the Bayesian estimator of each parameter, fy, is
the expected value of fx(8) = By under 7 (k = 1,2,--- ,d). Using the same
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Figure 1: Traces of ordinary MCMC and ZV-MCMC, plotted in blue and
red respectively for different parameters (in the rows) and different degree
polynomials (in the columns).

1st degree P(x) 2nd degree P(x)

pair of operator H and test function v, as before, the control variates are:

L1 zn: exp(x; 3)

i, | =1,2,....,d.
T el )

=1

A logit model is fitted to the same dataset of Swiss banknotes, that has been
introduced in the probit model example. Similar to the previous example,
in the first stage a MCMC simulation is run, and the optimal parameters of
P(p) are estimated. Then, in the second stage an independent simulation
is run, and f; is averaged, using the optimal trial function that has been
estimated in the first stage. As shown in Fig. 2 for linear polynomial,
the ratio of the Sokal’s estimates of the asymptotic variances of the two
estimators (the ordinary MCMC and and ZV-MCMC estimates) are between
10 and 40. Using the quadratic polynomial, the ratio of the Sokal’s variances
are between 2, 000 and 6, 000.
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Figure 2: Traces of ordinary MCMC and ZV-MCMC plotted in blue and red
respectively: different parameters in the rows and different degree polynomi-
als in the columns.

8.3 GARCH Model

Generalized autoregressive conditional heteroskedasticity (GARCH) model
(Bollerslev 1986) have become one of the most important building blocks of
models in econometrics and financial econometrics. The widespread applica-
tions of GARCH models is due to its parameter parsimony and interpretabil-
ity, and to some extent to the analytical tractability of the model. Using few
parameters, these kinds of models can mimic some of the most important
stylized features of financial time series, like volatility clustering, fat tails,
and asymmetric volatility.

In financial applications, GARCH models have been widely used to model
returns. Here it is shown how the ZV-MCMC principle can be exploited
to estimate the parameters of a univariate GARCH model applied to daily
returns of exchange rates in a Bayesian setting. In a Normal-GARCH model,
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we assume the returns are conditionally Normally distributed, r(¢)|F; ~
N (0, hy), where h; is a predictable (F;_; measurable process): h; = wy +
wahi_1 + war? |, where w; > 0, wy > 0, and w3 > 0. Let r = (ry,...,77) be
the observed time series. The likelihood function is equal to:

d K 1 T r?
v < (Il o (5357
t

t=1
and using independent truncated Normal priors for the parameters, the pos-
terior is:

[

1/ w? w3 ’ 1 o2
7 (w1, we, ws|r) o< exp [—5 (02(w1) + 72(y) 02 (w3) )} Hht exp _§ZF
-1

The control variates (for the case of first degree polynomial in trlal function)
are:

dlnr Loh 1 L2 ,
_ -V =1,2
Ow; th Ow; QZh ! 23,

where:

8ht 1-— (Ué_l E)ht 8ht 1 8h 8ht 1
pu— pu— ]I h ]I .
) 1—w;  Ows P tw 5 0, ) T 83 t1+w333 t>1

As an example, a Normal-GARCH(1, 1) is fitted to the daily returns of the
Deutsche Mark vs British Pound (DEM/GBP) exchange rates from January
1985, to December 1987 (750 obs). In the first stage a short MCMC simu-
lation, as proposed in (Ardia 2008), is used in order to estimate the optimal
parameters of the trial function. Then in the second stage an independent
simulation is run and f;(z) is averaged in order to efficiently estimate the
posterior mean of each parameter. First, second and third degree polyno-
mials in the trial function are used. As can be seen in Fig. 3 and Table 1,
where the Sokal estimates of variance are reported, the ZV strategy reduces
the variance of the estimators up to tens of thousands of times.

Table 1: Variance Reduction in GARCH Model Estimation:

Sokal estimate of variance of MC estimator /Sokal estimate of variance of ZV-MC estimator

’l

Wy Wo W3
st Degree P(x) 9 20 12
ond Degree P(z) | 2,070 12,785 11,097
3rd Degree P(x) | 28,442 70,325 30,281
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st degree P(x) 2nd degree P(x) 3rd degree P(x)

Figure 3: Traces of ordinary MCMC and ZV-MCMC plotted in blue and red
respectively: different parameters in the rows and different degree polynomi-
als in the columns

9 Possible generalizations

Two are the main ingredients to construct ZV-MCMC estimators; namely
a trial function ¢ and an operator H that are combined to define a re-
normalized function f as in (5). In this section two possible generalizations
of the ZV principle, as illustrated so far, are proposed. The first one considers
a bigger class of trial functions, the second one allows the use of a wider class
of operators by defining a more general re-normalized function f )

9.1 Extended trial functions

Throughout this paper, a re-normalized f as defined in (5) has been consid-
ered, where the trial function has been parametrized as 1(x) = P(x)/7(x).
This setting naturally leads to using the gradient of the log-target in the
control variate formulation. In recent work by (Girolami and Calderhead
2011), the dynamcics of the classical Hamiltonian MCMC and of the MALA
methods, in which first derivatives of the log-target appear, are efficiently
improved by considering second and higher order derivatives of the same
quantity. In a similar way, in our setting a finer definition of f may lead
to work with higher-order derivatives of the log-target. This can be easily
achieved by considering a wider class of trial functions: ¥ (x) = P(x)q(x),
where, as before, P(x) denotes a parametric class of polynomials, and ¢(x)
is an arbitrary (sufficiently regular) function. Then, by using the identity
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V = ﬁA\/— = 1Alogm, the re-normalization term of f in (3) becomes:
2
@:1(_iAp_lvq.vp_iA P 6 lOgW)
VT2 T VT VT 2/x Oa?
Therefore, the second derivative of the log-target naturally arises due to the
particular choice of the potential V. The formula obtained, which is quite
involved, can be dramatically simplified for suitable ¢q. For example, the
choice ¢ = 1 gives
Hy 1
NN
However, it should be noted that, even in this simple case, unbiasedness
conditions are not verified in general. In order to get unbiased estimators,
one can use the following strategy: fix a certain number of parameters in
P, so that the unbiasednes conditions are verified; next, find the optimal
ZV-MCMC estimator by minimizing the variance of f with respect to the
remaining free parameters. In the univariate case, unbiasedeness conditions
lead to fix two parameters, see (12), so we need to consider at least third de-
gree polynomials to have at least one free parameter to minimize the variance
of f . In this, more general setting, also CLT conditions should be carefully
re-phrased.

(AP + —Alog 7r> )

9.2 Extended Hamiltonian operators

The Hamiltonian operator H = —%A + V., where V = ﬁAﬁ, has been
considered so far. In this setting, V' is uniquely determined, because of the
constrain (3), which is essetial to get unbiased estimators. In the paper
by (Assaraf and Caffarel 2003), an alternative, more general renormalized
function f is defined:

Hy ¢(HyT )
N

where, again, H is an Hamiltonian operator and 1 a quite arbitrary trial
function. In this setting, if H = —%A + V, under the same, mild conditions

f=r+ (19)

discussed in Section 5, f has the same expectation as f under w. This
is true without imposing condition (3), so that now V' can be also chosen
aribtrarly. Therefore, the re-normalization (19) allows for a more general
class of Hamiltonians.
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10 Discussion

As noted in the introduction, cross-fertilizations between the physics and the
statistical literature have proved to be quite effective in the past, expecially
in the MCMC framework. The first paradigmatic example is the paper by
(Hastings 1970) first and (Gelfand and Smith 1990) later on, that brought to
the attention of mainstream statisticians the Hastings algorithm - (Metropo-
lis, Rosenbluth, Rosenbluth, Teller, and Teller 1953) - that had been used
to solve difficult problems in physics for over forty years before statisticians
realized its potential. The paper by Gelfand e Smith has started very prolific
new research lines in statistics (mostly Bayesian but also frequentist) both in
theory and application and has sparked incredibly many interesting results
that then become useful also to physicists.

In this paper a general variance reduction strategy, first introduced by the
physicists (Assaraf and Caffarel 1999, 2003) is studied and applied to MCMC
estimators in a Bayesian setting. Besides translating into statistical terms the
paper by (Assaraf and Caffarel 1999), the main effort of our work has been the
discussion of unbiasedness and convergence of the ZV-MCMC estimator. It
should be noted that the study of CLT leads to the condition of finiteness for
Eﬂ[(al%:(x))z], where 7 is the target distribution of interest. This quantity
coincides with the Fisher Information with respect to a location parameter.
Fisher Information has also been used in the recent paper by (Girolami and
Calderhead 2011) as a metric tensor in order to improve efficiency in both
Langevin diffusion and Hamiltonian Monte Carlo methods. Their idea is
to choose this metric as an optimal, local tuning of the dynamic, which is
able to take into account the intrinsic anisotropy in the model considered.
In our understanding, what makes ZV (introduced here) and RMHMC and
RMALA (introduced in (Girolami and Calderhead 2011)) extremely efficient
is the common strategy of exploiting information contained in the derivatives
of the log-target. A combination of the two strategies could be explored:
once the derivatives of the log-target are computed, they can be used both
to boost the performance of the Markov chain (as suggested by (Girolami
and Calderhead 2011)) and to achieve variance reduction by using them to
design control variates. Combining ZV with clever samplers (as MMALA
and RMHMC) is particularly easy since control variates can be constructed
by simply post-processing the Markov chain and, thus, there is no need to
re-run the simulation.

The second main contribution of this paper is the critical discussion of
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the selection of H and 1. A particular choice of H is proved to provide the
same variance reduction framework exploited in (Dellaportas and Kontoyian-
nis 2010). In their work, control variates are derived for reversible MCMC
and are related to the solution of the Poisson equation. In our context, their
hypothesis of reversibility is implied by the simmetry of the particular H
which is chosen. The solution to the Poisson equation depends on the transi-
tion kernel of the sampler and a closed analytical expression for the one-step
ahead conditional expectations along the chain is needed to construct control
variates in the setting of (Dellaportas and Kontoyiannis 2010). Moreover, the
degree of variance reduction achieved depends on the MCMC implemented.

In this paper, the Schrodinger-type Hamiltonian H, introduced in the
original article of the physicists, has been considered. This operator can
be used only for continuous state spaces. However, it shows several advan-
tages relative to the operator chosen by (Dellaportas and Kontoyiannis 2010).
First, its definition does not depend on the kernel of the chain, so that it is
simpler to evaluate. Moreover, the hypothesis of reversibility is not needed
in our setting. Different choices of H and v could provide alternative effi-
cient variance reduction strategies as discussed in Section 9. In the present
research we have explored v based on first, second and thirs degree polyno-
mials. Despite the use of this fairly restrictive class of trial functions, the
degree of variance reduction obtained in the examples in Section 8 and in
other simulation studies (not reported here) is impressive and of the order
of tens of times (for first degree polynomials) and thousands of times (for
higher degree polynomials), with practically no additional extra PCU time
needed in the simulation.
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