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Abstract

We derive the aggregate normalized CES production function from idea-based micro-

foundations where firms are allowed to choose their capital- and labor-augmenting

technology optimally from a menu of available technologies. This menu is in turn

augmented through factor-specific R&D. The considered model yields a number of

interesting results. First, normalization of the production function can be maintained

simultaneously at the local and at the aggregate level, greatly facilitating interpreta-

tion of the aggregate production function’s parameters in terms of the underlying idea

distributions. Second, in line with earlier findings, if capital- and labor-augmenting

ideas are independently Weibull-distributed then the aggregate production function

is CES; if they are independently Pareto-distributed, then it is Cobb–Douglas. Third,

by disentangling technology choice by firms from R&D output, one can draw a clear-

cut distinction between the direction of R&D and the direction of technical change

actually observed in the economy, which are distinct concepts. Fourth, it is argued

that the Weibull distribution should be a good approximation of the true unit factor

productivity distribution (and thus the CES should be a good approximation of the

true aggregate production function) if a “technology” is in fact an assembly of a large

number of complementary components. This argument is illustrated with a novel,

tractable model of directed (factor-specific) R&D. Finally, it is shown that all our

results carry forward to the general case of n-input production functions.

Keywords: CES production function, normalization, Weibull distribution, direction

of technical change, directed R&D, optimal technology choice

JEL Classification Numbers: E23, E25, O47
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1 Introduction

Aggregate production functions – particularly Cobb–Douglas and CES functions –

are used in virtually every paper in contemporary theoretical macroeconomics. Sur-

prisingly few models have been put forward so far, however, in which these functions

are derived from microfoundations. The purpose of the current contribution is to

enrich this sparse literature with an analytically tractable microeconomic framework

able to generate either of these two aggregative specifications endogenously. It is go-

ing to be an idea-based “endogenous technology choice” model where the aggregate

production function is derived as a convex hull of local production functions (LPFs),

chosen optimally by profit-maximizing firms. Each of these local techniques is in turn

characterized by a pair of technology-specific unit factor productivities (UFPs), (a, b),

which augment labor and capital, respectively.

Similar frameworks have been studied in recent works by Jones (2005) and Growiec

(2008a, 2008b).1 Jones’ (2005) approach was based on the assumption that firms pro-

ducing the final good draw capital- and labor-augmenting UFPs randomly from a pair

of independent Pareto distributions, so that their technology choice is optimal only

on average, or in the limit when sufficiently many draws have been made. Growiec

(2008a) rewrote Jones’ model into a more tractable form that yields equivalent results.

It enables the firms to pick their preferred technology pair (a, b) deterministically from

a given technology menu and shifts the stochastic technology-search process to the

R&D sector, composed of a continuum of researchers who draw the (a, b) technology

pairs from a certain pre-defined joint bivariate distribution – constructed either from

a pair of marginal Pareto distributions dependent according to the Clayton copula

(Growiec, 2008a) or a pair of independent Weibull distributions (Growiec, 2008b). In

all versions of this idea-based model, the shape of the resultant aggregate production

function, obtained by plugging the optimal technology choices into LPFs, is found to

depend, in general, both on the assumed shapes of LPFs and on the assumed joint

distribution of UFPs.

Based on the above assumptions, these three papers have succeeded in provid-

ing idea-based microfoundations for Cobb–Douglas and CES aggregate production

functions. Jones (2005) has shown that if capital- and labor-augmenting ideas are

1Caselli and Coleman’s (2006) contribution is also related, but not as closely.
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independently Pareto-distributed, then the aggregate production function is Cobb–

Douglas; Growiec (2008a,b) has extended this result by proving that if they are in-

dependently Weibull-distributed, or Pareto-distributed and dependent according to

the Clayton copula, then the aggregate production function is CES. These papers

have overlooked a few important implications of the considered framework, though,

most likely because of their somewhat cumbersome parametrization and a number

of unnecessary implicit assumptions. The current article identifies several gaps in

these papers and fills them, ultimately indicating that the “endogenous technology

choice” model discussed there, once properly parametrized and relieved of unneces-

sary restrictions, has much more interesting features than it was uncovered so far. It

provides an even more sound justification for the use of (normalized) CES production

functions in macroeconomics.

Compared to the aforementioned contributions by Jones (2005) and Growiec

(2008a, 2008b), the current paper makes four decisive changes in the model. Each of

them is a source of a distinct contribution to the literature.

First, the model is rewritten in terms of normalized CES functions here (cf. La

Grandville, 1989; Klump and La Grandville, 2000). Thanks to this step, we are now

able to obtain an interpretable link between the parameters of the microfounded ag-

gregate production function and the bivariate UFP distribution. The reason is that

under normalization, CES production functions’ parameters represent separate con-

cepts which are otherwise deeply intertwined: e.g., the distribution parameters of the

un-normalized CES function are themselves functions of the elasticity of substitution

and the normalized volume units (cf. Klump and Preissler, 2000).2 We find that

normalization with respect to initial inputs K0, L0, output Y0 and the initial capital

income share π0, can be maintained simultaneously at the local and at the aggre-

gate level, greatly facilitating the interpretation of the aggregate CES production

function’s parameters in terms of the underlying idea distributions.

2This in turn greatly obstructs estimation of these two parameters and comparative statics exer-

cises. A thorough elaboration of these issues as well as a survey of the related literature can be found

in Klump et al. (2011). These authors also request that the parameters of production functions

derived from microfoundations by Jones (2005) and Growiec (2008a, 2008b), should be provided

with an interpretation consistent with normalization. Among other accomplishments, the current

paper addresses this request.
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Second, the current paper relaxes the assumption implicitly made in Growiec

(2008a), that technological progress always augments the technology menu propor-

tionally, as a homothetic transformation from the origin.3 In fact, this assumption

can be easily generalized, allowing for directed factor-augmenting R&D (cf. Ace-

moglu, 2003),4 able to expand the technology menu in selected directions more than

in others. This overturns some of the sharp predictions on the direction of techni-

cal change, put forward by Growiec (2008a). It also helps understand an important

distinction, not mentioned in the earlier contributions: the direction of R&D (i.e.,

direction of expansion of the technology menu) is a distinct concept from the direc-

tion of technical change actually observed in an economy, because the evolution of

firms’ technology choices over time may not mirror the direction of augmentation of

the technology menu. In particular, if the aggregate production function is CES with

factor-augmenting technical change, these two concepts will be equivalent only along

the balanced growth path in the unique case when it exists, that is when both R&D

and technical change are purely labor-augmenting and when factor income shares are

constant across time. This requires highly specific assumptions on the R&D process.

Otherwise, the directions of R&D and technical change must diverge. In the Cobb–

Douglas case, in turn, the direction of R&D does not have any impact on the direction

of technical change: labor-augmenting technical change always follows changes in out-

put per worker y, and capital-augmenting technical change always reflects changes in

output per unit of capital, y/k.

Third, as opposed to the earlier contributions, the current model features also a

novel, very detailed specification of the R&D sector. On its basis we construct an

argument in support of the use of Weibull distributions in the context of R&D produc-

tivity (first suggested by Growiec, 2008b, but without any justification). It turns out

that if factor-augmenting technologies are inherently complex and consist of a large

number of complementary components, then the Weibull distribution should approx-

imate the true productivity distribution better than any anything else, including the

3This assumption is also maintained by Jones (2005), but due to the multiplicative character of

the Cobb–Douglas production function considered there, lifting this restriction does not change any

results.
4There is a voluminous literature based on Acemoglu’s (2003) framework. Important extensions

have been put forward, among others, in Acemoglu (2007) and Acemoglu and Guerrieri (2008).
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celebrated Pareto distribution (see Kortum, 1997; Gabaix, 1999; Jones, 2005, and ref-

erences therein). The argument is based on the extreme value property of the Weibull

distribution (cf. Kotz and Nadarajah, 2000; de Haan and Ferreira, 2006): if one takes

n independent draws from some distribution that is bounded from below and satisfies

an additional technical assumption (e.g., Pareto, uniform, truncated Gaussian, etc.)

and takes the minimum of these draws, then as n → ∞, this minimum will, after

an appropriate normalization, converge to the standard Weibull distribution with a

shape parameter α > 0, dependent on the shape of the underlying sampling dis-

tribution. Clearly, taking the minimum applies to the case of complex technologies

consisting of a number of complementary components (cf. Kremer, 1993; Blanchard

and Kremer, 1997; Jones, 2011), because their productivity is then determined by the

productivity of their “weakest link”. The importance of this finding for the current

paper is corroborated by the fact that in the analyzed model, independent Weibull

distributions give rise to the aggregate normalized CES production function.

Fourth, the current paper also demonstrates that the considered model is readily

generalizable to n-factor production functions. Since all the derivations in the n-

dimensional case are very similar to the two-dimensional case, formal elaboration of

this issue has been delegated to the appendix.

The remainder of the paper is structured as follows. Section 2 derives the nor-

malized CES production function from idea-based microfoundations. Section 3 shows

how the static technology-choice framework can be embedded in a dynamic growth

model and discusses the implications for the direction of technical change. Section

4 deals with the Cobb–Douglas case, demonstrating the key differences in compar-

ison to the normalized CES case. Section 5 discusses the details of the model of

directed R&D and discusses the conditions under which UFPs should be approxi-

mately Weibull-distributed. Section 6 concludes. The derivations in the general case

of n-factor production functions have been delegated to the appendix.
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2 Microfoundations for the aggregate normalized

CES production function

In the current section, we shall show how to obtain the aggregate normalized CES

production function from microfoundations – as a convex hull of LPFs, computed

under the restriction that UFPs must be chosen from the given technology menu.

The assumption regarding the postulated shape of this menu will be subsequently

modified in Section 4 (where the aggregate Cobb–Douglas production function is

derived), whereas in Section 5 it will be motivated with a more involved model of

directed R&D and presented as a proposition.

2.1 Framework

The“endogenous technology choice” framework is based on the following assumptions.

Assumption 1 The local production function (LPF) takes either the normalized CES

or the normalized Leontief form:

Y =



Y0

(
π0

(
bK
b0K0

)θ

+ (1− π0)
(

aL
a0L0

)θ
) 1

θ

, if σLPF ∈ (0, 1),

Y0 min
{(

bK
b0K0

)
,
(

aL
a0L0

)}
, if σLPF = 0,

(1)

where θ ∈ [−∞, 0) is the substitutability parameter, related to the elasticity of sub-

stitution via σLPF = 1
1−θ

. Leontief LPFs, with σLPF = 0, are obtained as a special

case of the more general normalized CES class of LPFs by taking the limit θ → −∞
(we denote this case as θ = −∞ for simplicity). π0 =

r0K0

Y0
is the capital income share

at t0. The LPF exhibits constant returns to scale.

Please note that in the normalization procedure, benchmark values have been as-

signed not only to output, capital and labor (Y0, K0, L0), but also to the benchmark

technology (b0, a0). In the following derivations, this benchmark technology will be

identified with the optimal technology at time t0.

By assuming θ < 0, or equivalently σLPF < 1, we concentrate on the likely

case where LPFs allow little substitutability between inputs. More precisely, capital

and labor are assumed to be gross complements in the LPF. All results derived in
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this paper go through also in the limiting case of Leontief LPFs, where inputs are

fully complementary. The CES specification of the LPF is thus not necessary for an

aggregate CES production function to obtain.

The CES/Leontief specification of the LPF was used by Growiec (2008a,b), but

without normalization.

Assumption 2 The technology menu, specified in the (a, b) space, is given by equal-

ity:

H(a, b) =

(
a

λa

)α

+

(
b

λb

)α

= N, λa, λb, α,N > 0. (2)

In what follows, the technology menu will be understood as a contour line of the cu-

mulative distribution function of the joint bivariate distribution of capital-augmenting

ideas b and labor-augmenting ideas a. A formal justification for this assumption will

be provided in Section 5. The key point there will be to obtain the technology menu

from the individual (marginal) distributions of b and a. Under independence of both

dimensions (so that marginal distributions are simply multiplied by one another),

equation (2) obtains if and only if the marginal distributions are Weibull with the

same shape parameter α > 0 (Growiec, 2008b):5

P (ã > a) = e−(
a
λa
)
α

, P (b̃ > b) = e
−
(

b
λb

)α

for a, b > 0. Under such parametrization, we have P (ã > a, b̃ > b) = e
−( a

λa
)
α
−
(

b
λb

)α

,

and thus the parameter N in eq. (2) is interpreted as N = − lnP (ã > a, b̃ > b) > 1.

In what follows, we will assume N to be constant across time, and λa, λb to grow as

an outcome of factor-augmenting R&D.6

The analytical form of the technology menu postulated in equation (2) has also

been used by Caselli and Coleman (2006) and Growiec (2008a,b), but with the un-

necessary restriction that λa and λb are always shifted proportionately.

5Equation (2) can also be obtained for Pareto distributions of a and b, provided that the pattern

of dependence between both marginal distributions is modeled with the Clayton copula (Growiec,

2008a). Its functional form has been first postulated by Caselli and Coleman (2006), but without

any justification.
6One could easily reparametrize the technology menu, though, fixing either λa or λb and allowing

N to vary. This would also reparametrize the resultant aggregate production function: the ratio

N/N0 would appear in equation (7) and the fixed parameter (λa or λb) would drop out. One could

also (redundantly) vary all three parameters simultaneously. See the discussion in Section 3.

10



Microfoundations for the aggregate normalized CES production function

WORKING PAPER No. 98 11

2

The case where a and b are independently Pareto distributed leads to a different

specification of the technology menu which will be considered separately in Section

4. An important caveat is that if they are Weibull distributed but dependent, or

independent but following some other distribution than Pareto or Weibull, the resul-

tant aggregate production does not belong to the CES class. Such cases will not be

considered here.

It is also vital that both marginal Weibull distributions share the same shape

parameter α: if labor- and capital-augmenting ideas are independently Weibull dis-

tributed, but with different shape parameters, then the resultant aggregate production

function does not belong to the CES class either. Fortunately, as Section 5 shows,

under arguably general conditions the model of directed R&D discussed there will

yield the same value of α = 1.

Assumption 3 Firms choose the technology pair (a, b) optimally, subject to the cur-

rent technology menu, such that their profit is maximized:

max
a,b


Y0

(
π0

(
bK

b0K0

)θ

+ (1− π0)

(
aL

a0L0

)θ
) 1

θ


 s.t.

(
a

λa

)α

+

(
b

λb

)α

= N.

(3)

We note that factor remuneration rK + wL, taken account in the firms’ profit max-

imization problem, does not depend on the chosen technology pair (a, b) so it can

be safely omitted from the above optimization problem.7 The same assumption was

made by Jones (2005) and Growiec (2008a,b).

Finally, second order conditions require us to assume that α > θ, so that the

interior stationary point of the above problem is a maximum. The proof of this is

included in the appendix. Furthermore, we also need to assume that α− θ − αθ > 0

so that the resultant aggregate production function is concave with respect to K and

L. Both these conditions are satisfied automatically in the case α > 0 > θ, on which

we concentrate here. As we shall see shortly, in such case, capital and labor are gross

complements in the aggregate production function.

7In the case of Leontief LPFs, optimization requires bK
b0K0

= aL
a0L0

.
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2.2 Technology choice and the aggregation result

Solving the maximization problem set up above yields direct results on the firm’s

optimal technology choices. First, at time t0, when K = K0, L = L0, Y = Y0, λa =

λa0, λb = λb0 is assumed, it is easily verified that the optimal choice is:

a∗0 = (N(1− π0))
1
α λa0, b∗0 = (Nπ0)

1
αλb0, (4)

where λa0 and λb0 are the values of λa and λb at time t0, respectively. Values of a
∗
0 and

b∗0 will be used as a0 and b0 in the normalization at the local level in all subsequent

derivations.

For any other moment in time, the optimal technology choices are:

(
a

a0

)∗

=
λa

λa0

(
π0

(
λb

λa

λa0

λb0

KL0

LK0

) αθ
α−θ

+ 1− π0

)− 1
α

, (5)

(
b

b0

)∗

=
λb

λb0

(
π0 + (1− π0)

(
λb

λa

λa0

λb0

KL0

LK0

)− αθ
α−θ

)− 1
α

, (6)

where αθ
α−θ

is substituted with −α in the case of Leontief LPFs (θ = −∞).

Inserting these optimal technology choices into the LPF, we obtain the following

result.

Proposition 1 If Assumptions 1-3 hold, then the aggregate production function takes

the normalized CES form:

Y = Y0

(
π0

(
λb

λb0

K

K0

) αθ
α−θ

+ (1− π0)

(
λa

λa0

L

L0

) αθ
α−θ

)α−θ
αθ

. (7)

Hence, the normalized CES result obtains both in the case of CES and Leontief LPFs.

Proof (and generalization to n inputs): see the appendix. �
It is worthwhile to comment on each of the parameters of the aggregate production

function, because they all have sound interpretations:

• the substitutability parameter is ρ = αθ
α−θ

(or ρ = −α in the case of Leontief

LPFs). The elasticity of substitution is thus σ = 1
1−ρ

= α−θ
α−θ−αθ

> 0 (or σ = 1
1+α

in the case of Leontief LPFs). It is verified that θ < ρ < 0 and thus σLPF =
1

1−θ
< σ < 1. Hence, endogenous technology choice unambiguously increases

12
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the substitutability between production factors as compared to the LPF, but

this substitutability nevertheless remains bounded from above by the unitary

elasticity of substitution, characteristic for the Cobb–Douglas specification,

• the distribution parameter is π0 = r0K0

Y0
, whereas the multiplicative constant

term is Y0. Hence, thanks to normalization, both these parameters are equal to

the respective parameters of the LPF;

• the constant parameter N does not appear in the aggregate production function,

• the capital-augmenting factor b present in the LPF is replaced by the capital-

augmenting parameter of the technology menu λb in the aggregate production

function, both at time t0 and at the current time. The same applies to labor-

augmenting factor a and the respective parameter λa.
8

Hence, all growth in λa and λb (with N kept intact), obtained thanks to directed

R&D, will ultimately appear as a multiplicative term in front of the respective factor of

production in the aggregate production function. As it will be shown in the following

section, however, growth in λa or λb ought not to be confused with the actual factor-

augmenting technical change, that is growth in a and b: already from equations

(5)–(6), one sees that these two types of entities are generally not proportional to one

another, unless additional conditions are met.

We also note the following straightforward corollary.

Corollary 1 Assuming that factors are priced at their marginal product, the capital

and labor income shares are equal to, respectively:

π =
rK

Y
=

π0

(
λb

λb0

K
K0

) αθ
α−θ

π0

(
λb

λb0

K
K0

) αθ
α−θ

+ (1− π0)
(

λa

λa0

L
L0

) αθ
α−θ

, (8)

1− π =
wL

Y
=

(1− π0)
(

λa

λa0

L
L0

) αθ
α−θ

π0

(
λb

λb0

K
K0

) αθ
α−θ

+ (1− π0)
(

λa

λa0

L
L0

) αθ
α−θ

. (9)

8The last two findings are a corollary from the fact that the technology menu defined in Assump-

tion 2 is a curve in a two-dimensional space, parametrized by three parameters λa, λb, N , and N is

kept constant.
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The above factor share formulas are instructive as regards the expected direction of

their change: this direction is strictly determined by the growth rate of λbK relative

to λaL. If both growth rates are equal, the capital income share will remain constant

at π0. If λbK grows faster, then due to gross complementarity
(

αθ
α−θ

< 0
)
, capital’s

income share will gradually fall to zero over time; conversely, it will gradually rise

towards unity if λaL grows faster. Hence, endogenous technology choice does not

overturn any of the standard results identified in earlier literature.9

9An obvious remark here is that the above factor share formulas are invalidated once one allows

for imperfect competition. However, if it is introduced via the Dixit–Stiglitz model of monopolistic

competition, implying constant markups over marginal costs, then this change would merely re-scale

factor income shares, without altering any of the results on their dynamics.
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3 Implications for the direction of technical change

Given the static character of the endogenous technology choice framework, it is

straightforward to embed it in dynamic growth models. In particular, one could

assume additionally that there are no interactions between technology choice and

factor demand on the side of firms. In such case, the aggregate production function

derived in equation (7) would enter the dynamic model directly, and the model could

be closed, e.g., by allowing directed R&D to increase λa and λb endogenously (cf.

Acemoglu, 2003). Then, depending on the assumptions of the embedding growth

model, generally any direction of R&D could be obtained as an equilibrium.10

In the following subsections, we shall discuss a few examples of growth models

that can be used as such embedding structures.

3.1 Balanced growth path, Harrod–neutral R&D, and purely-

augmenting technical change

It is very often assumed in the economic growth literature – partly due to some

empirical“stylized facts”, and partly due to analytical convenience – that the economy

follows a balanced growth path, or at least converges to it. It should be emphasized,

however, that such an assumption is a very stringent, knife-edge one (cf. Growiec,

2007): it requires that either the aggregate production function is Cobb–Douglas or

technical change is purely labor-augmenting (Uzawa, 1961).

A seminal example of a directed R&D setup that gives rise to a balanced growth

path in the case of a CES production function with purely labor-augmenting technical

change is due to Acemoglu (2003). It can be straightforwardly used as an embedding

structure over our technology choice framework. The production functions for factor-

augmenting shifts in the technology menu are then captured by linear equations of

form:

λ̇a = fa(ℓa)λa, (10)

λ̇b = fb(ℓb)λb, (11)

where ℓa and ℓb are the fractions of population engaged in labor- and capital-augmen-

10Albeit perhaps only some of them would be useful for an economist.
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ting R&D, respectively, and fa, fb are some smooth increasing functions. Such a

model is scale-free. An analysis of the model’s implications, both in the social planner

allocation and the decentralized equilibrium à la Acemoglu, reveals that the economy

converges to a balanced growth path where:11

ŷ = k̂ = â = λ̂a = f(ℓ∗a), (12)

b̂ = λ̂b = 0, (13)

and thus (i) R&D is Harrod–neutral, i.e., directed toward labor-augmenting develop-

ments only (λ̂b = 0), (ii) technical change is also Harrod–neutral, i.e., purely labor-

augmenting (b̂ = 0), (iii) factor income shares are constant at π0 and 1− π0, respec-

tively, despite the fact that the production function is not Cobb–Douglas.

Hence, in this very specific framework with linear technology equations in both

R&D sectors and no intrasectoral spillovers between both sectors, technical change

must follow the direction of R&D on one-to-one basis.

Further analysis shows that the capital- and labor-augmenting idea production

functions used in this directed R&D model can made slightly more general with-

out altering any of the above predictions. This would happen if one allowed mutual

spillovers between both R&D sectors, yet also imposed a particular knife-edge condi-

tion on their strength (measured by partial elasticities). This result has been obtained

by Li (2000), for a somewhat different two-R&D-sector model, which is however iden-

tical to the current one in its reduced form (that is, after stripping its solution to the

form of a system of dynamic equations governing the dynamics of its variables).

What is much more important here, however, is that for every other reduced-form

specification of the growth model, the above balanced-growth-path result must fail.

Hence in the typical (non-knife-edge) case, technical change will not be purely labor-

augmenting, it will not reflect the direction of R&D, and factor income shares will

not be constant across time.

3.2 Hicks–neutral R&D

Let us now pass to another specific case, the Hicks–neutral one implying that R&D

expands the technology menu proportionally, so that it is not biased towards any

11We use the notation: y ≡ Y/L, k ≡ K/L, and x̂ ≡ ẋ/x for any variable x.
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of the sectors. Though it is as parsimonious as the Harrod–neutral case discussed

above – obtaining this particular case also requires one to make a certain knife-edge

assumption – it provides us with another benchmark case to which we can compare

the results of all non-neutral cases.

Hicks–neutral R&D has been considered in a very similar endogenous technology

choice framework by Caselli and Coleman (2006) and Growiec (2008a). The implicit

assumption made there, that factor-augmenting idea distributions ã and b̃ evolve

proportionally, is equivalent to positing that the ratio λa/λb is constant, and thus

λ̂a = λ̂b for all times t.12 Again, one obtains such a result only in a certain knife-edge

case. For example, R&D is Hicks–neutral for all t in a dynamic model where

λ̇a = f(ℓa, ℓb)λ
α+1
a λβ

b , (14)

λ̇b = f(ℓa, ℓb)λ
α
aλ

β+1
b , (15)

and hence by assumption λ̂a = λ̂b.
13

As argued above, Hicks–neutral R&D precludes the existence of a balanced growth

path. More surprisingly, however, it also implies that technical change in the aggre-

gate economy, determined jointly by the direction of R&D and firms’ endogenous

technology choices, is not Hicks–neutral. In particular, under the assumptions that

(i) Hicks–neutral R&D improves UFPs at a constant rate, so that λ̂a = λ̂b ≡ g > 0,

(ii) the economy is able to maintain positive growth rates of physical capital per

worker k until infinite time, with limt→∞ k(t) = +∞, technical change will augment

both factors of production in the long run, according to:

lim
t→∞

ŷ(t) = g, (16)

lim
t→∞

â(t) = g, (17)

lim
t→∞

b̂(t) = g +
θ

α− θ
lim
t→∞

k̂(t) ⇒ lim
t→∞

b̂(t) ∈
[(

α

α− θ

)
g, g

)
. (18)

12Growiec (2008a) assumed that λa and λb were fixed, and proxied technological progress by

growth in N instead. This is equivalent, however, in terms of the evolution of the technology menu

over time, to keeping N fixed and varying λa and λb proportionately. An analogous assumption was

made by Caselli and Coleman (2006) in the cross-sectional context: they allowed only N to vary

across countries, but λa and λb were kept fixed.
13In a somewhat larger (yet, still very specific) class of models, R&D will be Hicks–neutral in the

limit of t → ∞. The long-run results obtain within this section hold for such models as well.
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These results have been obtained by taking limits of optimal technology choices

(5)–(6) under the assumption that k(t) → +∞. We have also used the inequality

limt→∞ k̂(t) ≤ limt→∞ ŷ(t), because in the opposite case, y(t)/k(t) would be falling

towards zero, ultimately violating the capital’s equation of motion.14

Hence, technological change augments both factors of production in the long run.

Capital-augmenting technical change remains positive forever, too, in contrast to the

findings based on the Cobb–Douglas production function (Jones, 2005).

On the other hand, even if R&D is Hicks–neutral, endogenous technology choice

introduces a bias in the direction of technical change, in favor of labor, i.e., the non-

accumulable input. Firms decide optimally to increase the UFP of labor faster than

that of capital in order to adjust to the ongoing changes in factor proportions, which

are in favor of capital. This is natural given gross complementarity of both inputs.

The capital income share π is bound to fall gradually towards zero under Hicks–

neutral R&D, provided that the rate of capital accumulation remains positive over

the long run.

3.3 All other directions of R&D

For all other cases of directed R&D, implying λ̂a ̸= λ̂b and λ̂b ̸= 0 over the long run,

we obtain the following generic results.

• If λbK grows faster than λaL, then ŷ(t) → λ̂a(t), â(t) → λ̂a(t) and b̂(t) →
λ̂b(t) +

θ
α−θ

k̂(t) with t.15 The capital income share falls towards zero over time.

• If λbK grows slower than λaL, then ŷ(t) → λ̂b(t) + k̂(t), â(t) → λ̂a(t)− θ
α−θ

k̂(t)

and b̂(t) → λ̂b(t) with t.16 The capital income share increases towards unity

over time.

• If λbK grows asymptotically at the same pace as λaL, then ŷ(t) → λ̂a(t) =

14Assuming furthermore that limt→∞ k̂(t) = limt→∞ ŷ(t) = g, it follows that limt→∞ b̂(t) =(
α

α−θ

)
g > 0.

15Given that k̂(t) ≤ ŷ(t) for sufficiently large t, this case can only obtain if λ̂b(t) > 0.
16If k̂(t) = ŷ(t) in the long run and λ̂b > 0, then such a model would imply explosive dynamics,

potentially achieving infinite output in finite time.
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λ̂b(t) + k̂(t), â(t) → λ̂a(t) and b̂(t) → λ̂b(t) with t.17 The capital income share

tends to a constant.

Hence, in the general case, the direction of R&D and the direction of technical

change are different from one another. Optimal technology choice as well as the

evolution of factor income shares are determined by comparing the growth rates of

λbK and λaL, i.e., of capital and labor in efficient units evaluated at the level of the

aggregate production function.

17If k̂(t) = ŷ(t) in the long run, then this case can appear only if λ̂b(t) → 0, which boils down to

the balanced growth path case discussed above.

19



Cobb-Douglas aggregate production function

N a t i o n a l  B a n k  o f  P o l a n d20

4

4 Cobb–Douglas aggregate production function

Let us now demonstrate how to derive the aggregate Cobb–Douglas production func-

tion within our framework (cf. Jones, 2005). The key change in assumptions that

is required to produce this result relates to the distribution of capital- and labor-

augmenting ideas; everything else is preserved. This said, in Section 5 we will argue

why this change might be actually misleading, and why the aggregate CES produc-

tion function might in fact be a more plausible alternative. We think however that

the Cobb–Douglas case is a useful benchmark for comparisons because it is frequently

used in the literature.

4.1 Modification of the framework

Let us now replace Assumption 2 with the following one:

Assumption 4 (modification of Assumption 2) The technology menu, defined

in the (a, b) space, is given by the equality:

H(a, b) =

(
a

λa

)ϕL
(

b

λb

)ϕK

= N, ϕK , ϕL > 0. (19)

This shape of the technology menu is consistent with the assumption that a and b

are independently Pareto-distributed, with shape parameters ϕL and ϕK , respectively:

P (ã > a) =

(
λa

a

)ϕL

, P (b̃ > b) =

(
λb

b

)ϕK

, (20)

for a > λa and b > λb. In such case, N = 1
P (ã>a,b̃>b)

. The same assumption was

made previously by Jones (2005), but with the unnecessary restriction of proportional

(Hicks–neutral) augmentation of the technology menu.

4.2 Technology choice and the aggregation result

At t0, when K = K0, L = L0, Y = Y0, λa = λa0, λb = λb0 is assumed, the optimal

choice is indeterminate, provided that

π0 =
r0K0

Y0

=
ϕK

ϕL + ϕK

. (21)
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This restriction means that the capital income share at t0 (and in fact at all other

times as well) should be equal to ϕK

ϕL+ϕK
. Thus, π0 ceases to be a free parame-

ter, and a0 becomes a free parameter instead (b0 is then calculated according to(
a0
λa0

)ϕL
(

b0
λb0

)ϕK

= N).

At any other moment in time, and given a0 and b0, the optimal technology choices

are:

(
a

a0

)∗

=

(
λa

λa0

) ϕL
ϕL+ϕK

(
λb

λb0

) ϕK
ϕL+ϕK

(
KL0

LK0

) ϕK
ϕL+ϕK

(22)

(
b

b0

)∗

=

(
λa

λa0

) ϕL
ϕL+ϕK

(
λb

λb0

) ϕK
ϕL+ϕK

(
KL0

LK0

)− ϕL
ϕL+ϕK

. (23)

Inserting these optimal technology choices into the LPF, we obtain the following

result.

Proposition 2 If Assumptions 1, 3, and 4 hold, then the aggregate production func-

tion takes the Cobb–Douglas form:

Y = Y0

(
λa

λa0

) ϕL
ϕL+ϕK

(
λb

λb0

) ϕK
ϕL+ϕK

(
K

K0

) ϕK
ϕL+ϕK

(
L

L0

) ϕL
ϕL+ϕK

. (24)

Proof (and generalization to n inputs): see the appendix. �
The interpretation of the parameters of the aggregate Cobb–Douglas production

function is the following:

• the distribution parameter is π0 = r0K0

Y0
= ϕK

ϕL+ϕK
. Under normalization, the

distribution parameter of the LPF π0 has to be assumed equal to the (constant)

capital income share of the aggregate Cobb–Douglas production function,

• partial elasticities of capital and labor in the aggregate production function are

proportional to the shape parameters of the Pareto distributions of their respec-

tive factor-augmenting technologies and sum up to one (guaranteeing constant

returns to scale),

• the multiplicative constant term is Y0. Thanks to normalization, it is thus

exactly equal to the multiplicative constant term of the LPF,
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• the constant parameter N does not appear in the aggregate production func-

tion,18

• the capital-and labor-augmenting parameters of the technology menu, λb and λa

respectively, enter the aggregate production function multiplicatively, taken to

their respective powers ϕK and ϕL. Growth in aggregate output is thus invariant

to the direction of R&D.

4.3 Direction of technical change

Under endogenous technology choice, the Cobb–Douglas case provides very specific

implications for the direction of technical change. To see them, log-differentiate equa-

tions (22)–(24) with respect to time and compare terms to obtain:

â = ŷ =
ϕL

ϕL + ϕK

λ̂a +
ϕK

ϕL + ϕK

λ̂b +
ϕK

ϕL + ϕK

k̂, (25)

b̂ = ŷ − k̂ =
ϕL

ϕL + ϕK

λ̂a +
ϕK

ϕL + ϕK

λ̂b −
ϕL

ϕL + ϕK

k̂. (26)

It follows that in the Cobb–Douglas case, no matter what the direction of R&D

is, i.e., irrespective of the values of λ̂a and λ̂b, firms will always adjust the labor-

augmenting technology on one-to-one basis to changes in output per worker y, and

capital-augmenting technology will be, accordingly, always adjusted one-to-one to

changes in output per unit of capital y/k. Hence, as shown by Jones (2005), tech-

nological change must be purely labor-augmenting along the balanced growth path,

where the output–capital ratio y/k is constant.

The capital income share is now fixed at π0 =
ϕK

ϕL+ϕK
, and the labor income share

is fixed at 1− π0 =
ϕL

ϕL+ϕK
, for all times t.

18Again, one could easily reparametrize the technological menu, fixing either λa or λb and allowing

N to vary across time. In such case, the ratio N/N0 (which now drops out) would appear in equation

(24).
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5 The Weibull distribution in R&D productivity

After having discussed the key properties of the endogenous technology choice model

where the aggregate production function is derived as a convex hull of local production

techniques, with UFPs selected from the given technology menu, let us now justify

the functional form of this menu, taken for granted in Assumption 2. This will be

done using a novel, analytically tractable model of two independent R&D sectors,

producing capital- and labor-augmenting innovations, respectively. It bears some

similarity with the framework discussed in Appendix D of Growiec (2008a), but has

a few unique distinguishing features. The model will be characterized in the two

following subsections.

5.1 Distributions of complex ideas

The key novelty of the current model is the assumption that ideas are inherently com-

plex and consist of a large number of complementary components. This is summarized

in the following assumption.

Assumption 5 The (capital- or labor-augmenting) R&D sector consists of an infin-

ity of researchers located along the unit interval I = [0, 1]. At each instant t, every

researcher i ∈ I determines the quality of her innovation (b̃i or ãi, respectively) by

taking the minimum over n independent draws from the elementary idea distribution

with cdf F . The distribution F has positive density on [w, v), where v can be infinite,

and zero density otherwise, and satisfies the condition

lim
p→0+

F(w + px)

F(w + p)
= xα

for all x > 0 and a certain α > 0.

The parameter n in the above assumption captures the number of constituent

components of any given (composite) idea, and thus captures the complexity of any

state-of-the-art technology. Allowing for such complexity puts the current framework

in stark contrast to earlier studies (such as Jones, 2005, or Growiec, 2008a) where the
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quality of ideas was determined via a single draw from the elementary idea distribution

F .19

The assumption that the quality of an innovation is the minimum (a Leontief

function) of a range of n independent draws from the distribution F reflects the

view that the components of an idea are complementary to one another (Kremer,

1993; Blanchard and Kremer, 1997; Jones, 2011). More precisely, we consider the

extreme case where they are perfectly complementary, and thus total productivity of a

complex idea is determined by the productivity of its “weakest link” (or “bottleneck”).

Clearly, this need not hold exactly in reality, since certain deficiencies of design can

often be covered by advantages in different respects. However, the example of the

explosion of the space shuttle Challenger due to a failure of an inexpensive O-ring, put

forward by Kremer (1993), is perhaps the best possible illustration of the potentially

complementary character of components of complex ideas.

Letting the technology complexity n be arbitrarily large, we obtain the following

result:

Proposition 3 If Assumption 5 holds, then as n → ∞, the minimum of n indepen-

dent random draws from the distribution with cdf F , after appropriate normalization,

converges in distribution to the Weibull distribution with the shape parameter α:

[1−F (xpn + w)]n
d−→ e−(

x
λ)

α

, (27)

where w = inf{x ∈ R : F(x) > 0}, pn = 1
λ

(
F−1

(
1
n

)
− w

)
and the free parameter

λ > 0 is assumed to be proportional to the mean of the underlying distribution F .

Proof. The proposition follows directly from the Fisher–Tippett–Gnedenko extreme

value theorem, applied to the distribution F (Theorem 1.1.3 in de Haan and Ferreira,

2006, rephrased so that it captures the minimum instead of maximum). From the

19Jones (2005) viewed the technology menu as a convex hull of a finite number N of ideas. Hence,

in the limit N → ∞, this menu took the form of a contour line of a Fréchet distribution, which

is the limiting distribution of the maximum of N independent draws from a distribution F that is

bounded from below. This assumption has been later replaced, both in Growiec (2008a) and in the

current paper, with Assumption 6. At this point, one should note that Jones (2005) was preoccupied

with the distribution of the maximum across ideas and here we are considering the minimum across

components of each idea. Across ideas, it is still the best draws that matter.
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theorem specifying the domain of attraction of the Weibull distribution (Theorem

1.2.1 in de Haan and Ferreira, 2006; Section 1.3 in Kotz and Nadarajah, 2000), we

obtain the necessary and sufficient conditions guaranteeing for the complementarity

mechanism to work. �
From the mathematical point of view, the parameter λ is superfluous in the above

derivations and can be normalized to unity by a simple re-normalization of the se-

quence pn as p̃n = pn · λ = F−1
(
1
n

)
− w. We think however that it is important to

maintain the distinction between pn and λ in order to maintain the ability of the R&D

sector in the model to influence the means of capital- and labor-augmenting ideas.

And it is precisely λ which pins down the mean of the resultant Weibull distribution.

Hence, when turning to our distinction between capital- and labor-augmenting

R&D, we shall distinguish between λa determining the mean of ã, and λb pinning

down the mean of b̃, obtaining the following generic results:

Eã = λaΓ

(
1 +

1

α

)
, Eb̃ = λbΓ

(
1 +

1

α

)
, (28)

where Γ(x) =
∫∞
0

tx−1e−tdt is the Euler’s Gamma function.

A few meaningful applications of Proposition 3 have been summarized in Table 1.

They indicate that the Weibull result can be obtained for a number of classes of distri-

butions frequently discussed in the literature. They also provide a clear explanation

how to relate λ to the characteristics of the underlying productivity distribution, and

what values of the parameter α should be expected. Extreme value theory provides

sharp implications on that.

The main message drawn from the results presented in Table 1 is that we can

model directed R&D, affecting the mean of the underlying distribution F and thus

λa and λb, in an arbitrary way; if only the conditions specified in Assumption 5 hold,

then the Weibull distribution result will always go through. If, on top of that, the

shape parameters α of capital- and labor-augmenting developments happen to be

equal to one another, then the aggregate normalized CES production function result

will always follow, too.
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Fortunately, the implied parameter α is found to be unitary for a wide range of

distributions F , and therefore the condition that α is equal for both capital- and

labor-augmenting ideas is quite plausible. Furthermore, if α = 1, then also Eã =

λa and Eb̃ = λb, which makes the link between the underlying distribution F and

the resultant Weibull distribution (which in such case specializes to the exponential

distribution) especially apparent. We note the following corollary.

Corollary 2 If the underlying idea distributions F are Pareto, uniform or truncated

Gaussian, then α = 1 and thus the resultant idea distribution is exponential. In such

case, the elasticity of substitution of the aggregate CES production function is equal

to σ = 1−θ
1−2θ

∈
[
1
2
, 1
)
, increasing from 1

2
in the case of Leontief LPFs to unity in the

limiting case of Cobb–Douglas LPFs.

Please also note that a number of frequently considered classes of distributions

have not been included in Table 1, because they do not satisfy the conditions of the

theorem. First of all, the support of the distribution must be bounded from below,

which rules out distributions defined on R such as the Gaussian. Also, the pdf of

such distribution cannot increase smoothly from zero at w; there must be a jump.

This rules a few more candidate distributions such as the lognormal or the Fréchet.

Furthermore, the lowest possible value of the random variable cannot be an isolated

atom, which rules out all discrete distributions such as the two-point distribution, the

binomial, negative binomial, Poisson, etc.

5.2 Derivation of the technology menu

Let us now finally show how the individual draws of (complex, factor-augmenting)

technologies ã and b̃ are combined, yielding the functional form of the technology

menu postulated in Assumptions 2 and 4. We shall close the model of the R&D

sector by making the following assumption.

Assumption 6 Every capital- and labor-augmenting technology draw is allowed to

enter the technology menu if it has been confirmed by at least a pre-defined fraction

of researchers in I (zb and za, respectively).
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Given the above assumption and the Law of Large Numbers, a labor-augmenting

technology a can be included in the technology menu at time t if P (ã > a) ≥ za,

and a capital-augmenting technology b, if P (b̃ > b) ≥ zb. Since both R&D sectors

are independent from one another, an aggregate technology (a, b) is thus included

in the technology menu if P (ã > a, b̃ > b) = P (ã > a)P (b̃ > b) ≥ zazb. Since no

profit-maximizing firm will choose a dominated technology, we may as well replace

the above “≥” inequality with equality in the formulation of the technology menu.

This brings us directly to Assumption 2, if the distributions of ã and b̃ are Weibull,

or to Assumption 4, if these distributions are Pareto. Moreover, as we have shown

above, under the assumption that each idea consists of n complementary components,

with n → ∞, they should converge to the Weibull distribution and thus the resultant

aggregate production should be CES.
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6 Conclusion

The objective of the current paper has been to provide an idea-based microfounda-

tion for a few selected shapes of aggregate production functions, commonly discussed

in the literature. To this end, we have shown that the normalized CES production

function can be derived as a convex hull of local production techniques under the

assumption that labor- and capital-augmenting ideas are independently Weibull dis-

tributed (Growiec, 2008a,b). If they are independently Pareto distributed, then the

resultant aggregate production function will be Cobb–Douglas (Jones, 2005). If nei-

ther of these options holds, then the resultant aggregate production function will not

belong to the CES class.

This result has a number of interesting features. First, thanks to normalization,

all parameters of the derived CES and Cobb–Douglas aggregate production functions

have a sound interpretation in terms of the parameters of local production tech-

niques and the underlying unit factor productivity distributions. Second, we find

that the elasticity of substitution in the aggregate production function is unambigu-

ously higher than in local production techniques, signifying that if the production

function is viewed as an assembly of heterogenous technologies, technological sub-

stitution can effectively augment factor substitution. Third, normalization can be

maintained simultaneously at the local and aggregate level.

The next step taken in the current paper was to embed our static endogenous tech-

nology choice framework in a dynamic growth model. This step provided us with an

opportunity to derive a number of theoretical predictions regarding the (endogenously

determined) direction of technical change (labor-augmenting vs. capital-augmenting).

Marked differences have been found here between the normalized CES case and the

Cobb–Douglas case. The CES case allows for any direction of factor-augmenting

technical change over the long run, and this direction is positively related to but not

equal to the direction of R&D – if only the proposed direction of R&D can be sus-

tained in the growth model (cf. Acemoglu, 2003). The Cobb–Douglas case implies

that technical change will be always purely labor-augmenting over the long run (along

the balanced growth path), regardless of the underlying direction of R&D.

The current paper has also developed a novel, tractable model of directed R&D,

underlying the postulated unit factor productivity (UFP) distributions. Using this
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model, we have provided a theoretical argument why the Weibull distribution should

in fact be a good proxy of the real-world UFP distributions. The argument is based

on the assumption that ideas (technologies, production techniques) are not simple,

as it was implicitly assumed in earlier literature, but inherently complex, consisting

of a large number of complementary components. Under such circumstances, total

efficiency of a technology should be closely following the efficiency of its “weakest

link”. The Weibull distribution is, in turn, an extreme value distribution pertaining

to the minimum of a sequence of random draws from the same distribution which

is bounded from below. Consequently, we have shown that if technologies consist of

a wide range of complementary components, and they are then optimally chosen by

firms, then the aggregate production function should be CES.

In the appendix, we also demonstrate that all our arguments are easily generaliz-

able to the case of n-input production functions.

A few related issues may be studied in further research. It would be worthwhile,

for example, to investigate the real-world productivity distributions, attempting to

discriminate econometrically between the Weibull specification and the celebrated

Pareto one (or perhaps some further distributions, too). Another challenge would

be to develop an empirical approach able to identify jointly the parameters of the

aggregate production function and the technology menu. It could also be interesting

to see the consequences of allowing for dependence between the marginal Weibull

distributions.
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A Appendix. Generalization to n inputs and proofs

of propositions

As announced in the main text, all the results provided here go through for n-input

production functions as well. Let us now discuss this case.

A.1 The normalized CES case

First, let us show that if ideas (UFPs), augmenting each of the n production inputs,

are independently Weibull-distributed (and the LPFs are normalized CES functions),

then the resultant aggregate production is normalized CES as well. To this end, we

shall use the following generalized assumptions. By xi, i = 1, 2, ..., n we shall denote

the inputs, and by ai, i = 1, 2, ..., n – unit factor productivities.

Assumption 7 The n-input local production function (LPF) takes either the nor-

malized CES or the normalized Leontief form:

Y =



Y0

(∑n
i=1 π0i

(
aixi

a0ix0i

)θ
) 1

θ

, if σLPF ∈ (0, 1),

Y0 mini=1,...,n

{(
aixi

a0ix0i

)}
, if σLPF = 0,

(29)

where θ ∈ [−∞, 0) is the substitutability parameter, related to the elasticity of sub-

stitution via σLPF = 1
1−θ

. Leontief LPFs, with σLPF = 0, are obtained as a special

case of the more general normalized CES class of LPFs by taking the limit θ → −∞
(we denote this case as θ = −∞ for simplicity). π0i is the income share of i-th factor

at t0. Factor income shares sum up to unity:

n∑
i=1

π0i = 1, (30)

and the LPF exhibits constant returns to scale.

Assumption 8 The technology menu, specified in the (a1, ..., an) space, is given by

the equality:

H(a1, ..., an) =
n∑

i=1

(
ai
λai

)α

= N, λa1, ..., λan, α,N > 0. (31)
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The technology menu is understood as a contour line of the cumulative distribution

function of the joint n-variate distribution of factor-augmenting ideas ai, i = 1, ..., n.

Under independence of the n dimensions (so that marginal distributions are multiplied

by one another), equation (31) obtains if and only if the marginal distributions are

Weibull with the same shape parameter α > 0 (Growiec, 2008b):20

P (ãi > ai) = e
−
(

ai
λai

)α

, i = 1, 2, ..., n,

where all ai > 0. Under such parametrization, we have

P (ã1 > a1, ..., ãn > an) = e
−

∑n
i=1

(
ai
λai

)α

,

and thus the parameter N in equation (31) is interpreted as N = − lnP (ã1 >

a1, ..., ãn > an) > 1.

The case where ai, i = 1, ..., n are independently Pareto distributed leads to a

different specification of the technology menu and will be considered separately in

the next subsection. If they are Weibull distributed but dependent, or independent

but following some other distribution than Pareto or Weibull, the resultant aggregate

production does not belong to the CES class and will not be considered here.

Assumption 9 Firms choose the technology n-tuple (a1, ..., an) optimally, subject to

the current technology menu, such that their profit is maximized:

max
a,b


Y0

(
n∑

i=1

π0i

(
aixi

a0ix0i

)θ
) 1

θ


 s.t.

n∑
i=1

(
ai
λai

)α

= N. (32)

Factor remuneration, taken into account in the firms’ profit maximization problem,

does not depend on the chosen technology so it can be safely omitted from the above

optimization problem.21

Finally, second order conditions require us to assume that α > θ, so that the inte-

rior stationary point of the above problem is a maximum. For the resultant aggregate

20Equation (2) can also be obtained for Pareto distributions of ai, provided that the pattern

of dependence between both marginal distributions is modeled with the Clayton copula (Growiec,

2008a). Its functional form has been first postulated by Caselli and Coleman (2006), but without

any justification.
21In the case of Leontief LPFs, optimization requires aixi

a0ix0i
=

ajxj

a0jx0j
for all i, j = 1, ..., n.
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production function to be concave with respect to xi, i = 1, ..., n, we need to assume

furthermore that α − θ − αθ > 0. All these conditions are satisfied automatically in

the case α > 0 > θ, on which we concentrate here. The inputs are gross complements

in the aggregate production function.

Again, our framework provides direct results on the firm’s optimal technology

choice. First, at time t0, when Y = Y0 and xi = x0i, λai = λa0i is assumed for all

i = 1, ..., n, the optimal choice satisfies:

a∗0i = (Nπ0i)
1
α λa0i, i = 1, ..., n, (33)

where λa0i are the values of λai at time t0. Values of a∗0i will be used as a0i in the

normalization at the local level in all subsequent derivations.

For any other moment in time, the optimal technology choices are:

(
aj
a0j

)∗

=
λaj

λa0j

(
n∑

i=1

π0i

(
λai

λaj

λa0j

λa0i

xix0j

x0ixj

) αθ
α−θ

)− 1
α

, (34)

for all j = 1, ..., n, where αθ
α−θ

is substituted with −α in the case of Leontief LPFs

(θ = −∞).

Inserting these optimal technology choices into the LPF, we obtain the following

result.

Proposition 4 If Assumptions 7-9 hold, then the aggregate production function takes

the normalized CES form:

Y = Y0

(
n∑

i=1

π0i

(
λai

λa0i

xi

x0i

) αθ
α−θ

)α−θ
αθ

. (35)

The normalized CES result obtains both in the case of CES and Leontief LPFs.

Proof. The proof is straightforward and requires just algebraic manipulations. To

prove Proposition 1, one should simply take n = 2 in the following calculations.

First, in the case of CES LPFs, we form the Lagrangean:

L = Y0

(
n∑

i=1

π0i

(
aixi

a0ix0i

)θ
) 1

θ

+ Λ ·

{
n∑

i=1

(
ai
λai

)α

−N

}
. (36)

Differentiating it with respect to ai, i = 1, ..., n, and getting rid of Λ yields:
(
ai
aj

)α−θ

=
π0i

π0j

(
λai

λaj

)α(
xi

xj

a0jx0j

a0ix0i

)θ

, (37)
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for all i, j = 1, ..., n. Considering first the reference point of time t0, when xi =

x0i, λai = λa0i, ai = a0i for all i = 1, ..., n, we obtain:

a0i
a0j

=

(
π0i

π0j

) 1
α λa0i

λa0j

. (38)

Using the specification of the technology menu (31) as well as the assumption that∑n
i=1 π0i = 1, we obtain:

a∗0i = (Nπ0i)
1
α λa0i, i = 1, ..., n. (39)

For t ̸= t0, by plugging (39) into (37), using (31) again and rearranging, we obtain

that:

(
aj
a0j

)∗

=
λaj

λa0j

(
n∑

i=1

π0i

(
λai

λaj

λa0j

λa0i

xix0j

x0ixj

) αθ
α−θ

)− 1
α

, (40)

for all j = 1, ..., n.

Plugging this into the LPF (29) and rearranging, we obtain the final result.

Given our parametric assumptions, second-order conditions for the maximization

of the Lagrangean hold. To demonstrate this, it is useful to note that maximizing

L is equivalent to minimizing the following transformed Lagrangean Lmin (where the

maximand function is taken to the power θ < 0 for simplicity):

Lmin = Y θ
0

n∑
i=1

π0i

(
aixi

a0ix0i

)θ

+ Λmin ·

{
n∑

i=1

(
ai
λai

)α

−N

}
. (41)

We obtain the following second-order derivatives (after inserting the first order con-

dition to get rid of Λmin):

∂2Lmin

∂a2i
= θ(θ − α)Y θ

0 π0i

(
aixi

a0ix0i

)θ
1

a2i
> 0, (42)

∂2Lmin

∂ai∂aj
= 0, (43)

and thus Lmin is minimized.

In the case of Leontief LPFs, instead of forming the Lagrangean, one should use

the equality aixi

a0ix0i
=

ajxj

a0jx0j
for all i, j = 1, ..., n – which must hold because of the
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assumption that the representative firm maximizes profits. Since equations (31) and

(39) still hold, plugging these equalities into the LPF yields

Y = Y0
a1x1

a01x01

= Y0

(
n∑

i=1

π0i

(
λai

λa0i

xi

x0i

)−α
)− 1

α

. (44)

Please note that the same result is obtained by taking the case of CES LPFs and

considering the limit θ → −∞. �
The corollary on factor income shares goes through in the n-dimensional case as

well:

Corollary 3 Assuming that factors are priced at their marginal product, the factor

income shares are equal to:

πi =
π0i

(
λai

λa0i

xi

x0i

) αθ
α−θ

∑n
i=1 π0i

(
λai

λa0i

xi

x0i

) αθ
α−θ

, i = 1, ..., n. (45)

A.2 The Cobb–Douglas case

Let us now replace Assumption 8 with the following one:

Assumption 10 (modification of Assumption 8) The technology menu, speci-

fied in the (a1, ..., an) space, is given by the equality:

H(a1, ..., an) =
n∏

i=1

(
ai
λai

)ϕi

= N, ϕi > 0, i = 1, ..., n. (46)

This shape of the technology menu is consistent with the assumption that ai’s

are independently Pareto-distributed, with shape parameters ϕi. In such case, N =
1

P (ã1>a1,...,ãn>an)
.

At t0, when Y = Y0 and xi = x0i, λai = λa0i is assumed for i = 1, ..., n, the optimal

choice is indeterminate, provided that

π0i =
ϕi∑n
i=1 ϕi

, i = 1, ..., n. (47)

This restriction means that the factor income shares should be equal to ϕi∑n
i=1 ϕi

. Thus,

π02, ..., π0n cease to be free parameters, and a02, ..., a0n become free parameters instead
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(the remaining technology choice a01 is then calculated according to the technology

menu).

At any other moment in time, and given a0i, i = 1, ..., n, the optimal technology

choices are:

(
ai
a0i

)∗

=
x0i

xi

n∏
i=1

(
λai

λa0i

xi

x0i

) ϕi∑n
i=1

ϕi

, i = 1, ..., n. (48)

Inserting these optimal technology choices into the LPF, we obtain the following

result.

Proposition 5 If Assumptions 7, 9, and 10 hold, then the aggregate production func-

tion takes the Cobb–Douglas form:

Y = Y0

n∏
i=1

(
λai

λa0i

xi

x0i

) ϕi∑n
i=1

ϕi

. (49)

Proof. The proof is, again, straightforward and requires just algebraic manipulations.

To prove Proposition 2, one should take n = 2 in the following calculations.

First, we form the Lagrangean:

L = Y0

(
n∑

i=1

π0i

(
aixi

a0ix0i

)θ
) 1

θ

+ Λ ·

{
n∏

i=1

(
ai
λai

)ϕi

−N

}
. (50)

Differentiating it with respect to ai, i = 1, ..., n, and getting rid of Λ yields:

(
aixi

ajxj

a0jx0j

a0ix0i

)θ
π0i

π0j

ϕj

ϕi

= 1, (51)

for all i, j = 1, ..., n. Considering first the reference point of time t0, when xi =

x0i, λai = λa0i, ai = a0i for all i = 1, ..., n, we obtain:

π0i

π0j

=
ϕi

ϕj

. (52)

Using the assumption that
∑n

i=1 π0i = 1, we obtain that at t0, optimal technology

choice is indeterminate provided that:

π0i =
ϕi∑n
i=1 ϕi

, i = 1, ..., n. (53)
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For t ̸= t0, by plugging (52) into (51), using (46) and rearranging, we obtain that:

(
ai
a0i

)∗

=
x0i

xi

n∏
i=1

(
λai

λa0i

xi

x0i

) ϕi∑n
i=1

ϕi

, i = 1, ..., n. (54)

for all j = 1, ..., n.

Plugging this into the LPF (29) and rearranging, we obtain the final result.

Given our parametric assumptions, second-order conditions for the maximization

of the Lagrangean hold. To prove this, it is useful to note that maximizing L is

equivalent to minimizing the following transformed Lagrangean Lmin (where, for sim-

plicity, the maximand function is taken to the power θ < 0 and a log-transformation

is applied to the restriction):

Lmin = Y θ
0

n∑
i=1

π0i

(
aixi

a0ix0i

)θ

+ Λmin ·

{
n∑

i=1

ϕi(ln ai − lnλai)− lnN

}
. (55)

We obtain the following second-order derivatives (after inserting the first order con-

dition to get rid of Λmin):

∂2Lmin

∂a2i
= θ2Y θ

0 π0i

(
aixi

a0ix0i

)θ
1

a2i
> 0, (56)

∂2Lmin

∂ai∂aj
= 0, (57)

and thus Lmin is minimized.

In the case of Leontief LPFs, instead of forming the Lagrangean, one should use

the equality aixi

a0ix0i
=

ajxj

a0jx0j
for all i, j = 1, ..., n – which must hold because of the

assumption that the representative firm maximizes profits. Since equation (46) still

holds, plugging these equalities into the LPF yields

Y = Y0
a1x1

a01x01

= Y0

n∏
i=1

(
λai

λa0i

xi

x0i

) ϕi∑n
i=1

ϕi

.� (58)
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