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Abstract: 

We present an experiment in which extrinsic information (signals) may generate sunspot equilibria. 

The underlying coordination game has a unique symmetric non-sunspot equilibrium, which is also 

risk-dominant. Other equilibria can be ordered according to risk dominance. We compare treatments 

with different salient, but extrinsic signals. By increasing the precision of private signals, we 

manipulate the available public information, which allows us to measure the force of extrinsic signals. 

We also vary the number of signals and combine public and private signals, allowing us to see how 

subjects aggregate available (and possibly irrelevant) information. Results indicate that sunspot 

equilibria emerge naturally if there are salient (but extrinsic) public signals. However, salient private 

signals of high precision may also cause sunspot-driven behavior, even though this is no equilibrium. 

The higher the precision of signals and the easier they can be aggregated, the more powerful they are 

in dragging behavior away from the risk-dominant to risk-dominated strategies. Sunspot-driven 

behavior may lead to welfare losses and exert negative externalities on agents, who do not receive 

extrinsic signals. 
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1 Introduction 

Ever since Keynes’ (1936) beauty-contest analogy of investor behavior in stock markets, it has been 

asked whether extrinsic information may affect behavior in coordination games. Azariadis (1981) and 

Cass and Shell (1983) were the first who theoretically explored the influence of extrinsic information 

on economic activities. They showed that whenever there are multiple equilibria there are also sunspot 

equilibria, in which agents condition their actions on publicly observable, but intrinsically 

uninformative signals.1 Even though these signals are uninformative they may serve as focal points for 

agents’ beliefs and their public nature allows beliefs to become self-fulfilling. Thereby, extrinsic 

events may determine on which equilibrium agents coordinate. 

In his seminal book, Schelling speculates that “Most situations […] provide some clue for 

coordinating behavior, some focal point for each person’s expectations of what the other expects him 

to be expected to do” (1960, 57). Such clues might include folk wisdom, collective perception, 

consensus, stereotypes, or (strategy) labels, i.e., a sunspot could be anything that possibly coordinates 

the expectations of market participants and breaks the symmetry in coordination problems. For 

example, lunar phases are publicly observable. They may influence human behavior and mood, and if 

individuals (mistakenly) attribute economic outcomes to the moon, this perception can become self-

fulfilling and moon phases might be used as a coordination device.2 However, there has to exist a 

shared understanding about how moon phases (or sunspots) affect behavior, because sunspots are 

essentially a social phenomena (Duffy and Fisher, 2005). 

In the field, it is arguably hard to identify a particular extrinsic event that may affect an agent’s choice. 

Even if such an extrinsic event is identified, it is difficult to establish a causal link between the 

extrinsic event (sunspot) and an economic outcome. For instance, non-informative signals might be an 

explanation for excess asset-price volatility when traders condition their actions on such signals, but 

higher volatility may also be caused by an increased dispersion of private signals or increasing 

uncertainty. 

                                                      

1 The term sunspot originated in the work of William Jevons (1884), who proposed a relationship between the 
number of sunspots and the business cycle. In the theoretical literature, the term “sunspot” is a synonym for 
extrinsic random variables, i.e., variables which may influence economic behavior, but are unrelated to 
fundamentals such as preferences, technologies, or endowment.  
2 Recent literature in financial economics explores the impact of natural activities, such as weather conditions or 
lunar phases, on mood and subsequently on investment decision (see, e.g., Yuan, Zheng and Zhu, 2006; 
Hirshleifer and Shumway, 2007, and references therein) or on college choice (Simonsohn, 2009). Mood might 
also be reflected in confidence indices, such as the Michigan Consumer Sentiment Index or the Ifo Business 
Climate Index, which contain some information about the future path of household spending. Others have shown 
that sports events impact stock-market indices (Edmans, Garcia and Norli, 2007) or expectations about the future 
personal situation and the economic situation in general (Dohmen et al., 2006). However, in this literature it is 
difficult to argue that these events do not affect preferences or do not have direct effects on utility. Individuals 
also often show a tendency to incorporate irrelevant information into their decision, although it is not profitable 
for them, for example in financial or innovation decisions (e.g., Camerer, Loewenstein and Weber, 1989, 
Jamison, Owens and Woroch, 2009, or Choi, Laibson and Madrian, 2010).  
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In this paper, we use a laboratory experiment to explore the impact of extrinsic information on 

economic behavior. The experimental approach allows us (1) to control the available extrinsic 

information and its potential meaning and (2) to investigate how such extrinsic information affects 

coordination and the occurrence of sunspot equilibria. In particular, we hold the institution (game) and 

the semantics of the extrinsic information fixed over treatments and vary only the extent to which 

extrinsic information is available and publicly observable. We use a simple two-player coordination 

game with random matching where players have to pick a number from the interval zero to 100. 

Players maximize their payoffs by choosing the same number and deviations are punished with a 

quadratic loss function. Therefore, each coordinated pick of numbers constitutes a Nash equilibrium 

and payoffs do not depend on the number that players coordinate on. Nevertheless, some numbers are 

presumably more prominent than others.3 Picking 50, in particular, is the unique symmetric 

equilibrium and it is also the Maximin strategy and the risk-dominant equilibrium.4 

Extrinsic signals (sunspots) in our experiment are binary random variables unrelated to payoffs with 

realizations being either zero or 100. Thereby, subjects may use the signal as a coordination device by 

choosing the same number as the signal. We choose semantically salient signals to establish a link 

between the sunspot variables and the economic outcome, i.e., the meaning of the sunspot variables is 

as clear as possible. In the most favorable case, subjects receive one publicly observable signal, which 

may provide another focal point for solving the coordination problem besides the risk-dominant 

choice. These two focal points – risk dominance and sunspot (public observable signal) – differ with 

respect to their associated risk: following the sunspot (public signal) is riskier than following any other 

strategy. The risk-dominance criterion allows us to order the different equilibria by the associated level 

of strategic risk. Therefore, we can measure the power of sunspots by how far actions are distracted 

away from the risk-dominant equilibrium. We systematically vary the information structure, i.e., the 

number of signals and their degree of public availability. For each treatment, we measure the average 

distance between chosen actions and the risk-dominant strategy and the proportion of groups who are 

converging to sunspot equilibria. Thus, we can investigate to what extent publicity is necessary for the 

occurrence of sunspot-driven behavior and how the available information is aggregated.  

The main finding is that extrinsic public signals that are easy to aggregate lead to almost perfect 

coordination on the sunspot equilibrium that is implied by the semantics of the signals. This salient 

                                                      

3 For example, even numbers or multiples of 10 may be more salient than others (e.g. Rosch, 1975). 
4 In the pure coordination game in our baseline setting the notion of risk dominance (Harsanyi and Selten, 1988) 
provides a natural way to break the payoff symmetry and thus may serve as a focal point. Indeed, Schelling’s 
(1960) focal point concept originated from situations where the formal structure of the game provides no 
guidance for equilibrium selection, such as in a pure coordination game. For experimental studies of the focal 
point concept see, for example, Mehta, Starmer and Sudgen (1994), Bosch-Domenech and Vriend (2008), 
Bardsley et al (2009), Crawford, Gneezy and Rottenstreich (2009) or Agranov and Schotter (2010). Crawford 
and Haller (1990) show theoretically how players can coordinate via precedents when they lack a common-
knowledge description of the game in a repeated setting (see also Blume and Gneezy, 2000, for an experimental 
test). 
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sunspot equilibrium reliably shows up whenever subjects receive just public signals, even when it is 

associated with higher strategic risk than any other strategy. It seems that the possibility to coordinate 

on a salient message exerts a force on agents’ decisions, which dominates the force of risk dominance. 

This is less pronounced in the presence of public and private signals since some subjects then 

condition their actions on the private signal, which prevents full coordination of actions or leads to an 

intermediate sunspot equilibrium. While theory predicts the same set of equilibria as in a game with 

just one public signal, we find that the power of sunspots is significantly lower if private and public 

signals are combined. In the absence of public signals, the risk-dominant equilibrium predominates. 

However, sunspot-driven behavior can be observed for highly correlated private signals. This implies 

that the likelihood of sunspot-driven actions is a continuous function of the correlation of signals, 

while theory predicts sunspot equilibria only if signals of different agents are perfectly correlated.  

Whether sunspot-driven behavior or sunspot equilibria occur depends on the group dynamics in the 

early periods. In treatments with a private signal, sunspot-driven behavior only occurs in groups where 

in the beginning a critical mass of subjects deviates from the risk-dominant choice. This is also true for 

the occurrence of sunspot equilibria in treatments with a private and a public signal. If a sufficient 

proportion of subjects in a group follow the public signal, the group quickly converges to a sunspot 

equilibrium, while groups that are, in the first periods, torn between following the public or private 

signal have difficulties to coordinate at all.  

Sunspot equilibria are not associated with welfare losses in our coordination game; in fact all 

equilibria are efficient. However, our setup allows isolating the welfare effects of miscoordination 

induced by extrinsic information. We find that the payoffs are U-shaped in the power of sunspots, 

which is measured by the distance of actions from the risk-dominant equilibrium, and hence we find 

significant differences in average payoffs between treatments. Miscoordination arises from (i) a slower 

convergence process towards a common strategy or a lack of convergence and (ii) coordination on a 

strategy that is no equilibrium, and in particular negative externalities from sunspot-driven behavior to 

agents without signals. Both channels relate or can be thought of as costs arising from a lack of 

understanding whether or not to condition actions on signals and how to aggregate information.  

The paper is organized as follows. In Section 2, we give a brief overview of the related literature. 

Section 3 introduces the game and theoretical considerations, and Section 4 outlines the design and 

procedures of the experiment. The results are discussed in Section 5, and Section 6 concludes. 

 

2 Related Literature 

Although experiments provide a useful tool for investigating sunspot behavior, only a few studies have 

done so. The first attempt to investigate sunspots in the laboratory was Marimon et al. (1993). They 

implemented an overlapping generation’s economy, where the sunspot was a blinking square on the 



 

 5 

subjects’ computer screens that changed its color: red in odd and yellow in even periods. They start 

with some periods in which a fundamental (size of a generation) varies between odd and even periods, 

which constitutes an endowment shock and leads to a unique equilibrium with alternating high and 

low prices. After 16 to 20 periods, they shut off the endowment shock by keeping the generation size 

fixed, which induced multiple equilibria, one stationary and one being a two-period cycle. In four out 

of five sessions, subjects continued to alternate their price forecasts, but the price paths were 

substantially off the sunspot-equilibrium predictions. It is also not clear whether alternating 

predictions are just carried over from experience gathered in the first phase or whether the blinking 

square had any effect.  

Duffy and Fisher (2005) were the first to provide direct evidence for the occurrence of sunspots. They 

investigate whether simple announcements like “the forecast is high (low)” can generate sunspots in a 

market environment with two distinct equilibrium prices.5 They find that the occurrence of sunspot 

equilibria depends on the particular information structure of market institutions. Sunspots always 

affect behavior in less informative call markets while they matter only in four out of nine cases in 

more informative double auction markets. More interesting, however, is the importance of the 

semantic of sunspots. If people do not share a common understanding of the context and hence do not 

attach the same interpretation to the sunspot, it is highly likely that the sunspot variable does not 

matter. In order to achieve such a common understanding of the sunspot variable, subjects were 

primed to existence of high and low equilibria in combination with the respective announcement in an 

initial training phase. However, in sessions without priming and announcements like “the forecast is 

sunshine (rain)” sunspots did not occur. In our approach a sunspot is semantically salient and sunspot 

equilibria arise endogenously without any need of training.  

There is also some experimental work on the concept of correlated equilibrium which is closely related 

to sunspot equilibrium (see e.g., Peck and Shell, 1991). For instance, Cason and Sharma (2007) found 

that subjects follow public third-party recommendations and played according to a correlated 

equilibrium which led to higher payoffs than in the mixed strategy equilibrium. In a related 

experiment, Duffy and Feltovich (2010) also find that subjects condition their behavior on a third-

party recommendation leading to higher than mixed strategy equilibrium payoffs (good 

recommendation), but they learn to ignore bad or non-equilibrium recommendations.  

Some related experiments explore subjects’ responses to recommendations to play a pure-strategy 

equilibrium in games with multiple equilibria (for example, Brandts and Holt, 1992; Brandts and 

                                                      

5 Beugnot et al (2009) explore the effect of sunspots in a setting with a payoff-dominant equilibrium. They use a 
three-player, two-action coordination game with two equilibria – “work” or “strike” – where “work” is payoff-
dominant, weakly risk-dominant and maximin. Their sunspot variable was a random announcement of “work” or 
“strike”. They find that subjects do not coordinate on a sunspot equilibrium. Instead, there is some convergence 
towards the efficient non-sunspot equilibrium.  
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MacLeod, 1995; Kuang, Weber and Dana, 2007; van Huyck, Gilette and Battalio, 1992).6 A 

recommendation can be seen as an extrinsic signal, but by phrasing it as advice, it becomes more 

salient and is more intrusive than our random signals. A noteworthy finding of this literature is that 

subjects only follow “credible” recommendations, for example, subjects tend to disregard advice to 

play an imperfect or a less efficient equilibrium. By contrast, our results show that subjects follow a 

random coordination device, even if it is riskier to do so and even if such behavior is no equilibrium.  

 

3 The Game 

The game we will analyze is a pure coordination game. Two agents independently and simultaneously 

pick an action  cbai , . Agent i’s payoff is given by 

|)(|),( jijii aafaa               (1) 

where RRf :  is a twice continuous differentiable function with   0  0  xxf ,   00 f , and 

  xxf    0 . Therefore, agent i maximizes her payoff when she matches agent j’s action. Clearly, 

any coordinated pick of numbers constitutes a Nash equilibrium and agents do not care which specific 

number they coordinate on, since their payoff is independent of the specific action. In equilibrium, 

both agents receive the same payoff and, moreover, the payoff is exactly the same in all equilibria. 

Agents are penalized for a deviation from their partner’s pick by the concave payoff function; the loss 

grows more than proportionally in the distance between chosen actions.  

 

3.1 Equilibria with signals 

Let us now extend this game by introducing payoff-irrelevant information which can be either public 

or private or both. Let   be the set of possible realizations of public signals that agents might receive 

and i  be the finite set of possible realizations of private signals for agent i, which has at least two 

elements. For ease of presentation, let us assume that  i for both i (as in the experiment), 

although this is not a necessary condition for proving the next lemma. Let    1,0,,: P  be the 

joint probability distribution on the signals, where P assigns strictly positive probabilities on each 

element in   ,, . The following lemma shows that equilibrium actions do not depend on private 

signals. 

                                                      

6 While the recommendations in these experiments mostly come from the experimenter, there are also 
experiments where advice is given by players of a previous cohort participating in the experiment (see, e.g., 
Schotter and Sopher, 2003 or Chaudhuri, Schotter and Sopher, 2009, for such “intergenerational” advice in 
coordination games). 
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Lemma 1. Let    ,*
,

ia  be a Bayesian Nash equilibrium strategy profile, where *
,

ia   is a 

Bayesian Nash equilibrium action played by agent i with public signal  and private signal  . Then, 

equilibrium actions are the same for both agents and do not depend on the private signal, that is, 

     **
, aai  for any given  . 

Proof: see Appendix.■ 

The assumptions of continuity and differentiability of the payoff function are not necessary and are 

just assumed for ease of presentation. The assumption that P assigns a strictly positive probability to 

each element of   ,,  can also be relaxed. In general, the result holds as long as one’s private 

signal does not reveal perfect information about the others’ signal, in which case the private signal 

would be public information. Concavity, on the other hand, is an important assumption, as the 

following counter-example shows.  

Suppose that the payoff function for both players is linear in differences, i.e.,   2121, aaaai  . 

There is no public signal,  0 , and there are two possible private signals that can be 0 or 100, i.e., 

 100,0 . Moreover, assume that P(0,100) = P(100,0) = 1/8 and P(0,0) = P(100,100) = 3/8, where 

the numbers are the private signals for players 1 and 2, respectively. It is easy to check that in this 

case, playing the private signal (  *
,

ia ) is one of the many equilibria of the game. If player j is 

playing this equilibrium and 0i , then player i’s expected utility of choosing ai is equal to 

   2250 iii aaE  ), which is maximized at 0ia . The same reasoning applies for 

100i . Hence, although conditioning the actions on the private signal always incurs expected costs 

of mismatch, and thus a welfare loss, it can constitute an equilibrium if payoff functions are not 

strictly concave. 

The implication of Lemma 1 is that the set of Nash equilibria in a setup without signals and a setup 

with imperfect private signals is exactly the same. Similarly, the set of Nash equilibria in a setup with 

a public signal and with both a public and a private signal is exactly the same. A strategy is a mapping 

from the signal space to the interval [b,c]. Equilibria in these games are given by mappings from 

public signals to the interval [b,c]. When there is a public signal, sunspot equilibria exist in which both 

agents condition their actions on the public signal. Any function  cbf ,:   is an equilibrium, 

provided that both agents follow the same function and, thus, are always perfectly coordinated. 

 

3.2 Riskiness of Equilibria 

Due to the large set of equilibria, it is natural to use some selection criteria. One of the most widely-

used criteria to assess the risk of different equilibria is given by risk dominance (Harsany and Selten, 
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1988). In its original formulation, risk dominance is a binary relation that does not provide any strict 

order on the equilibria of our game. There is, however, an alternative notion of risk dominance in 

which, according to Harsanyi and Selten’s heuristic justification, the selected equilibrium results from 

postulating an initial state of uncertainty where the players have uniformly distributed second-order 

beliefs on all equilibria. Each player believes that the other players’ beliefs are uniformly distributed 

on the set of equilibrium strategies, which in our case is the whole action space. In the following, we 

will refer to this alternative notion simply as risk dominance.7  

Another alternative concept is the notion of secure action (see Van Huyck et al., 1990). Based on the 

maximin criterion of von Neumann and Morgenstern (1947), a secure action is one that maximizes the 

minimum possible payoff.8  

The following lemma characterizes the risk-dominant equilibrium and the secure action of our game. 

Note that this is independent of the generated signals. 

Lemma2.  ,
2

*
, 




cb
ai  is both the secure action and the risk-dominant equilibrium. 

Proof: see Appendix.■ 

Lemma 2 shows that choosing the midpoint of the interval is both the secure action and the risk-

dominant equilibrium. By choosing the midpoint of the interval, an agent minimizes the maximum 

possible distance to his partner’s choice and can assure himself a minimum payoff of f((c-b)/2). In 

addition, the midpoint is also risk-dominant and the best response to the belief that the actions of 

others are uniformly distributed on [b, c] or, alternatively, to the belief that the strategies of others are 

uniformly distributed on the whole set of all possible strategies. Unlike for Lemma 1, concavity is not 

a necessary condition for Lemma 2 to hold. 

Both criteria can order the different equilibria. According to the notion of secure action, one strategy is 

riskier than another if it can lead to a lower payoff. According to the notion of risk dominance, one 

equilibrium is riskier than another if the expected payoff against a uniform distribution over all 

possible strategies is lower. In the absence of public signals or in the case of two public signals in 

which the equilibrium is symmetric, both measures of riskiness can be expressed as a function 

increasing in the absolute distance to (b+c)/2. Therefore, in the rest of the paper, we will interpret the 

absolute distance to (b+c)/2 as a measure of riskiness. We will say that an extrinsic signal or a 

combination of extrinsic signals (sunspot) exerts a stronger effect on behavior than another 

combination, if (after some convergence) the average distance of chosen actions from (b+c)/2 is 

higher. Alternatively, we can say that an information structure is more likely to produce sunspot-

                                                      

7 Among others, this alternative notion has been used, for example, in Stahl and Haruvy (2004). 
8 The secure action does not need to belong to the support of Nash equilibria. In our game, though, it trivially 
does, because the support of Nash equilibria coincides with the whole set of actions. The security criterion has 
also been applied to a game after the deletion of non-equilibrium actions (see, e.g., Stahl and Haruvy, 2004). 
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driven behavior than another information structure if the fraction of groups converging to a sunspot 

equilibrium or to a sunspot-driven non-equilibrium strategy is larger than in the respective other 

treatment.  

4 Experimental Design, Procedures and Hypotheses  

4.1 Game setup 

In all experimental treatments, subjects repeatedly played the coordination game explained above. 

Subjects were randomly assigned to matching groups of six that were fixed throughout a session. In 

each period, we randomly matched subjects into pairs within a matching group. There was no 

interaction between subjects from different matching groups and, thus, we can treat data from different 

matching groups as independent observations. Subjects were aware that they were randomly matched 

with another subject from their matching group in each period and that they would never face the same 

subject twice in a row.  

Subjects had to choose, independently and simultaneously, an integer between 0 and 100 (both 

included). Their payoffs depended on the distance between their own and their partner’s choice. In 

particular, the payoff function was the following: 

   2
50

1
200, jijii aaaa               (2) 

Subjects could earn at most 200 points if their actions perfectly matched and they were penalized for a 

deviation between their choices by the quadratic loss term.9 It is easy to check that this payoff function 

fulfils the properties of the function characterized in the previous section and that both Lemma 1 and 2 

hold for (2).10  

 

4.2 Treatments 

In the benchmark (Treatment N), subjects played the coordination game with payoff function (2) and 

received no extrinsic information. In all other treatments, subjects received some extrinsic information 

(signals) and we varied its publicity (private and public signals) and the number of signals. Extrinsic 

information was generated as follows. In each period, the computer drew a random number 

 100,0Z . Both numbers were equally likely and the realization was not disclosed to the subjects 

(except for Treatment AC). Instead, each subject in a pair received at least one independently drawn 

                                                      

9 Note also that the minimum payoff is zero, since the maximum distance between two actions is 100. 
10 In contrast to the game in Section 3, subjects could only choose integers between 0 and 100 instead of 
choosing from an interval of real numbers. Technically, Lemma 1 holds except for differences in actions of ±5 in 
treatments AC and P95 and differences of ±1 in all other treatments. We do not observe these non-generic 
equilibria and therefore ignore them in the following analysis. 
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Table 1. Treatment Overview. 

Treatment Public signals 
Private signals 

per subject 
Precision p 

Existence of 
sunspot equilibria 

Number of sessions / 
number of groups 

N - - - No 1 /   2 

P75 - 1   75% No 1 /   3 

P95 - 1   95% No 2 /   6 

AC - 1* 100% No 2 /   6 

C 1 -   75% Yes 2 /   6 

CP 1 1   75% Yes 4 / 12 

CC 2 -   75% Yes 2 /   6 

Note: *revealed with 90% probability 

 

signal s. This signal s is with probability  1,5.0p  the same as the random number Z, that is, 

    pZsprobZsprob  100|1000|0 . Probability p measures the precision of 

signals and is one of our treatment variables.11 The higher the precision of signals, the higher the 

correlation between two independently drawn signals is, and the higher the likelihood that both signals 

are the same. In treatments with private signals, each subject receives an independently drawn signal 

that is not revealed to the other player. A signal is public if the same signal is released to both players 

of a pair and subjects know that both of them receive the same signal. We also varied the number of 

signals subjects receive. In some treatments, subjects either receive a private or a public signal, and in 

two treatments, they receive two signals: either two public signals or a public and a private signal. 

Table 1 gives an overview of the different treatments.  

In Treatments P75 and P95, both subjects in a pair received independently drawn private signals X1 

and X2. The only difference between these two treatments was the probability with which signal Xi 

coincides with the number Z. In P75, this probability was p = 0.75, while in P95, it was p = 0.95. 

Thereby, in P75 subjects get the same signal in 62.5% of the cases, while in P95 this probability is 

90.5%. According to the theory, sunspot equilibria do not exist for private signals with a p value that is 

strictly smaller than one (see Lemma 2). With p = 1, the private signal in fact becomes a common 

(public) signal and sunspot equilibria exist. Hence, the set of equilibria is discontinuous in p and by 

changing the precision of signals we can test for continuity in p. 

In Treatment AC, the realization of the random number Z was revealed to each subject with 

probability p = 0.9. We call this “almost common information”, as it generates common p-beliefs 

(with p = 0.9) in the sense of Monderer and Samet (1989). This treatment allows an alternative test of 

whether behavior is discontinuous in p, as predicted by theory. In Treatment AC, there exists no 

sunspot equilibrium since the information is not disseminated to all subjects with probability 1.  

                                                      

11 This allows for comparing different information structures and for introducing the correlation of signals in a 
way that can be easily understood by subjects who are not trained in statistics. 
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In Treatment C, both subjects in a pair received a public signal Y with p = 0.75. Since it was common 

information that both subjects receive the same signal, sunspot equilibria exist. Any function 

 100,0: Yf  is an equilibrium. In Treatment CC, subjects received two independently drawn public 

signals Y1 and Y2, both with p = 0.75. Here, any function f mapping pairs of (Y1,Y2,) to the interval 

 100,0  is an equilibrium. In Treatment CP, subjects received both a public and a private signal. The 

public signal Y and both subjects’ private signals X1 and X2 were drawn independently. The 

probability of a signal coinciding with Z was p = 0.75 for each signal. Subjects were always informed 

which signal was public and which one was private information. Again, subjects could ignore the 

private signal and condition their behavior on the public signal that allows for sunspot equilibria. As in 

Treatment C, any function  100,0: Yf  is an equilibrium.  

 

4.3 Procedure 

Subjects played the game for 80 periods. After each period, they learned their partner’s choice, the 

distance between own choice and partner’s choice, and the resulting payoff. They also learned the 

realization of the random variable Z, except for Treatment N. In treatments with private signals (P75, 

P95, CP), they never learned their partners’ private signal.  

The general procedure was the same in each session and treatment. At the beginning of a session, 

subjects were seated at PCs in random order. Instructions were distributed and read out aloud, and 

questions were answered in private. Throughout the sessions, students were not allowed to 

communicate with one another and could not see each other’s screens. They were not informed about 

the identity of their partner or the other members of their matching group. In the instructions, the 

payoff function (2) was explained in detail and was also displayed as a mathematical function and as a 

non-exhaustive payoff table.12 Before starting the experiment, subjects had to answer questions about 

the game procedures and in particular how the payoffs were determined. We did this mainly for three 

reasons. First, we wanted to make sure that the subjects understood how their payoff was determined. 

Second, we wanted to prompt subjects to the fact that neither the number Z nor the signals affected 

their payoff, and third, the quiz also ensured that subjects could clarify any last-minute questions and 

that the others understood the game as well.13 Once all subjects had answered the questions correctly, 

the experiment started.  

                                                      

12 Additionally, subjects could use a calculator during the experiment, which allowed them to enter hypothetical 
numbers for their own and their partner’s decision and calculate the resulting payoff. 
13 For instance, in Treatments P75 and P95, the statement was: “Your payoff in a period depends on a) the 
number Z, b) the distance between your chosen number and the number chosen by your partner, or c) your 
private hint X.” Subjects had to indicate the right statement and if their answer was not correct, the experimenter 
once again explained the payoff function to make clear that it only depended on the distance between the chosen 
number and the number chosen by the partner. The full set of questions can be found in the appendix. 
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We ran a total of 14 sessions with 18 subjects in each session (except for one session with only 12 

subjects), which took place between July 2008 to June 2009 at the Technical University Berlin. In 

total, 246 subjects participated, who were recruited through the online recruitment system ORSEE 

(Greiner, 2004). The experiments were conducted using the software toolkit z-tree (Fischbacher, 

2007). At the end of a session, we determined the earnings of the subjects by randomly selecting 10 

out of the 80 periods. Subjects were then paid the sum, in private and in Euros (1 point = 1 Euro cent), 

as they had earned it in the selected periods. In addition subjects received a show-up fee of 3 Euros. A 

session lasted about one hour and subjects earned on average 21 Euros. 

 

5 Results 

We start analyzing the data with a quick overview of the aggregate behavioral patterns in the different 

treatments. We are especially interested in learning whether groups converge to a common strategy 

and to which strategies they converge in the different treatments. Then, we show how to use the 

distance of choices from the risk-dominant equilibrium as a measure for the power of sunspots and 

analyze differences in strategies and convergence across different treatments in detail. In Section 5.4, 

we analyze the implications of extrinsic information on payoffs.  

In order to organize our analysis, we introduce two convergence criteria. A rigorous criterion would 

demand that all subjects in a group decide for exactly the same strategy without deviation during an 

extended number of periods. This rigorous criterion is, however, not likely to be observed in an 

experimental setting. Instead, we introduce two criteria – strong and weak convergence – to identify 

whether a group has converged or is converging to a common strategy. The strong convergence 

criterion requires that all six subjects in a matching group play according to the same strategy, 

allowing a deviation of ±1, for periods 65–79. We exclude period 80, because we see some subjects 

deviating exclusively in the last period. The weak convergence criterion requires that at least four 

subjects in a matching group follow the same strategy, allowing a deviation of ±3, for periods 70–79. 

These measures allow assessing the ability of groups to coordinate and identifying the strategies they 

coordinate on.14  

For converging groups, we identify five types of strategies that were most prominent: 1) “50”: the 

risk-dominant strategy; 2) “25/75”: playing 25 (75) when the signal is 0 (100); 3) “10/90”: playing 10 

(90) when the signal is 0 (100); 4) “0/100”: following the signal; 5) “Mean”: play the average of both 

signals. In Treatment CP, strategies 2) to 4) refer to the public signal only. Table 2 summarizes how 

many groups converged according to our two criteria detailed for the identified strategies.  

                                                      

14 An additional interesting feature of coordination is its speed. Tables C1 and C2 provide the periods in which 
groups converge to the different strategies. 
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Table 2. Coordination Summary. 

  Non-Sunspot Treatments  Sunspot Treatments 

Treatment  N P75 P95 AC  C CP CC 

Total number of groups  2 3 6 6  6 12 6 

Coordinated groups  2 2 (3) 3 (5) 5 (6)  4 (6) 6 (8) 4 (6) 

Strategies:          

           “50”  2 2 (3) 3 4  - 1 - 

           “25/75”   n.a. - - -  - 1 (2) n.a. 

           “10/90”   n.a. - - (2) -  - - n.a. 

           “0/100”  n.a. - - 1 (2)  4 (6) 4 (5) n.a. 

           “Mean”  n.a. n.a. n.a. n.a.  n.a. - 4 (6) 

Note: “Coordinated groups” indicate the number of converged groups according to the strong (weak) 
criterion. 

 

Table 2 highlights that the different treatments (and their different information structures) not only 

have an impact on whether groups converge or not, but also to which strategies they converge. In 

treatments with public signals (“sunspot treatments”), most groups coordinate on sunspot equilibria. In 

treatments with private signals only, most groups converge to the risk-dominant equilibrium, but we 

also see some groups converging to a non-equilibrium strategy, in which actions depend on signals. 

For our further analysis, it is important to note that strategies are symmetric: subjects who choose 

mai   when they receive signal s = 0 play mai 100  when the signal is s = 100.15 In Appendix 

A2, we show that symmetry not only applies to the strategies subjects converge to; it also applies to 

actions played during the entire experiment. We can therefore pool the data for symmetric sets of 

signals and measure the power of sunspots by the distance of chosen actions from 50, independent of 

whether signals are 0 or 100. For testing the impact of signals on behavior using non-parametric tests, 

we take averages from each group as independent observations, because from period 2 onwards, 

individual choices are affected by observing other group members.  

 

5.1 Observation of sunspot equilibria 

Figure 1 gives a first impression of the impact of extrinsic information on behavior and the reliable 

occurrence of sunspots. The figure depicts the average distance to 50 over all matching groups for 

                                                      

15 In treatments CP and CC, symmetry refers to playing m when both signals are 0, 100-m when both signals are 
100. When the two signals are different in CP, symmetry means playing n when the public signal is 0 and the 
private signal is 100, and 100-n when the public signal is 100 and the private signal is 0. For two distinct public 
signals in Treatment CC, symmetry prescribes playing 50 as in Treatment N. 
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Treatments N, P75 and C.16 Without additional information (Treatment N), subjects almost 

immediately converge to playing 50ia . With imprecise extrinsic information (P75), subjects learn 

to ignore the information quickly and also converge to 50ia . Since in both treatments the average 

distance to 50 is close to zero, we pool the data of these two treatments (N/P75) when we run non-

parametric tests. As explained above, 50ia  is not just the secure action, but it is also risk-dominant, 

results from level-k reasoning, and is the unique symmetric equilibrium according to the theory of 

focal points by Alós-Ferrer and Kuzmics (2008).17 Thus, in the absence of public signals, it seems very 

natural for subjects to converge to this strategy.  

[Figure 1 about here] 

If, however, the extrinsic information is publicly available as in Treatment C, there is a clear 

convergence process towards choosing the action that is indicated by the received signal. All groups of 

Treatment C converge to playing ia Y. This implies that the average absolute distance to 50 is large. 

In Treatment C, the average distance of actions from 50 is 46.69, which is close to the maximum 

possible value of 50 and larger than in all non-sunspot treatments. It is significantly higher than in 

non-sunspot Treatments N/P75, where the average distance is 2.04 (Mann-Whitney, z = 2.739, p < 

0.01). 

Result 1 Sunspot equilibria emerge reliably in the presence of salient (but extrinsic) public 

signals. 

Table 2 summarizes, for each treatment, the strategies to which different groups converge.18 First, we 

can note that in Treatments N, P75, and C all groups achieve coordination and converge to either the 

risk-dominant strategy (N and P75) or to “0/100” (C). Second, we see that not all groups converge 

according to a strong convergence criterion. In P75 as well as in C, there is one group that needed a 

considerable time to converge. For instance, in P75, convergence seems harder for group 5. This was 

caused by a single subject who seemed to condition his actions on the private signal until the end of 

the game.19 In Treatment C, all but two groups converge quickly to playing the public signal ( Yai  ), 

although this constitutes the most risky action ex ante. The other two groups (Groups 18 and 22) 

eventually converge under the weak measure of convergence in periods 68 and 57, respectively. They 

do not converge in a strict sense, because two subjects condition their actions on the public signal and 

choose actions in the ranges [0,10] and [90,100] for the signal being 0 or 100, respectively. 

                                                      

16 See Appendix D for a more detailed figure for each group separately (Figure D1).  
17 Van Huyck et al. (1990) provide evidence that risk dominance is a relevant selection criterion in a similar 
game.  
18 For a more comprehensive overview on each independent group, including the periods of convergence, see 
Table C1 and C2 in the Appendix. 
19 In this group, 5 subjects consistently chose 50 in 90% of the cases, while the remaining subject only did so in 
25% of the cases. 
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5.2 Sunspot-driven behavior without common signals  

Despite the different information structures, theory prescribes that behavior in Treatments P95 and AC 

should be the same as in Treatments N and P75: subjects should ignore their signals. Note that for a 

subject who receives a signal, the conditional probability that the other subject gets the same signal is 

90.5% in P95, while it is 90% in AC.20 We observe similar behavior in both treatments. In P95, the 

average absolute distance to 50 is about 17.26, whereas the distance is 13.86 in AC (14.83 conditional 

on receiving a signal). This difference is statistically not significant (Mann-Whitney test, z=0.48, 

p=0.63). The picture, however, is mixed when we compare P95 and AC to N/P75. While the average 

distance is statistically different at the 10%-level in P95 and N/P75 (Mann-Whitney test, z = 1.643, p 

= 0.06, one-sided), this is not the case for a comparison between AC and N/P75 (Mann-Whitney test, z 

= 0.183, p = 0.43, one-sided).  

[Figure 2 about here] 

Figure 2 plots the average distance to 50 in blocks of 10 periods conditional on receiving a private 

signal for all groups in P95 and AC. Apparently, when groups play according to the risk-dominant 

equilibrium, the average distance to 50 in these treatments should be zero. Both treatments show some 

heterogeneity among groups. Some groups quickly converge to the risk-dominant equilibrium: in P95, 

half of the groups (Group 8, 9, and 10) converge in a strong sense in periods 7 to 13; in AC, four 

groups (12, 13, 14, and 16) converge in periods 3, 4, 1, and 13, respectively. 

The most interesting finding in Treatments P95 and AC is the behavior of groups who did not 

converge to an equilibrium: the emergence of sunspot-driven non-equilibrium behavior. Unlike the 

theory predictions, highly precise private signals may not only make it more difficult to coordinate, 

but may also lead to coordination on non-equilibrium strategies. In Treatment P95, the private signal 

affected behavior in three groups (Groups 6, 7, and 11) throughout the game and dragged actions away 

from the risk-dominant equilibrium. In two groups (Groups 15 and 17) of Treatment AC, subjects 

condition their behavior on the signal when it is available and otherwise choose 50. Both groups 

converge to the sunspot non-equilibrium strategy 0/100. Hence, when the precision of the private 

signal or, in other words, the correlation between private signals is high, sunspot behavior can 

potentially emerge. This is in contradiction to equilibrium theory which describes a discontinuous 

behavior, i.e., as long as private signals are imprecise, sunspot equilibria do not exist. 

Result 2 Salient extrinsic private signals of high precision may cause sunspot-driven behavior 

even though this is no equilibrium. 

 

                                                      

20 Getting these numbers as close as possible was the reason why we chose p = 0.9 in Treatment AC. 



 

 16 

Table 3: Regression - No Sunspots – N, P75, P95 and AC 

 Dependent variable: 50ita  

 β1k  β2k 

Group  Treatment  Coefficient  
Standard 
errors 

 Coefficient  
Standard 
errors 

1  N  9.743***  (2.119)  0.861*  (0.442) 

2  N  3.576  (2.225)  0.357  (0.464) 

3  P75  26.797***  (1.176)  -0.417*  (0.245) 

4  P75  27.164***  (2.007)  0.386  (0.418) 

5  P75  19.817***  (3.141)  3.931***  (0.655) 

6  P95  35.326***  (1.957)  39.640***  (0.408) 

7  P95  37.405***  (1.684)  38.708***  (0.351) 

8  P95  31.534***  (4.105)  0.408  (0.856) 

9  P95  19.778***  (0.833)  -0.582***  (0.174) 

10  P95  29.161***  (3.736)  0.613  (0.779) 

11  P95  41.190***  (6.805)  18.555***  (1.419) 

 ρ = 0.496 R² = 0.61 N = 5280     

           

12  AC  20.109***  (2.378)  -0.292  (0.540) 

13  AC  32.452***  (2.128)  -1.090**  (0.478) 

14  AC  7.227***  (1.697)  -0.100  (0.333) 

15  AC  47.156***  (2.465)  48.696***  (0.560) 

16  AC  35.192***  (5.376)  1.759  (1.073) 

17  AC  37.176***  (5.761)  34.010***  (1.302) 

 ρ = 0.575 R² = 0.68 N = 2662     

Notes: OLS regression with standard errors corrected for cross-sectional correlation within matching 
groups and autocorrelation (AR(1)). Treatment AC only includes observations where the random number 
Z was revealed to subjects and is thus estimated separately (unbalanced panel). 

* p<0.10, ** p<0.05, *** p<0.01. 

 

To capture the dynamics of the convergence process in treatments without sunspot equilibria – N, P75, 

P95 and AC – we estimate the following regression model:21 
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where i is the index for individuals and t the time period. The dependent variable is the absolute 

distance of the decision to 50, Dk is a dummy variable for group k, and u is the error term. Note that 1/t 

converges to zero as t goes to infinity, whereas (t-1)/t converges to one. Hence, the coefficient β1k 

measures the origin of the convergence process of group k and the coefficient β2k is the asymptote to 

                                                      

21 This specification was first used by Noussair et al (1995). 
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which group k converges. Given our matching procedure (random matching within a group of six), we 

assume that the error term is correlated across subjects, and we also allow for autocorrelation along t. 

The model allows us to see to which equilibrium groups converge and to test whether the estimates for 

β2k are significantly different from the risk-dominance prediction. Recall that in AC subjects only 

receive a signal with p=0.9, while in other treatments subjects either receive signals in each period or 

not at all. For the estimation of model (3), we thus only consider periods in which a subject receives a 

signal. This results in an unbalanced panel, which requires a different method to calculate the 

covariance matrix and, hence, we estimate Model (3) separately.22 

The results of the two regressions are displayed in the top panel (Treatment N, P75 and P95) and 

bottom panel (Treatment AC) of Table 3. We consider first Treatments N and P75. In line with what 

was presented, the regression restates that the groups in these two treatments converge to the risk-

dominant strategy. This is indicated by the coefficient β2k, which is below 1 for Groups 1 to 4 in 

Treatment N and P75. Group 5 shows a weaker convergence process, since the β2k coefficient is 

slightly higher (see also Table C1 in the Appendix), but is still lower than 4. The coefficients for β1k, 

on the other hand, indicate that Treatment P75 was slightly noisier than in Treatment N in the 

beginning. While these coefficients are always lower than 10 in Treatment N, they are between 19 and 

28 in Treatment P75. 

Figure 2 (above) shows a mixed picture for the convergence to the risk-dominant equilibrium in 

Treatments P95 and AC, which is well reflected in the estimates for β2k. Groups that converge to the 

risk-dominant equilibrium (8, 9, 10, 12, 13, 14 and 16) have a coefficient β2k lower than 1. As in the 

case with P75, β1k coefficients tend to be higher than in Treatment N. Groups that converge to sunspot-

driven strategies exhibit higher β2k coefficients: Group 6 and 7 in Treatment P95, which weakly 

converge to Y10, have β2k coefficients close to 40, and Groups 15 and 17 in Treatment AC, which 

converge to Y, have β2k coefficients higher than 40. Finally, Group 11 in Treatment P95, which does 

not converge, has an intermediate β2k coefficient compared to the previous cases.23 

Overall, there is an interesting pattern in all four treatments, given by the correlation between 

coefficients β1k  and β2k (Spearman’s ρ = 0.66, p < 0.01).24 Indeed, looking at the behavior in the first 

10 periods unmasks a potential reason for the different convergence processes. In groups converging 

to risk-dominant equilibrium, the predominant decision is 50, which amounts to a fraction of 64% 

compared to only 18% in the other groups. Thus, it is not surprising that the average distance to 50 

over the first 10 periods in groups converging to the risk-dominant equilibrium is significantly lower 

                                                      

22 The computation of the covariance matrix only uses periods that are common to the two panels. Running the 
regression with all periods yields similar results. 
23 Looking at this group in detail, we see that four subjects chose 50 most of the time and one of them eventually 
adopted a sunspot-driven strategy (25/75). The remaining two subjects conditioned their choices on the private 
signal during the whole experiment. 
24 See Figure D2 in the Appendix for a plot of the average distance to 50 in the 10 last periods versus the average 
distance to 50 in the first 10 periods. 
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than in groups converging to non-equilibrium sunspot behavior (Mann-Whitney test, z=3.162, 

p<0.01). The intuition behind this regularity is that groups with a critical mass of players who started 

playing the most salient sunspot strategy, i.e., those with a large β1k coefficient, converged to a sunspot 

strategy, whereas groups with a sufficiently large number of players starting out with ”50”, converged 

to this equilibrium. 

 

5.3 The effects of multiple signals 

In this section, we focus on the treatments with two signals, i.e., CC and CP. In both treatments, the 

available signals can generate sunspot equilibria. The last two columns in Table 2 provide a summary 

of the converging strategies in these treatments.25 The most immediate observation is that in both 

treatments all groups but one (Group 26) depart from playing the risk-dominant equilibrium and 

condition their choices on public signals. If they converge, they converge to a sunspot equilibrium. 

[Figure 3 & 4 about here] 

Figures 3 and 4 show the average distance to 50 by 10-period blocks for CC and CP, respectively. 

Treatment CC is the treatment with the largest set of equilibria, since any function mapping a 

combination of public signals to an action constitutes an equilibrium. All six groups converge to 

playing the average of the two signals, which seems the most natural focal strategy.26 This results in a 

three-cycle sunspot equilibrium with choices of 0 if both signals are zero, 100 if both signals are 

hundred, and 50 if the signals are unequal. Hence, it seems that if public signals can be aggregated in a 

simple way, then subjects quickly learn how to do it and respond to them as easily as to a single public 

signal. Conditional on both signals being equal, the average distance is 48.97, which is about the same 

as in Treatment C. If the two signals are unequal, the average distance is 2.79, which is not 

significantly different from Treatments N/P75. In total, the average distance between actions and 50 is 

30.50, because in Treatment CC the two public signals coincide in 62.5% of all cases. This is 

significantly smaller than in Treatment C (Mann-Whitney, z = 2.882, p < 0.01).  

Treatment CP provides the most versatile results, because here different types of sunspot equilibria 

emerge. There are three popular strategies that are implied by the salience of signals: the risk-

dominant equilibrium, following the public signal, and choosing the mean of both signals. In the first 

period, 32% of all subjects choose 50, 42% follow the public signal, and 60% of decisions are 

consistent with choosing the mean. As a result we observe only one group (Group 26) resorting to the 

risk-dominant equilibrium and neglecting both signals from early periods onwards. Five groups 

                                                      

25 For a more comprehensive overview on each independent group, including the periods of convergence, see 
Tables C1 and C2 in the Appendix. 
26 Five groups coordinate according to the strong convergence criterion, while one group (Group 37) converges 
only according to the weak criterion. This is mainly due to a single subject, whose choices cannot be 
distinguished from random behavior. 
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(Group 27, 30, 31, 33 and 35) follow the public signal as in Treatment C and the average distance to 

50 is about 45.90 in these groups. For the remaining groups, the average distance to 50 is 24.30 and it 

seems that at least three groups converge to an intermediate sunspot equilibrium in which subjects 

choose 25 whenever Y = 0 and 75 whenever Y = 100. Note that “25/75” is the maximin response to 

any non-degenerate distribution of the three popular strategies that we observe in the first period. This 

may explain why some groups converge to this particular sunspot equilibrium.  

Considering all groups of Treatment CP, the average distance of actions to the risk-dominant 

equilibrium is 35.19, when the public and private signals are the same for a subject and 26.12 

otherwise. The Wilcoxon matched-pairs test rejects that distances are the same for equal and unequal 

signals (p < 0.01). Both are significantly larger than in N/P75 or CC for unequal signals (p < 0.01). 

They are significantly smaller than the distances arising in Treatments C or CC for equal signals 

(Mann-Whitney, p < 0.02). Thus, we may say that the public signal has a lower power if combined 

with a private signal. Compared to Treatments P95 and AC, the distances in Treatment CP are larger, 

but the difference is significant only when public and private signal coincide.  

The data also allow us to compare the power of private signals in Treatment CP with treatments in 

which the private signal is not combined with a public signal: the difference between actions chosen in 

situations with equal and unequal signals is 9.07 on average. We can compare half of this value, 4.54, 

with the effect of private signals (measured by the average distances of actions from 50) in Treatments 

P75 and P95. The effect of private signals in CP seems to lie between the effect in Treatments P75 and 

P95 (2.74 and 17.25 respectively), but these differences are not significant (p = 0.31 and p = 0.64). 

Hence, we can reject the idea that the power of the private signal in Treatment CP differs from the 

power of a private signal without a coexisting public signal.  

Result 3 The presence of multiple signals has no impact on coordination as long as signals are 

public (as in CC). However, an additional private signal can considerably impede the 

convergence process (as in CP). 

Again, we can use the regression model (3) to investigate the convergence process in CP. The results 

are displayed in Table 4. The β2k coefficients confirm that five out of the 12 groups (Group 27, 30, 31, 

33, and 35) converge to the sunspot equilibrium ( Yai  ). The upper bound of the 95% confidence 

interval of the β2k coefficient is at least 49 for four groups (Groups 27, 30, 31, 35), while it is slightly 

above 45 for Group 33.27 As mentioned above, some groups converge to the 25/75 equilibrium. The 

regression results indicate that the asymptote β2k lies in a 95% confidence interval around 25 for three 

groups (Groups 24, 32, 34), while another group (Group 29) converges to 20. 28 

                                                      

27 Note that for all five groups the β2k coefficient is larger than the β1k coefficient and that the difference between 
the two coefficients gives a good indication of the convergence speed (see also Table A3). 
28 According to our convergence criteria, we only classify Groups 24, 29 and 32 as converging to a 25/75 
equilibrium, but not Group 34. In Group 29 as well as in Group 34 there is one subject constantly playing the 
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Table 4 Regression - Sunspots – CP 

Dependent variable: 50ita  

  β1k  β2k  

Group  Coefficient  
Standard 

errors 
 Coefficient  

Standard 
errors 

 95% Conf. Interval for β2k 

24  32.477***  (3.291)  25.558***  (0.628)  24.328 26.788 

25  37.577***  (9.177)  33.511***  (1.750)  30.081 36.942 

26  32.452***  (4.537)  1.492*  (0.865)  -0.204 3.188 

27  20.833***  (5.412)  47.201***  (1.032)  45.178 49.224 

28  35.199***  (6.152)  14.918***  (1.173)  12.618 17.217 

29  3.57  (7.145)  20.090***  (1.363)  17.419 22.761 

30  49.317***  (1.060)  49.941***  (0.202)  49.545 50.337 

31  17.220***  (5.219)  47.112***  (0.995)  45.161 49.063 

32  17.423***  (5.902)  26.064***  (1.126)  23.858 28.270 

33  19.806***  (6.195)  43.543***  (1.182)  41.227 45.859 

34  31.280***  (5.342)  24.597***  (1.019)  22.600 26.594 

35  33.634***  (5.114)  47.888***  (0.975)  45.977 49.800 

  ρ = 0.404 R² = 0.73 N = 5760  

Notes: OLS regression with standard errors corrected for cross-sectional correlation within matching groups and 
autocorrelation (AR(1)). * p<0.10, ** p<0.05, *** p<0.01. 

 

Unlike the results presented in the previous section, the β1k coefficients give us no clear direction for 

the convergence patterns; the Spearman’s correlation between β1k and β2k is ρ = 0.08, p < 0.81. 

However, there is a positive relation between the distance to the risk-dominant equilibria in the first 

and in the last 10 periods of a group (see also Figure D3 in the Appendix). The larger the distance in 

the first 10 periods, the more likely a group converges to the sunspot equilibrium. Indeed, the 

correlation between the distance in the first and last 10 periods is highly significant (Spearman’s ρ = 

0.92, p < 0.01). Going back to Figure 4 suggests that situations in which the public and private signal 

coincides determine which group converges to the sunspot equilibrium ( Yai  ). In all five sunspot 

groups, subjects quickly follow the public signal, which results in a significantly larger distance from 

50 compared to the other groups (Mann-Whitney, z = 2.191, p < 0.03). In all groups, except Group 25 

and 26, subjects quickly converge to an intermediate strategy. In situations with unequal signals 

(public and private signals do not coincide) it needs a considerable time span until groups converge 

either to the sunspot equilibrium or to the intermediate sunspot equilibrium (25/75). Nevertheless, it is 

also the case that in the five sunspot groups the distance to 50 is already higher in the first 10 periods 

                                                                                                                                                                      

risk-dominant strategy. While the remaining subjects in Group 29 adapt a 25/75 strategy, Group 34 is the least 
coordinated group.  
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than in other groups, when the public and private signal is unequal (Mann-Whitney, z = 2.191, p < 

0.03).  

Which of the other groups eventually converge to an intermediate sunspot equilibrium is less clear. 

The average distance of groups converging to this intermediate equilibrium (Group 24, 32, and 34) is 

27.98, whereas it is 24.54 for the other groups (Group 25, 26, 28, and 29). Surprisingly, it seems that 

in the latter groups the behavior is more polarized, meaning that subjects either follow the public 

signal (0 or 100) or choose 50 in about 78% of cases in the first 10 periods, compared to only 34% in 

the other groups. This also results in more coordinated behavior (33% vs. 7%), which may have led to 

less adaptive behavior in those groups not converging to the intermediate sunspot equilibrium. Overall 

this suggests, as in the non-sunspot treatments, that groups with a critical mass of subjects following 

the public signal or with sufficiently adaptive behavior converge to a sunspot equilibrium.  

The evidence from Treatment CP shows that the effect of signals is not additive. The other treatments 

have shown that a single private or public signal does not prevent coordination. However, if the two 

signals are displayed simultaneously, the difficulty of coordination increases considerably (see Figure 

4 and Table C2 in the Appendix). Despite some variance, convergence to an equilibrium takes a 

surprisingly long time, if it happens at all. This fact is exemplified by the three groups that never 

coordinate their actions. In Treatment CP, a subject needs to learn that (i) the private signal should be 

ignored, even though public signals matter, and (ii) it may be good to condition one’s action on the 

public signal, even though it is as irrelevant as the private signal. Apparently, this learning process 

takes longer than learning only one of these points, as in the other treatments.  

 

5.4 Welfare 

The previous results clearly show that different information structures induce very different behavior. 

We have seen that pure public information reliably generates sunspots whereas, for instance, no 

information or low-precision private information leads to the risk-dominant equilibrium. For welfare 

considerations, it does not matter which equilibrium is eventually chosen. Hence, following or 

neglecting sunspots need not affect welfare. What matters, however, is whether and how fast subjects 

convergence to an equilibrium. If a certain information structure results in a slower convergence 

process, we observe frequent miscoordination in the early periods and thus welfare losses.  

 [Figure 5 about here] 

The obvious welfare measure that we use throughout this section is average payoffs in the groups. 

Figure 5 relates each group’s average payoff conditional on the signal combination to the average 

distance from 50 and reveals an interesting U-shaped pattern. The figure also displays the prediction 

(fitted line) from a regression of average group payoffs on average distance and squared average 

distance along with the 95% confidence interval to visualize this U-shaped pattern.  
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Groups that converge quickly to the risk-dominant equilibrium achieve almost the maximum payoff of 

200. In Treatments C and CC, salient public signals are so powerful that subjects quickly coordinate 

on a sunspot equilibrium, resulting in payoffs that are also close to the maximum (195.37 in C and 

194.69 in CC). In Treatments P95, AC, and CP, different groups coordinate on different strategies – 

not all of them equilibria – and the average distance to 50 varies. Non-equilibrium strategies go along 

with welfare losses, even if all subjects use the same strategy. Intermediate differences from 50 are 

associated with lower average payoffs, even for groups who finally coordinate on a 25/75 sunspot 

equilibrium, because the convergence process is slower than in other groups. On average, the payoff in 

these three treatments is well below 190. In Treatment AC, subjects who condition their choices on the 

signal exert a negative externality on those who do not receive a signal. Without a signal, choosing 50 

is the best choice, because it minimizes the loss, given that the others follows the signal. The 

externality shows up in the average payoffs of Group 15 and 17, where subjects who do not receive a 

signal get average payoffs of only 150.00 and 157.23. This is considerably lower than in any other 

information condition and treatment. We summarize this in the following result.  

Result 4 Extrinsic public or imprecise private information is not detrimental to welfare, but if 

extrinsic private signals are highly correlated or public signals are combined with 

private information we observe considerable welfare losses. 

For statistical support we run non-parametric tests, which we base on all 80 periods.29 This gives us a 

rigorous test of possible welfare effects, since it requires long periods of miscoordination in the 

beginning to generate significant differences in average payoffs over all periods. We first look at the 

welfare implications of sunspots. The average payoff in C rises from 190.26 in the first 20 periods to 

199.60 in the last 20 periods. In Treatments N and P75 (N/P75) the average payoff is 193.76 in the 

first 20 periods and 198.89 in the last 20 periods. Comparing the average payoffs over all periods in C 

(195.37) to N/P75 (197.77), we find no significant difference in payoffs (Mann-Whitney, z = 0.183, p 

> 0.8). Thus, while it seems that on average the convergence process in C is a little bit slower than in 

N and P75, sunspots are not detrimental for welfare.  

In the treatments with highly correlated private signals, P95 and AC, the average payoff in the 

beginning is about 180.65 (P95) and 185.17 (AC) and rises to only 193.09 (P95) and 193.96 (AC) in 

the last 20 periods. There is no difference in payoffs between these two treatments (Mann-Whitney, z 

= 0.641, p > 0.5). The payoffs in both treatments are lower than in N/P75 and C. We can reject the 

hypothesis that the average payoff in P95 (188.56) and N/P75 is the same at the 10%-level (Mann-

Whitney, z = 1.643, p = 0.1), but not for the comparison with C (Mann-Whitney, z = 1.441, p = 0.15). 

The average payoffs in AC are slightly higher than in P95 (190.72) and there is neither a significant 

difference to C (Mann-Whitney, z = 0.641, p > 0.5) nor N/P75 (Mann-Whitney, z = 0.913, p > 0.36). 

                                                      

29 We obtain the same results by running random-effects GLS regressions on individual payoffs. 
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Next we look at the welfare effects of receiving more than one signal. Receiving two public signals as 

in CC leads subjects to aggregate this information and this reliably creates sunspots. While average 

payoffs are low in the beginning, with 187.50, they rise up to 197.86 in the last 20 periods. Over all 

periods, the average is only slightly lower (194.69) than in C, but not statistically significant (Mann-

Whitney, z = 0.160, p > 0.8). Payoffs in CC are not different from payoffs in N/P75 (Mann-Whitney, z 

= 0.365, p > 0.7) either. 

In Treatment CP, we observed mainly three convergence patterns. One group converged to the risk-

dominant strategy with an average payoff of 194.95. Five groups converged to the sunspot strategy 

0/100. Their average payoff is 192.21, which is comparable to CC and C. At least three groups (Group 

24, 32, and 34) converge to a 25/75 sunspot strategy with an average payoff of 188.78, which is in the 

range of average payoffs in P95 and AC. Finally, we observe groups who did not converge at all. The 

average payoff in these groups is 184.39. Over all groups, the average payoff in Treatment CP is 

189.56. Not surprisingly, we can reject the null hypothesis for equal means in C and CP (Mann-

Whitney, z = 2.060, p < 0.04) and in N/P75 and CP (Mann-Whitney, z = 2.741, p < 0.01). Comparing 

average payoffs in Treatment CP with Treatments P95 and AC, we find no significant differences (p > 

0.1). The fact that average payoffs in CP are lower than in P75 and C and similar to those in 

Treatments P95 and AC, indicates that the effect of private signals may be larger when combined with 

a public signal, even though we rejected the hypothesis of a different power measured by actions’ 

distance.  

[Figure 6 about here] 

The average payoffs are also a measure for convergence to an equilibrium strategy. The three 

convergence patterns in Treatment CP can be nicely detected in Figure 6. The figure shows how 

average payoffs and strategies change from the first half to the second half of the experiment. Each 

group is represented by four identical markers, which indicate the relationship of the average distance 

from 50 and the payoffs conditional on equal and unequal signals. The arrows show how distance and 

payoffs change over time. With the exception of group 25, distances in situations with Xi = Y and Xi  ≠ 

Y converge towards each other, which means that subjects respond less to the private signal. Payoffs 

always increase from the first to the second half of the experiment due to the improved coordination 

within groups. It is further interesting to note that groups starting out with distances above 25 for 

unequal signals converge to the sunspot equilibrium 0/100. Groups with average distances between 

about 15 and 35 in the first half seem to converge towards a 25/75 sunspot equilibrium (indicated by 

the large circle at the upper edge of Figure 6).  

6 Conclusion  

In this paper, we have reported evidence for the occurrence of sunspots in the laboratory. In a simple 

game, inspired by Keynes’ beauty contest, we introduce extrinsic signals and systematically vary the 
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information structure of signals in order to control the available extrinsic information and its effect on 

behavior. Our findings provide direct evidence that extrinsic (public) information can have a 

substantial impact on collective perceptions, and therefore sunspot equilibria reliably show up.  

We investigated the impact of extrinsic information by manipulating the correlation of individual 

signals and by introducing multiple signals. As long as the signals have a small correlation, i.e., when 

signals are private and the conditional probability that two subjects receive the same signal is low, 

subjects tend to ignore them. But, if the correlation increases, we observe sunspot-driven behavior, 

even though theoretically no sunspot equilibria exist.  

Two public signals are easily aggregated and generate an interesting three-cycle sunspot equilibrium, 

which has not been observed in other sunspot experiments. On the other hand, if private signals are 

combined with an extrinsic public signal, the impact of sunspots on behavior is smaller than in games 

with pure public information. The ability of groups to coordinate is impeded by such a combination, 

which results in lower average payoffs. This also shows that the effect of private signals is larger in 

the presence of a public signal, which leads to an interesting conclusion: in economies where private 

signals could impede coordination, adding an extrinsic public coordination device with similar 

semantics may make it even more difficult to coordinate actions.  

Extrinsic public information is not detrimental to welfare. However, the presence of highly correlated 

private information and the combination of public and private signals considerably impedes 

coordination and results in lower payoffs. While the individual losses arising from strategies that 

condition actions on private signals might be small, such behavior affects the strategies of others and 

prolongs the time that subjects need to coordinate. If not all agents receive extrinsic signals, those who 

condition their actions on them exert a negative externality on agents not receiving signals.  

Taking up the literature on focal points, we provide evidence that the salience of certain actions –

choosing 50 – is no longer effective when extrinsic information is available, even in (payoff-) 

symmetric games. The introduction of extrinsic information influences subjects’ perceptions of focal 

points and may lead to considerable miscoordination. Hence, our results show the fragility of focal 

points.  

The game form that we employed uses risk dominance for measuring the power of sunspots. Whether 

the power of sunspots may be sufficiently strong to distract agents from a payoff-dominant 

equilibrium is an open question. However, since risk dominance seems to be working well in 

measuring the power of extrinsic signals, we envision that our game form may be used for testing the 

salience of other messages or signal combinations. Tentatively, one may use similar experiments for 

measuring common understanding of messages phrased in ordinary language.  

 



 

 25 

References 

[1] Agranov, Marina, and Andrew Schotter (2010). “Coarse Communication and Focal Points: An 

Experimental Study”, mimeo. 

[2] Azariadis, Costas (1981). "Self-Fulfilling Prophecies." Journal of Economic Theory 25, 380-96. 

[3] Bardsley, Nick, Mehta Judith, Starmer, Chris, and Sugden, Robert (2010). “Explaining Focal 

Points: Cognitive Hierarchy Theory versus Team Reasoning”, Economic Journal 120: 40-79. 

[4] Beugnot, Julie, Gürgüc Zeynep, Frederik R. Øvlisen, and Michael W.M. Roos (2009). 

“Coordination Failure Caused by Sunspots”, mimeo. 

[5] Blume, Andreas, and Uri Gneezy (2000). “An Experimental Investigation of Optimal Learning 

in Coordination Games.” Journal of Economic Theory 90: 161-72. 

[6] Bosch-Domenech, Antoni, and Nicolaas Vriend (2008). “On the Role of Non-equilibrium Focal 

Points as Coordination Devices”, mimeo. 

[7] Brandts, Jordi and Holt, Charles A. (1992). “An Experimental Test of Equilibrium Dominance 

in Signaling Games.” American Economic Review 82, 1350-65. 

[8] Brandts, Jordi and Bentley McLeod (1995). “Equilibrium Selection in Experimental Games with 

Recommended Play,” Games and Economic Behavior 11, 36-63. 

[9] Cason, Tim N. and T. Sharma (2007). “Recommended Play and Correlated Equilibria,” 

Economic Theory 33, 11-27. 

[10] Camerer, Colin, George Loewenstein and Martin Weber (1989). “The Curse of Knowledge in 

Economic Settings: An Experimental Analysis,” Journal of Political Economy 97, 1232-1254. 

[11] Cass, D. and K. Shell (1983). Do Sunspots matter?, Journal of Political Economy 91, 193-227. 

[12] Chaudhuri, Ananish, Schotter, Andrew, & Sopher, Barry (2009). “Talking ourselves to 

efficiency: coordination in intergenerational minimum-effort games with private, almost 

common and common knowledge of advice.” Economic Journal 119, 91-122. 

[13] Choi, James, David, Laibson and Brigitte, Madrian (2010). “Why Does the Law of One Price 

Fail? An Experiment on Index Mutual Funds”, Review of Financial Studies 23, 1405-1432. 

[14] Cooper, Russell and A. John (1988). Coordinating coordination failures in Keynesian Models, 

Quarterly Journal of Economics 103, 441-463. 

[15] Crawford, Vincent, Gneezy, Uri and Yuval Rottenstreich (2008). “The Power of Focal Points is 

Limited: Even Minute Payoff Asymmetry May Yield Large Coordination Failures,” American 

Economic Review 98, 1443-1458. 

[16] Crawford, Vincent, and Hans Haller (1990). “Learning How to Cooperate: Optimal Play in 

Repeated Coordination Games.” Econometrica 58, 571-95. 

[17] Dohmen, Thomas, Armin Falk, David Huffman and Uwe Sunde (2006). Seemingly irrelevant 

events affect economic perceptions and expectations: the FIFA World Cup 2006 as a natural 

experiment, IZA Discussion Paper. 



 

 26 

[18] Duffy, John and Eric Fisher (2005). “Sunspots in the Laboratory”, American Economic Review 

95, 510-529. 

[19] Duffy, John and Nick Feltovich (2010). Correlated equilibria, good and bad: An experimental 

study. International Economic Review, 51, 701-721. 

[20] Edmans, Alex, Garcia, Diego, and Øyvind Norli (2007). Sports sentiment and stock returns, 

Journal of Finance 62, 1967-1998. 

[21] Fischbacher, Urs (2007). z-Tree: Zurich Toolbox for Ready-made Economic Experiments, 

Experimental Economics 10, 171-78. 

[22] Greiner, Ben (2004). An Online Recruitment System for Economic Experiments. In Kremer, K. 

and Macho, V., eds., Forschung und wissenschaftliches Rechnen 2003. GWDG Bericht 63, 

pages 79 - 93. Ges. fr Wiss. Datenverarbeitung, Goettingen. 

[23] Hirshleifer, David, and Tyler Shumway (2003). Good Day Sunshine: Stock Returns and the 

Weather, Journal of Finance 58, 1009-1032. 

[24] Keynes, John (1936). The General Theory of Employment, Interest and Money. London: 

McMillan. 

[25] Kuang, Jason, Roberto Weber, and Jason Dana (2007). “How effective is advice from interested 

parties? An experimental test using a pure coordination game”, Journal of Economic Behavior 

and Organization 62, 591-604. 

[26] Jamison, Julian, David, Owens, and Glenn, Woroch (2009). “Social and Private Learning with 

Endogenous Decision Timing”, Boston Fed Working Paper. 

[27] Jevons, William S. (1884). Investigations in currency and finance. London: Macmillan. 

[28] Marimon, Ramon; Spear, Stephen E. and Sunder, Shyam (1993). "Expectationally Driven 

Market Volatility: An Experimental Study." Journal of Economic Theory 61, 74-103. 

[29] Mehta, Judith, Chris Starmer, and Robert Sugden. (1994). “The Nature of Salience: An 

Experimental Investigation of Pure Coordination Games.” American Economic Review 84, 658-

673. 

[30] Monderer, Dov, and Dov Samet (1989). “Approximating common knowledge with common 

beliefs”, Games and Economic Behavior 1, 170-190. 

[31] Noussair, Charles N.; Plott, Charles R.; and Riezman, Raymond G. ‘‘An Experimental 

Investigation of the Patterns of International Trade.’’ American Economic Review 85, 462-91. 

[32] Peck, James and Shell, Karl (1991). "Market Uncertainty: Correlated and Sunspot Equilibria in 

Imperfectly Competitive Economies." Review of Economic Studies 58, 1011-29. 

[33] Rosch Eleanor (1975). “Cognitve Reference Points”, Cognitive Psychology 7, 532-547. 

[34] Simonsohn, Uri (2009) “Weather to Go to College.” Economic Journal 120, 270-280. 

[35] Schelling, Thomas (1960). “Strategy of Conflict”, Harvard University Press. 

[36] Schotter, Andrew and Sopher, Barry (2003). “Social learning and coordination conventions in 

intergenerational games: an experimental study”, Journal of Political Economy 111, 498-529. 



 

 27 

[37] Van Huyck, John, Battalio, Ray., and Beil, Richard. (1990). Tacit Coordination Games, 

Strategic Uncertainty, and Coordination Failure. American Economic Review 80, 234-48. 

[38] Van Huyck, John; Gillette, Ann and Battalio, Ray (1992). “Credible Assignments in 

Coordination Games.” Games and Economic Behavior 4, 606-26. 

[39] Yuan, Kathy, Lu Zheng, and Qiaoqiao Zhu (2006). Are investors moonstruck? Lunar phases and 

stock returns, Journal of Empirical Finance 13, 1-23. 

 



 

 28 

Figures 

0
12

.5
25

37
.5

50
A

vg
. d

is
ta

nc
e 

to
 5

0

0 20 40 60 80
Period

N P75 C

 
Figure 1: Average distance to 50 over all groups in N, P75 and C. 
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Figure 2: Average distance to 50 by blocks of 10 periods in Treatments P95 and AC. 
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Figure 3: Average distance to 50 by blocks of 10 periods in Treatment CC. 
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Figure 4: Average distance to 50 by blocks of 10 periods in Treatment CP. 
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Figure 5: Relationship of average distance to 50 to the average payoff across treatments. 
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 Figure 6: Change of average distance and payoff over time in CP. 
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Appendix 

 

A  Proofs of Lemmas 1 and 2 

 

Lemma 1. Let    ,*
,

ia  be a Bayesian Nash equilibrium strategy profile, where *
,

ia   is a 

Bayesian Nash equilibrium action played by agent i with public signal  and private signal  . Then, 

equilibrium actions are the same for both agents and do not depend on the private signal, that is, 

     **
, aai  for any given  . 

 

Proof. We will prove the lemma in three steps. 

Step 1. We want to show that the equilibrium must be in pure strategies. For any given set of signals, it 

must be that  

 *
,,

*
, maxarg j

x
i axfpa

j

i 



  



 

where 
j

ip
 ,

is the probability that the other player receives signal j  when he receives signal i  in 

state .30 The expression to be maximized is strictly concave, so the best response must be unique. 

Hence, it cannot be that in equilibrium they play different actions with positive probability for a same 

set of signals. 

Step 2. Extreme actions played in equilibrium must coincide for both players, that is, 

   *
,

*
, minargminarg ji aa    and    *

,
*
, maxargmaxarg ji aa    for ji  .31 We will show that 

by contradiction. Suppose that, without loss of generality,    *
,

*
, minargminarg ji aa   . Let 

 *
,minarg: ia   . Then, it must be that 

 
  0maxarg *

,
*
,,

*
,,

*
,








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

 ji
x

ax

j

aafp
x

axfp
j

i

j















 

 

 

                                                      

30 See that by allowing different probabilities we implicitly allow the effects of a public signal. 
31 These expressions are well defined given the finite cardinality of private signals and Step 1. 
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given that   *
,

*
,

*
,    0 jji aaaf   . Therefore, *

,
ia   cannot be a best response.  

Step 3. In this last step, we show that    *
,

*
, maxargminarg ii aa    for both players. We will again 

prove it by contradiction. Suppose that it is not the case. We know by the previous step that the 

extremes must be the same. In that case, the derivative of the expected profits at   is again positive. 

In that case, the derivative will be zero if both players play the minimum action in equilibrium, and 

positive for the rest.  

 

Therefore, it must be that      **
, aai  for any given  . ■ 

 

Lemma 2.  ,
2

*
, 




cb
ai  is the both the secure action and the risk-dominant equilibrium. 

 

Proof. The minimum payoff that can be obtained given action x is the payoff given by one of the 

extremes, that is, min {f(x-b),f(c-x)} . It is trivial to see that this function is maximized at x = (b+c)/2, 

and therefore playing the middle action maximizes the minimum payoff. Hence, the middle point of 

the interval is the secure action. 

In order to find the risk-dominant equilibrium, we must find the action x that maximizes the expected 

payoff against a player who plays a uniform distribution over all the actions, i.e., 

  


c

b

dyyxf
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Suppose, without loss of generality, that 
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Hence, 
2

cb 
 is the risk-dominant equilibrium. ■ 
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B Symmetry of actions 

Here we show the symmetry of the actions played during the experiment. This allows us to then pool 

the data for symmetric sets of signals and measure the power of sunspots by the distance of chosen 

actions from 50, independent of whether signals are 0 or 100. In treatments with one signal, we say a 

strategy is symmetric if subjects choose action ii ma   when they receive signal s = 0 and choose 

ii ma  100  when the signal is s = 100. For treatments with two signals, symmetry refers to playing m 

when both signals are 0, 100-m when both signals are 100. When the two signals are different in CP, 

symmetry means playing n when the public signal is 0 and the private signal is 100, and 100-n when 

the public signal is 100 and the private signal is 0. For two distinct public signals in Treatment CC, 

symmetry prescribes playing 50 as in situations without signals. To test the symmetry of strategies we 

estimate the following model: 

itiit uperiodSa   21 100          (B1) 

The dependent variable is the decision of individual i. We transform this variable to imia 100  

when the private signal is s = 100 (as in P75, P95, and AC), when the public signal is s = 100 (as in C 

and CP), or when the public signal Y1 is s = 100 (as in CC). Thus the dependent variable ait always 

measures the distance to zero irrespective of the signal realization. As independent variables we 

include “Period” to control for the time trend and a dummy variable, “S100”,  which equals 1 if the 

private signal equals 100 (in P75, P95, or AC) or the public signal equals 100 (in C, CP, or Y1 in CC). 

For Treatment AC, we consider only observations in which the random number Z was revealed to the 

subjects. For Treatments CP and CC we estimate separate regressions for equal signals (Xi = Y) or (Y1 

= Y2) and unequal signals )( YX i   or )( 21 YY  . For Treatment CC, we also test whether the constant 

equals 50, which amounts to both public signals having the same impact on behavior. 

The regression results are displayed in Table B1. We only report the results of a random effects model 

as specified in (B1) in which we control for repeated decisions of the same subject as well as for 

dependencies within matching groups. Alternatively, we used a simple OLS model with clustering at 

the group level, which does not impose any restriction on the correlation within groups. Our variable 

of interest is the dummy for the signal “S100”. If decisions are symmetric, the coefficient i  should 

be close to zero and insignificant. Indeed we observe for treatments P75, P95, C and CC that the 

coefficient for “S100” is not significantly different from zero. The same is true for treatment CP when 

the signals are equal. In CP with unequal signals and in AC we find that “S100” is significant at the 

5%-level, but numerically small. This is mainly due to one matching group in each of the two 

treatments. If we exclude these two groups the coefficient for “S100” is insignificant in both 

regressions. The OLS regressions with clustering at the group level yield insignificant coefficients in 

all treatments (including all groups).  
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Table B1. Symmetry of decisions 

 Dependent variable: ita  
 P75 P95 C CP CC AC 

    equal sig. unequal sig. equal sig. unequal sig.  

Signal=100 (D) 0.319 -1.086 -0.212 -0.280 -1.878** 0.019 -0.443 0.962** 

 (0.917) (1.099) (0.511) (0.449) (0.939) (0.485) (0.447) (0.471) 

Period 0.076*** 0.058* -0.118** 0.043 -0.198*** -0.039 0.018*** 0.043 

 (0.018) (0.034) (0.055) (0.038) (0.062) (0.029) (0.006) (0.048) 

Constant 44.623*** 31.245*** 8.726* 13.675*** 34.617*** 3.662* 49.403*** 33.916***

 (1.236) (6.446) (4.780) (2.789) (3.916) (2.004) (0.463) (7.617) 

chi² 27.60 3.93 6.40 2.86 10.37 2.85 11.00 11.58 

R² 0.039 0.006 0.043 0.003 0.044 0.005 0.002 0.003 

N 1440 2880 2880 3456 2304 1728 1152 2662 

Notes: Random-effects GLS regression with robust standard errors clustered at group level in parentheses.  

(D) denotes dummy variable, equal signal refers to (Xi = Y) or (Y1 = Y2) and unequal signals to (Xi ≠ Y) or (Y1 ≠ Y2). 

Treatment AC only includes observations where the random number Z was revealed to subjects. For CC, the constant is not 

significantly different from 50 (p=0.20).  * p<0.10, ** p<0.05, *** p<0.01 
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C Additional tables   

 

Table C1: Aggregate results of non-sunspot treatments. 

Treatment Session Group Strategy T6 T4 Avg. coord. rate 
Avg. payoff 
(std. dev.) 

|50| ia  
(std. dev.) 

(1) (2) (3) (5) (6) (7) (8) (9) (10) 

N 

1 

1 50 56 14 0.84 
198.5 
(6.8) 

1.44 
(5.9) 

N 2 50 42 1 0.96 
199.3 
(5.2) 

0.55 
(4.2) 

P75 

2 

3 50 10 7 0.93 
198.9 
(5.5) 

1.27 
(6.4) 

P75 4 50 20 2 0.89 
197.1 
(11.4) 

2.08 
(8.6) 

P75 5 50 - 20 0.58 
195.1 
(9.9) 

4.88 
(10.5) 

P95  6 10/90 - 67 0.51 
185.5 
(39.4) 

39.39 
(6.5) 

P95 3 7 10/90 - 63 0.30 
181.6 
(38.7) 

38.60 
(12.6) 

P95  8 50 13 10 0.90 
195.8 
(19.3) 

2.37 
(9.7) 

P95  9 50 7 3 0.96 
199.2 
(5.1) 

0.66 
(4.5) 

P95 4 10 50 12 7 0.92 
196.5 
(12.3) 

2.44 
(10.5) 

P95  11 50 - 80 0.31 
172.7 
(33.5) 

20.07 
(22.4) 

AC  12 50 32 2 0.96 
198.5 
(8.5) 

0.79 
(6.1) 

AC 7 13 50 7 2 0.96 
198.3 
(9.0) 

1.04 
(7.1) 

AC  14 50 16 1 0.97 
199.5 
(4.0) 

0.38 
(3.5) 

AC 

8 

15 0/100 70 1 0.80 
188.9 
(27.4) 

44.94 
(14.8) 

AC 16 50 19 7 0.90 
195.5 
(14.1) 

3.71 
(12.9) 

AC 17 0/100 - 70 0.25 
163.6 
(48.7) 

32.31 
(21.8) 

Notes: T4 denotes the earliest period from which at least 4 subjects play the same strategy until the last but one period, allowing a 

deviation of ±3. T6 denotes the earliest period from which all 6 subjects play the same strategy until the last but one period, 

allowing a deviation of ±1. The avg. coordination rate is the percentage of pairs choosing the same action within a range of ±1 

over all periods. 
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Table C2. Aggregate results of sunspots treatments. 

Treatment Session Group Strategy T6 T4 
Avg. coord. 

rate 
Avg. payoff 
(std. dev.) 

|50| ia  
(std. dev.) 

(1) (2) (3) (5) (6) (7) (8) (9) (10) 

C 

5 

18 0/100 80 10 0.74 196.3 
(20.0) 

48.31
(5.8)

C 19 0/100 6 3 0.97 199.9 
(1.01) 

49.60 
(2.38)

C 20 0/100 33 6 0.93 197.8 
(15.8) 

48.76
(6.0)

C 

6 

21 0/100 2 1 0.99 199.8 
(3.2) 

49.88 
(2.3)

C 22 0/100 80 55 0.44 182.6 
(25.3) 

33.99
(21.2)

C 23 0/100 49 3 0.94 196.0 
(26.1) 

49.53
(2.8)

CP 

8 

24 25/75 65 59 0.36 193.3 
(11.4) 

26.00 
(11.8)

CP 25 - - - 0.15 179.9 
(32.7) 

33.83
(17.8)

CP 26 50 24 8 0.90 194.9 
(15.0) 

3.49 
(12.7)

CP 

9 

27 0/100 54 28 0.72 192.2 
(23.1) 

45.49 
(12.2)

CP 28 - - - 0.40 185.3 
(19.3) 

16.19 
(19.0)

CP 29 25/75 - 55 0.41 187.3 
(16.9) 

19.09
(17.3)

CP 

10 

30 0/100 33 1 0.99 199.0 
(13.3) 

49.90 
(2.3)

CP 31 0/100 65 29 0.72 189.8 
(29.6) 

45.19 
(13.0)

CP 32 25/75 - 76 0.34 184.9 
(25.0) 

25.58 
(13.6)

CP 

11 

33 0/100 77 22 0.63 186.0 
(29.4) 

41.98 
(16.2)

CP 34 - - - 0.10 188.1 
(14.5) 

25.09 
(16.6)

CP 35 0/100 56 9 0.84 194.1 
(21.8) 

46.95 
(10.8)

CC 

12 

36 Mean 79 16 0.83 195.3 
(14.3) 

33.32 
(23.0)

CC 37 Mean - 3 0.66 184.6 
(35.4) 

28.65
(23.5)

CC 38 Mean 20 12 0.91 190.3 
(38.5) 

30.88 
(24.2)

CC 

13 

39 Mean 58 4 0.96 198.5 
(14.0) 

30.08 
(24.4)

CC 40 Mean 4 1 0.99 199.6 
(4.6) 

30.00 
(24.5)

CC 41 Mean 2 1 0.99 199.9 
(1.2) 

30.06 
(24.5)

Notes: T4 denotes the earliest period from which at least 4 subjects play the same strategy until the last but one period, 

allowing a deviation of ±3. T6 denotes the earliest period from which all 6 subjects play the same strategy until the last but 

one period, allowing a deviation of ±1. The avg. coordination rate is the percentage of pairs choosing the same action within 

a range of ±1 over all periods. 
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D Additional figures 
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Figure D1: Average distance to 50 by blocks of 10 periods in Treatments N, P75 and C. 
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Figure D2:  Average distance to 50 in the last 10 periods as a function of the average  
  distance to 50 in the first ten periods (non-sunspot treatments). 

0
10

20
30

40
50

A
ve

ra
ge

 d
is

ta
nc

e 
la

st
 1

0 
pe

rio
ds

0 10 20 30 40 50
Average distance first 10 periods

C CP CC

 
Figure D3:  Average distance to 50 in the last 10 periods as a function of the average  
  distance to 50 in the first ten periods (sunspot treatments). 
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E Sample instructions for Treatment CP 
 

The experiment in which you are participating is part of a research project. Its aim is to analyze 
economic decision behavior. 

The experiment consists of 80 rounds in total. The rules and instructions are the same for all 
participants. In each round, you have to make a decision. All rounds are completely independent. Your 
income from the experiment depends on your decisions and the decisions made by the other 
participants. Please read all instructions carefully and thoroughly. 

Please note that you are not permitted to speak to the other participants or to exchange 
information with them for the duration of the entire experiment. Should you have a question, 
please raise your hand, and we will come to you and answer your question. Please do not ask 
your question(s) in a loud voice. Should you breach these rules, we will be forced to exclude you 
from the experiment. 

At the end of the experiment, the computer will randomly draw 10 of the 80 rounds, which will 
become relevant for your payoff. Your payoff will then be determined according to the sum of your 
earnings from these selected rounds. In addition, you will receive 3 Euro for participating in the 
experiment. 

 

Description of the Experiment 
 

At the beginning of the experiment, three groups of six participants each are randomly and 
anonymously formed. These groups remain unaltered for the entire experiment. At no point are you 
told who is in your group. 

In each round, you are randomly and anonymously paired with another participant from your 
group (referred to as your partner from now on). This means that you can be paired with the same 
participant from your group several times in the course of the experiment, albeit not in two successive 
rounds. Neither you nor your partner is told the other’s identity. 

 

1. Information at the Beginning of Each Round 

 

At the beginning of each round, the computer randomly draws a number Z. The number Z is equally 
likely either to have the value 0 or 100. This means that in 5 out of 10 cases, on average, the number Z 
takes the value 0, and in 5 out of 10 cases, it takes the value 100. The number Z is the same for you 
and your partner.  

At the time of the decision, the number Z is not known. Instead, you receive two independent hints for 
the number Z: 

Shared hint Y: 

You and your partner both receive a shared hint Y for the number Z. This hint can be either 0 or 100 
and is randomly determined. With a probability of 75%, hint Y has the same value as the number Z. 
With the remaining probability of 25%, the hint will have the other value. The shared hint is the same 
for both of you. 

 

Private hint X: 

In addition to the shared hint Y, you will receive a private hint X for the number Z. Your partner also 
receives a private hint X.  
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The private hint can be either 0 or 100 and is randomly determined. With a probability of 75%, the 
private hint X has the same value as the number Z. With the remaining probability of 25%, the private 
hint X will have the other value.  

Your private hint and the private hint of your partner are independently drawn, i.e., both private hints 
can be different. You are not told which private hint your partner has received, and your partner is not 
told which private hint you have received. 

If the shared and the private hint are the same, the probability of both being correct is 90 percent. In 
other words, if you have received two similar hints, then in 9 out of 10 cases these correspond to the 
number Z.  

If the shared and the private hint are different, then both values of the number Z are equally probable.  

 

2. Your Decision  

 

In each round, you have to decide on a number between 0 and 100 (incl. 0 and 100). Once you have 
made your decision, you have to click on the OK button on the corresponding computer screen. Once 
all participants have made their binding decisions, a round is finished. 

 

3. Your Earnings 

 

Your earnings depend on how close your decision has come to your partner’s decision. 

Your earnings (in Euro cents) =  2   
100

2
200 decisionpartner'sYourdecisionYour  . 

In other words: your earnings in each round are 200 Euro cents at the most. These 200 Euro cents are 
reduced by the distance between your decision and your partner’s decision. 

The distance is squared, so that higher distance leads to a disproportionate loss compared to a smaller 
distance. The closer your decision is to your partner’s decision, the higher your earnings are.  

The following table gives you an overview of possible earnings. In this table, only distances in steps of 
20 are shown. Please note that distances may be any integer between 0 and 100. In the table, you can 
also see that you are able to earn a maximum of 200 Euro cents (top-left field) and a minimum of 0 
Euro cents (bottom-right field). 
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0 200 

20 192 

40 168 

60 128 

80 72 

100 0 

 

Calculator 

 

You have a calculator at your disposal in each round. In order to use the calculator, you can note your 
own decision and test as many of your partner’s decisions as you wish. The calculator then calculates 
your earnings for the relevant data entered. In the first 5 rounds, the calculator is active for 20 seconds. 
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During this time, you may carry out as many calculations as you wish. After that, the calculator 
becomes inactive and you must make your decision. From the 6th round onwards, the calculator is 
only active for 10 seconds and you can make your decision at once. 

 

Information at the End of a Round 

 

At the end of a round, you are given the following information: 

 

 The number Z  
 The shared hint Y 
 Your private hint X 

 

 Your decision 
 Your partner’s decision 
 The discrepancy between your decision and 

your partner’s decision  
 Your earnings 

 

 

Control Questions 

 

1. Is everyone given the same hint X?   
- Yes, everyone is given the same hint X /  
- No, everyone receives his own hint, i.e., your hint X can be different from your partner’s 

hint X. 
2. Is everyone given the same hint Y? 

- Yes, everyone is given the same hint Y 
- No, everyone receives his own hint Y, i.e., your hint Y can be different from your partner’s 

hint Y. 
3. Your earnings in a round depend on ...   

…the distance between your chosen number and your partner’s chosen number  
…the number Z 
…the private hint X 

4. Are you always paired with the same partner?  Yes / No 
5. How many of the 80 rounds are randomly chosen by the computer in order to determine your 

earnings?  
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