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ABSTRACT

We propose the systemic risk beta as a measure for financial companies’ contribu-
tion to systemic risk given network interdependence between firms’ tail risk expo-
sures. Conditional on statistically pre-identified network spillover effects and market
and balance sheet information, we define the systemic risk beta as the time-varying
marginal effect of a firm’s Value-at-risk (VaR) on the system’s VaR. Suitable statis-
tical inference reveals a multitude of relevant risk spillover channels and determines
companies’ systemic importance in the U.S. financial system. Our approach can be
used to monitor companies’ systemic importance allowing for a transparent macro-
prudential regulation.

Keywords: Systemic risk contribution, systemic risk network, Value at Risk, net-
work topology, two-step quantile regression, time-varying parameters

JEL classification: G01, G18, G32, G38, C21, C51, C63

The financial crisis 2007-2009 has shown that cross-sectional dependencies between as-

sets and credit exposures can cause even small risks of individual banks to cascade and
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build up to a substantial threat for the stability of an entire financial system.1 Under certain

economic conditions, company-specific risk cannot be appropriately assessed in isolation

without accounting for potential risk spillover effects from other firms. In fact, it is not just

its size and idiosyncratic risk but also its interconnectedness with other firms which deter-

mines a company’s systemic relevance i.e., its potential to significantly increase the risk

of failure of the entire system – which we denote as systemic risk.2 While there is a broad

consensus that any prudential regulatory policy should account for the consequences of

network interdependencies in the financial system, in practice, however, any attempt of

a transparent implementation must fail, as long as suitable empirical measures for firms’

individual risk, risk spillovers and systemic relevance are not available. In particular, it

is unclear how to quantify individual risk exposures and systemic risk contributions in an

appropriate but still parsimonious and empirically tractable way for a prevailing underly-

ing network structure. And there is an apparent need for respective empirically feasible

and forward-looking measures which only rely on available data of publicly disclosed

balance sheet and market information but still account for the complexity of the financial

system.

A general empirical assessment of systemic relevance cannot build on the vast theo-

retical literature of financial network models and financial contagion, since these results

typically require detailed information on intra-bank asset and liability exposures (see, e.g.,

Allen and Gale, 2000, Freixas, Parigi, and Rochet, 2000, and Leitner, 2005). Such data

is generally not publicly disclosed and even regulators can only collect partial informa-

tion on some sources of inter-bank linkages. Available empirical studies linked to this

literature can therefore only partially contribute to a full picture of companies’ systemic

relevance as they focus on particular parts of specific markets at a particular time under

particular financial conditions (see, e.g., Upper and Worms, 2004, and Furfine, 2003, for

Germany and the U.S., respectively).3 Furthermore, assessing risk interconnections on the

1For a thorough description of the financial crisis, see, e.g., Brunnermeier (2009).
2Bernanke (2009) and Rajan (2009) stress the danger induced by institutions which are “too intercon-

nected to fail” or ”too systemic to fail” in contrast to the insufficient focus on firms which are simply “too
big too fail”.

3See also Cocco, Gomes, and Martins (2009) for parts of the financial sector in Portugal, Elsinger,
Lehar, and Summer (2006) for Austria, and Degryse and Nguyen (2007) for Belgium. A rare exception is
the unique data set for India with full information on the intra-banking market studied in Iyer and Peydrió
(2011).

2



basis of multivariate failure probability distributions has proven to be statistically compli-

cated without using restrictive assumptions driving the results (see, e.g., Boss, Elsinger,

Summer, and Thurner, 2004, or Zhou, 2009, and references therein). Finally, for regu-

lators it is often unclear, how the typically complex structures ultimately translate into

dynamic and predictable measures of systemic relevance.

The objective of this paper is to develop an easily and widely applicable measure of

a firm’s systemic relevance, explicitly accounting for the company’s interconnectedness

within the financial sector. We assess companies’ risk of financial distress on the basis

of share price information, which directly incorporates market perceptions of a firm’s

prospects, and publicly accessible market as well as balance sheet data. As for risk in-

terconnectedness only dependencies in extreme tails of asset return distributions matter,

we base our measure on extreme conditional quantiles of corresponding return distribu-

tions quantifying the risk of distress of individual companies and of the entire system

respectively. In this sense, our setting builds on the concept of conditional Value-at-Risk

(VaR), which is a popular and widely accepted measure for tail risk.4 For each firm,

we identify its so-called relevant (tail) risk drivers as the minimal set of macroeconomic

fundamentals, firm-specific characteristics and risk spillovers from competitors and other

companies driving the company’s VaR. Detecting of with whom and how strongly any

institution is connected allows to construct a tail risk network of the financial system. A

company’s contribution to systemic risk is then defined as the induced total effect of an

increase in its individual tail risk on the VaR of the entire system, conditional on the firm’s

position within the financial network as well as overall market conditions. Furthermore,

we obtain a reliable measure of a company’s idiosyncratic risk in the presence of network

spillover effects by assessing its conditional VaR depending on respective tail risk drivers.

The underlying statistical setting is a two-stage quantile regression approach: In the

first step, firm-specific VaRs are estimated as functions of firm characteristics, macroeco-

nomic state variables as well as tail risk spillovers of other banks which are captured by

4Note that the VaR is a coherent risk measure in realistic market settings, i.e., in cases of return distri-
butions with tails decaying faster than those of the Cauchy distribution, see Garcia, Renault, and Tsafack
(2007). In principle, our methodology could also be adapted to other tail risk measures such as, e.g., ex-
pected shortfall. Such a setting, however, would involve additional estimation steps and complications,
probably inducing an overall loss of accuracy in results given the limited amount of available data.
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loss exceedances. Hereby, the major challenge is to shrink the high-dimensional set of

possible cross-linkages between all financial firms to a feasible number of relevant risk

connections. We address this issue statistically as a model selection problem in individual

institution’s VaR specifications which we solve in a pre-step. In particular, we make use of

novel Least Absolute Shrinkage and Selection Operator (LASSO) techniques (see Belloni

and Chernozhukov, 2011) which allows us to identify the relevant tail risk drivers for each

company in a fully automatic way. The resulting identified risk interconnections are best

represented in terms of a network graph as illustrated in Figure 1 (and discussed in more

detail in the remainder of the paper) for the system of the 57 largest U.S. financial compa-

nies. In the second step, for measuring a firm’s systemic impact, we individually regress

the VaR of a value-weighted index of the financial sector on the firm’s estimated VaR

while controlling for the pre-identified company-specific risk drivers as well as macroe-

conomic state variables. We derive standard errors which explicitly account for estimation

errors resulting from the pre-estimation of regressors in quantile relations. As the gener-

ally available sample sizes of balance sheet and macroeconomic information make the use

of large-sample inference questionable, we provide (non-standard) bootstrap methods to

construct finite-sample-based parameter tests.

We determine a company’s systemic risk contribution as the marginal effect of its in-

dividual VaR on the VaR of the system. In analogy to an (inverted) asset pricing relation-

ship in quantiles we call the measure systemic risk beta. It corresponds to the system’s

marginal risk exposure due to changes in the tail of a firm’s loss distribution. For com-

paring the systemic relevance of companies across the system, however, it is necessary to

compute the induced total increase in systemic risk. We therefore rank companies accord-

ing to their ”standardized” systemic risk beta corresponding to the product of a company’s

systemic risk beta and its VaR. The systemic risk beta - and therefore also its standardized

version - is modeled as a function of firm-specific characteristics, such as leverage, matu-

rity mismatch and size. Accordingly, a firm’s tail risk effect on the system can vary with

its economic conditions and/or its balance sheet structure changing its marginal systemic

importance even though its individual risk level might be identical at different time points.
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AIG
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Bank of America

Wells Fargo

Citigroup
Fannie Mae

JP Morgan

Freddy Mac

Figure 1: Risk network of the U.S. financial system schematically highlighting key companies
in the system with boxes increasing with average size (measured as market valued total assets) in
2000-2008. Details on all other firms in the system only appearing as unlabeled shaded nodes will
be provided later in the paper. Depositories are marked in red, broker dealers in green, insurance
companies in black, others in blue. An arrow pointing from firm j to firm i reflects an impact of
extreme returns of j on the VaR of i (V aRi) which is identified as being relevant employing statis-
tical selection techniques. VaRs are measured in terms of 5%-quantiles of the return distribution.
The effect of j on i is measured in terms of the impact of an increase of the return Xj on V aRi

given Xi is below its 10% quantile, i.e., i’s so-called loss exceedance. The size of the respective
increase in V aRj given a 1% increase of the loss exceedance of i is reflected by the thickness of
the arrow where we distinguish between three categories: thin arrows display an increase up to
0.4, medium size of 0.4-0.8, and thick arrows of greater than 0.8. The graph is constructed such
that the total length of all arrows in the system is minimized. Accordingly, more interconnected
firms are located in the center.

Our empirical results reveal a high degree of tail risk interconnectedness among U.S. fi-

nancial institutions. We clearly detect channels of potential risk spillovers which super-

vision authorities but also risk managers must not ignore. Based on the topology of the

systemic risk network, we can categorize firms into three broad groups according to their

type and extent of connectedness with other companies: main risk transmitters, risk re-

cipients and companies which both receive and transmit tail risk. From a regulatory point

of view, the second group of pure risk recipients has the least systemic impact. Moni-

toring their condition, however, might still convey important accumulated information on

potentially hidden problems in those companies which act as their risk drivers. In any
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Figure 2: Systemic relevance of five exemplary firms in the U.S. financial system at two time
points before and at the height of the financial crisis, 2008. Systemic relevance is measured in
”systemic risk betas” quantifying the marginal increase of the VaR of the system given an increase
in a bank’s VaR while controlling for the bank’s pre-identified risk drivers. All VaRs are computed
at the 5% level and are by definition positive. We depict respective “standardized” versions of
the systemic risk beta representing the total effect on systemic risk induced by individual VaRs.
Connecting lines are just added to graphically highlight changes between the two time points but
do not mark real evolutions. The size of the elements in the graph reflects the size of the VaR of
the respective company at each of the two time points. We use the following scale: the element
is k·standard size with k = 1 for V aR ≤ 0.05, k = 1.5 for V aR ∈ (0.05, 0.1], k = 2 for
V aR ∈ (0.1, 0.15], k = 3 for V aR ∈ (0.2, 0.25] and k = 5.5 for V aR ∈ (0.65, 0.7]. Attached
numbers inside the figure mark the position of the respective company in an overall ranking of the
57 largest U.S. financial companies for each of the two time points.

case, the internal risk management of these companies should account for the possible

threat induced by the large degree of dependence on others. In particular, assessing their

full risk exposure requires network augmented risk measures as our VaR with preselected

network risk drivers. The highest attention of supervision authorities should be attracted

by firms which mainly act as risk drivers for others in the system. These contain firms

in the center of the network which appear as “too interconnected to fail”, but even more

so, large depositories at the boundary which drive a small number of firms in the cen-

ter of the system. While the systemic risk network yields qualitative information on risk

channels and roles of companies within the financial system, estimates of systemic risk

betas allow to quantify the resulting individual systemic relevance and thus complement

the full picture. Ranking companies based on (standardized) systemic risk betas shows

that large depositories are particularly risky. After controlling for all relevant network
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effects, they have the overall strongest impact on systemic risk and should be regulated

accordingly. Confirming general intuition, time evolutions of (standardized) systemic risk

betas indicate that most companies’ systemic risk contribution sharply increases during

the financial crisis. These effects are particularly pronounced for firms, such as, e.g., AIG,

which indeed got into financial distress during the crisis and are clearly (ex post) iden-

tified as being systemically risky by our approach. Figure 2 exemplarily illustrates the

evolutions of their marginal systemic contributions – as reflected by systemic risk betas

– as well as their exposure to idiosyncratic tail risk – as quantified by their VaR. A de-

tailed pre-crisis case study confirms the validity of our methodology as firms such as, e.g.,

Lehman Brothers are ex-ante identified as being highly systemically relevant. It is well-

known that their subsequent failure has indeed had a huge impact on the stability of the

entire financial system. Likewise, the extensive bail-outs of AIG, Freddie Mac and Fannie

Mae can be justified given their high systemic risk betas and high interconnectedness by

the end of 2007.

Our paper relates to several strands of recent empirical literature on systemic risk con-

tributions. Closest to our work is White, Kim, and Manganelli (2010) who propose a

bivariate vector-autoregressive system of each company’s VaR and the system VaR. They

capture time variations in tail risk in a pure time series setting which does not account for

mutual dependencies and network effects. In contrast, our model is more structural as it

models tail risk in dependence of economic state variables and network spillovers which

automatically account for periods of turbulence when predicting the systemic relevance.

Similarly, Adrian and Brunnermeier (2010) build on VaR to a construct systemic risk

measure without addressing network interconnections and balance sheet characteristics

driving individual risk exposures. Moreover, our paper complements papers which mea-

sure a company’s systemic relevance by focusing on the size of potential bail-out costs,

such as Acharya, Pedersen, Philippon, and Richardson (2010) and Brownlees and Engle

(2011). Such approaches cannot detect spillover effects driven by the topology of the risk

network and might under-estimate the systemic importance of small but very intercon-

nected companies. Moreover, while Brownlees and Engle (2011) study the situation of an

individual firm given that the system is under distress, we investigate the reverse relation

and measure the effect on the system given an individual firm is in financial trouble. In
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the same way, we also complement macroeconomic approaches taking a more aggregated

view as, e.g., the literature on systemic risk indicators (e.g., Segoviano and Goodhart,

2009, Giesecke and Kim, 2011) or papers on early warning signals (e.g., Schwaab, Koop-

man, and Lucas, 2011, and Koopman, Lucas, and Schwaab, 2011).

The remainder of the paper is structured as follows. In Section I, we briefly explain the

modelling idea and the data. Section II describes the model and estimation procedure for

individual companies’ VaRs, before presenting results on the financial network structure.

Section III discusses the second stage, the system VaR model, including estimation pro-

cedure, inference method and empirical results. In Section IV, we robustify and validate

our results by presenting a case study of five large financial institutions that were affected

by the financial crisis, and try to predict their distress and systemic relevance using only

pre-crisis data. Section V concludes.

I. A Framework for Measuring Systemic Relevance

A. Key Concepts

This section provides a compact overview of the major underlying concepts of how we

quantify systemic relevance of a company within the financial system network. It in-

troduces major underlying concepts, illustrates how the different steps of the empirical

analysis are linked to each other and thus outlines the remainder of the paper. Studying

the dependence between systemic risk and firm-specific risk requires modeling relations

in the (left) tails of respective asset return distributions, rather than in the center. This is

in sharp contrast to a correlation analysis detecting only dependence in mean returns and

being inable to quantify spillovers in situations of financial distress.

We consider a stress-test-type scenario for measuring how changes in individual company-

specific risk affect the risk of failure of the entire system given the underlying network

topology. Therefore, our model does not aim at being structural and building on a general

equilibrium framework, but is of reduced form allowing to capture the full partial effect
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for a specific company as its systemic risk contribution. Relevant underlying network

linkages between tail risks of firms in the system are identified in a first step and crucially

determine each company’s tail risk drivers.

We measure systemic risk as the Value at Risk (VaR) of the system return Xs condi-

tional on externalities B.5 Then, systemic risk at time t is defined as the system’s loss

position occurring with probability p given externalities B, i.e.,

Pr(−Xs
t ≥ V aRs

p,t) = Pr(Xs
t ≤ Qs

p,t) = p . (1)

Accordingly, Qs
p,t := Qp(X

s|B = Bt) = Qs
p(Bt) corresponds to the conditional p-

quantile ofXs. The system VaR is defined using the convention that V aRs
p,t = V aRs

p(Bt) =

−Qs
p,t, such that the VaR is non-negative and a higher VaR indicates higher risk as a func-

tion of B. The set B contains macroeconomic variables (as specified below), but also tail

risk measures of other financial companies. Obviously, due to strong interconnections,

the sum of individual tail risks may substantially differ from overall system tail risk. To

quantify the full partial effect of changes in the tail risk of an individual institution on the

tail risk of the financial system, we incorporate the tail risk of the specific company in

the vector of explanatory variables B in (1) and quantify its marginal effect on the system

VaR.

In this context, we have to overcome several difficulties. First, the tail risk of a com-

pany i is not directly observable, but has to be estimated, e.g., by the company-specific

conditional Value-at-Risk V aRi
q,t = V aRi

q(Wt). For statistical inference, discussed later

in the paper, this makes a difference as we have to account for the fact that these vari-

ables are pre-estimated leading to nonstandard (increased) confidence intervals. We define

V aRi
q(W) analogously to (1) as V aRi

q,t = V aRi
q(Wt) = −Qi

q,t, where Qi
q,t = Qi

q(Wt)

is the conditional q-quantile of company i’s return X i conditional on characteristics W

observed in t. The set Wt = (1,Mt−1,E−it ,C
i
t−1, X

i
t−1) contains the the possible tail risk

drivers of firm i consisting of macroeconomic state variables Mt−1, lagged firm-specific

characteristics Ci
t−1, its lagged return X i

t−1, and loss exceedances of other companies,

5The system return is defined as the value-weighted average return of a much larger number of compa-
nies than we include in our sample. For details, see Section B.
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E−it . The loss exceedance of a firm j is defined as Ej
t = Xj

t 1(Xj
t ≤ Q̂j

0.1), where Q̂0.1

is the 10% sample quantile of firm j’s return. Hence, by construction, company j only

affects company i if the former is under pressure which naturally captures dependencies

between tail risks of companies. Correspondingly, E−it = (Ej
t )j 6=i collects the loss ex-

ceedances of all firms apart from company i itself. While firm-specific variables, such as

leverage or maturity mismatch can be controlled by the bank itself and can thus be seen as

”internal” risk factors, macroeconomic state variables, such as credit spreads or liquidity

spreads, and spillovers from other firms under distress are exogenous risk drivers the bank

is exposed to.

Define Vt = (1,Mt−1,VaR−iq (Wt)) containing the macroeconomic state variables as

well as the VaR levels of all other companies but i in the system. Then, Bt is the vector

(Vt, V aR
i
q(Wt)) and the so-called systemic risk beta is the total marginal effect of firm

i’s tail risk on the system tail risk,

∂V aRs
p(Vt, V aR

i
q(Wt))

∂V aRi
q(Wt)

= βs|i
p,q. (2)

The systemic risk beta can be itself time-varying as it is parameterized in terms of time-

varying firm-specific characteristics. This has been suppressed for ease of notation in (2).

Systemic risk betas and corresponding rankings comparing the systemic relevance of in-

dividual companies are analyzed in Section III.

The second and major difficulty is the question of which risk drivers out of the full sets

V and W are essential to be included in order to measure βs|i
p,q unbiasedly while keeping

the model parsimonious and thus tractable. Indeed, not all companies are similarly and/or

significantly affected by all characteristics and all other firms contained in V and W.

Hence, selecting the statistically relevant risk drivers for each company i determines i-

specific characteristics V(i) and W(i) conditional on which the system VaR is linked to

V aRi. Thus it is sufficient if the reduced form model (2) for βs|i
p,q only depends on V(i)

and W(i). Identifying the relevant V(i) and W(i), amounts to a model selection problem

for the tail risk of firm i which can be solved with an appropriate statistical penalization

technique. In particular, we provide a data-driven way to (pre-)select relevant variables

W(i) out of W. Relevant companies appearing in W(i) are also those which could directly
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affect βs|i
p,q in the equation (2) for the system VaR and should thus be contained in V(i). The

model selection step is not only necessary to keep the model parsimonious but also allows

to uncover underlying relevant tail risk dependencies between companies. Ignoring these

spillover effects would lead to a biased measure of systemic risk contribution. Moreover,

depicting all relevant risk connections between all firms in the system, results in a network

graph for systemic risk which contains valuable regulatory information on potential risk

channels and specific roles of companies as risk transmitters and/or recipients. Since the

identification of such network effects has to be performed before systemic risk betas can

be estimated, we present this analysis in Section II before we focus on the estimation of

systemic risk betas in Section III.

B. Data

Our analysis focuses on publicly traded U.S. financial institutions. The list of included

companies in Table I (see Appendix A) comprises depositories, broker dealers, insurance

companies and Others.6 We use publicly available market and balance sheet data for our

assessment of systemic relevance. This is a solid basis for transparent regulation since

timely access on detailed information of connections between firms’ assets and obliga-

tions, is very difficult and expensive to obtain – even for central banks. Daily equity prices

are obtained from Datastream and are converted to weekly log returns. To account for the

general state of the economy, we use weekly observations of lagged macroeconomic vari-

ables M t−1 as suggested and used by Adrian and Brunnermeier (2010) (abbreviations as

used in the remainder of the paper are given in brackets):

(i) the implied volatility index, VIX, as computed by the Chicago Board Options Ex-

change (vix),

(ii) a short term ”liquidity spread”, computed as the difference of 3-month collateral

repo rate (available on Bloomberg) and the 3-month Treasury bill rate from the

Federal Reserve Bank of New York (repo),

(iii) the change in the 3-month Treasury bill rate (yield3m),
6Companies are distinguished according to their two-digit SIC codes, following the categorization in

Acharya, Pedersen, Philippon, and Richardson (2010).
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(iv) the change in the slope of the yield curve, corresponding to the spread between the

10-year and 3-month Treasury bill rate (term),

(v) the change in the credit spread between BAA rated bonds and the Treasury bill rate

(both at 10 year maturity) (credit),

(vi) the weekly equity market return from CRSP (marketret),

(vii) the one-year cumulative real estate sector return, computed as the value-weighted

average of real estate companies available in the CRSP data base (housing).

Moreover, to capture characteristics of individual institutions predicting a bank’s propen-

sity to become financially distressed, Ci
t−1, we follow Adrian and Brunnermeier (2010)

and use

(i) leverage, calculated as the value of total assets divided by total equity (in book

values) (LEV),

(ii) maturity mismatch, measuring short-term refinancing risk, calculated as short term

debt net of cash divided by the total liabilities (MMM),

(iii) market-to-book value, defined as the ratio of the market value to the book value of

total equity (BM),

(iv) size, defined by the logarithm of market valued total assets (SIZE),

(v) equity return volatility, computed from daily equity return data (VOL).

Balance sheets are only available on a quarterly basis and are published on fixed dates

(December 31, March 31, June 30 and September 30), while calender weeks start dif-

ferently every year. As our analysis builds on weekly frequencies, we interpolate the

quarterly data to a daily level using cubic splines, and then aggregate them back to the

corresponding calendar weeks. As an illustration, Figure 4 shows the interpolated quar-

terly maturity mismatch times for Wells Fargo. We focus on 57 financial institutions for

which data is available during the period from beginning of 2000 to end of 2008, resulting

into 467 weekly observations on individual returns, macroeconomic factors and individ-

ual characteristics (after interpolation). The system return is chosen as the return on the

12



financial sector index provided by Datastream. It is computed as the value-weighted av-

erage of prices of 190 US financial institutions.

Focusing only on those companies for which a maximum of observations is avail-

able yields a higher precision of estimates, however, has the drawback that particularly

firms which defaulted during the financial crisis 2007-2009 are excluded from the anal-

ysis. Therefore, to validate and robustify our approach, we re-estimate the model over

a sub-period ending before the financial crisis and include the investment banks Lehman

Brothers and Merrill Lynch that were massively affected by the crisis. This ”case study”

provides an ex-ante assessment of companies which ex post have been identified as sys-

temically relevant and is given in Section IV.

II. A Systemic Risk Network

A. Network Model and Structure

We assume that the VaR of firm i follows a structural model based on those characteris-

tics W(i) which are relevant for company i. In particular, in a pre-step, these individual

tail risk drivers W(i) are selected out of lagged macroeconomic state variables, Mt−1, re-

turns of other distressed companies in the system, E−it , lagged firm-specific characteristics

Ci
t−1, the i-specific lagged return, X i

t−1, and an intercept. Depicting all connections be-

tween all firms and respective companies contained in their set of relevant tail risk drivers

produces the corresponding network graph of systemic risk.

A model for V aRi based on economic state variables as well as loss exceedances by

construction automatically adjusts and prevails even in distress scenarios under shocks

in externalities. This is a clear advantage compared to pure reduced form time series

approaches (cp. e.g. White, Kim, and Manganelli, 2010, and Brownlees and Engle, 2010).

For simplicity, we take the underlying model for each V aRi
q as linear,

V aRi
q = W(i)′ξiq . (3)
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The coefficients in the model are specific to the considered quantile q underlying the VaR.

In the following, we describe how to statistically select W(i) for each firm i and pro-

vide an appropriate estimation technique for the coefficients ξip. Results for econometric

inference are non-standard as consistency and standard errors are affected by the pre-

selection step and significance tests in quantile relations require backtesting techniques.

We summarize the main results in the text, but provide more technical details in the ap-

pendix.

B. Identification of Tail Risk Drivers and Estimation

For each firm i in the system, we jointly observe (X i
t ,Wt) at all time points t = 1, . . . , T ,

in the sample with theK-vector of all possible risk drivers Wt = (1,Mt−1,X−it ,C
i
t−1, X

i
t−1).

According to (1), the firm-specific conditional V aRi
q,t at level q and time point t is de-

fined as the negative conditional q-quantile of X i given W(i)
t . Thus, at a specific time

point t ∈ [0, T ], the structural linear model (3) for the VaR corresponds in the quantile to

X i
t = −W(i)

t

′
ξiq + εit, for Qq(ε

i
t|W

(i)
t ) = 0. (4)

If we knew the i-relevant risk drivers W(i) selected out of W, then, estimates ξ̂iq of ξiq

could be obtained according to standard linear quantile regression (Koenker and Bassett,

1978) by minimizing
1

T

T∑
t=1

ρq

(
X i

t + W(i)
t

′
ξiq

)
(5)

with loss function ρq(u) = u(q − I(u < 0)), where the indicator I(·) is 1 for u < 0 and

zero otherwise, and

V̂ aR
i

q,t = W(i)
t

′
ξ̂
i

q . (6)

However, the relevant risk drivers W(i) for firm i are unknown and must be determined

from W in advance. Model selection is not straightforward in the given setting as tests

on the individual significance of single variables do not account for the (possibly high)

collinearity between the covariates. Moreover, sequences of joint significance test have

too many possible variations to be easily checked in case of more than 60 variables. Since
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alternative model selection techniques, like BIC or AIC, are not available in a quantile

setting, we choose the relevant covariates in a data-driven way by employing a statis-

tical shrinkage technique known as the least absolute shrinkage and selection operator

(LASSO). LASSO methods are standard for high-dimensional conditional mean regres-

sion problems (see Tibshirani, 1996), and recently have been adapted to quantile regres-

sion by Belloni and Chernozhukov (2011). Accordingly, we run an L1-penalized quantile

regression and calculate for a fixed individual penalty parameter λi ∈ [0, 1],

ξ̃
i

q = argminξi
1

T

T∑
t=1

ρq
(
X i

t + W′
tξ

i
)

+ λi
√
q(1− q)
T

K∑
k=1

σ̂k|ξik| , (7)

with Wt = (Wt,k)Kk=1, σ̂k = 1
T

∑T
t=1(Wt,k)2 and the loss function ρq given by (5) (see

Belloni and Chernozhukov, 2011). The underlying principle is to select relevant regres-

sors according to the magnitude of their respective coefficients (scaled by the regressor’s

variation). Regressors are then eliminated if their shrunken coefficients are at (or close to)

zero. Here, we eliminate all firms in W with marginal effects |ξ̃
i
| being in absolute terms

below a threshold τ = 0.0001 and keep only the K(i) relevant regressors W(i). Hence,

LASSO de-selects those regressors contributing only little variation. As all coefficients

ξ̃
i

q are generally downward biased in finite samples because of the additional penalty term

in 7, we then re-estimate the unrestricted model (5) with W(i) to obtain final estimates ξ̂iq.

This post-LASSO step produces superior finite sample estimates of coefficients ξiq. For

more details, see the Appendix.

The selection of relevant risk drivers via LASSO crucially depends on the choice of the

company-specific penalty parameter λi. The larger λi, the more regressors are eliminated.

Conversely, in case of λi = 0, we are back in the standard quantile regression setting (5)

without any de-selection. Accounting for possible serial dependencies in risk drivers Wt,

we determine λi in a data-driven way following a bootstrap type procedure as suggested

by Belloni and Chernozhukov (2011):

15



Step 1 Take T iid draws from U [0, 1] independent of W1, . . . ,WT denoted asU1, . . . , UT .

Conditional on observations of W, calculate the corresponding value of the random

variable,

Λi = T max
1≤k≤K

1

T

T∑
t=1

Wt,k(q − I(Ut ≤ q))

σ̂k
√
q(1− q)

.

Step 2 Repeat step 1 for B=500 times generating the empirical distribution of Λi condi-

tional on W through Λi
1, . . . ,Λ

i
B. For a confidence level α ≤ 1/K in the selection,

set

λi = c ·Q(Λi, 1− α|Wt),

where Q(Λi, 1− α|Wt) denotes the (1− α)-quantile of Λi given Wt and c ≤ 2 is a

constant.

The choice of α is a trade-off between a high confidence level and a corresponding high

regularization bias from high penalty levels in (7). As in the simulation results in Belloni

and Chernozhukov (2011), we choose α = 0.1, which suffices to get optimal rates of

the post-penalization estimators below. Finally, the parameter c is selected in a data-

dependent way such that the fit of V aRi is optimized. The latter is evaluated in terms of

its best backtesting performance according to the procedure described below.

C. Model Validation by Backtesting

We evaluate the adequacy of the VaR estimates by quantifying their in-sample predictive

ability. This procedure is an alternative to (infeasible) sequential testing procedures on

the joint significance of explanatory variables and, moreover, yields a data-driven way to

select c in the LASSO algorithm. In particular, we consider a VaR model as being inade-

quate if it fails to produce a sequence of independent VaR exceedances over the considered

time period. This is formally tested using a likelihood ratio version of the dynamic quan-

tile (DQ) test developed in Engle and Manganelli (2004). Berkowitz, Christoffersen, and
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Pelletier (2009) show that the resulting likelihood ratio test has superior size and power

properties compared to competing VaR backtesting methods.

For each institution i, we measure VaR exceedances as I it ≡ I(X i
t < −V aRi

q,t). If the

chosen model is correct, then,

E[I it |Ωt] = q , (8)

where Ωt is the information set up to t. The VaR is estimated correctly, if independently

for each day of the covered period, the probability of exceeding the VaR equals q. Similar

to Engle and Manganelli (2004), Kuester, Mittnik, and Paolella (2006) and Taylor (2008),

we include a constant, three lagged values of It and the current VaR estimate in the in-

formation set Ωt. Then, condition (8) can be checked by estimating a logistic regression

model

I it = α + A′tθ + Ut,

with covariates At = (I it−1, I
i
t−2, I

i
t−3, V̂ aR

i

t−1)′. Denote by Ī i the sample mean of the

binary response I it and define Flog(·) as the cumulative distribution function of the logistic

distribution. Then, under the joint hypothesis

H0 : α = q and θ1 = · · ·θ4 = 0,

we find the asymptotic distribution of the corresponding likelihood ratio test statistic as

LR = −2(lnLr − lnLu)
a∼ χ2

5 . (9)

Here, lnLu =
∑n

t=1 [I itFlog(α + A′tθ) + (1− I it) ln (1− Flog(α + A′tθ))] is the unre-

stricted log likelihood function which under H0 simplifies to lnLr = nĪ i ln(q) + n(1 −

Ī i) ln(1− q).

The company-specific outcomes of this test are used to choose the parameter c in the

LASSO procedure in a data-driven way. In particular, c is chosen such that the p-value

associated with (9) for the correspondingly selected model is maximized. This automati-
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cally ensures that the LASSO-selected risk drivers for each firm yield optimal in-sample

predictions of idiosyncratic tail risk. 7

D. Idiosyncratic Risks and Systemic Risk Networks: Empirical Find-

ings

D.1. Idiosyncratic Tail Risks

Table II reports the outcomes of the back-testing procedure for the LASSO-selected indi-

vidual VaR specifications of all 57 financial companies in our sample. We choose q=0.05,

i.e., focus on the 95%-quantile of the loss distribution.8 All selected models provide good

in-sample fits with most p-values being well above 0.5. Also the coverages are very close

to the nominal level of 5% indicating that the estimated V̂ aR
i

series capture company-

specific tail risks very well.

For the sake of brevity, we do not report all individual VaR regressions but show ex-

emplary V aRi (post-)LASSO regressions for companies representing the four branches

of depositories, insurances, brokers and others in Tables III and IV. It turns out that the

LASSO-selected risk drivers significantly differ across companies. Not surprisingly, this

is particularly true for the individually selected loss exceedances of other companies com-

prising the risk network discussed below. For example, the selected drivers determining

the VaR of Goldman Sachs (GS) include, on the one hand, loss exceedances of its biggest

competitor, Morgan Stanley (MS) and the insurance company American International

Group (AIG). Likewise, Morgan Stanley is driven by the tail risk of many other big com-

panies. Conversely, AIG is influenced by only a few other companies including, however,

among others, the mortgage company Freddie Mac (FRE). This risk spillover is highly

plausible given the evidence from the financial crisis 2008 and is discussed in more detail

7In rare cases, however, the resulting selected model is too small, in the sense that only macroeconomic
variables are included. Then, the system VaR regression cannot be performed, because both the individual
VaR and the system VaR are linear combinations of the same variables inducing perfect multi-collinearity.
In such cases, we decrease the factor c until the most relevant (additional) risk driver is included and the
resulting regressor matrix becomes non-singular. In their empirical example, Belloni and Chernozhukov
(2011) apply a similar adjustment procedure.

8Due to the limited number of observations, we refrain from considering more extreme probabilities.
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below. Note that nearly all loss exceedances have the expected signs: The greater the

loss of other companies (i.e., the more negative their returns falling below the 10% quan-

tile), the higher the VaR and thus the potential loss of the firm under consideration. The

company-specific accounting variables as well as the macroeconomic state variables enter

the regressions mostly with positive coefficients. Particularly, leverage, implied market

volatility (represented by the VIX) as well as real estate sector returns positively affect

companies’ tail risk. The latter reflect firm’s sensitivity to rising housing prices which

was one of the major causes for the financial crisis in 2008.

Summary statistics of the estimated VaR time series are given in Table V. We observe

a substantial variation of VaRs over the cross-section of the sample as well as over time.

The reported quantiles of the VaR realizations indicate that company-specific tail risks,

i.e., the magnitude of potential losses, strongly vary over time. In fact, for nearly all

companies the highest VaRs and thus the highest realizations of idiosyncratic risk are

observed during the financial crisis in 2008.

D.2. The Systemic Risk Network

The individually selected loss exceedances of other companies as tail risk drivers for each

firm determine the underlying network of risk spillovers. An overview of the identified

tail risk connections between all companies is provided in Table VI. We observe that the

number of risk connections substantially vary over the cross-section of companies. While

some firms such as, e.g., Morgan Stanley, American Express as well as Bank of New

York Mellon, are strongly inter-connected and receive substantial tail risk from other

companies, there are institutions for which no network effects can be identified at all.

These firms are apparently not significantly influenced, but can themselves still act as risk

drivers for others.

In order to effectively summarize and to depict the identified risk connections and

directions, we graphically present the entire network of companies in Figure 5. Taking all

firms as nodes in such a network, there is an influence of firm j on firm i, if Ej is selected

as a relevant risk externality of firm i in V aRi
q. In particular, if Ej is part of W(i) as its
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k-th component, then the corresponding coefficient ξiq,k in ξiq delivers the thickness of the

arrow from firm j to firm i in the network graph. If Ej is not selected as relevant risk

driver of firm i, there is no arrow from firm j to firm i. Building the network of relevant

spillover effects in such a way does not require the relations between companies to be

symmetric. This very much corresponds to empirical evidence, as, e.g., Bank of America

might strongly influence a small depository, but vice versa there is no direct significant

effect. Moreover, note that dependencies between (extreme) quantiles reflect spillovers in

possible losses (occurring with probability q) but not necessarily in actually realized ones.

We identify four major groups of firms: The first category contains companies with

only very few incoming arrows but numerous outgoing ones. These are companies whose

potential failure might affect many others but, conversely, which are themselves relatively

unaffected by the distress of other firms. We associate these relations with rather ”one-

sided” network dependencies. Companies belonging to this group are originators of risk

spillovers. Hence, their failure can induce substantial risks of failure of the entire sys-

tem. Therefore, these firms should be particularly monitored by regulatory authorities.

These are, e.g., Bank of America (BAC), Citigroup (C), Freddie Mac (FRE), Charles

Schwab Corporation (SCHW), MBIA (MBI), Unum Group (UNM) and Hartford Finan-

cials (HIG). Bank of America and Citigroup are among the top five largest banks in the

U.S. Financial distress of these banks obviously has wide-spread consequences. On the

other hand, these banks are sufficiently large and own-standing not to be severely affected

by the distress of others. Freddie Mac, one of the two largest U.S. mortgage companies,

reveals spillovers particularly to large insurance companies such as AIG and MBIA who

hold significant positions in mortgage backed securities. These relationships have been

one of the major reasons for the financial crisis 2008. Charles Schwab (SCHW) is one of

the largest discount brokers having risk connections to JP Morgan and Morgan Stanley,

among others. MBIA, Unum Group and Hartford Financials are large insurance com-

panies. Due to investments in mortgage backed securities, MBIA realized severe losses

during the financial crisis. Our network graph reveals a corresponding dependence on

Freddie Mac and shows that MBIA itself affects many other firms.
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The second group consists of companies which are strongly interconnected with many

other firms. These are Morgan Stanley (MS) and JP Morgan (JPM), belonging to the

largest banks in the U.S., Fannie Mae (FNM), the main competitor of Freddie Mac, Amer-

ican Express (AXP), one of the biggest financial service companies, as well as the insur-

ance company Lincoln Financial Corporation (LNC). These firms are strongly imbedded

in the system and thus are both producers and recipients of tail risk. In several cases, these

companies amplify tail risk spillovers by further disseminating risk into new channels. A

prominent example is Morgan Stanley which is placed in the center of the network and

transports risk in many directions. In particular, Morgan Stanley disseminates spillovers

from Bank of America which makes the latter itself deeply interconnected. Due to their

role as risk distributors such companies are systemically risky and should be supervised

on a regular basis.

The third group contains companies which do not serve as major risk producers but

are themselves potentially affected by many other institutions. An interesting example is

the Bank of New York Mellon (BK) revealing substantial risk input. This is illustrated

in Figure 3 depicting the specific role of Bank of New York in the systemic risk net-

work. The bank receives risk spillover from many other institutions including several

large depositories and broker dealers. This is due to the fact that it serves as one of the

major clearing banks in the U.S. Accordingly, its risk increases as soon as its large corpo-

rate customers become financially distressed. Further examples are Allstate Corporation

(ALL), the second-largest personal lines insurer in the U.S., and Cincinnati Financial Cor-

poration (CINF), a company for property and causalty insurance. Finally, we identify a

group of companies revealing strong risk connections with only very few other firms. Ex-

amples of these predominantly bilateral dependencies are connections between Morgan

Stanley and Citigroup, Freddie Mac and Fannie Mae as well as between Goldman Sachs

and JP Morgan.

Distinguishing between these four industry groups, we observe that depositories tend

to be less involved than insurance companies. Most insurances are placed in the center

of the network graph and thus serve as both risk recipients and transmitters. The same

is true for broker dealers which tend to be even stronger interconnected. As discussed
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Figure 3: Schematic subgraph of the risk network of the U.S. financial system highlighting the
role of the Bank of New York Mellon (BK) in bold as a major clearing house. For simplicity, ar-
rows only mark risk spillovers effects without referring to their respective size, otherwise they are
as defined in Figure 1. Likewise, the colors are defined as in Figure 1. Arrows are only displayed
in this figure if pointing towards BK. The graph only contains firms with a direct influence on BK
(in the shaded ellipsoid closest to BK) and those which might influence BK on a "second level"
(in the larger ellipsoid). A list of their abbreviations is contained in Table I.

above, an extreme example is Morgan Stanley which is heavily involved and imports as

well as exports tail risk in many directions. In contrast, several depositories are placed

at the edge of the network and tend to serve rather as risk transmitters than recipients.

Typical examples are Bank of America and Citigroup which are, however, themselves

strongly connected to risk distributors which further disseminate tail risk.

Figure 6 shows a subset of the network depicting only the risk linkages of Citigroup.

The number of possibly affected banks might be used as an indicator of Citigroup’s sys-

temic relevance. Holding fixed Citigroup’s tail risk inflow (from LNC and JPM), this

”network tree” graphically presents how financial distress is transmitted through the sys-

tem. Figure 7 presents the corresponding network tree for Morgan Stanley. As discussed

above, this company shows bi-directional risk connections with numerous other compa-

nies. Therefore, in this case, causal interpretations are harder and require to condition on

the risk in-flows of several other firms. However, the topology of this sub-network looks

quite different than that of Citigroup. The latter has only a few direct connections with
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other firms which are, however, further distributed in many other directions in the next

layers. Conversely, Morgan Stanley has more neighbors which are directly affected by

risk spillovers which are still further multiplied in the second level.

Hence, though a risk network does not allow to quantitatively assess the systemic rel-

evance of a financial institution, the degree of firms’ interconnectedness and the specific

topology of the network or corresponding sub-networks allows to identify possible risk

channels in the system. These interlinkages are central for macroprudential regulation.

They reflect the particular role of a firm as risk recipient, transmitter or distributor of tail

risk. In this sense, systemic risk networks provide valuable accompanying information

for a reduced-form analysis quantifying the marginal effects of individual distress on the

system. Such an analysis is performed in the following section.

III. Quantifying Systemic Risk Contributions

A. A Reduced Form Model for Systemic Risk Betas

Our main focus is to provide an accurate but parsimonious measure of the effect of a

marginal change in the tail risk of firm i on the tail risk of the system given the underlying

network structure of the financial system. For an unbiased marginal effect, however, it is

sufficient just to control for all firm i-specific risk drivers in a corresponding reduced-form

model. Conversely, a fully-fledged structural general equilibrium model is not necessary

and, even if correctly specified, would be almost impossible to estimate, given the high-

dimensionality and interconnectedness of the financial system on the one hand and data

availability on the other. Moreover, variables unrelated to V aRi do not affect firm i’s

systemic risk contribution.9 For this reason, we propose estimating systemic risk con-

tributions based on reduced-form models which are specific for each firm i as they only

9See Angrist, Chernozhukov, and Fernández-Val (2006) for a simple Frisch-Waugh-type argument in
quantile regressions.
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control for the i-specific risk drivers. Correspondingly, we estimate the firm-i-specific

systemic risk beta βs|i
q,p based on a linear model for the system VaR of the form

V aRs
p,t = V(i)

t

′
γs
p + βs|i

p,qV aR
i
q,t, (10)

where the vector of regressors V(i)
t = (1,Mt−1,VaR(−i)

q,t ) includes a constant effect,

lagged macroeconomic state variables and the VaRs of all companies which are identi-

fied as risk drivers for firm i via LASSO in Section II.

The systemic risk beta βs|i
p,q = βs|i of company i captures the effect of a marginal

change in V aRi
t on V aRs

t . It can be interpreted in analogy to an inverse asset pricing

relationship in quantiles, where bank i’s return quantiles drive the quantiles of the sys-

tem given network-specific effects and firm-specific and macroeconomic state variables.

Accordingly,

β̄s|i
p,q := βs|i

p,qV aR
i
t (11)

measures the full partial effect of a tail risk increase of bank i on V aRs
t . We refer to β̄s|i

p,q

as standardized systemic risk beta since it allows to cross-sectionally compare systemic

risk contributions and to rank banks according to their systemic relevance.

During periods of turbulence, such as crises, not only banks’ risk exposures change

but also their marginal importance for the system might vary. We therefore allow βs|i

being time-varying. In particular, time-variation occurs through observable factors Zi

characterizing a bank’s propensity to get in financial distress. Accordingly, βs|i
t should

be interpreted as a conditional systemic risk beta. Basing βs|i on lagged characteristics,

makes betas and thus corresponding systemic risk rankings predictable which is important

for forward-looking regulation. To limit complexity and computational burden of the

model, we assume linearity of βs|i
p,q,t in KZ firm-specific distress indicators Zi

t−1,

β
s|i
p,q,t = β

s|i
0,p,q + Zi

t−1

′
ηs|i
p,q, (12)
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where ηs|i
p,q are the parameters driving the time-varying effects. The case of a constant

systemic risk beta is obviously contained as a special case if ηs|i
p,q = 0 and thus βs|i

0,p,q =

β
s|i
p,q,t = β

s|i
p,q.

We suggest choosing Zi
t as a subset of Ci

t consisting of the major drivers of a bank’s

distress such as size, leverage, and maturity mismatch. As a testable hypothesis, we pos-

tulate that these variables do not only affect a bank’s VaR, but simultaneously also drive

its marginal systemic relevance. As a consequence, rankings based on βs|i
t directly control

for size, leverage, and maturity mismatch and do not require any ex-post adjustments for

these characteristics. Due to the linearity of (12) we can thus write the quantile model (10)

for V aRs
p with time-varying βs|i

p,q,t in the following form

V aRs
p,t = V(i)

t

′
γs
p + β

s|i
0,p,qV aR

i
q,t + (V aRi

q,t · Zi
t−1)

′
ηs|i
p,q . (13)

B. Estimation and Inference

If firm specific VaRs were directly observable, the magnitude and significance of i-specific

systemic risk betas could be directly inferred from the linear quantile regression (13) with

the VaR defined by (1). However, note that the regressors V aRi
t and VaR(−i)

q,t in V(i) are

pre-estimated as they arise from the first-step quantile regressions as shown in Section II.

Hence, operationalizing (13) with V̂ aR
i

t and V̂aR
(−i)
q,t as generated regressors, yields the

(second step) quantile regression,

Xs
t = −V̂(i)

′

tγ
s
p − β

s|i
0,p,qV̂ aR

i

q,t − (V̂ aR
i

q,t · Zi
t−1)

′
ηs|i
p,q + εst , (14)

with Qp(ε
s
t |V̂ aR

i

q,t, V̂t,Zi
t−1) = 0 .

With the notation V̂t, we stress that some components of V are pre-estimated as V̂aR
(−i)
q,t .

Then, analogously to the first-step regressions in Section II, parameter estimates are ob-

tained via quantile regression minimizing

1

T

T∑
t=1

ρp

(
Xs

t + V̂(i)
′

tγ
s
p + β

s|i
0,p,qV̂ aR

i

q,t + (V̂ aR
i

q,t · Zi
t−1)

′
ηs|i
p,q

)
(15)
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in the unknown parameters. Consequently, the resulting estimate of the full time-varying

marginal effect β̂s|i
p,q in (12) is obtained as

β̂
s|i
p,q,t = β̂

s|i
0,p,q + Zi

t−1

′
η̂p,q

s|i (16)

for given values Zi
t−1.

Since V aRi
q,t is a function of W(i), conditional quantile independence in (14) is equiv-

alent to Qp(ε
s
t |W

(i)
t ,W

(−i)
t ,Zi

t−1) = 0 where W(−i)
t stacks W(j)

t for all firms relevant for

company i appearing in V̂aR
(−i)
q,t . Hence, with both quantile regression steps being linear,

inserting (3) into (13) yields a full model for the system’s tail risk in observable character-

istics. However, direct one-step estimation is only feasible if the choice of W (i) and thus

VaR(−i)
q,t is still determined in a pre-step from individual VaR regressions. Model selec-

tion based on the full model of V aRs in observables is infeasible since correlation effects

among the huge number of regressors would produce unreliable results. Furthermore, in-

dividual parameters βs|i
0,p,q and ηs|i

p,q could not be identified without additional identification

condition Qq(ε
i
t|W

(i)
t ) = 0, implicitly bringing back the first-step estimation. Therefore

we use two-step estimation even if exact asymptotic confidence intervals are larger than

for an (infeasible) single step procedure. In contrast to mean regressions, such results are

non-standard in a quantile setting and are therefore provided in detail in the Appendix.

In finite samples, however, asymptotic distributions often only provide a poor approxi-

mation to the true distribution of the (scaled) difference between the estimator and the

true value if sample sizes are not sufficiently large. In case of quantile regressions, this

effect is even more pronounced, since valid estimates for the asymptotic variance follow

poor non-parametric rates and thus require even larger sample sizes to obtain the same

precision.

Therefore, for judging the quality of the estimates β̂s|i
p,q,t, we suggest a procedure for

testing their significance which is valid in finite samples. In the given setting, we aim

at testing for the significance of a systemic risk beta, and/or time-variations thereof. We
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adapt a test proposed by Chen, Ying, Zhang, and Zhao (2008) for median regressions to a

quantile setting. The test statistic is

ST = min
ξs∈Ω0

T∑
t=1

ρp(X
s
t − B′tξ

s)− min
ξs∈RdB

T∑
t=1

ρp(X
s
t − B′tξ

s), (17)

with the compound vector of all regressors in V aRs, Bt ≡ (V aRi
t, V aR

i
t · Zi

t−1,V
(i)
t ),

corresponding parameter dB-vector ξs, and Ω0 refering to the constrained set of parame-

ters underH0. The asymptotic distribution of ST involves the probability density function

of the underlying error terms and is not feasible. Furthermore, bootstrapping ST directly

would yield inconsistent results. Therefore, we re-sample from the adjusted statistic

S∗T = min
ξs∈Ω0

T∑
t=1

wtρp(X
s
t − B′tξ

s)− min
ξs∈RdB

T∑
t=1

wtρp(X
s
t − B′tξ

s)

−

(
T∑
t=1

wtρp(X
s
t − B′tξ̂

s

c)−
T∑
t=1

wtρp(X
s
t − B′tξ̂

s
)

)
, (18)

where ξ̂
s

c denotes the constrained estimate of ξs, and {wt} is a sequence of standard ex-

ponentially distributed random variables, having both mean and variance equal to one.

According to Chen, Ying, Zhang, and Zhao (2008), the empirical distribution of S∗T pro-

vides a good approximation of the distribution of ST . Thus, if the test statistic ST exceeds

some large quantile of the re-sampling distribution of S∗T , the null hypothesis is rejected.

The proposed testing method does not require re-sampling of observations but is en-

tirely based on the original sample. This provides significant gains in accuracy in the

two-step regression setting as opposed to standard pairwise bootstrap techniques as a fur-

ther alternative. A pre-analysis shows that this wild bootstrap type procedure is valid in

the presented form as any serial dependence in the data is sufficiently captured by the

regressors in the reduced-form relation not requiring block-bootstrap techniques.10

10Pairwise block-bootstrap yields block lengths of one according to the standard procedure of Lahiri
(2001). Results are available upon request.
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C. Empirical Evidence on Systemic Risk Betas

We estimate systemic risk betas according to (14) with their time variation driven by Zi

consisting of a firm’s leverage, maturity mismatch and size. Hence, time-variations of sys-

temic risk betas are exclusively due to changes of firm-specific effects. As a consequence,

systemic risk contributions of two companies with the same exposure to macroeconomic

risk factors and financial network spillovers may be still different as they depend on their

balance sheet structures. As in the first-step estimations we choose q = 0.05, i.e., we

model the loss which will not be exceeded with 95% probability. For notational conve-

nience, we supress the quantile index as we set p = q.

Table VII reports the point estimates for βs|i
0 , the constant (marginal) effect of V aRi on

V aRs as well as the parameters associated with the interaction variables, ηs|iMMM , ηs|iSIZE

and η
s|i
LEV . Note that a positive systemic risk beta indicates that an increase in V̂ aR

i

(expressed as a positive number) induces an increase of the conditional quantile of the

negative system return distribution and thus rises the risk of distress of the system.

In order to test whether a company’s systemic relevance is statistically significant, we

test its systemic risk beta against zero, i.e., βs|i
t = 0. This test requires testing for the joint

significance of all variables driving a firm’s marginal impact leading to the hypothesis

H1 : β
s|i
0 = η

s|i
MMM = η

s|i
SIZE = η

s|i
LEV = 0.

If this null hypothesis cannot be rejected, an increase of the company’s possible loss posi-

tion, given all economic state variables and i-specific risk inflows from other companies,

does not induce a significantly higher potential systemic loss. Accordingly, we consider

such a company as not being systemically relevant. To test whether systemic risk betas

are time-varying, we test the joint hypothesis

H2 : η
s|i
MMM = η

s|i
SIZE = η

s|i
LEV = 0.

If this hypothesis is not rejected, we re-specify the systemic risk beta as being constant

and re-estimate the model without interaction variables. In this case, βs|i
t = βs|i.
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The underlying tests are performed using the wild bootstrap procedure illustrated in

Section B based on 2, 000 resamples of the test statistic. The results are reported in form

of p-values in Table VII. According to our test outcomes we distinguish between three

groups of companies. In the upper part of the table, we report the estimates of sys-

temically relevant companies with time-varying systemic risk betas (i.e., rejecting both

hypotheses H1 and H2), while in the middle panel, we show results for firms that are

systemically relevant but reveal time-invariant betas (i.e., rejecting H1 but not H2). Fi-

nally, the lower panel contains institutions that are not significantly systemically relevant.

The underlying significance level is chosen to be 10% as the number of observations is

not very large relative to the number of regressors, in particular, when considering the

two-stage regression setting.

As shown by Table VII, various companies are systemically not relevant as their marginal

contributions to the system’s tail risk are not significant. Confirming the network anal-

ysis in Section D.2, most of these companies do not serve as tail risk drivers for other

firms. Notable exceptions are the two government-sponsored companies (GSEs) Federal

National Mortgage Association (Fannie Mae) and Federal Home Loan Mortgage Cor-

poration (Freddie Mac). The latter were massively affected by the financial crisis and

were bailed out by Federal Reserve and U.S. Treasury in July 2008. The fact that these

companies are not significantly systemically relevant through the entire sample period is

obviously due to a structural change in September 2008, when the two GSEs were placed

under conservatorship of the U.S. government. To provide deeper insights into such ef-

fects, we re-visit the systemic importance of Fannie Mae and Freddie Mac, among others,

by explicitly focusing on a period before the crisis in Section IV. Moreover, more than

half of all insurance companies are shown to be systemically not relevant. As pointed

out by Schich (2009), many of these companies were also not too much affected during

the financial crisis 2007-2009 as their investment portfolios mainly contained stocks and

bonds rather than mortgage-backed securities.

Overall, the majority of systemically relevant companies are banks. Among the (sig-

nificantly) systemically relevant firms, several companies reveal systemic risk betas for

which we cannot identify significant time variations in dependence of company-specific
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characteristics. Hence, those companies’ marginal contributions to systemic risk are obvi-

ously not affected by their size, leverage, and maturity mismatch. Examples are Regions

Financial, Zions Corporation and JP Morgan with comparably high systemic risk betas

across time and the cross-section of institutions. In contrast, for many other firms, we

indeed find significant time-varying marginal effects on systemic risk. As reported by

Table VII, the coefficients associated with maturity mismatch, size and leverage driving

the time variation in systemic risk betas are dominantly positive. Thus marginal systemic

relevance increases if a company becomes larger and is exposed to higher idiosyncratic

risk.11

Important examples of companies with highly significant and time-varying systemic

risk betas are Bank of America and AIG. AIG was among the largest issuers and holders

of credit default swaps (CDS) and other credit securitization derivatives before the crisis.

Its obviously strong exposure to mortgage default risks is reflected by a strong dependence

to Freddie Mac as reflected in the network graph in Figure 5. Consequently, AIG faced

tremendous write-downs in 2008, and received rescue packages amounting to USD 150

billion (see Schich, 2009). Our finding of AIG being systemically relevant quantitatively

complements our results on AIG’s network dependencies (see Section D.2) revealing how

AIG’s tail risk affects the financial system. In fact, AIG produces risk spill-overs to Gold-

man Sachs and Morgan Stanley, among others. As discussed above, particularly Morgan

Stanley is deeply interconnected and serves as multiplier of tail risk. Its strong link to

AIG is obviously a major channel for the formation of systemic risk. The upper part

of Figure 8 depicts the AIG-specific estimates of βs|i
t and V aRi

t as well as the product

thereof, β̄s|i
t , measuring the standardized systemic risk contribution. We observe that sys-

temic risk betas significantly vary over time and particularly increase during the financial

crisis. Likewise, the firm’s VaR strongly increases during the crisis period reflecting also

severe idiosyncratic risk. Naturally the same pattern is revealed by the standardized sys-

temic risk beta β̄s|i
t . Though on first sight, it seems to be counter-intuitive that towards

the end of the sample, both β̂s|i
t and ̂̄βs|i

t decrease, this pattern is explained by the fact that

11However, because of multi-collinearity between these variables, the interpretation of individual coeffi-
cients is rather difficult. Therefore, it is more reasonable to analyze their total impact on systemic risk betas
resulting in variations over time. This analysis is performed in Section D.

30



the rescue packages from the Federal Reserve were issued in September 2008. This step

signficantly reduced the risk of both AIG’s and the entire system’s failure.

Another example is Bank of America. As discussed in Section D.2, Bank of America

serves as a tail risk driver for others but is not a tail risk recipient. Our estimates indicate

that its risk channels, particularly to Morgan Stanley, are systemically critical. Figure

8 shows that Bank of America’s systemic risk beta has been relatively stable before the

financial crisis but significantly dropped after the issuance of the Federal Reserve’s rescue

packages. Nevertheless, its VaR and thus its standardized systemic risk beta strongly

increased during the crisis and particularly thereafter. The average standardized systemic

risk beta computed over the entire sample period indicates that a 1% increase of the VaR

induces a 8.7 basis point increase of the system VaR.

To cross-validate our findings with external evaluations of banks’ systemic importance

we refer to the Supervisory Capital Assessment Program (SCAP) conducted by the Fed-

eral Reserve in spring 2009. The 19 largest bank holding companies went through com-

prehensive investigations resulting in estimates of a potential lack of capital buffer to

cover their risks under an adverse macro scenario. In this analysis, detailed information

on balance sheet positions were used, including data which are not publicly available. For

details, see Federal Reserve System (2009). Since the SCAP took place right after the

end of our sample period, it is insightful to compare the outcomes with our results and

to check whether our model, which uses more aggregated data, is still able to detect the

systemic riskiness of those companies that, according to the SCAP, faced capital short-

age in the stress test scenario. Indeed, the financial institution with the biggest potential

lack of capital buffer according to the SCAP, Bank of America, is among our systemi-

cally relevant companies, with a highly significant systemic risk beta βs|i
t . In addition,

with Citigroup, FifthThird Bancorp, Morgan Stanley, PNC, Regions Financial, SunTrust

Banks and Wells Fargo we identify all eight banks contained in our database12 which,

according to the SCAP results, were threatened by financial distress under more adverse

market conditions. This becomes even more evident in light of the systemic risk rankings

as shown in Section D.
12Due to a lack of data, we cannot include KeyCorp and GMAC in our analysis which also have been

found to be financially distressed in a critical macroeconomic environment.
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In summary, we find that the estimates of systemic risk betas seem to reflect compa-

nies’ systemic riskiness very well. Our results are strongly in line with the actual situa-

tions the included financial institutions were facing during the sample period. Moreover,

our findings confirm the empirical evidence and developments observed during the finan-

cial crisis in 2008. For a further robustification of our results, we separately study only

the pre-crisis period in Section IV.

D. Rankings of Systemic Risk Contributions

Systemic risk contributions of firms measured by respective systemic risk betas (11)

might be time-varying. Their standardized form can be used to obtain rankings of com-

panies’ systemic relevance at any point in time.

We use the outcome of the statistical tests from the previous subsection to decide

whether a systemic risk beta should be treated as being time-varying or time-invariant.

In particular, we keep the most general time-varying model whenever time-invariance

of systemic risk betas can be rejected at the 10%-level. In this case, the standardized

systemic risk beta β̄s|i
t varies over time through two channels: a time-varying beta, βs|i

t

and a time-varying Value-at-Risk, V aRi
t. Conversely, for companies with constant sys-

temic risk betas (middle panel of Table VII), the observed time variation in standardized

systemic risk beta (11) originates only from time variations in V aRi. In this case, we

re-estimate the model with constant systemic risk betas with the corresponding estima-

tion results given in Table VIII. As an additional backtest, we also provide results for the

significance of such constant betas, i.e., we test the hypothesis

H3 : βs|i = 0.

In all but one case, H3 is rejected on a 10% significance level.13 Moreover, note that

conclusions on a company’s systemic relevance are only sensible if the systemic risk

impact βs|i is positive, implying that an increase in V aRi also increases the system VaR.

13The only exception is the insurance company Torchmark, where the p-value is 0.36. Consequently, we
ultimately exclude it from the category of systemically relevant companies.
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As reported by Tables VII and VIII, this is not the case for very few companies which we

exclude from the ranking analysis. Consequently, not all companies necessarily appear in

all rankings in Tables IX to XI.

To provide an overview, Table IX gives a ranking based on averaged standardized sys-

temic risk betas over the period from 2000 to 2008. Accordingly, Bank of America is

identified as being systemically most risky with a (standardized) systemic risk beta being

more than double than that of the next largest ones. However, note that average systemic

risk betas only provide an incomplete picture as they aggregate companies’ marginal sys-

temic risk contributions and VaRs over time ignoring potential changes in the structure

of the financial sector. Accordingly, apart from Bank of America, most companies reveal

relatively similar average risk contributions over the considered period. Therefore, in this

context, differences in ranks between companies should not be overinterpreted.

In contrast, monitoring the evolution of systemic risk betas over time provides a more

informative picture on companies’ specific systemic importance and yields valuable feed-

back from the market for forward-looking regulation. To illustrate the potential of our

approach, we show the rankings at two specific time points: Table X gives the systemic

risk ranking for the last week in May 2007, which was a relatively ”calm” time before the

start of the financial crisis. Table XI, on the other hand, shows the ranking at the end of

September 2008, shortly after the collapse of Lehman Brothers. Comparing the pre-crisis

and post-crisis rankings, we observe clear changes. Overall, systemic risk betas – and

thus the magnitude of systemic risk contributions – have sharply increased. The strongest

effects are identified for Fifth Third Bancorporation showing the lowest standardized sys-

temic risk beta in 2007 (among the group of systemically relevant firms) and belonging

to the most risky companies in 2008. This evolution is reflected by a 50-fold increase

of the standardized systemic risk beta. Likewise, we observe a 12-fold increase for AIG,

a 10-fold increase for Regions Financial, a 7-fold increase for Wells Fargo and a 6-fold

increase for E Trade Financial Corporation.

We observe that the increases of standardized systemic risk betas are mainly due to

rising VaRs where in most cases, systemic risk betas are either time-invariant (accord-

ing to the tests above) or even slightly declining from 2007 to 2008. Hence, companies’
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marginal contribution to the system VaR systemic risk contributions is widely unchanged

while their exposure to idiosyncratic risk has been dramatically increased. The first three

companies in the 2008 ranking, Regions Financial, AIG and Bank of America, are good

examples for companies realizing quite different combinations of marginal systemic con-

tributions and idiosyncratic tail risk levels and thus facing different sources for systemic

relevance. In case of Regions Financial, we observe a combination of both a compara-

bly high systemic risk beta and high VaR. Conversely, AIG’s marginal systemic effect

is clearly lower but its potential losses are significantly higher which in turn induce sub-

stantial risks for the entire system. Finally, Bank of America reveals the by far highest

systemic risk beta in combination with a moderate VaR. This bank is systemically risky

due to a high sensitivity of the system to Bank of America’s risk exposure though its

idiosyncratic risk level is not necessarily alarmingly high.

Bringing moreover together these results with the findings from the network analysis in

Section (D.2) yields even deeper insights into the underlying sources of firms’ increased

systemic importance. In particular, we can identify firms whose increased systemic rel-

evance is mainly due to a strong increase of their idiosyncratic risk as a result of worse

fim-specific and macroeconomic conditions in combination with widely unchanged sys-

temic risk betas. For instance, according to our network analysis, Regions Financial does

not face significant risk spillovers from other companies and thus exclusively depends on

micro- and macroeconomic externalities. As a result, the company’s high systemic rele-

vance in 2008 is due to the combination of a moderately high systemic risk beta and severe

idiosyncratic risk which in turn affect balance sheets and obligations of other firms. Like-

wise, Bank of America is not driven by tail risk spillovers from others and is increasingly

systemic important exclusively due to firm-specific and macroeconomic conditions.

A second category of firms are institutions whose strong increases of VaRs and thus

standardized systemic risk betas are not necessarily only due to economic conditions but

likely also due to network effects. According to our framework the latter are included

in form of (LASSO-selected) loss exceedances of other firms causing VaRs to jump up

whenever corresponding network neighbors get under distress and exceed their (uncondi-

tional 10%) loss quantile. These effects are likely being relevant for AIG facing a strong
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increase of its VaR which in turn receives tail risk spillovers, for instance, from Freddie

Mac. Further candidates are, e.g., E Trade Financial, Zions or Morgan Stanley being

exposed to substantial tail risk spillovers and realizing strong increases in their VaRs.

Finally, we identify companies facing not only rising idiosyncratic risk but also clear

variations in their systemic risk betas. A notable case is Fifth Third Bancorporation fac-

ing a 15-fold increase in its marginal risk contribution in combination with a tripled VaR.

Likewise, also the brokerage Charles Schwab is a company showing strong increases in

both VaRs and systemic risk betas.

Hence, though standardized systemic risk betas conveniently condense information on

banks’ systemic relevance, the underlying driving forces of a bank’s changed systemic

importance can be quite different. Only simultaneously analyzing and monitoring (i)

network effects, (ii) sensitivity to micro- and macroeconomic conditions and (iii) time-

variations in systemic risk betas provide deeper insights into the specific role of companies

in the network and can build the basis for regulatory measures.

IV. Validity: Pre-Crisis Period

Over the course of the financial crisis 2007-2009, a number of large institutions defaulted,

were overtaken by others or supported by the government. As for our general empirical

study, we required data for all considered institutions to be available over the entire pe-

riod from beginning of 2000 to end of 2008, these companies could not be included.

Nevertheless, to validate and robustify our findings, we perform an additional analysis

by re-estimating the model for the time period of January 1, 2000, to June 30, 2007 and

including the investment banks Lehman Brothers and Merrill Lynch.

Because of the shorter estimation period, differences between estimated systemic risk

contributions are not as pronounced as in the analysis covering the full time period. There-

fore, as a sharp ranking of companies might not very meaningful and hard to interpret in

this context, Table XII rather categorizes firms into groups with systemic risk contri-

butions of related size. Accordingly, we can distinguish between three broad classes:
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Firstly, there are 11 companies with VaRs that significantly influence the system VaR and

additionally have comparably large standardized systemic risk beta. The most prominent

members of this group are Freddie Mac and JP Morgan. The second group comprises sys-

temically risky companies with significant and positive standardized systemic risk betas

mainly clustering around the value 0.02. According to the estimates reported in Table IX,

these magnitudes reflect a comparably high systemic relevance. This group contains most

of the large depositories and investment banks in our sample including, Bank of America,

AIG, Morgan Stanley, among others, but also Lehman Brothers, Merrill Lynch and Fannie

Mae. Finally, group 3 includes all companies with either insignificant or even negative

(average) systemic risk betas, which are not considered as being systemically risky during

the analyzed time period.

In detail, we focus on five companies which were massively affected by the crisis:

Lehman Brothers became insolvent on September 15, 2008, and was liquidated after-

wards. Merrill Lynch announced a merger with Bank of America in September 2008,

which was executed on January 1, 2009. Furthermore, excluding the crisis period itself

might remove some specific features of the data, such as structural changes for Fannie

Mae and Freddie Mac due to their placement under conservatorship by the U.S. govern-

ment. Finally, it is interesting to investigate the systemic riskiness of AIG, which faced

major distress during the crisis and whose bailout was very expensive for the tax payers.

As shown by Table XII (with the specific companies marked in bold), all of these firms

belong to the group of systemically relevant firms.

Table XIII summarizes the results of our empirical analysis for the five case study can-

didates using only the pre-crisis data. Our network analysis reveals that almost all of the

companies are subject to loss spillovers from direct competitors: While Freddie Mac is

not influenced by risk transmission of others, Fannie Mae is driven by loss exceedances of

Freddie Mac. TD Ameritrade Holding (AMTD), Charles Schwab (SCHW) and E Trade

Financial (ETFC) are large online brokers which operate on the same market as Lehman

and Merrill Lynch and are identified as significant tail risk producers. Likewise, we iden-

tify bi-directional tail risk dependencies between Lehman and Morgan Stanley, being one
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of Lehman’s main competitors and the second largest investment bank in the U.S. during

the estimation period.

All of the five companies of interest have a significant impact on the system. Orders

of magnitude of reported standardized systemic risk betas14 place all of these companies

even among the top group of systemically most relevant firms. Focussing particularly on

Lehman Brothers and Merrill Lynch, we show the time evolution of their standardized

risk betas in Figure 9. Similarly, Figure 10 shows the time series pattern of the respective

VaRs. It turns out that the standardized systemic risk beta of Lehman steadily increases

from 2005 to 2007. Interestingly, its VaR only increases in the second half of 2005 but

remains widely on the same level afterwards. Hence, its growing systemic relevance is

mainly due to rising marginal effects on the system and is not reflected in Lehman’s

idiosyncratic risk exposure. The jumps in the VaR (and thus also in the standardized

risk beta) are induced by relevant loss exceedances which only occur whenever one of

Lehman’s tail risk drivers (e.g., Morgan Stanley) exceeds his (unconditional 10%) loss

quantile. This discreteness reflects the company’s tail risk sensitivity to loss exceedances

of competitors.

In case of Merrill Lynch, we observe high levels of both, systemic risk beta and VaR

in 2005, followed by a gradual decline until the mid of 2006. However, as for Lehman

Brothers, we observe clear differences in the paths of both risk measures in the second

half of the period. While the VaR of Merrill Lynch declines even further, its standardized

risk beta increases by more than 100% from mid of 2006 to mid of 2007. Hence, also

here, the (standardized) systemic risk beta reveals information on the company’s systemic

importance which cannot be detected by an analysis of the VaR solely. This finding

strongly backs the usefulness of our proposed measure.

From these results, which are produced only from pre-crisis data, it is possible to infer

that in June 2007, each of the five financial institutions of interest were relevant for the

stability of the U.S. financial system. Our findings indicate, firstly, that bailouts during the

crisis were justified for Fannie Mae, Freddie Mac and AIG. Also a failure of Merrill Lynch

14In case of time-varying betas for Lehman Brothers, Freddie Mac and Merrill Lynch, we report the
corresponding time series averages.
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would have led to harsh systemic consequences which could be prevented by its merger

with Bank of America in 2008. Secondly, the increasing systemic importance of Lehman

Brothers could have been monitored and thus the impact of its bankruptcy could have

been anticipated to a certain extent. The direct bi-directional linkage to Morgan Stanley,

which in turn is one of the most interconnected companies in our sample, indicates a

high risk for contagion as a result of Lehman’s failure. Furthermore, our estimates show

that Lehman’s systemic risk contribution is even slightly higher than that of AIG. Given

these results, bailing out the latter but not the former is not necessarily justifiable. If

these results had existed in advance, more effective regulatory measures could have been

performed possibly reducing the extent of the financial crisis.

V. Conclusion

The worldwide financial crisis 2007-2009 has revealed that there is a need for a better

understanding of systemic risk. Particularly in situations of distress, it is the intercon-

nectedness of financial companies which plays a major role but challenges quantitative

analysis and the construction of appropriate risk measures.

In this paper, we propose a measure of firms’ systemic relevance which accounts for

dependence structures within the financial network given market externalities. Our anal-

ysis allows to statistically identify relevant channels of potential tail risk spillovers be-

tween firms constituting the topology of the financial network. Based on these relevant

company-specific risk drivers, we measure a firm’s idiosyncratic tail risk by explicitly ac-

counting for its interconnectedness with other institutions. Our measure for a company’s

systemic risk contribution quantifies the impact on the risk of distress of the system in-

duced by an increase in the risk of the specific company in a network setting. Both mea-

sures exclusively rely on publicly observable balance sheet and market characteristics and

can thus be used for predictions in a stress test scenario.

Our empirical results show the interconnectedness of the U.S. financial system and

clearly mark channels of relevant potential risk spillovers. In particular, we can clas-
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sify companies into major risk producers, transmitters or recipients within the system.

Moreover, at any specific point in time, firms can be ranked according to their estimated

contribution to systemic risk given their role and position in the network. Monitoring

companies’ systemic relevance over time, thus allows to detect those firms which are

most central for the stability of the system. In a case study, we highlight that our ap-

proach could have served as a solid basis for sensible forward-looking regulation before

the start of the financial crisis in 2007.

Our approach is readily extendable in several directions. In particular, although the

financial system is dominated by the U.S, it truly is a global business with many firms

operating internationally. Currently we are collecting data on a global level. Detecting

inter- and intra-country risk connections and measuring firms’ global systemic relevance,

should be straightforward with our proposed methodology. Moreover, whenever addi-

tional (firm-specific or market-wide) information is available as, e.g., reported to central

banks, it can be directly incorporated into our measurement procedure. The data-driven

selection step of relevant risk drivers then determines if and how it increases the precision

of results.
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Appendix A. Statistical Large Sample Results

Under the adaptive choice of penalty parameter as described in the text, the LASSO selection

method is consistent with rate OP (

√
K(i)
T log(max(K,T )), and with high probability the coeffi-

cients selected of W, contain the the true coefficients also in finite samples. These results follow

directly from Belloni and Chernozhukov (2011). Furthermore, V aRi is consistently estimated

by the post-LASSO method described in the text which re-estimates the unrestricted model with

W(i). In particular, for all q ∈ I with I ∈ (0, 1) being compact,

ξ̂
i

q − ξiq ≤ OP (

√
K(i)

T
log(max(K,T ))), (A1)

since in our setting it is safe to assume that the number of wrongly selected components of W is

stochastically bounded by the number K(i) of components of W contained in the true model for

V aRi (see equation (2.16) in Belloni and Chernozhukov (2011)). We write in a slight abuse of

notation YT ≤ OP (rT ), for YT is either OP (rT ) or even oP (rT ) for any random sequence YT

and deterministic rT → 0. Note that in general for T → ∞ both K nor K(i) might grow only

extremely slowly in T , such that they can be treated close to being constants implying the standard

oracle bound OP (

√
log(T )

T ) in (A1).

If the true model is selected, we find for the asymptotic distribution of the individual VaR

estimates for any q ∈ [0, 1],15

√
1

T

(
ξ̂
i

q − ξiq
)′
→ N

(
0,

q(1− q)
g2(G−1(q))

E[W(i)W(i)′]−1

)
, (A2)

where g(G−1(q)) denotes the density of the corresponding error εi distribution at the qth quantile.

This result is standard (see Koenker and Bassett, 1978). For the second step estimates, we derive

the asymptotic distribution analogously to the two-step median results in Powell (1983)

√
K(i)

T

(
(β̂

s|i
0,p,q, η̂

s|i
p,q, γ̂

s
p)
′
− (β

s|i
0,p,q,η

s|i
p,q,γ

s
p)
′)

(A3)

→ N
(

0, Q−1E
[

p(1− p)
f2(F−1(p))

ρp(ε
s
t )−

p(1− p)
g2(G−1(p))

βs|ip,q

′ (
ρp(ε

i
t), ρ

v
p(Zt−1ε

i
t)
)])

, (A4)

15Required assumptions of Belloni and Chernozhukov (2011) and quantile analogies to Powell (1983)
are fulfilled in our setting.
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where in the scalar factor, f(F−1(p)) is the density of the corresponding error εs at the pth quan-

tile, the function ρvp of a vector applies ρp to each of its components, and βs|ip,q = (β
s|i
0,p,q,η

s|i
p,q). The

remaining main part Q in the variance is given by Q = H ′E[AA′]H with A = (W(i), vec(Zt−1 ·

W(i)′),VaR(−i)). Denote by I and 0 identity and null matrices, respectively, and by 1 a vector of

ones of appropriate dimension. Then,

H ′ =



diag(ξiq,2) 0 · · ·0 · · · · · ·0 · · ·

0 diag(ξiq,1) · · ·0 · · · · · ·0 · · ·

0 0 diag(vec(1dz · ξiq
′
)) · · ·0 · · ·

I 0 · · ·0 · · · · · ·0 · · ·

0 0 · · ·0 · · · Id(−i)×d(−i)


where dZ is the dimension of Z which is 3 in our application, d(−i) is the dimension of VaR(−i)

t ,

and coefficients ξiq,2 are those components of ξiq for regressors which appear both in the first and

the second step. Correspondingly ξiq,1 are coefficients of regressors which just appear in the first

step of the individual VaR regression. Note that in the variance matrix there is a distinction in γ

for parts of V which are also controls in V aRi and VaR(−i)
t , which just appear in V aRs.
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Appendix B. Tables and Figures

Table I: Included financial institutions.

Depositories (21) Others (11) Insurance Comp. (20)

BB T Corp (BBT) American Express Co (AXP) AFLAC Inc (AFL)

Bank of New York Mellon (BK) Eaton Vance Corp (EV) Allstate Corp (ALL)

Bank of America Corp (BAC) Fed. Home Loan Mortg. Corp (FRE) American International Group (AIG)

Citigroup Inc (C) Fed. National Mortgage Assn (FNM) AON Corp (AON)

Comerica Inc (CMA) Fifth Third Bancorp (FITB) Berkley WR Corp (WRB)

Hudson City Bancorp Inc. (HCBK) Franklin Resources Inc (BEN) CIGNA Corp (CI)

Huntington Bancshares Inc. (HBAN) Legg Mason Inc (LM) C N A Financial Corp. (CNA)

JP Morgan Chase & Co (JPM) Leucadia National Corp (LUK) Chubb Corp (CB)

M & T Bank Corp. (MTB) SEI Investments Company (SEIC) Cincinnati Financial Corp (CINF)

Marshall & Ilsley Corp (MI) TD Ameritrade Holding Corp (AMTD) Coventry Health Care Inc (CVH)

NY Community Bankcorp (NYB) Union Pacific Corp (UNP) Hartford Financial (HIG)

Northern Trust Corp (NTRS) HEALTH NET INC (HNT)

Peoples United Financial Inc. (PBCT) Broker-Dealers (7) Humana Inc (HUM)

PNC Financial Services Group (PNC) E Trade Financial Corp (ETFC) Lincoln National Corp. (LNC)

Financial Corp New (RF) Goldman Sachs Group Inc (GS) Loews Corp (L)

S L M Corp. Lehman Brothers (LEH)∗ Marsh & McLennan Inc. (MMC)

State Street Corp (STT) Merrill Lynch (ML)∗ MBIA Inc (MBI)

Suntrust Banks Inc (STI) Morgan Stanley Dean Witter & Co (MS) Progressive Corp Ohio (PGR)

Synovus Financial Corp (SNV) Schwab Charles Corp New (SCHW) Torchmark Corp (TMK)

Wells Fargo & Co (WFC) T Rowe Price Group Inc. (TROW) Unum Group (UNM)

Zions Bancorp (ZION)

∗ included only in the case study
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Table II: Backtest results for V aRi models. Coverage should be close to

the underlying quantile level 0.05. A higher p-value indicates a better model

fit in the sense that the model generates a good coverage and conditionally

independent VaR-exceedances.

Name coverage LR test p-value
Broker Dealers

E TRADE FINANCIAL 0.041 0.7812
GOLDMAN SACHS GP. 0.05 0.8081
MORGAN STANLEY 0.067 0.1286
CHARLES SCHWAB 0.054 0.661
T ROWE PRICE GP. 0.043 0.5349

Depositories
BANK OF AMERICA 0.054 0.4907
BB &T 0.054 0.8197
BANK OF NEW YORK MELLON 0.041 0.5557
CITIGROUP 0.045 0.5841
COMERICA 0.043 0.797
HUNTINGTON BCSH. 0.045 0.9471
HUDSON CITY BANC. 0.045 0.6129
JP MORGAN CHASE & CO. 0.045 0.818
MARSHALL & ILSLEY 0.052 0.7088
M & T BK. 0.047 0.4802
NORTHERN TRUST 0.056 0.9682
NY.CMTY.BANC. 0.05 0.9531
PEOPLES UNITED FINANCIAL 0.056 0.3321
PNC FINANCIAL SVS. GP 0.054 0.9863
REGIONS FINANCIAL 0.05 0.9608
SLM 0.058 0.3992
SYNOVUS FINL. 0.041 0.7573
SUNTRUST BANKS 0.056 0.6276
STATE STREET 0.052 0.999
WELLS FARGO & CO 0.047 0.8023
ZIONS BANCORP. 0.043 0.5897

Insurance Companies
AFLAC 0.052 0.6735
AMERICAN INTL.GP. 0.052 0.3752
ALLSTATE 0.041 0.5207
AON 0.054 0.9437
CHUBB 0.06 0.855
CIGNA 0.056 0.514
CINCINNATI FINL. 0.069 0.4956
CNA FINANCIAL 0.054 0.9321
COVENTRY HEALTH CARE 0.056 0.8685
HARTFORD FINL.SVS.GP. 0.045 0.8125
HEALTH NET 0.045 0.8158
HUMANA 0.058 0.6934
LOEWS 0.045 0.9416
LINCOLN NAT. 0.058 0.4631
MBIA 0.045 0.8158
MARSH & MCLENNAN 0.067 0.6159
PROGRESSIVE OHIO 0.047 0.9732
TORCHMARK 0.047 0.7494
UNUM GROUP 0.045 0.8164
W R BERKLEY 0.052 0.9827

Others
TD AMERITRADE HOLDING 0.039 0.2879
AMERICAN EXPRESS 0.039 0.8469
FRANKLIN RESOURCES 0.062 0.783
EATON VANCE NV. 0.041 0.7105
FIFTH THIRD BANCORP 0.052 0.9981
FANNIE MAE 0.045 0.7251
FREDDIE MAC 0.047 0.8117
LEGG MASON 0.056 0.826
LEUCADIA NATIONAL 0.052 0.8207
SEI INVESTMENTS 0.054 0.6092
UNION PACIFIC 0.058 0.7084
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Table III: Exemplary post-LASSO quantile regressions for V aRi with

q = 0.05 for broker dealers and depositories. Regressors were selected by

LASSO. Ex.j stands for loss exceedance of company j. For a description of

the other regressors, see Section B.

Goldman Sachs
Value Std. Error t-value p-value

(Intercept) 0.0281 0.0282 0.9963 0.3196
Ex.AIG -0.0842 0.1520 -0.5537 0.5800
Ex.MS -0.4974 0.0787 -6.3186 0.0000
LEV 0.0017 0.0010 1.7860 0.0748
housing 0.0001 0.0002 0.9030 0.3670
vix 0.0020 0.0005 3.8849 0.0001

Morgan Stanley
Value Std. Error t-ratio p-value

(Intercept) -0.0476 0.0490 -0.9721 0.3315
Ex.AIG -0.1570 0.0239 -6.5597 0.0000
Ex.BAC -0.5824 0.2016 -2.8885 0.0041
Ex.CNA -0.3295 0.2683 -1.2280 0.2201
Ex.ETFC -0.0779 0.0834 -0.9339 0.3509
Ex.EV -0.1774 0.1585 -1.1192 0.2637
Ex.GS -0.4743 0.1449 -3.2742 0.0011
Ex.LM 0.0472 0.1120 0.4215 0.6736
Ex.LNC 0.0734 0.2459 0.2983 0.7656
Ex.SCHW -0.3780 0.1446 -2.6138 0.0093
Ex.SEIC -0.1974 0.1281 -1.5412 0.1240
LEV -0.0003 0.0014 -0.2229 0.8237
BM -0.0045 0.0130 -0.3465 0.7291
housing 0.0002 0.0002 1.4985 0.1347
vix 0.0002 0.0009 0.2352 0.8142
repo -0.0017 0.0248 -0.0699 0.9443
credit 0.1051 0.0572 1.8360 0.0670

JP Morgan
Value Std. Error t-ratio p-value

(Intercept) -0.0128 0.0150 -0.8513 0.3950
Ex.C -0.3992 0.1992 -2.0046 0.0456
Ex.GS -0.2628 0.1461 -1.7985 0.0728
Ex.SCHW -0.2366 0.0747 -3.1669 0.0016
BM -0.0200 0.0145 -1.3789 0.1686
housing 0.0000 0.0001 0.2900 0.7719
vix 0.0024 0.0006 4.3071 0.0000

Bank of New York Mellon
Value Std. Error t-ratio p-value

(Intercept) -0.0235 0.0158 -1.4902 0.1369
Ex.AXP -0.0654 0.0862 -0.7586 0.4485
Ex.BBT -0.1990 0.1346 -1.4781 0.1401
Ex.FNM -0.0106 0.0639 -0.1655 0.8686
Ex.GS -0.1104 0.1341 -0.8232 0.4108
Ex.HIG 0.1311 0.0878 1.4932 0.1361
Ex.JPM -0.0986 0.0710 -1.3873 0.1660
Ex.L -0.2383 0.1506 -1.5828 0.1142
Ex.MS 0.0541 0.1059 0.5110 0.6096
Ex.NTRS -0.3676 0.1053 -3.4913 0.0005
Ex.SNV -0.3211 0.1398 -2.2967 0.0221
Ex.STT -0.1980 0.1594 -1.2425 0.2147
Ex.TROW -0.1208 0.1149 -1.0517 0.2935
LEV 0.0001 0.0013 0.0875 0.9303
housing 0.0001 0.0001 0.9721 0.3315
vix 0.0005 0.0005 0.9871 0.3241
repo -0.0150 0.0121 -1.2365 0.2169
term 0.0094 0.0155 0.6091 0.5428
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Table IV: Exemplary post-LASSO quantile regressions for V aRi with

q = 0.05 for insurance companies and others. Regressors were selected by

LASSO. Ex.j stands for loss exceedance of company j. For a description of

the other regressors, see Section B.

American International Group
Value Std. Error t-ratio p-value

(Intercept) 0.0803 0.0708 1.1345 0.2572
Ex.FRE -0.1719 0.4867 -0.3532 0.7241
Ex.MMC -0.5127 0.2553 -2.0079 0.0452
LEV 0.0081 0.0067 1.2064 0.2283
BM 0.0340 0.0138 2.4611 0.0142
housing -0.0003 0.0002 -1.3616 0.1740
vix 0.0022 0.0011 2.0514 0.0408

CNA Financial
Value Std. Error t-ratio p-value

(Intercept) -0.0257 0.0241 -1.0673 0.2864
Ex.HIG -0.4179 0.2805 -1.4899 0.1369
Ex.MBI -0.6330 0.1677 -3.7738 0.0002
LEV 0.0018 0.0040 0.4362 0.6629
BM -0.0038 0.0121 -0.3099 0.7568
housing 0.0001 0.0002 0.1857 0.8527
vix 0.0003 0.0007 0.4478 0.6545

Fannie Mae
Value Std. Error t-value p-value

(Intercept) -0.0504 0.0093 -5.4426 0.0000
Ex.C -0.0972 0.2161 -0.4497 0.6531
Ex.FRE -0.9086 0.0097 -93.6342 0.0000
Ex.JPM -0.2234 0.1814 -1.2313 0.2189
Ex.MS -0.0562 0.2195 -0.2560 0.7981
Y.t.FNM.lag -0.0348 0.0270 -1.2887 0.1982
LEV -0.0002 0.0003 -0.5946 0.5524
BM -0.0032 0.0051 -0.6199 0.5357
housing 0.0001 0.0001 1.0453 0.2964
vix -0.0001 0.0005 -0.1534 0.8781
repo 0.0780 0.0238 3.2730 0.0011

SEI Investments
Value Std. Error t-ratio p-value

(Intercept) 0.3706 0.3337 1.1105 0.2673
Ex.MS -0.5054 0.2634 -1.9188 0.0556
SIZE 0.0164 0.0144 1.1442 0.2531
housing 0.0004 0.0002 2.2166 0.0271
vix 0.0029 0.0010 2.8148 0.0051
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Table V: Summary statistics for estimated individual time series of V aRi.

Name Mean Standard dev. Min 10% quant. 90% quant. Max.
Broker Dealers

E TRADE FINANCIAL 0.108 0.066 0.046 0.062 0.172 0.809
GOLDMAN SACHS GP. 0.061 0.038 0.033 0.041 0.092 0.573
MORGAN STANLEY 0.068 0.065 0.020 0.036 0.119 0.905
CHARLES SCHWAB 0.094 0.045 0.041 0.055 0.140 0.335
T ROWE PRICE GP. 0.062 0.042 0.035 0.039 0.091 0.583
BANK OF AMERICA 0.062 0.037 0.023 0.031 0.100 0.270

Depositories
BB &T 0.058 0.027 0.015 0.031 0.093 0.192
BANK OF NEW YORK MELLON 0.047 0.033 -0.051 0.029 0.076 0.269
CITIGROUP 0.055 0.062 0.024 0.028 0.098 0.926
COMERICA 0.055 0.037 0.023 0.031 0.080 0.392
HUNTINGTON BCSH. 0.076 0.044 0.010 0.026 0.142 0.245
HUDSON CITY BANC. 0.040 0.015 0.023 0.028 0.055 0.132
JP MORGAN CHASE & CO. 0.060 0.045 0.023 0.027 0.094 0.561
MARSHALL & ILSLEY 0.071 0.028 0.024 0.037 0.111 0.134
M & T BK. 0.049 0.023 0.024 0.031 0.069 0.316
NORTHERN TRUST 0.067 0.028 0.032 0.042 0.094 0.224
NY.CMTY.BANC. 0.057 0.034 0.030 0.040 0.094 0.374
PEOPLES UNITED FINANCIAL 0.048 0.021 0.005 0.027 0.077 0.123
PNC FINANCIAL SVS. GP 0.052 0.043 0.011 0.025 0.084 0.645
REGIONS FINANCIAL 0.076 0.079 0.021 0.029 0.118 0.420
SLM 0.065 0.059 0.032 0.036 0.112 0.528
SYNOVUS FINL. 0.052 0.041 -0.021 0.025 0.081 0.412
SUNTRUST BANKS 0.060 0.046 0.021 0.032 0.106 0.615
STATE STREET 0.068 0.032 0.028 0.036 0.101 0.245
WELLS FARGO & CO 0.044 0.038 0.015 0.021 0.073 0.439
ZIONS BANCORP. 0.071 0.053 0.015 0.028 0.140 0.331

Insurance Companies
AFLAC 0.052 0.048 0.029 0.035 0.077 0.643
AMERICAN INTL.GP. 0.078 0.103 0.020 0.033 0.111 0.691
ALLSTATE 0.045 0.048 0.000 0.027 0.076 0.781
AON 0.045 0.044 0.010 0.025 0.078 0.565
CHUBB 0.048 0.031 0.019 0.024 0.072 0.336
CIGNA 0.065 0.055 0.031 0.035 0.097 0.701
CINCINNATI FINL. 0.040 0.029 0.007 0.023 0.063 0.372
CNA FINANCIAL 0.058 0.063 0.036 0.037 0.087 0.653
COVENTRY HEALTH CARE 0.087 0.089 0.027 0.034 0.159 0.875
HARTFORD FINL.SVS.GP. 0.083 0.163 0.029 0.034 0.151 2.509
HEALTH NET 0.088 0.029 0.047 0.058 0.118 0.238
HUMANA 0.075 0.048 0.042 0.050 0.108 0.570
LOEWS 0.051 0.025 0.014 0.025 0.077 0.183
LINCOLN NAT. 0.057 0.066 0.007 0.022 0.093 1.005
MBIA 0.100 0.122 0.030 0.043 0.220 1.670
MARSH & MCLENNAN 0.058 0.066 0.009 0.028 0.106 0.598
PROGRESSIVE OHIO 0.064 0.031 0.020 0.031 0.112 0.204
TORCHMARK 0.054 0.033 0.016 0.021 0.100 0.199
UNUM GROUP 0.080 0.069 0.023 0.038 0.134 0.835
W R BERKLEY 0.052 0.019 0.023 0.036 0.073 0.271

Others
TD AMERITRADE HOLDING 0.098 0.062 -0.026 0.045 0.181 0.454
AMERICAN EXPRESS 0.049 0.041 0.009 0.019 0.088 0.416
FRANKLIN RESOURCES 0.053 0.035 0.029 0.036 0.079 0.427
EATON VANCE NV. 0.054 0.033 0.007 0.037 0.076 0.477
FIFTH THIRD BANCORP 0.082 0.073 0.015 0.030 0.149 0.476
FANNIE MAE 0.077 0.126 0.019 0.038 0.107 2.253
FREDDIE MAC 0.079 0.174 0.033 0.039 0.092 3.233
LEGG MASON 0.081 0.050 0.034 0.045 0.122 0.72
LEUCADIA NATIONAL 0.044 0.037 0.020 0.023 0.073 0.419
SEI INVESTMENTS 0.072 0.040 0.034 0.044 0.106 0.553
UNION PACIFIC 0.056 0.021 0.027 0.036 0.08 0.187
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Table VI: Tail risk cross dependencies: Loss exceedances of companies on the right hand-side have

been selected by LASSO as regressors for the V aRi-model (q=0.05) of companies on the left hand-side.

Name Influencing companies
Broker Dealers

E TRADE FINANCIAL AMTD, C, FNM, MS
GOLDMAN SACHS GP. AIG, MS
MORGAN STANLEY AIG, BAC, CNA, ETFC, EV, GS, LM, LNC, SCHW, SEIC
CHARLES SCHWAB AMTD
T ROWE PRICE GP. HIG, LM, MBI, MS

Depositories
BANK OF AMERICA
BB &T
BANK OF NEW YORK MELLON AXP, BBT, FNM, GS, HIG, JPM, L, MS, NTRS, SNV, STT, TROW
CITIGROUP ETFC, HIG, JPM, LNC, MBI
COMERICA FRE, HBAN, MBI, MS, RF
HUNTINGTON BCSH.
HUDSON CITY BANC.
JP MORGAN CHASE & CO. C, GS, SCHW
MARSHALL & ILSLEY
M & T BK. MS
NORTHERN TRUST
NY.CMTY.BANC. HIG, LNC, PBCT
PEOPLES UNITED FINANCIAL
PNC FINANCIAL SVS. GP C
REGIONS FINANCIAL
SLM ETFC, FNM, LNC, MBI
SYNOVUS FINL. CMA, FITB, FRE, RF, ZION
SUNTRUST BANKS LNC
STATE STREET
WELLS FARGO & CO BAC, C, FNM, LNC, MBI, STI
ZIONS BANCORP.

Insurance Companies
AFLAC HIG
AMERICAN INTL.GP. FRE, MMC
ALLSTATE CNA, CVH, LNC, MS, UNM
AON AMTD, CMA, HBAN, MBI, MS, RF, STI, UNM
CHUBB AMTD, EV, HBAN, HIG, MBI, UNM
CIGNA CVH, HIG, LNC, MS
CINCINNATI FINL. AXP, CMA, CNA, CVH, HIG, LM, MBI, TROW
CNA FINANCIAL HIG, MBI
COVENTRY HEALTH CARE CI, FITB, HNT, HUM, MMC, SEIC
HARTFORD FINL.SVS.GP. LNC
HEALTH NET
HUMANA CVH, LNC, UNM
LOEWS
LINCOLN NAT. C, HIG, MS
MBIA FRE
MARSH & MCLENNAN AXP, JPM, MI, MS, SCHW, SEIC, TROW, UNM
PROGRESSIVE OHIO
TORCHMARK
UNUM GROUP HIG
W R BERKLEY MS, UNM

Others
TD AMERITRADE HOLDING AON, ETFC, MBI, RF, SCHW, TROW, UNM
AMERICAN EXPRESS AMTD, BBT, ETFC, EV, HIG, LNC, MBI, SCHW, STT
FRANKLIN RESOURCES AMTD, HIG, LM, LNC, MBI, UNM
EATON VANCE NV. CB, HBAN, LM, LNC, MS, SEIC, SLM, UNM
FIFTH THIRD BANCORP
FANNIE MAE C, FRE, JPM, MS
FREDDIE MAC FNM
LEGG MASON MS
LEUCADIA NATIONAL C, CVH, ETFC, MBI, SEIC
SEI INVESTMENTS MS
UNION PACIFIC ETFC, HIG
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Table VII: Estimates of parameters βs|i
0 and ηs|i and p-values for the test on systemic relevance (joint

significance of V̂ aR
i

t and V̂ aR
i

t · Z
i
t−1, Hypothesis H1) with Zi

t−1 = (MMMt−1, SIZEt−1, LEVt−1)′

and for the test on time-variations of systemic risk betas (significance of V̂ aR
i

t · Z
i
t−1, Hypothesis H2).

Name β̂
s|i
0 η̂

s|i
MMM η̂

s|i
SIZE η̂

s|i
LEV pvH1 pvH2

Systemically relevant companies with time-varying βs|i
t

AMERICAN EXPRESS -6.284 0.195 0.278 -0.087 0.001 0.024
AMERICAN INTL.GP. -0.276 -2.352 0.078 -0.008 0.004 0.023
BANK OF AMERICA -41.872 15.230 1.140 0.043 0.016 0.007
CHARLES SCHWAB 9.824 1.453 -0.457 0.165 0.000 0.000
CINCINNATI FINL. -18.766 2.370 0.820 -0.623 0.008 0.005
COMERICA 4.775 1.038 -0.170 -0.088 0.012 0.012
E TRADE FINANCIAL -0.549 -0.088 0.028 0.009 0.013 0.068
EATON VANCE NV. 0.083 -0.520 0.013 -0.054 0.000 0.017
FIFTH THIRD BANCORP 0.828 3.978 -0.178 0.076 0.022 0.027
FRANKLIN RESOURCES -3.201 0.746 0.136 0.201 0.002 0.007
HARTFORD FINL.SVS.GP. -1.556 0.132 0.059 -0.005 0.017 0.004
HUDSON CITY BANC. -55.089 -0.336 2.010 -0.206 0.004 0.005
HUNTINGTON BCSH. -7.751 4.295 0.255 -0.267 0.035 0.048
LEGG MASON 3.664 -0.091 -0.158 -0.019 0.020 0.005
NORTHERN TRUST -16.221 -1.229 0.397 0.331 0.017 0.010
NY.CMTY.BANC. -3.918 -1.383 0.196 0.020 0.007 0.009
PROGRESSIVE OHIO -0.976 2.264 -0.220 1.096 0.001 0.001
SLM -2.677 0.091 0.115 -0.006 0.001 0.018
STATE STREET -29.239 0.319 1.086 -0.011 0.007 0.015
SUNTRUST BANKS -2.692 1.424 0.088 -0.048 0.100 0.057
T ROWE PRICE GP. 5.256 0.471 -0.194 -0.506 0.013 0.069
UNION PACIFIC 9.511 -3.012 -0.271 -0.354 0.010 0.005
UNUM GROUP -4.424 1.434 0.174 -0.134 0.066 0.078

Systemically relevant companies with constant βs|i

AON -2.170 0.250 0.093 -0.007 0.002 0.606
CITIGROUP -1.406 -0.143 0.052 0.015 0.021 0.513
CNA FINANCIAL -4.609 -0.525 0.207 0.011 0.028 0.629
COVENTRY HEALTH CARE -0.031 -0.379 -0.018 0.299 0.038 0.440
JP MORGAN CHASE & CO. 6.671 -3.174 -0.161 0.028 0.015 0.200
LEUCADIA NATIONAL 6.281 -0.332 -0.259 -0.136 0.015 0.064
LINCOLN NAT. -2.798 0.374 0.117 -0.016 0.043 0.159
MORGAN STANLEY 1.702 0.722 -0.072 0.003 0.002 0.670
PNC FINANCIAL SVS. GP 3.564 -0.233 -0.108 -0.029 0.075 0.619
REGIONS FINANCIAL -2.703 4.349 0.012 -0.044 0.081 0.422
TORCHMARK -25.555 5.501 0.828 0.195 0.082 0.120
WELLS FARGO & CO -6.158 2.252 0.168 0.018 0.013 0.120
ZIONS BANCORP. -2.892 12.997 -0.255 -0.047 0.049 0.101

No significant influence
AFLAC -7.339 8.078 0.099 -0.197 0.145
ALLSTATE -2.933 3.427 0.003 0.028 0.145
BANK OF NEW YORK MELLON 1.094 0.083 -0.038 -0.006 0.373
BB &T -29.215 9.828 0.977 0.204 0.204
CHUBB -4.724 0.388 0.167 0.057 0.708
CIGNA 2.173 1.147 -0.129 0.001 0.479
FANNIE MAE -0.508 -0.036 0.018 0.001 0.446
FREDDIE MAC -5.977 -0.514 0.226 -0.006 0.198
GOLDMAN SACHS GP. -8.046 1.209 0.283 -0.023 0.124
HEALTH NET -2.620 3.060 -0.063 0.248 0.229
HUMANA 0.735 -0.681 -0.042 0.116 0.339
LOEWS 17.257 -2.698 -0.449 -0.204 0.320
M & T BK. -3.37 -3.296 0.168 0.135 0.149
MARSH & MCLENNAN 1.148 0.415 -0.053 0.012 0.410
MARSHALL & ILSLEY 5.490 -3.533 -0.235 0.250 0.227
MBIA -0.580 0.153 0.033 -0.008 0.167
PEOPLES UNITED FINANCIAL 15.921 0.302 -0.690 -0.046 0.233
SEI INVESTMENTS -1.365 0.006 0.062 -0.029 0.878
SYNOVUS FINL. -0.111 -0.297 0.044 -0.047 0.619
TD AMERITRADE HOLDING 0.492 -0.089 -0.013 -0.005 0.309
W R BERKLEY 1.437 2.086 -0.077 -0.116 0.648
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Table VIII: Estimates of time-invariant systemic risk betas βs|i

for the cases where the hypothesis of no time variation ηs|i 6= 0

could not be rejected (see the last column in Table VII)

Name β̂s|i p-value
AON 0.257 0.000
CITIGROUP 0.287 0.036
CNA FINANCIAL 0.218 0.013
COVENTRY HEALTH CARE 0.118 0.011
JP MORGAN CHASE & CO. 0.311 0.006
LEUCADIA NATIONAL 0.109 0.088
LINCOLN NAT. 0.179 0.018
MORGAN STANLEY 0.207 0.000
PNC FINANCIAL SVS. GP 0.291 0.070
REGIONS FINANCIAL 0.448 0.033
TORCHMARK 0.236 0.361
WELLS FARGO & CO 0.181 0.022
ZIONS BANCORP. 0.380 0.096

Table IX: Ranking of average systemic risk contributions based on standardized systemic risk betas.

The third column lists loss exceedances that are included in the respective company’s V aRi-regression.

Estimation period 2000-2008.

Rank Name ̂̄βs|i
av influencing companies

1 BANK OF AMERICA 0.0873
2 UNION PACIFIC 0.0351 ETFC, HIG
3 REGIONS FINANCIAL 0.0341
4 ZIONS BANCORP. 0.0268
5 E TRADE FINANCIAL 0.0230 AMTD, C, FRE, MBI, MS, SCHW
6 CHARLES SCHWAB 0.0209 AMTD
7 JP MORGAN CHASE 0.0187 C, GS, SCHW
8 AMERICAN EXPRESS 0.0172 AMTD, BBT, ETFC, EV, HIG, LNC, MBI, SCHW, STT
9 EATON VANCE NV. 0.0161 CB, HBAN, LM, LNC, MS, SEIC, SLM, UNM

10 CITIGROUP 0.0158 ETFC, HIG, JPM, LNC, MBI
11 PNC FINANCIAL SVS. GP 0.0152 C
12 MORGAN STANLEY 0.0142 AIG, BAC, CNA, ETFC, EV, GS, LM, LNC, SCHW, SEIC
13 SLM 0.0133 ETFC, FNM, LNC, MBI
14 COMERICA 0.0129 FRE, HBAN, MBI, MS, RF
15 CNA FINANCIAL 0.0125 HIG, MBI
16 AON 0.0117 AMTD, CMA, HBAN, MBI, MS, RF, STI, UNM
17 AMERICAN INTL.GP. 0.0113 FRE, MMC
18 COVENTRY HEALTH CARE 0.0102 CI, FITB, HNT, HUM, MMC, SEIC
19 LINCOLN NAT. 0.0102 C, HIG, MS
20 FRANKLIN RESOURCES 0.0099 AMTD, HIG, LM, LNC, MBI, UNM
21 NY.CMTY.BANC. 0.0098 HIG, LNC, PBCT
22 T ROWE PRICE GP. 0.0096 HIG, LM, MBI, MS
23 WELLS FARGO & CO. 0.0079 BAC, C, FNM, LNC, MBI, STI
24 SUNTRUST BANKS 0.0074 LNC
25 CINCINNATI FINL. 0.0071 AXP, CMA, CNA, CVH, HIG, LM, MBI, TROW
26 FIFTH THIRD BANCORP 0.0057
27 LEUCADIA NATIONAL 0.0053 C, CVH, ETFC, MBI, SEIC
28 HARTFORD FINL.SVS.GP. 0.0005 LNC
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Table X: Ranking of systemic risk contributions based on estimated standardized systemic

risk betas (̂̄βs|i
t ), end of May 2007 (before the beginning of the financial crisis). Estimated

systemic risk betas and VaRs are listed in addition, to illustrate the different sources of

variation in ̂̄βs|i
t .

Rank Name ̂̄βs|i
2007 β̂

s|i
2007 V̂ aR

i

2007
1 BANK OF AMERICA 0.0645 1.6068 0.0401
2 UNION PACIFIC 0.0441 0.7466 0.0590
3 CHARLES SCHWAB 0.0262 0.3247 0.0807
4 ZIONS BANCORP. 0.0179 0.3795 0.0472
5 EATON VANCE NV. 0.0163 0.3280 0.0496
6 E TRADE FINANCIAL 0.0154 0.2397 0.0644
7 REGIONS FINANCIAL 0.0150 0.4477 0.0336
8 AMERICAN EXPRESS 0.0149 0.3688 0.0403
9 SLM 0.0142 0.2498 0.0567
10 AMERICAN INTL.GP. 0.0104 0.2471 0.0421
11 JP MORGAN CHASE 0.0100 0.3107 0.0323
12 CITIGROUP 0.0100 0.2875 0.0348
13 NY.CMTY.BANC. 0.0099 0.2268 0.0436
14 FRANKLIN RESOURCES 0.0094 0.2349 0.0402
15 PNC FINANCIAL SVS. GP 0.0094 0.2907 0.0324
16 AON 0.0089 0.2573 0.0347
17 MORGAN STANLEY 0.0088 0.2070 0.0425
18 CNA FINANCIAL 0.0084 0.2177 0.0385
19 CINCINNATI FINL. 0.0079 0.2252 0.0353
20 SUNTRUST BANKS 0.0076 0.2197 0.0346
21 COMERICA 0.0057 0.1954 0.0292
22 WELLS FARGO & CO 0.0051 0.1806 0.0283
23 LEUCADIA NATIONAL 0.0051 0.1365 0.0373
24 LINCOLN NAT. 0.0038 0.1795 0.0211
25 COVENTRY HEALTH CARE 0.0034 0.1176 0.0292
26 UNUM GROUP 0.0026 0.0849 0.0309
27 HARTFORD FINL.SVS.GP. 0.0019 0.0535 0.0363
28 T ROWE PRICE GP. 0.0014 0.0327 0.0432
29 FIFTH THIRD BANCORP 0.0011 0.0177 0.0604
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Table XI: Ranking of systemic risk contributions based on estimated standardized

systemic risk betas (̂̄βs|i
t ), end of September 2008 (at the height of the financial crisis).

Estimated systemic risk betas and VaRs are listed in addition, to illustrate the different

sources of variation in ̂̄βs|i
t .

Rank Name ̂̄βs|i
2008 β̂

s|i
2008 V̂ aR

i

2008
1 REGIONS FINANCIAL 0.1503 0.4477 0.3356
2 AMERICAN INTL.GP. 0.1316 0.1903 0.6911
3 BANK OF AMERICA 0.1205 1.2287 0.0980
4 E TRADE FINANCIAL 0.1004 0.2504 0.4011
5 ZIONS BANCORP. 0.0589 0.3795 0.1551
6 FIFTH THIRD BANCORP 0.0575 0.2628 0.2189
7 SLM 0.0496 0.1377 0.3599
8 UNION PACIFIC 0.0480 0.6369 0.0753
9 CNA FINANCIAL 0.0423 0.2177 0.1941
10 WELLS FARGO & CO 0.0362 0.1806 0.2006
11 CHARLES SCHWAB 0.0315 0.5805 0.0542
12 MORGAN STANLEY 0.0251 0.2070 0.1211
13 PNC FINANCIAL SVS. GP 0.0235 0.2907 0.0807
14 JP MORGAN CHASE 0.0208 0.3107 0.0669
15 AON 0.0183 0.2573 0.0713
16 EATON VANCE NV. 0.0176 0.2774 0.0634
17 CITIGROUP 0.0172 0.2875 0.0600
18 AMERICAN EXPRESS 0.0170 0.3196 0.0532
19 COMERICA 0.0150 0.1046 0.1436
20 SUNTRUST BANKS 0.0150 0.1372 0.1094
21 COVENTRY HEALTH CARE 0.0141 0.1176 0.1202
22 LINCOLN NAT. 0.0134 0.1795 0.0749
23 FRANKLIN RESOURCES 0.0124 0.1572 0.0790
24 NY.CMTY.BANC. 0.0115 0.2264 0.0507
25 T ROWE PRICE GP. 0.0049 0.0313 0.1556
26 UNUM GROUP 0.0042 0.0671 0.0624
27 LEUCADIA NATIONAL 0.0009 0.0081 0.1056

Table XII: Group ranking of systemic risk contributions for the pre-crisis period 2000 - mid 2007.

The upper part, group 1, contains companies with significant βs|i
t and high ˆ̄β

s|i
av . The middle part (group

2) lists companies with positive and significant βs|i
t , but smaller ˆ̄β

s|i
av . Group 3 includes companies not

determined to be systemically risky during the estimation period, i.e., those with insignificant or negative

systemic risk betas. Case study companies are marked in bold.

Systemic risk contributions Companies

Group 1, ˆ̄β
s|i
av ∈ [0.034, 0.084] JPM, FRE, AXP, BBT, MTB, CINF, AFL, CVH, SLM, STI, LM

Group 2, ˆ̄β
s|i
av ∈ [0.004, 0.030]

BAC, C, AIG, MS, LEH, WFC, FNM, MBI, PGR, ML, BK,

AON, TROW, LUK, ETFC, WRB, NYB, ALL, SNV, BEN, CB,

TMK, LNC, UNM, AMTD, MI

Group 3
CMA, CNA, HBAN, L, SCHW, PNC, RF, STT, UNP, HNT, NTRS,

EV, GS, ZION, HUM, FITB, SEIC, HIG, PBCT, CI, HCBK, MMC
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Table XIII: Summary of estimation and test results for the five case study companies: loss exceedances

influencing each company’s VaR, other VaRs influenced, joint significance tests on βs|i
t = 0 and estimated

average systemic risk contributions and betas. Estimation period: January 2000 - June 2007.

Name incluenced by influences overall sign. average ̂̄βs|i
t average β̂s|i

t

FREDDIE FNM 0.004∗ 0.078 1.389
MERRILL AMTD 0.000∗ 0.026 1.472
LEHMAN AMTD, MS, SCHW GS, MS 0.009∗ 0.030 0.375
FANNIE FRE SLM 0.011 0.021 0.406
AIG ETFC, MMC ALL, BK, CB 0.025 0.021 0.403

∗time-varying betas
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Figure 4: Illustration of interpolated maturity mismatch times for Wells Fargo. Green:
actual data points, blue: interpolation spline, red: weekly aggregates.
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Figure 5: Full network graph for the system of the 57 largest financial companies in the U.S. For simplicity, arrows only mark risk spillovers
effects without referring to their respective size. Otherwise arrows and colors are as defined in Figure 1. A complete list of firms’ acronyms
is contained in Table I. The graphical allocation is obtained via the Fruchtermann-Reingold algorithm which minimizes the total length of all
arrows.
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Figure 6: Full Network graph of Citigroup (C) graphically highlighting risk drivers and risk recipients directly connected to Citigroup with
bold arrows. Arrows, colors and acronyms are as in Figure 5.

54



Figure 7: Full Network graph of Morgan Stanley (MS) highlighting risk drivers and risk recipients directly connected to Morgan Stanley with
bold arrows. Arrows, colors and acronyms are as in Figure 5.
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Figure 8: The upper three panels depict time-varying systemic risk beta, time-varying VaR
and the product of the two, standardized systemic risk beta, for American International
Group (AIG). The lower three panels show the respective three time series for Bank of
America (BAC).
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Systemic Risk Impact of LEH & ML before the Crisis
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Figure 9: Standardized systemic risk betas, i.e., the products of estimated systemic risk
betas and individual VaRs, of Lehman Brothers (LEH, green) and Merrill Lynch (ML,
red) during the two years before the financial crisis, mid 2005 - mid 2007. Estimation
period is the pre-crisis period, 2000 - mid 2007.
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Figure 10: Estimated company-specific VaRs of Lehman Brothers (upper panel) and Mer-
rill Lynch (lower panel) during the two years before the financial crisis, mid 2005 - mid
2007. Estimation period is the pre-crisis period, 2000 - mid 2007.
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