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Abstract

Tests on simulated data from an asset pricing model with heterogeneous forecasts show excess
variance in the price and ARCH effects in the returns, features not explained by the strong version
of the efficient markets hypothesis. An evolutionary game theory dynamic describe how agents
switch between a fundamental forecast, a rational bubble forecast and the reflective forecast, which
is a weighted average of the former two. Conditions determining the frequency and duration of
episodes where a significant fraction of agents adopt the rational bubble forecast leading to large
deviations in the price-dividend ratio are discussed.
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1 Introduction

Though the efficient markets hypothesis (EMH) has been a dominant paradigm in asset pricing

for decades, the assumption that there is a representative forecast for an asset price contradicts

the observed heterogeneity of forecasts and cannot explain important features of the data, such as

the volatility of prices and serially dependent variance in the returns. Furthermore, the strong

version of the EMH, meaning asset prices are determined solely by expectations of fundamental

information such as earnings or dividends, is at odds with the popular perception that bubbles are

a common phenomenon in asset markets.

There are models that allow for bubbles. Models of rational bubbles (Blanchard (1979), Evans

(1991)) are appealing, since expectations are rational (unbiased), and the model matches the styl-

ized fact that prices and returns are unpredictable in the short run. However, these models do

not provide an explanation for ARCH effects in the returns, and it is unclear how agents could

coordinate on a forecast based on extraneous information when an alternative forecast based on

the strong EMH is available. Models with heterogenous behavioral forecasting strategies (Brock

and Hommes (1998), LeBaron (2010) etc.) can also produce large deviations in the asset price

and price-dividend ratio from the predicted values of the strong EMH, but such approaches involve

strategies do not satisfy rationality in any sense.

The present paper explains how agents with a choice of heterogeneous forecasting strategies

could adopt a rational bubble forecast leading to a bubble in the asset price. Bubbles endogenously

collapse given the assumption that a small fraction of agents do not abandon the fundamental

forecast. Furthermore, the outbreak of such bubbles can explain excess volatility in the price-

dividend ratio and ARCH effects in returns, while also producing unpredictable returns.

An evolutionary game theory dynamic describes how agents switch between forecasting strate-

gies based on their past performance, given by payoff based on forecast errors as in Parke and

Waters (2007, 2011). Agents choose from a fundamental forecast, which corresponds to the strong

EMH prediction, a mystic forecast, which includes an extraneous martingale as in the rational

bubble model, and a reflective forecast, which is a weighted average of the former two forecasts.

The reflective forecast embodies all the information available to the agents including the other

forecasts and their relative popularity and is the unique unbiased forecast in an environment with
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heterogeneous forecasting strategies.

The behavior of all agent satisfies the cognitive consistency principle, described in Evans and

Honkapohja (2011), which specifies that agents in a model act are as smart as economists. More

precisely, agents should form expectations using reasonable models according to economic theory.

In the present approach, agents adopting fundamentalism and mysticism are using models that

satisfy rational expectations in the homogeneous case. While they are not fully rational in the

heterogeneous case, the vast majority of the asset pricing literature, Cochrane (2001) is a represen-

tative example, focuses on the homogeneous case. Furthermore, agents have every opportunity to

adopt reflectivism, a forecasting strategy that does satisfy rationality in the heterogeneous case.

The exponentially weighted replicator1 used is an example of an imitative dynamic, see Sand-

holm (2011) for a discussion, that allows for a parameterization of how aggressive agents are in

switching to strategies with superior performance. If there are no mystics in the model, the fun-

damental and reflective forecasts coordinate on that of the strong EMH. The key issue is to find

conditions under which a small fractions of agents adopting mysticism can gain a following sufficient

to cause a significant deviation in the price and price-dividend ratio. The introduction of a small

fraction of deviants is related to evolutionary stability commonly studied with imitative dynamics,

see Weibull (1998).

There are a number interesting alternative approaches to asset pricing that involve deviations

from the strong EMH. Commonly, some type of linear model is used to forecast prices or some other

market indicator, which satisfies cognitive consistency, though other restrictions on the forecast are

often required. Adam, Marcet and Niccolini (2008) are able to match a number of the features

of the U.S. stock market data where expectations of prices are formed using a simple linear model

whose parameters are updated each period. As is common in such approaches, they must impose

a projection facility to limit the possible choices of parameters in the forecasting model. Whether

the assumption that all agents know and use such an approach satisfies cognitive consistency is

open to interpretation.

A model of bubbles in asset markets that is not subject to this criticism is found in Branch and

Evans (2010) where a representative agent updates an estimate of the conditional variance of the

1A continuous time version of this dynamic was originally studied in Bjornerstedt and Weibull (1996) and appear
prominently in Hofbauer and Weibull (1996).
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return using a linear model. The time series implications of this approach have yet to be explored

in detail.

Another related approach with a representative agent is that of Lansing (2010), where the

forecasting model ("perceived law of motion") includes a geometric random walk, making bubbles

a possibility, but agents also update the parameter on the bubble term, so the importance of the

bubble term can change over time. This paper goes on to examine the implications of the resulting

asset price dynamics within a macroeconomic model.

The model in LeBaron (2010) has multiple forecasting strategies with a variety of linear fore-

casting models, though some agents use a "buy and hold" strategy. The gain parameter, which

parameterizes how quickly agents adjust their parameters in the model used for forecasting, varies

for the different strategies. Agents are allowed to switch strategies according to past performance

though the mechanism is rather ad hoc.

Section 2 give details about the asset price model with heterogeneous expectation, while section

3 presents the dynamic describing the evolution of the forecasting strategies. Section 4 describes

the simulations and the conditions for the formation of bubbles. Section 5 gives the results of

formal tests on the simulated data, and Section 6 concludes.

2 Asset Pricing

This section specifies the three forecasts and the resulting realization of the asset price, which

thereby determines the forecast errors for each strategy. The underlying model is the standard

asset pricing equation

pt = αpet+1 + dt, (1)

where the asset price is pt, the dividend is dt and the parameter α is the discount factor. This

model is not fully sufficient for our purpose, since there is a unique representative forecast of

the price. Brock and Hommes (1998) develop a model with mean-variance optimization where

investors choose between a riskless and risky asset in constant supply. With risk neutral agents

and a common belief about the variance of the returns, the model with heterogeneous forecasts can

be written as
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pt = α
n∑

h=1

xh,teh,t + dt (2)

where the vectors et = (e1,t, ...., en,t) and xt = (xi,t, ...., xn,t) are the different forecasts of pt+1 and

the fractions of agents using the forecasts, respectively.

The forecasts considered are motivated by the multiplicity of solution to the model (1) of the

homogeneous case. According to the strong efficient markets hypothesis (EMH), the price is given

by the discounted expected future dividends as given by the following solution to the model.

p∗t = dt +
∞∑

j=1

αjEt(dt+j)

Agents referred to as fundamentalists adopt the forecast e2,t determined by the above solution.

e2,t = Et(p
∗

t+1) =
∞∑

j=1

αj−1Et(dt+j) (3)

However, this solution is not unique. As discussed in the rational bubble literature, see Lansing

(2010), there is a continuum of solutions to (1) of the form

pmt = p∗t + α−tmt

where the stochastic variable mt is a martingale such that mt = mt−1+ηt, for iid, mean zero shocks

ηt. Though the information contained in the martingale mt may be extraneous with respect to the

fundamental information in dt, if agents believe that information is important, it affects the asset

price. Agents that adopt the forecast e3,t based on the rational bubble solution above are called

mystics, and their forecast is as follows.

e3,t = Et
(
pmt+1

)
= Et(p

∗

t+1) + α−t−1mt (4)

Both the mystic and fundamental forecasts satisfy rational expectations in the homogeneous

case. However, our goal is to allow for possible heterogeneity in forecasting strategies. The

reflective forecast e1,t is an average of the alternative forecasts used in the population weighted

according to the relative popularity.
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e1,t = (1− nt) e2,t + nte3,t (5)

where

nt =
x3,t

x2,t + x3,t

The variable nt is the relative popularity of mysticism among agents using mysticism or reflectivism.

Reflectivism depends on alternative strategies, so to ensure its existence, we make the following

key assumption.

Assumption: The fraction of fundamentalists x2,t never falls below some minimum δ2 > 0.

This assumption is not particularly restrictive, considering that in most asset pricing models,

all investors are fundamentalists. Given these three forecasting strategies (3), (4) and (5) and the

asset pricing model allowing for heterogeneity (2), the realization of the asset price is

pt = p∗t + α−tntmt. (6)

Agents evaluate the performance of the forecasting strategies by comparing payoffs based on

squared forecast errors. Hommes (2001) shows that, the mean-variance optimization underpinning

the model (2) is equivalent to minimizing squared forecast errors. Payoffs are defined as follows.

πi,t = −(pt − ei,t−1)
2 (7)

The reflective forecast error Ut plays an important role in the payoffs to all three forecasting

strategies, and is comprised of two terms.

Ut = (p
∗

t −E(p∗t )) + α−t(ntmt − nt−1mt−1) (8)

The first term is the current period dividend payment, which is the new fundamental information.

The second term is the martingale innovation weighted according to the change in the martingale

and can be written as ntηt−∆ntmt. The representation of Ut shows that the reflective forecast is

unbiased, under the assumption that agents are unable to forecast changes in nt. The innovations

to the dividend (dt) and the martingale (ηt) and the change in nt are all independent, mean zero,
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so the forecast error is also mean zero and the reflective forecast is unbiased. The reflective forecast

satisfies rational expectations in the presence of heterogeneity.

The fundamental and mystic forecasts satisfy rationality in the homogeneous case, but their

forecast errors are affected by the level of the martingale in the presence of heterogeneity. A key

term in the payoffs is the weighted martingale At−1 = α−tmt−1. The reflective forecast depends

only on Ut and, using (7) and (8), has payoff

π1,t = −U
2
t . (9)

Fundamentalism has forecast error Ut + nt−1At−1, so its payoff is

π2,t = −U
2
t − 2nt−1UtAt−1 − n2t−1A

2
t−1. (10)

Similarly, the payoff to mysticism is as follows.

π3,t = −U
2
t + 2(1− nt−1)UtAt−1 − (1− nt−1)

2A2t−1 (11)

Much of the intuition behind the possibility of mysticism gaining a following can be observed

in the above three payoffs. The third terms in the payoffs to mysticism (11) and fundamentalism

(10) are unambiguously damaging to those payoffs in comparison with the payoff to reflectivism

(9). Since the covariance UtAt−1 has mean zero, in expectation, reflectivism outperforms the other

two strategies.

However, mysticism can outperform the other strategies in some periods. If the covariance

UtAt−1 is positive and sufficiently large, the second term in (11) may outweigh the third term so

that π3,t > π1,t > π2,t. Such a positive covariance corresponds to a fortunate correlation between

the martingale and the innovations in the model. In distribution, dividends are uncorrelated with

the martingale, but over a number of periods, such correlations are likely to occur.
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3 Evolutionary Dynamics

A generalization of the replicator dynamic, a workhorse in the evolutionary game theory literature,

describes the evolution of the vector xt of the fractions of agents using the different forecasting

strategies. Let the weighting function w (π) be a positive, increasing function of the payoffs. The

general replicator dynamic2 is

xi,t+1 − xi,t = xi,t
w (πi,t)−wt

wt
, (12)

where the expression wt is the weighted population average wt = x1,tw (π1,t) + · · · + xn,tw (πn,t).

A strategy gains followers if its weighted payoff above the weighted population average, i.e. has

positive fitness in evolutionary game theory terminology. Such a dynamic is said to be imitative

since strategies that are popular today, larger xi,t, tend to gain more adherents if they are successful,

i.e. the numerator in (12) is positive.

A general form for the dynamic (12) allows for a range of behavior of the agents. For a linear

weighting function w (π), the adjustment to better performing strategies is sluggish, but for convex

w (π), agents switch faster. A linear weighting function in the dynamic (12) gives the special case

of the replicator dynamic studied in Weibull (1998) and Samuelson (1998). Sandholm (2010) gives

a thorough comparison of the features of a number of evolutionary dynamics.

Using a version of the dynamic (12) with an alternate timing, Parke and Waters (2011) demon-

strate that, for bounded dividends, the payoff to reflectivism is always above the population av-

erage. Therefore, under the replicator (linear w (π)), mysticism cannot take followers away from

reflectivists. While the formal details and implications of this statement are quite involved (see the

reference above) the intuition is straightforward and is relevant for the simulations using the present

approach. Under linear weighting, the covariance (second) terms in the payoffs to mysticism and

fundamentalism, (11) and (10), cancel in the population average payoff, but the third terms with

A2t−1 do not. Since the payoff to reflectivism is unaffected by the martingale, it is larger than the

population average, so reflectivism gains followers.

The logic of the superiority of reflectivism does not apply in the case of a convex weighting

2Parke and Waters (2011) focus on a dynamic with the same form, but slightly altered timing and perform
simulations with the present form as a robustness check.
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function. Here, a positive covariance UtAt−1 > 0 has greater benefit to mysticism than harm

to fundamentalism, so if it is large enough, mysticism can gain a following. The model used for

simulations focuses on the exponential weighting function

w(π) = eθ
2π, (13)

so θ parameterizes the aggressiveness of the agents. An increase in θ means that agents are

switching more quickly to the best strategy, but as θ decreases the dynamic approaches the linear

weighting case. See Parke and Waters (2011) for formal results and a more detailed discussion.

One drawback to imitative dynamics such as the generalized replicator (12) is their lack of

inventiveness. If a strategy has no followers (xi = 0) then it cannot gain any. Hence, game

theorists usually focus on equilibria that are evolutionarily stable, meaning they are robust to the

introduction of a small fraction of deviating agents. Similarly, the focus of the present class of

models is whether the fundamental forecast is robust to the introduction of a small fraction of

mystics.

It is possible for mysticism to gain a following given the following conditions. Some agents

believe that extraneous information may be important to the value of a asset. In some periods, the

extraneous information must be correlated with fundamentals. Lastly, agents must be sufficiently

aggressive in switching to superior performing strategies.

Mysticism cannot maintain a following indefinitely given the existence of a minimum fraction

of fundamentalists δ2. If fundamentalism is eliminated from the population, then nt = 1 and the

payoff to mysticism (10) is identical to the payoff to reflectivism (9). However, the presence of a

minimum fraction of fundamentalists implies that nt < 1 and that the reflective and mystic forecasts

are not identical. Since the expected value of the covariance term UtAt−1 in (10) is zero, reflectivism

outperforms mysticism in the long run. Further, the magnitude of At grows over time, so the third

term in the payoff to mysticism (10) dominates and the performance of mysticism deteriorates over

time. While mysticism can gain a following temporarily so the martingale affects the asset price,

eventually agents abandon mysticism, so bubbles endogenously form and collapse. The goal of the

simulations is to determine to quantitative importance of such outbreaks of mysticism.

Since it limits the life of bubbles, the minimum fraction of fundamentalists plays a similar role
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as the projection facility used with least squares learning as in Adam, Marcet and Niccolini (2008).

In their approach, a representative agent updates the estimate of the parameters in a forecasting

rule, but the projection facility limits the acceptable estimates to those that produce non-explosive

behavior. The projection facility places stronger restrictions on agents beliefs than the minimum

fraction of fundamentalists. In the present model, a small fraction rejects extraneous information,

but under that projection facility, all agents have a sophisticated understanding of the long run

dynamics of the forecasting rule.

The model represents a minimal departure from rationality when mystics are introduced into

the population. Mysticism appears due to a disagreement about what constitutes fundamental

information, but all agents form expectations with a reasonable economic model, i.e. agents meet

the cognitive consistency principle described in Evans and Honkapohja (2010). Both mysticism and

fundamentalism satisfy rationality in the homogeneous case, and reflectivism satisfies rationality

when there is heterogeneity in the forecasting strategies, and this forecasting strategy is available

to agents at all times. When mystics are eliminated from the population, the reflective and

fundamental forecasts coincide and satisfy rationality. Only when mystics are introduced do the

mystic and fundamental forecasts deviate from rationality, but mystics believe that the extraneous

information in the martingale is relevant to the forecast of the asset price, and that other agents

will eventually realize this. Hence, all agents believe that they are making efficient use of the

available information.

4 Simulations

Simulations of the model with the three forecasting strategies described above verify that outbreaks

of mysticism depend on the aggressiveness of the agents in switching to better performing strategies

and the magnitude of the shocks to the dividends and the martingale. Furthermore, for reason-

able parameterizations, when a significant portion of the population adopts the mystic forecasting

strategy, there can be large bubble-like deviations in the asset price and price-dividend ratio.

Given the dividend dt and the martingalemt, the model is determined by the dynamic (12) along

with the exponential weighting function (13), the payoffs (9), (10) and (11), and the realization

of the asset price (6). The dividend process is specified as a stationary process with parameter
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choices below.

dt = d+ ρ
(
dt−1 − d

)
+ vt

d ρ σv

0.03 0.465 0.203

The constant d is chosen so that for α = 0.99, the steady state price-dividend ratio (log dif-

ference) is 20, which is close to the long run average for the S&P 500 from the Shiller data. The

persistence parameter ρ and shocks vt ∼ N (0, σv) are chosen to match values from the H-P de-

trended earnings series. Earnings are used instead of dividends, since not all firms pay dividends

and earnings are a more reasonable proxy for firm profitability.

Two other fixed parameters are the minimum fraction of fundamentalists δ2 = 0.01 and the

fraction of mystics introduced into the population 0.001. The minimum fraction of mystics is

set much smaller so that the introduction of mystics on its own does not have a quantitatively

significant effect on the asset price (6) since nt is small. If the dynamic used in the simulations

is specified so that if the unconstrained dynamic (12) sets one of the fractions below its minimum,

that fraction is set to its minimum, and the other two strategies split the remaining followers in

the same proportion they would in the unconstrained case. If mysticism falls below its minimum,

that level of followers is reintroduced and the martingale is restarted at mt = 0.

The free parameters θ, which measures agent aggressiveness, and ση, the standard deviation

of the martingale innovations, play are large role in determining the potential for outbreaks of

mysticism and bubbles. For those events to occur, agents must be sufficiently aggressive, meaning

θ is sufficiently large, and the magnitude of the martingale innovations must be large enough to

have a noticeable impact on the payoffs and the asset price, but not so large so that the third term

in the payoff to mysticism (11) dominates.

Figures 1-5 demonstrate the role of the parameters θ and ση in determining the frequency

and duration of bubbles. Figures 1 and 2 show the evolution of the price dividend ratio, the

forecast errors of the reflective and fundamental forecasts and the fraction of followers of the three
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forecasting strategies for two different choices of θ. In figure 1, this parameter is set to θ = 5/8,

which indicates sluggish adjustment to strategies with superior performance. The simulations are

initiated at a point where the fraction of followers of reflectivism, the potentially dominant strategy,

is at its maximum. For the low level of θ, the introduction of a small fraction of mystics does

not induce others to adopt the strategy and has no appreciable impact on the evolution of the

asset price. Again, for smaller θ’s, the dynamic (12) approaches the linear weighting case where

reflectivism dominates.

Figure 2 shows the same variables as Figure 1, but for a higher level of θ at θ = 5.0. Here,

agents are sufficiently aggressive for mysticism to gain a following for significant stretches of time.

There are a number of instances where well over half of the the population is using mysticism and

some of these are associated with large fundamentalist forecast errors and large deviations from

the steady state value in the price-dividend ratio. Note that the martingale does not damage the

reflectivist forecast error, since reflectivists use the martingale and information about its relative

popularity in their forecast.

Figures 3 and 4 illustrate the role of the standard deviation of the martingale innovations ση

in the formation and duration of bubbles. The agent aggression parameter is set to θ = 5.0 as

in Figure 2, but the parameter ση is lower at ση = 0.25σv. Hence, though mysticism often gains

a following, it is more difficult for the martingale to attain a sufficient magnitude to noticeably

affect the asset price. However, when they do occur, bubbles in the asset price tend to last longer,

since the martingale grows relatively slowly and more time is required for the martingale (third

term) in the mystic payoff (11) to overwhelm the covariance term. Conversely, a higher magnitude

for martingale innovation, as in Figure 4 with ση = 2.0σv, shows that bubble outbreaks become

rare and short-lived as the martingale quickly, if not immediately, grows too large for mysticism to

dominate.

Finally, Figure 5 shows the case where the agent aggression parameter is large at θ = 10.0, while

the parameter ση = σv as in Figures 1 and 2. Here, the martingale innovations are at a magnitude

where mysticism can dominate and the agents are quickly switching to superior strategies means

that the dynamics are dominated by the covariance term in the payoffs to mysticism (11) and

fundamentalism (10), and there is little inertia in the evolution of the xi,t’s. Hence, mysticism

quickly gains a following with a positive covariance, but quickly loses is with the opposite. There
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are some occurrences of bubble-like behavior in the price-dividend ratio, but the primary impact

of the martingale is an increase in the volatility of the asset price. We proceed by examining more

formal econometric features of the data to support these qualitative observations.

5 Time Series Tests

The simulated data matches econometric features of asset market data in multiple respects. In

the presence of bubbles, the price-dividend ratio has greater persistence than the dividend series.

Returns are unpredictable in the short run. Excess variance in the price-dividend ratio and ARCH

effects in the returns can arise in the presence of bubbles arising due to outbreaks of mysticism.

The stationarity of the price-dividend ratio is difficult to characterize, but this is true of stock

market data as well.

5.1 Mystic dominance and bubbles

Simple measures to detect mysticism and bubbles allow a demonstration of the correspondence

between the impact of the martingale and formal econometric features of the data such as excess

variance. We run 10,000 trials of 100 periods, roughly the size of the sample in the Shiller data, with

50 periods for initiation. Table 1 reports the fraction of periods (across all trials) where mysticism

dominated, i.e. when the fraction of followers of mysticism is greater than 0.5. Table 2 reports

the fraction of trials with an occurrence of a bubble in the asset price, defined as a price-dividend

ratio that 50% greater than its steady state value. This is a necessarily arbitrary but rather strict

interpretation of a bubble. Observing the major U.S. stock market averages and using a steady

state ratio of 20, the price-earnings ratio in the Shiller data only exceeded 30 after the start of the

"technology bubble" of 2000. In the present model of a bubble, a negative bubble, when prices

fall below their fundamental value, are just as likely as positive bubbles. If both classes of bubbles

are included, the values in Table 2 should be doubled.

Tables 1 and 2 verify that outbreaks of mysticism and bubbles require sufficiently large choices

for the parameter θ, the measure of agent aggressiveness, and the parameter ση the standard

deviation of the shocks to the martingale. For low values of these parameters, there are no

occurrences of bubbles or mystic dominance.
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As the choices of the parameters θ and ση become very large, the occurrences of bubbles

and mystic dominance fall from their maximum values. For example in Table 1 given θ = 3/4,

the fraction of mystic dominance initially rises with ση to a maximum of 0.188 at ση = 1.0,

corresponding to Figure 2, but falls for larger magnitudes of the shock to the martingale for two

reasons. For large ση, the martingale (third) term in the payoff to mysticism (11) dominates,

diminishing the payoff and making the emergence of mysticism more difficult, as shown in Figure

4. Second, for large θ and ση, bubble rise and collapse faster, lowering the number of periods

satisfying the criteria for mystic dominance and bubbles, as in Figure 5.

If agents are sufficiently aggressive about switching to superior strategies, θ ≥ 3/4, the role of the

martingale becomes significant. In these cases, the fraction of periods showing mystic dominance

is always greater than the fraction with bubbles. Even if mysticism has a large following, the

magnitude of the martingale may not be large enough to have a dramatic effect on the asset

price, pointing up the difficulty identifying bubbles. It is possible that agents are always using

extraneous information to value assets, but that information only drives asset prices away from

their fundamental values on rare occasions.

5.2 Persistence and volatility

For parameter settings that produce outbreaks of mysticism and bubbles, the simulated price-

dividend series displays greater persistence than the dividend series and matches the volatility

observed in the Shiller data. Tables 3 reports the average autocorrelation coefficient across the

10,000 trials and demonstrates higher persistence for values of θ and ση where bubbles can arise.

While the highest value in the table of 0.62 does not show the persistence in the annual data of 0.8,

Table 4 reports the standard deviation of the autocorrelation coefficients over the trials and shows

that such levels of persistence do occur in a number of trials. Interestingly, for high values of θ

and ση, the persistence falls to low levels as mysticism is adopted and abandoned very quickly as in

Figure 5. Table 5 reports the standard deviation of the price-dividend series, and for sufficiently

large θ and ση the volatility matches the standard deviation in the Shiller data of 0.38.
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5.3 Return Predictability

For a large majority of the simulated series, returns are not predictable in the short run, an

implication of the weak version of the EMH. We examine whether the price-dividend ratio is

informative about per share excess returns

Zt = dt + yt − α−1yt−1, (14)

which is the part of the optimization problem underlying the asset pricing model (2), see Brock

and Hommes (1998). Furthermore, per share excess returns are the same as the reflective forecast

up to a constant such that Ut = Zt + C, where C is the constant risk premium in (2), see Parke

and Waters (2007) for a discussion.

To test predictability, the following equation to test whether lagged prices dividend ratios

contain information about current returns, similar to those used in Fama and French (1988), is

estimated on simulated data with 100 observations.

Ut = β0 + β1 (pt−k − dt−k) ,

where k is the lead time for the prediction. If the R2 from the estimation is over 0.1, returns are

defined to be predictable. Table 6 reports the fraction of runs with predictable returns, and, for a

lead time of two years k = 2, less than two percent of the series had predictable returns. Returns

at longer horizons are also unpredictable, which is unsurprising give the stationarity of the dividend

process.

5.4 Price-dividend stationarity

The the potential presence of the martingale has an ambiguous impact on the stationarity of the

price-dividend ratio. Given the stationary process for dividends above, the price-dividend ratio

should be stationary according to the strong EMH, i.e. the martingale-free solution. Formerly,

a stationary price-dividend ratio was considered to be a stylized fact of financial markets data

(Cochrane 2001), but inclusion of data from the past decade shows a non-stationary price-dividend

ratio, though not for the price-earnings ratio in the Shiller series. A Dickey-Fuller test at a sig-
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nificance level of 5% is performed on the simulated series with 100 observations. Table 7 reports

the fraction of trials where the stationarity of pt − dt is rejected. For the cases where mysticism

does not arise, stationarity of the price-dividend ratios cannot be rejected, which is not surprising,

given the moderate amount of persistence in the dividend process (ρ = 0.5). However, there are

simulations with a non-stationary price-dividend ratio, but the presence of bubbles is a necessary

but not sufficient condition for non-stationarity. Comparing Tables 2 and 4, the fraction of trials

with a bubble in the price-dividend ratio is always larger than the fraction where that ratio is non-

stationary. The presence of bubbles is a necessary but insufficient condition for non-stationarity

of the price-dividend ratio.

The presence of mysticism can have econometrically detectable effects on the data similar to

those found in asset markets. In particular, for parameter choices where mysticism can gain a

significant following, there is excess variance in the asset price, and ARCH effects in the returns.

5.5 Excess Variance

Studies such as Shiller (1981) demonstrate that asset prices fluctuate more than predicted by the

EMH, and endogenous rational bubbles can explain such excess variance . Simulations determine

a ratio of the realized variance and the predicted variance based on the variance of the dividends

and the EMH, though the statistical significance is difficult to assess. A statistical test of the

variance of the price-dividend ratio provides more definitive evidence.

In the absence of mysticism (nt = 0), the asset price behaves according to the strong version of

the EMH and depends only on the dividend process.

y∗t = d

(
α

1− α
−

αρ

1− αρ

)
+ dt

(
1 +

αρ

1− αρ

)

Hence, the variance of the asset price should be σ2y∗ = (1− αρ)−2 σ2d. Table 8 reports the ratio

σ2y/σ
2
y∗ of the variance of the simulated asset prices and the predicted variance using the variance

of the simulated dividends. Under the strong EMH, the ratio is unity, which occurs for very low

levels of θ and ση. For higher levels, the ratio rises above one, and, for one pair of parameter

values well over three. This level is much smaller than Shiller’s initial estimate of 20, but other
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research3 has found smaller estimated values.

To examine the statistical significance of the observed excess volatility in the asset prices, we

conduct a test on a transformation of the price-dividend ratio. Let the notation x̂ denote the

deviation of x from its steady state value. The series p̂dt =
1− αρ

αρσd

(
ŷt − d̂t

)
has the standard

normal distribution so the variance of p̂dt is distributed χ
2 (n) /n where n is the number of periods.

Table 9 reports the fraction of runs such that the variance of the realized p̂dt is excessive at a

significance level of 0.05. The results demonstrate that the excess variance shown in Table 8 is

statistically significant and corresponds to outbreaks of bubbles. The pattern of the excess return

probabilities in Table 9 follows that of the probability an occurrence of a bubble in Table 9 with

higher probabilities in every case. For example, for a sufficiently large choice of θ such that θ ≥ 3/2,

both probabilities rise with the magnitude of the martingale innovation ση for all values reported,

but for smaller choice of θ, the probabilities both peak at a choice of ση less than 16.

5.6 ARCH

Tests for ARCH effects similarly show a correspondence with bubbles and excess volatility. To test

for ARCH, we regress the squared excess returns4 (14) on four lags of itself and a constant using

least squares. Table 10 reports the fraction of runs where the F-test rejects the restriction that all

the coefficients on the lagged squared returns are zero at a significance level of 0.05. For low levels

of the parameters θ and ση, there are no ARCH effects above those produced at random, but, for

higher levels, ARCH effects are evident. Thought the magnitude of values in the table are not as

high as one might expect, this is primarily due to the short sample in the trials. Much greater

incidence of ARCH and GARCH is found for longer samples and a different calibration in Parke

and Waters (2007).

For a given standard deviation of the martingale innovations ση, the relationship between the

frequency of significant ARCH effects and the aggressiveness of the agents (θ) is similar to the

pattern with mystic dominance and bubbles in Tables (1) and (2). ARCH, mystic dominance

and bubbles all rise with θ but fall for higher levels. However, the correspondence is not perfect,

since the peak levels of ARCH are typically at θ = 10, but the peak levels for mystic dominance

3Some examples areLeRoy and Porter (1979), Campbell and Shiller (1989) and LeRoy and Parke (1992).
4ARCH effects are even more evident using the alternative definition for returns (Pt +Dt − Pt−1) /Pt−1, but in

this cases there are ARCH effect in simulations with no bubbles, so the focus on excess returns is more revealing.
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typically occur at lower levels of θ. For a given level of θ, there is positive relationship between

the magnitude of the shocks to the martingale ση and the frequency of ARCH. This relationship

corresponds to the relationship between the magnitude ση and mystic dominance and bubbles for

low levels of ση but not for high levels. Even small fractions of agents adopting mysticism can

affect the data when the magnitude of the martingale is large.

The behavior of the simulated time series of the endogenous rational bubbles model matches

multiple features found with stock price and dividend data. As expected given stationary dividends,

returns are not predictable. It is possible though not necessarily true that bubbles lead to non-

stationarity in the price-dividend ratio. The presence of statistically significant levels of excess

variance, and ARCH effects corresponds to outbreaks of mysticism and bubbles.

5.7 Extensions

There are a number of avenues for further research involving alternative approaches to the under-

lying dividend process, the inclusion of parameter learning and the evolutionary dynamic. In the

present paper, the dividend process is stationary, but allowing for trend growth, leading to growth

in the asset price as well, is more realistic. Modeling dividends as a random walk with drift as in

Adam, Marcet and Niccolini (2008) and LeBaron (2010), should produce predictability of returns

in the long run as has been reported in the data, for example Cochrane (2001). The proper method

for modeling the martingale in the mystic forecast in such an environment is a non-trivial question

requiring further research. Once one includes growth in dividends and prices, introducing para-

meter learning becomes appealing. Of course, in an environment with heterogenous agents, there

are a number of possible ways to model such updating, but that fact does not make the issue less

worthy of exploration. Lastly, there are a number of alternatives, such as multinomial logit (Brock

and Hommes 1998) and the Brown, von Neumann and Nash dynamic (see Waters 2009), to the

weighted replicator dynamic in the present work, see Sandholm (2010) for a theoretical overview

of the alternatives.
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6 Conclusion

Models of asset pricing where a representative agent forms expectations according to the strong

efficient markets hypothesis violates both the heterogeneity of forecasts and reality of bubble-

like behavior, as well as some formal econometric features of asset market data. The model

with mysticism includes heterogeneous forecasting strategies in a way that satisfies the cognitive

consistency principle, describes the necessary conditions for bubbles, and explains excess volatility

in asset prices, ARCH effects in returns and other aspects of the data. This model is one of a

number of approaches to asset pricing involving minimal deviations from rationality that make it

possible to explain the complex behavior of these markets in a disciplined way.
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Figure 1
θ = 5/8, ση = σv x 1.0
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θ = 5.0, ση = σv x 1.0

21



100 200 300 400 500 600 700 800 900 1000
0

5

Price-Dividend ratio

100 200 300 400 500 600 700 800 900 1000

-2

0

2

Reflectivist Forecast Error

100 200 300 400 500 600 700 800 900 1000

-2

0

2

Fundamentalist Forecast Error

100 200 300 400 500 600 700 800 900 1000
0

0.5

1
Mystic Population Share

100 200 300 400 500 600 700 800 900 1000
0

0.5

1
Reflectivist Population Share

100 200 300 400 500 600 700 800 900 1000
0

0.5

1
Fundamentalist Population Share

Figure 3
θ = 5.0, ση = σv x 0.25
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θ = 5.0, ση = σv x 2.0
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θ = 10.0, ση = σv x 1.0
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ση = 0.23 x 

1/8 1/4 1/2 1 2 4 8

5/8 0.000 0.000 0.000 0.000 0.000 0.000 0

5/4 0.000 0.000 0.000 0.000 0.000 0.000 0.0001

5/2 0.000 0.000 0.004 0.020 0.025 0.006 0.0014

θ 5 0.044 0.107 0.154 0.120 0.050 0.016 0.0054

10 0.037 0.094 0.177 0.181 0.117 0.059 0.0298

20 0.021 0.070 0.132 0.150 0.109 0.062 0.0334

40 0.025 0.067 0.105 0.107 0.075 0.044 0.0236

Table 1
The fraction of periods over all runs where the mysticism exceeds 50% (x2 > 0.5)

ση = 0.23 x 

1/8 1/4 1/2 1 2 4 8

5/8 0.122 0.138 0.124 0.165 0.186 0.261 0.550

5/4 0.130 0.149 0.135 0.154 0.197 0.230 0.480

5/2 0.116 0.133 0.161 0.234 0.271 0.287 0.275

θ 5 0.177 0.257 0.362 0.464 0.493 0.468 0.361

10 0.114 0.221 0.548 0.830 0.938 0.933 0.882

20 0.122 0.122 0.192 0.567 0.879 0.928 0.909

40 0.100 0.118 0.141 0.337 0.716 0.830 0.841

Table 2
The fraction of runs with one period where pt − dt > ln 2 +

(
p̄− d̄

)
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ση = 0.23 x 

1/8 1/4 1/2 1 2 4 8

5/8 0.432 0.440 0.437 0.432 0.412 0.374 0.275

5/4 0.436 0.434 0.442 0.433 0.415 0.381 0.302

5/2 0.441 0.451 0.467 0.493 0.487 0.427 0.384

θ 5 0.479 0.535 0.610 0.620 0.519 0.397 0.355

10 0.468 0.503 0.573 0.562 0.403 0.254 0.149

20 0.432 0.435 0.453 0.417 0.308 0.193 0.118

40 0.431 0.429 0.428 0.380 0.303 0.231 0.150

Table 3
The average across all trials of the one lag autocorrelation coefficient

ση = 0.23 x 

1/8 1/4 1/2 1 2 4 8

5/8 0.092 0.091 0.094 0.089 0.092 0.095 0.097

5/4 0.092 0.087 0.091 0.093 0.097 0.096 0.099

5/2 0.094 0.103 0.125 0.169 0.188 0.154 0.142

θ 5 0.123 0.170 0.209 0.211 0.189 0.167 0.164

10 0.093 0.105 0.128 0.135 0.151 0.167 0.169

20 0.087 0.090 0.093 0.104 0.121 0.131 0.131

40 0.089 0.089 0.092 0.098 0.111 0.123 0.120

Table 4
The standard deviation across all trials of the one lag autocorrelation coefficient.
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ση = 0.23 x 

1/8 1/4 1/2 1 2 4 8

5/8 0.230 0.232 0.234 0.237 0.239 0.250 0.286

5/4 0.230 0.230 0.235 0.236 0.240 0.247 0.303

5/2 0.231 0.235 0.289 0.544 0.662 0.405 0.314

θ 5 0.250 0.321 0.523 0.575 0.428 0.319 0.305

10 0.237 0.255 0.316 0.373 0.387 0.414 0.485

20 0.230 0.235 0.254 0.289 0.328 0.386 0.499

40 0.229 0.231 0.240 0.256 0.285 0.333 0.430

Table 5
The standard deviation of the price-dividend ratio.
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ση = 0.23 x 

1/8 1/4 1/2 1 2 4 8

5/8 0.000 0.002 0.001 0.000 0.002 0.000 0.001

5/4 0.002 0.002 0.001 0.001 0.002 0.001 0.002

5/2 0.002 0.001 0.002 0.003 0.007 0.009 0.013

θ 5 0.001 0.004 0.009 0.012 0.004 0.007 0.012

10 0.002 0.001 0.001 0.000 0.000 0.002 0.002

20 0.000 0.001 0.001 0.001 0.000 0.001 0.003

40 0.001 0.001 0.001 0.001 0.000 0.000 0.000

Table 6
The fraction of runs with predictable returns.

ση = 0.23 x 

1/8 1/4 1/2 1 2 4 8

5/8 1.000 1.000 1.000 1.000 1.000 1.000 1.000

5/4 1.000 1.000 1.000 1.000 1.000 1.000 0.999

5/2 1.000 0.998 0.976 0.923 0.906 0.969 0.996

θ 5 0.989 0.927 0.794 0.784 0.931 0.995 0.995

10 1.000 0.998 0.974 0.992 0.999 1.000 1.000

20 1.000 1.000 1.000 1.000 1.000 1.000 1.000

40 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 7
The fraction of runs with a stationary price-dividend ratio.
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ση = 0.23 x 

1/8 1/4 1/2 1 2 4 8

5/8 1.006 1.012 1.020 1.030 1.038 1.053 1.127

5/4 1.007 1.012 1.021 1.031 1.037 1.046 1.162

5/2 1.010 1.020 1.137 1.946 2.478 1.442 1.186

θ 5 1.050 1.208 1.888 2.129 1.519 1.198 1.159

10 1.027 1.073 1.237 1.389 1.416 1.486 1.734

20 1.007 1.022 1.063 1.149 1.231 1.401 1.784

40 1.002 1.007 1.024 1.065 1.123 1.240 1.529

Table 8
The ratio V ar (y∗t ) /V ar (yt) for each run.

ση = 0.23 x 

1/8 1/4 1/2 1 2 4 8

5/8 0.360 0.422 0.418 0.481 0.508 0.699 0.986

5/4 0.354 0.350 0.447 0.483 0.553 0.670 0.955

5/2 0.348 0.376 0.480 0.559 0.557 0.486 0.529

θ 5 0.456 0.593 0.682 0.720 0.702 0.626 0.542

10 0.478 0.721 0.921 0.992 0.991 0.994 0.988

20 0.332 0.459 0.804 0.966 0.994 0.997 0.999

40 0.341 0.373 0.555 0.801 0.929 0.983 0.996

Table 9
The fraction of runs with excess variance
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ση = 0.23 x 

1/8 1/4 1/2 1 2 4 8

5/8 0.028 0.040 0.028 0.037 0.026 0.05 0.043

5/4 0.022 0.026 0.040 0.051 0.032 0.049 0.074

5/2 0.033 0.035 0.046 0.053 0.158 0.172 0.136

θ 5 0.039 0.059 0.079 0.177 0.410 0.411 0.264

10 0.035 0.026 0.046 0.129 0.320 0.435 0.39

20 0.038 0.048 0.036 0.063 0.193 0.323 0.349

40 0.040 0.027 0.037 0.051 0.180 0.291 0.294

Table 10
The fraction of runs with significant ARCH effects.
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