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Abstract

This paper determines the properties of standard generalized method of moments

(GMM) estimators, tests, and con�dence sets (CS�s) in moment condition models in

which some parameters are unidenti�ed or weakly identi�ed in part of the parameter

space. The asymptotic distributions of GMM estimators are established under a full

range of drifting sequences of true parameters and distributions. The asymptotic sizes

(in a uniform sense) of standard GMM tests and CS�s are established.

The paper also establishes the correct asymptotic sizes of �robust� GMM-based

Wald, t; and quasi-likelihood ratio tests and CS�s whose critical values are designed to

yield robustness to identi�cation problems.

The results of the paper are applied to a nonlinear regression model with endogeneity

and a probit model with endogeneity and possibly weak instrumental variables.

Keywords: Asymptotic size, con�dence set, generalized method of moments, GMM es-

timator, identi�cation, nonlinear models, test, Wald test, weak identi�cation.

JEL Classi�cation Numbers: C12, C15.



1. Introduction

This paper gives a set of GMM regularity conditions that are akin to the classic

conditions in Hansen (1982) and Pakes and Pollard (1989). But, they allow for singu-

larity of the GMM estimator�s variance matrix due to the lack of identi�cation of some

parameters in part of the parameter space. Under the conditions given, the asymptotic

distributions of GMM estimators and Wald and quasi-likelihood ratio (QLR) test sta-

tistics are established. The asymptotic sizes of standard GMM tests and con�dence sets

(CS�s) are established. In many cases, their asymptotic sizes are not correct. We show

that Wald and QLR statistics combined with �identi�cation robust�critical values have

correct asymptotic sizes (in a uniform sense).

In contrast to standard GMM results in the literature, the results given here cover

a full range of drifting sequences of true parameters and distributions. Such results are

needed to establish the (uniform) asymptotic size properties of tests and CS�s and to

give good approximations to the �nite-sample properties of estimators, tests, and CS�s

under weak identi�cation. Non-smooth sample moment conditions are allowed, as in

Pakes and Pollard (1989) and Andrews (2002).

This paper is a sequel to Andrews and Cheng (2007a) (AC1), which provides results

for extremum estimators, t tests, and QLR tests under high-level conditions. Here we

provide more primitive conditions for GMM statistics by verifying the high-level condi-

tions of AC1. Some results also are given here for minimum distance (MD) estimators,

tests, and CS�s. The paper provides results for Wald tests and CS�s that apply not only

to GMM estimators, but also to other extremum estimators covered by AC1.

We consider moment condition models where the parameter � is of the form � =

(�; �; �); where � is identi�ed if and only if � 6= 0; � is not related to the identi�cation
of �; and  = (�; �) is always identi�ed. The parameters �; �; and � may be scalars

or vectors. For example, this framework applies to the nonlinear regression model Yi =

� � h (X1;i; �) +X
0
2;i� +Ui with endogenous variables X1;i or X2;i and instruments (IV�s)

Zi: Here lack of identi�cation of � when � = 0 occurs because of nonlinearity. This

framework also applies to the probit model with endogeneity: y�i = Yi� + X 0
i�
�
1 + U�i ;

where one observes yi = 1(y�i > 0); the endogenous variable Yi; and the exogenous

regressor vector Xi and the reduced form for Yi is Yi = Z 0i� + X 0
i�2 + Vi: In this case,

lack of identi�cation of � occurs when � = 0 because the IV�s are irrelevant.

We determine the asymptotic properties of GMM estimators and tests under drifting
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sequences of true parameters �n = (�n; �n; �n) for n � 1; where n indexes the sample

size. The behavior of GMM estimators and tests depends on the magnitude of jj�njj:
The asymptotic behavior of these statistics varies across three categories of sequences

f�n : n � 1g : Category I(a) �n = 0 8n � 1; � is unidenti�ed; Category I(b) �n 6= 0 and
n1=2�n ! b 2 Rd� ; � is weakly identi�ed; Category II �n ! 0 and n1=2jj�njj ! 1; � is

semi-strongly identi�ed; and Category III �n ! �0 6= 0; � is strongly identi�ed.
For Category I sequences, GMM estimators, tests, and CS�s are shown to have non-

standard asymptotic properties. For Category II and III sequences, they are shown

to have standard asymptotic properties such as normal and chi-squared distributions.

However, for Category II sequences, the rates of convergence of estimators of � are slower

than n1=2 and tests concerning � do not have power against n�1=2-local alternatives.

Numerical results for the nonlinear regression model with endogeneity show that the

GMM estimators of both � and � have highly non-normal asymptotic and �nite-sample

(n = 500) distributions when � is unidenti�ed or weakly identi�ed. The asymptotics

provide excellent approximations to the �nite-sample distributions. Nominal 95% stan-

dard t con�dence intervals (CI�s) for � are found to have asymptotic size equal to 68%

and �nite-sample size of 72%: In contrast, nominal 95% standard QLR CI�s for � have

asymptotic and �nite-sample size of 93%: There are no asymptotic size distortions for

the standard t and QLR CI�s for � and the �nite-sample sizes are close to the asymptotic

values. However, the CI�s for � are far from being similar asymptotically or in �nite

samples. The robust CI�s for � have correct asymptotic size. Their �nite-sample sizes

are 91:5% for t CI�s and 95% for QLR CI�s for nominal 95% CI�s.

To conclude, the numerical results show that (i) weak identi�cation can have sub-

stantial e¤ects on the properties of estimators and standard tests and CS�s; (ii) the

asymptotic results of the paper provide useful approximations to the �nite-sample dis-

tributions of estimators and test statistics under weak identi�cation and identi�cation

failure; and (iii) the robust tests and CS�s improve the size properties of tests and CS�s

in �nite-samples noticeably compared to standard tests and CS�s.

Like the results in Hansen (1982), Pakes and Pollard (1989), and Andrews (2002),

the present paper applies when the GMM criterion function has a stochastic quadratic

approximation as a function of �: This rules out a number of models of interest in

which identi�cation failure may appear, including regime switching models, mixture

models, abrupt transition structural change models, and abrupt transition threshold
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autoregressive models.1

Now, we discuss the literature related to this paper. The following papers are

companions to this one: AC1, Andrews and Cheng (2007c) (AC1-SM), and Andrews

and Cheng (2007b) (AC2). These papers provide related, complementary results to

the present paper. AC1 provides results under high-level conditions and analyzes the

ARMA(1, 1) model in detail. AC1-SM provides proofs for AC1 and related results.

AC2 provides primitive conditions and results for estimators and tests based on log

likelihood criterion functions. It provides applications to a smooth transition threshold

autoregressive (STAR) model and a nonlinear binary choice model.

Cheng (2008) establishes results for a nonlinear regression model with multiple

sources of weak identi�cation, whereas the present paper only considers a single source.

However, the present paper applies to a much broader range of models.

Tests of H0 : � = 0 versus H1 : � 6= 0 are tests in which a nuisance parameter � only
appears under the alternative. Such tests have been considered in the literature since

Davies (1977). The results of this paper cover tests of this sort, as well as tests for a

whole range of linear and nonlinear hypotheses that involve (�; �; �) and corresponding

CS�s.

The weak instrument (IV) literature is closely related to this paper. This is true

especially of Stock andWright (2000), Kleibergen (2005), and Kleibergen andMavroeidis

(2009). In comparison to Stock and Wright (2000), the present paper di¤ers because

it focuses on criterion functions that are indexed by a parameter � that determines

the strength of identi�cation. It also di¤ers in that it considers subvector analysis. In

contrast to Kleibergen (2005) and Kleibergen and Mavroeidis (2009), the present paper

does not focus on Lagrange multiplier statistics. Rather, it investigates the behavior of

standard estimators and tests, as well as robust tests based on Wald and QLR statistics.

Other related papers from the weak IV literature include Nelson and Startz (1990),

Dufour (1997), Staiger and Stock (1997), Kleibergen (2002), and Moreira (2003).

Antoine and Renault (2009, 2010) and Caner (2010) consider GMM estimation with

IV�s that lie in the semi-strong category, using our terminology. Nelson and Startz

(2007) and Ma and Nelson (2008) analyze models like those considered in this paper.

They do not provide asymptotic results or robust tests and CS�s of the sort given in

this paper. Andrews and Mikusheva (2010) and Qu (2011) consider Lagrange multiplier

(LM) tests in a maximum likelihood context where identi�cation may fail, with emphasis

1For references concerning results for these models, see AC1.
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on dynamic stochastic general equilibrium models.

Sargan (1983), Phillips (1989), and Choi and Phillips (1992) establish �nite-sample

and asymptotic results for linear simultaneous equations models when some parameters

are not identi�ed. Shi and Phillips (2011) provide results for a nonlinear regression

model with nonstationary regressors in which identi�cation may fail.

The remainder of the paper is organized as follows. Section 2 de�nes the GMM

estimators, criterion functions, tests, and con�dence sets considered in the paper and

speci�es the drifting sequences of distributions that are considered. It also introduces

the two examples that are considered in the paper. Section 3 states the assumptions

employed. Section 4 provides the asymptotic results for the GMM estimators. Section

5 establishes the asymptotic distributions of Wald statistics under the null and under

alternatives, determines the asymptotic size of standard Wald CS�s, and introduces ro-

bust Wald tests and CS�s, whose asymptotic size is equal to their nominal size. Section

6 considers QLR CS�s based on the GMM criterion function. Section 7 provides numer-

ical results for the nonlinear regression model with endogeneity. Section 8 veri�es the

assumptions of the paper for the probit model with endogeneity. Appendix A provides

proofs of the GMM estimation results given in Section 4. It also provides some results

for minimum distance estimators. Appendix B provides proofs of the Wald test and CS

results given in Section 5.

Andrews and Cheng (2007d) provides two supplemental appendices. Supplemental

Appendix C provides some results used in the veri�cation of the assumptions for the

two examples. Supplemental Appendix D provides some additional numerical results

for the nonlinear regression model with endogeneity.

All limits below are taken �as n ! 1:�We let �min(A) and �max(A) denote the

smallest and largest eigenvalues, respectively, of a matrix A: All vectors are column

vectors. For notational simplicity, we often write (a; b) instead of (a0; b0)0 for vectors a

and b: Also, for a function f(c) with c = (a; b) (= (a0; b0)0); we often write f(a; b) instead

of f(c): Let 0d denote a d-vector of zeros. Because it arises frequently, we let 0 denote

a d�-vector of zeros, where d� is the dimension of a parameter �:

We let Xn(�) = op�(1) mean that sup�2� jjXn(�)jj = op(1); where jj�jj denotes the
Euclidean norm. We let) denote weak convergence of a sequence of stochastic processes

indexed by � 2 � for some space �: We employ the uniform metric d on the space Ev
of Rv-valued functions on �: See AC1-SM for more details regarding this.
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2. Estimator, Criterion Function, and Examples

2.1. GMM Estimators

The GMM sample criterion function is

Qn(�) = gn(�)
0Wn(�)gn(�)=2; (2.1)

where gn(�) : �! Rk is a vector of sample moment conditions and Wn(�) : �! Rk�k

is a symmetric random weight matrix.

The paper considers inference when � is not identi�ed (by the criterion function

Qn(�)) at some points in the parameter space. Lack of identi�cation occurs when Qn(�)

is �at with respect to (wrt) some sub-vector of �: To model this identi�cation problem,

� is partitioned into three sub-vectors:

� = (�; �; �) = ( ; �); where  = (�; �): (2.2)

The parameter � 2 Rd� is unidenti�ed when � = 0 (2 Rd�): The parameter  = (�; �) 2
Rd is always identi�ed. The parameter � 2 Rd� does not e¤ect the identi�cation of �:

These conditions allow for a broad range of cases, including cases where reparametriza-

tion is used to transform a model into the framework considered here.

The true distribution of the observations fWi : i � 1g is denoted F
 for some

parameter 
 2 �: We let P
 and E
 denote probability and expectation under F
: The
parameter space � for the true parameter, referred to as the �true parameter space,�is

compact and is of the form:

� = f
 = (�; �) : � 2 ��; � 2 ��(�)g; (2.3)

where �� is a compact subset of Rd� and ��(�) � �� 8� 2 �� for some compact metric
space �� with a metric that induces weak convergence of the bivariate distributions

(Wi;Wi+m) for all i;m � 1:2 In the case of a moment condition model, the parameter
� indexes the part of the distribution of the observations that is not determined by the

moment conditions, which typically is in�nite dimensional.

2That is, the metric satis�es: if 
 ! 
0; then (Wi;Wi+m) under 
 converges in distribution to
(Wi;Wi+m) under 
0: Note that � is a metric space with metric d�(
1; 
2) = jj�1 � �2jj+ d��(�1; �2);
where 
j = (�j ; �j) 2 � for j = 1; 2 and d�� is the metric on ��:
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By de�nition, the GMM estimator b�n (approximately) minimizes Qn(�) over an �op-

timization parameter space��:3

b�n 2 � and Qn(b�n) = inf
�2�

Qn(�) + o(n�1): (2.4)

We assume that the interior of � includes the true parameter space �� (see Assump-

tion B1 below). This ensures that the asymptotic distribution of b�n is not a¤ected by
boundary restrictions for any sequence of true parameters in ��: The focus of this paper

is not on the e¤ects of boundary restrictions.

Without loss of generality, the optimization parameter space � can be written as

� = f� = ( ; �) :  2 	(�); � 2 �g; where
� = f� : ( ; �) 2 � for some  g and

	(�) = f : ( ; �) 2 �g for � 2 �: (2.5)

We allow 	(�) to depend on � and, hence, � need not be a product space between  

and �:

The main focus of this paper is on GMM estimators, but the results also apply

to minimum distance (MD) estimators. However, the assumptions employed with MD

estimators are not as primitive. The MD sample criterion function is de�ned exactly

as the GMM criterion function is de�ned in (2.1) except that gn(�) is not a vector of

moment conditions, but rather, is the di¤erence between an unrestricted estimator b�n
of a parameter �0 and a vector of restrictions h(�) on �0: That is,

gn(�) =
b�n � h(�); where �0 = h(�0): (2.6)

2.2. Example 1: Nonlinear Regression with Endogeneity

The �rst example is a nonlinear regression model with endogenous regressors esti-

mated using instrumental variables (IV�s). The IV�s are assumed to be strong. Potential

identi�cation failure in this model arises due to the nonlinearity in the regression func-

tion. Let h(x; �) 2 R be a function of x that is known up to the �nite-dimensional

3The o(n�1) term in (2.4), and in (4.1) and (4.2) below, is a �xed sequence of constants that does
not depend on the true parameter 
 2 � and does not depend on � in (4.1).

6



parameter � 2 Rd� : The model is

Yi = � � h (X1;i; �) +X 0
2;i� + Ui and EUiZi = 0 (2.7)

for i = 1; :::; n; whereXi = (X1;i; X2;i) 2 RdX ; X2;i 2 RdX2 ; Zi 2 Rk; and k � dX2+d�+1:

The regressors Xi may be endogenous or exogenous. The function h(x; �) is assumed to

be twice continuously di¤erentiable wrt �: Let h�(x; �) and h��(x; �) denote the �rst-

and second-order partial derivatives of h(x; �) wrt �:

The GMM sample criterion function is

Qn(�) = gn(�)
0Wngn(�)=2; where gn(�) = n�1

nX
i=1

Ui(�)Zi;

Ui (�) = Yi � �h(X1;i; �)�X 0
2;i�; and Wn =

 
n�1

nX
i=1

ZiZ
0
i

!�1
: (2.8)

For simplicity, we use the optimal weight matrix under homoskedasticity. Alter-

natively, one can employ the optimal weight matrix under heteroskedasticity using a

preliminary estimator �n: Provided Wn(�) and �n satisfy the Assumptions in Lemma

3.1 below, all results hold for this two-step estimator as well. For example, the pre-

liminary estimator �n can be the estimator obtained under homoskedasticity, which is

shown below to satisfy the Assumptions in Lemma 3.1.

When � = 0; Ui(�) does not depend on �: In consequence, Qn(�) does not depend

on � when � = 0:

Suppose the random variables f(Xi; Zi; Ui) : i = 1; :::; ng are i.i.d. with distribution
� 2 ��; where �� is a compact metric space with a metric d� that induces weak conver-
gence of (Xi; Zi; Ui): In this example, the parameter of interest is � = (�; �; �) and the

nuisance parameter is �; which is in�nite dimensional.

The true parameter space for � is

�� = B� �Z� � ��; where B� = [�b�1; b�2] � R; (2.9)

b�1 � 0; b�2 � 0; b�1 and b�2 are not both equal to 0; Z� � Rd� is compact, and �� � Rd�

is compact.

Suppose jjh��(x; �1) � h��(x; �2)jj � M��(x)� 8�1; �2 2 � with jj�1 � �2jj � � for

some non-stochastic function M��(x) : X ! R+ that satis�es the conditions in (2.11)
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below, where � is some positive constant and X denotes the union of the supports of

X1;i over all � 2 ��: De�ne

di(�) = (h (X1;i; �) ; X2;i; h� (X1;i; �)) 2 RdX2+d�+1 and

d� ;i(�1; �2) = (h (X1;i; �1) ; h (X1;i; �2) ; X2;i) 2 RdX2+2: (2.10)

Let E� denote expectation under �: For any �
� 2 ��; the true parameter space for � is

��(��) = f� 2 �� : E�UiZi = 0; E�(U2i jXi; Zi) = �2(Xi; Zi) > 0 a.s.; E�jUij4+"

� C; E� sup
�2�

�
jjh (X1;i; �) jj2+" + jjh� (X1;i; �) jj2+" + jjh�� (X1;i; �) jj1+"

�
� C;

E�(kX2;ik2+" + jjZijj2+" +M��(X1;i)) � C; �min(E�ZiZ
0
i) � ";

E�Zid
�
 ;i(�1; �2)

0 2 Rk�(dX2+2) has full column rank 8�1; �2 2 � with �1 6= �2;

E�Zidi(�) 2 Rk�(dX2+d�+1) has full column rank 8� 2 �g; (2.11)

for some constants C <1 and " > 0: Note that in this example ��(��) does not depend

on ��:

2.3. Example 2: Probit Model with Endogeneity and

Possibly Weak Instruments

The second example is a probit model with endogeneity and IV�s that may be weak

or irrelevant, which causes identi�cation issues. Consider the following two-equation

model with endogeneity of Yi in the �rst equation:

y�i = Yi� +X 0
i�
�
1 + U�i and

Yi = Z 0i� +X 0
i�2 + Vi; (2.12)

where y�i ; Yi; U
�
i ; Vi 2 R; Xi 2 RdX ; Zi 2 RdZ ; and f(Xi; Zi; Ui; Vi) : i = 1; :::; ng are

i.i.d. The outcome variable y�i of the �rst equation is not observed. Only the binary

indicator yi = 1(y�i > 0) is observed, along with Yi; Xi; and Zi: That is, we observe

fWi = (yi; Yi; Xi; Zi) : i = 1; :::; ng: Similar models with binary, truncated, or censored
endogenous variables are considered in Amemiya (1974), Heckman (1978), Nelson and

Olson (1978), Lee (1981), Smith and Blundell (1986), Rivers and Vuong (1988), among

others.
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The reduced-form equations of the model are

y�i = Z 0i�� +X 0
i�1 + Ui and

Yi = Z 0i� +X 0
i�2 + Vi; where

�1 = ��1 + ��2 and Ui = U�i + �Vi: (2.13)

The variables (Xi; Zi) are independent of the errors (Ui; Vi) and the errors (Ui; Vi) have

a joint normal distribution with mean zero and covariance matrix �uv; where

�uv =

 
1 ��v

��v �2v

!
: (2.14)

The parameter of interest is � = (�; �; �); where � = (�1; �2):

In this model, weak identi�cation of � occurs when � is close to 0: We analyze a

GMM estimator of �; and corresponding tests concerning functions of �; in the presence

of weak identi�cation or lack of identi�cation.

Let L(�) denote the distribution function of the standard normal distribution. Let
L0(x) and L00(x) denote the �rst- and second-order derivatives of L(x) wrt x:We use the

abbreviations

Li(�) = L(Z 0i�� +X 0
i�1); L

0
i(�) = L0(Z 0i�� +X 0

i�1); and L
00
i (�) = L00(Z 0i�� +X 0

i�1):

(2.15)

Now we specify the moment conditions for the GMM estimator. The log-likelihood

function based on the �rst reduced-form equation in (2.13) and yi = 1(y�i > 0) is

`(�) =
nX
i=1

[yi log (Li(�)) + (1� yi) log (1� Li(�))] : (2.16)

Let a = �� and a0 = �0�0: The log-likelihood function `(�) depends on � only through

a and �1: In the Appendix, we show that E
0(`(�)jXi; Zi) is maximized at (a; �1) =

(a0; �1;0): The expectation of the score function wrt (a; �1) yields the �rst set of moment

conditions

E
0w1;i(�0)(yi � Li(�0))Zi = 0; where

w1;i(�) =
L0i(�)

Li(�)(1� Li(�))
and Zi = (Xi; Zi) 2 RdX�dZ : (2.17)
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The second reduced-form equation in (2.13) implies

E
0Vi(�0)Zi = 0; where Vi(�) = Yi � Z 0i� �X 0
i�2: (2.18)

We consider a two-step GMM estimator of � based on the moment conditions in

(2.17) and (2.18). The resulting estimator has not appeared in the literature previously,

but it is close to estimators in the papers referenced above, e.g., see Rivers and Vuong

(1988). The GMM sample criterion function is

Qn(�) = gn(�)
0Wngn(�)=2; where (2.19)

gn(�) = n�1
nX
i=1

ei(�)
 Zi 2 R2(dX+dZ) and ei(�) =
�
w1;i(�)(yi � Li(�))

Yi � Z 0i� �X 0
i�2

�
:

In the �rst step, the weight matrix Wn is the identity matrix, yielding an estimator �n:

In the second step, Wn is the optimal weight matrix that takes the form

Wn =Wn(�n); where Wn(�) = n�1
nX
i=1

(ei(�)ei(�)
0)
 (ZiZ

0
i): (2.20)

The optimization and true parameter spaces � and �� are � = �k
j=1[�bL;j; bH;j] �

Z � � and �� = �k
j=1[�b�L;j; b�H;j] � Z� � ��; where bL;j; bH;j; b�L;j; b�H;j 2 R; 0 � b�L;j <

bL;j; 0 � b�H;j < bH;j; b
�
L;j; b

�
H;j are not both 0; for j = 1; :::; k; Z� � int(Z) � R2dX ;

�� � int(�) � R; Z�;Z;��; and � are compact.4

De�ne w1;i = sup�2� jw1;i(�)j and w2;i = sup�2� jw2;i(�)j; where w2;i(�) = L00i (�)=

(Li(�)(1� Li(�))):

The nuisance parameter � is de�ned by � = (�; �v; F ) 2 ��; where F is the distrib-

ution of (Xi; Zi) and �� is a compact metric space with a metric d� that induces weak

convergence of (Xi; Zi):We use P� and E� to denote probability and expectation under

�; respectively, for random quantities that depend only on (Xi; Zi): For any �
� 2 ��;

the true parameter space for � is

�(��) = f� = (�; �v; F ) 2 � : �v � "; P�(Z
0
ic = 0) < 1 for any c 6= 0;

E�(jjZijj4+" + w4+"1;i + w2+"2;i ) � Cg; (2.21)

4Note that Z and Z� are not related to the support of Zi: Rather, they are the optimization and
true parameter spaces for �; which has dimension 2dX :
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for some C <1 and " > 0: Note that in this example, �(��) does not depend on ��:

2.4. Con�dence Sets and Tests

We return now to the general framework. We are interested in the e¤ect of lack of

identi�cation or weak identi�cation on the GMM estimator b�n: Also, we are interested
in its e¤ects on CS�s for various functions r(�) of � and on tests of null hypotheses of

the form H0 : r(�) = v:

A CS is obtained by inverting a test. A nominal 1� � CS for r(�) is

CSn = fv : Tn(v) � cn;1��(v)g; (2.22)

where Tn (v) is a test statistic, such as a t; Wald, or QLR statistic, and cn;1�� (v) is a
critical value for testing H0 : r(�) = v: The critical values considered in this paper may

depend on the null value v of r(�) as well as on the data. The coverage probability of a

CS for r(�) is

P
(r(�) 2 CSn) = P
(Tn(r(�)) � cn;1��(r(�))); (2.23)

where P
 (�) denotes probability when 
 is the true value.
We are interested in the �nite-sample size of the CS, which is the smallest �nite-

sample coverage probability of the CS over the parameter space. It is approximated by

the asymptotic size, which is de�ned to be

AsySz = lim inf
n!1

inf

2�

P
(r(�) 2 CSn): (2.24)

For a test, we are interested in its null rejection probabilities and in particular its

maximum null rejection probability, which is the size of the test. A test�s asymptotic

size is an approximation to the latter. The null rejection probabilities and asymptotic

size of a test are given by

P
(Tn(v) > cn;1��(v)) for 
 = (�; �) 2 � with r(�) = v and

AsySz = lim sup
n!1

sup

2�:r(�)=v

P
(Tn(v) > cn;1��(v)): (2.25)
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2.5. Drifting Sequences of Distributions

To determine the asymptotic size of a CS or test, we need to derive the asymptotic

distribution of the test statistic Tn(vn) under sequences of true parameters 
n = (�n; �n)
and vn = r(�n) that may depend on n: The reason is that the value of 
 at which the

�nite-sample size of a CS or test is attained may vary with the sample size. Similarly,

to investigate the �nite-sample behavior of the GMM estimator under weak identi�-

cation, we need to consider its asymptotic behavior under drifting sequences of true

distributions� as in Stock and Wright (2000).

Results in Andrews and Guggenberger (2010) and Andrews, Cheng, and Guggen-

berger (2009) show that the asymptotic size of CS�s and tests are determined by certain

drifting sequences of distributions. In this paper, the following sequences f
ng are key:

� (
0) = ff
n 2 � : n � 1g : 
n ! 
0 2 �g ; (2.26)

� (
0; 0; b) =
�
f
ng 2 � (
0) : �0 = 0 and n1=2�n ! b 2 (R [ f�1g)d�

	
; and

� (
0;1; !0) =
�
f
ng 2 �(
0) : n1=2jj�njj ! 1 and �n=jj�njj ! !0 2 Rd�

	
;

where 
0 = (�0; �0; �0; �0) and 
n = (�n; �n; �n; �n):

The sequences in � (
0; 0; b) are in Categories I and II and are sequences for which

f�ng is close to 0: �n ! 0: When jjbjj < 1; f�ng is within O(n�1=2) of 0 and the
sequence is in Category I. The sequences in � (
0;1; !0) are in Categories II and III

and are more distant from � = 0: n1=2jj�njj ! 1: The sets �(
0; 0; b) and �(
0;1; !0)

are not disjoint. Both contain sequences in Category II.

Throughout the paper we use the terminology: �under f
ng 2 �(
0)�means �when
the true parameters are f
ng 2 �(
0) for any 
0 2 �;��under f
ng 2 �(
0; 0; b)�means
�when the true parameters are f
ng 2 �(
0; 0; b) for any 
0 2 � with �0 = 0 and any
b 2 (R[f�1g)d� ;�and �under f
ng 2 �(
0;1; !0)�means �when the true parameters

are f
ng 2 �(
0;1; !0) for any 
0 2 � and any !0 2 Rd� with jj!0jj = 1:�

3. Assumptions

This section provides relatively primitive su¢ cient conditions for GMM estimators.
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3.1. Assumption GMM1

The �rst assumption speci�es the basic identi�cation problem. It also provides con-

ditions that are used to determine the probability limit of the GMM estimator, when it

exists, under all categories of drifting sequences of distributions.

Assumption GMM1. (i) If � = 0; gn(�) and Wn(�) do not depend on �; 8� 2 �;
8n � 1; for any true parameter 
� 2 �:
(ii) Under f
ng 2 �(
0); sup�2� jjgn(�)�g0(�; 
0)jj !p 0 and sup�2� jjWn(�)�W(�; 
0)jj
!p 0 for some non-random functions g0(�; 
0) : � � � ! Rk and W(�; 
0) : � � � !
Rk�k:

(iii) When �0 = 0; g0( ; �; 
0) = 0 if and only if  =  0; 8� 2 �; 8
0 2 �:
(iv) When �0 6= 0; g0(�; 
0) = 0 if and only if � = �0; 8
0 2 �:
(v) g0(�; 
0) is continuously di¤erentiable in � on �; with its partial derivatives wrt �

and  denoted by g�(�; 
0) 2 Rk�d� and g (�; 
0) 2 Rk�d ; respectively.

(vi) W(�; 
0) is continuous in � on � 8
0 2 �:
(vii) 0 < �min(W( 0; �; 
0)) � �max(W( 0; �; 
0)) <1 8
0 2 � and 8� 2 �:
(viii) �min(g ( 0; �; 
0)

0W( 0; �; 
0)g ( 0; �; 
0)) > 0 8
0 2 � with �0 = 0:
(ix) 	(�) is compact 8� 2 �; and � and � are compact.
(x) 8" > 0; 9� > 0 such that dH (	 (�1) ;	(�2)) < " 8�1; �2 2 � with k�1 � �2k < �;

where dH (�) is the Hausdor¤ metric.

Assumption GMM1(i) is the key condition that concerns the lack of identi�cation

(by the moment functions) when � = 0: Assumptions GMM1(ii)-(x) are mostly fairly

standard GMM regularity conditions, but with some adjustments due to the lack of

identi�cation of � when � = 0; e.g., see Assumption GMM1(iii). Note that Assumption

GMM1(viii) involves the derivative matrix of g0(�; 
0) with respect to  only, not � =

( ; �): In consequence, this assumption is not restrictive.

The weight matrix Wn(�) depends on � only when a continuous updating GMM

estimator is considered. For a two-step estimator, Wn(�) depends on a preliminary

estimator �n; but does not depend on �: LetWn(�n) be the weight matrix for a two-step

estimator. (This is a slight abuse of notation because in (2.1) Wn(�) and gn(�) are

indexed by the same �; whereas here they are di¤erent.)

For the weight matrix of a two-step estimator to satisfy Assumption GMM1(ii), we

need

Wn(�n)!p W(�0; 
0) (3.1)
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for some non-random matrix W(�0; 
0) under f
ng 2 �(
0): This is not an innocuous
assumption in the weak identi�cation scenario because the preliminary estimator �n may

be inconsistent. Lemma 3.1 below shows that (3.1) holds despite the inconsistency of

�n that occurs under f
ng 2 �(
0; 0; b) with jjbjj <1; where �n = ( n; �n):

Lemma 3.1. Suppose �n = ( n; �n) is an estimator of � such that (i) �n !p �0 under

f
ng 2 �(
0); 8
0 2 � with �0 6= 0; (ii)  n !p  0 under f
ng 2 �(
0); 8
0 2 � with
�0 = 0; (iii) Wn(�) satis�es Assumptions GMM1(i), GMM1(ii), and GMM1(vi), and

(iv) � is compact. Then, Wn(�n)!p W(�0; 
0) under f
ng 2 �(
0) 8
0 2 �:

Comments. 1. Lemma 3.1 allows for inconsistency of �n; i.e., �n � �n 6= op(1); under

f
ng 2 �(
0) with �0 = 0: Inconsistency occurs under f
ng 2 �(
0; 0; b) with jjbjj <1;

see Theorem 4.1(a) below.

2. Typically, the preliminary estimator �n is obtained by minimizing Qn(�) in (2.1)

with a weight matrix Wn(�) that does not depend on � or any estimator of �: In such

cases, the properties of �n assumed in Lemma 3.1 hold provided Assumption GMM1

holds with the speci�ed weight matrix.5

Example 1 (cont.). For this example, the key quantities in Assumption GMM1 are

g0(�; 
0) = E�0(�0h(X1;i; �0)� �h(X1;i; �) +X 0
2;i(�0 � �))Zi;

W(�; 
0) = W(
0) =
�
E�0ZiZ

0
i

��1
;

g (�; 
0) = �E�0Zid ;i(�)
0; and g�(�; 
0) = �E�0Zid�;i(�)

0; where

d ;i(�) = (h(X1;i; �); X2;i) 2 RdX2+1 and

d�;i(�) = (h(X1;i; �); X2;i; �h�(X1;i; �)) 2 RdX2+d�+1: (3.2)

Assumption GMM1(i) holds by the form of gn(�) and Wn in (2.8) and the fact that

Ui(�) does not depend on � when � = 0: Assumption GMM1(ii) holds by the uniform

LLN in Lemma 12.1 in Supplemental Appendix C under the conditions in (2.11).

To verify Assumption GMM1(iii), we write

g0( ; �; 
0)� g0( 0; �; 
0) = E�0(��h(X1;i; �) +X 0
2;i(�0 � �))Zi =

�
E�0Zid ;i(�)

0��;
(3.3)

where � = (��; �0 � �) 2 RdX2+1: We need to show that when �0 = 0 the quantity in

(3.3) does not equal zero 8 6=  0 and 8� 2 �: This holds because d ;i(�) is a sub-vector
5This follows from the combination of Lemma 9.1 in Appendix A and Lemma 3.1 of AC1.
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of d� ;i(�1; �2) and E�Zid
�
 ;i(�1; �2)

0 has full column rank 8�1; �2 2 � with �1 6= �2 by

(2.11).

To verify Assumption GMM1(iv), we write

g0(�; 
0)� g0(�0; 
0) = E�0(�0h(X1;i; �0)� �h(X1;i; �) +X 0
2;i(�0 � �))Zi

=
�
E�0Zid

�
 ;i(�0; �)

0� c; (3.4)

where c = (�0;��; �0� �) 2 RdX2+2:We need to show that when �0 6= 0 the quantity in
(3.4) does not equal zero when � 6= �0: This holds when � 6= �0 because E�0Zid

�
 ;i(�0; �)

0

has full column rank for � 6= �0 by (2.11). When � = �0;

g0(�; 
0)� g0(�0; 
0) = g0( ; �0; 
0)� g0( 0; �0; 
0) =
�
E�0Zid ;i(�0)

0��1; (3.5)

where �1 = (�0 � �; �0 � �) 2 RdX2+1: The quantity in (3.5) does not equal zero for

 6=  0 because E�0Zid ;i(�0)
0 has full column rank. This completes the veri�cation of

Assumption GMM1(iv).

Assumption GMM1(v) holds by the assumption that h(x; �) is twice continuously

di¤erentiable wrt � and the moment conditions in (2.11). Assumption GMM1(vi) holds

automatically because W(�; 
0) = (E�0ZiZ
0
i)
�1 does not depend on �: Assumption

GMM1(vii) holds because E�0ZiZ
0
i 2 Rk�k is positive de�nite 8
0 2 �: Assumption

GMM1(viii) holds because W( 0; �; 
0) = E�0ZiZ
0
i is positive de�nite and g ( 0; �; 
0)

has full rank by the conditions in (2.11). Assumption GMM1(ix) holds because � =

B�Z ��; and B; Z; �, and 	 = B�Z are all compact. Assumption GMM1(x) holds
automatically because 	 does not depend on �: �
For brevity, the veri�cations of Assumptions GMM1 and GMM2-GMM5 below for

the probit model with endogeneity are given in Section 8.

3.2. Assumption GMM2

The next assumption, Assumption GMM2, is used when verifying that the GMM

criterion function satis�es a quadratic approximation with respect to  when f
ng 2
�(
0; 0; b) and with respect to � when f
ng 2 �(
0;1; !0): In the former case, the

expansion is around the value

 0;n = (0; �n); (3.6)
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rather than around the true value  n = (�n; �n): The reason for expanding around  0;n
is that the �rst term in the expansion of Qn( ; �) does not depend on � when  =  0;n

by Assumption GMM1(i).

Under f
ng 2 �(
0); de�ne the centered sample moment conditions by

egn (�; 
0) = gn (�)� g0 (�; 
0) : (3.7)

We de�ne a matrix B(�) that is used to normalize the (generalized) �rst-derivative

matrix of the sample moments gn(�) so that it is full-rank asymptotically. Let B(�) be

the d� � d� diagonal matrix de�ned by

B(�) = Diagf10d ; �(�)1
0
d�g; (3.8)

where �(�) = � if � is a scalar and �(�) = jj�jj if � is a vector.6

Assumption GMM2. (i) Under f
ng 2 �(
0; 0; b);
sup 2	(�):jj � 0;njj��n jjegn( ; �; 
0)�egn( 0;n; �; 
0)jj=(n�1=2+ jj � 0;njj) = op�(1) for all

constants �n ! 0:

(ii) Under f
ng 2 �(
0;1; !0); sup�2�n(�n) jjegn(�; 
0)�egn(�n; 
0)jj=(n�1=2+ jjB(�n)(��
�n)jj) = op(1) for all constants �n ! 0; where �n (�n) = f� 2 � : k �  nk � �n k�nk
and k� � �nk � �ng:

When gn (�) is continuously di¤erentiable in �; Assumption GMM2 is easy to verify.

In this case, Assumption GMM2� below is a set of su¢ cient conditions for Assumption

GMM2.

Assumption GMM2 allows for non-smooth sample moment conditions. It is analo-

gous to Assumption GMM2(d) of Andrews (2002), which in turn is shown to be equiv-

alent to condition (iii) of Theorem 3.3 of Pakes and Pollard (1989). In contrast to these

conditions in the literature, Assumption GMM2 applies under drifting sequences of true

parameters and provides conditions that allow for weak identi�cation. Nevertheless,

Assumption GMM2 can be veri�ed by methods used in Pakes and Pollard (1989) and

Andrews (2002).

Assumption GMM2�. (i) gn(�) is continuously di¤erentiable in � on � 8n � 1:
6The matrix B(�) is de�ned di¤erently in the scalar and vector � cases because in the scalar case

the use of �; rather than jj�jj; produces noticeably simpler (but equivalent) formulae, but in the vector
case jj�jj is required.

16



(ii) Under f
ng 2 �(
0; 0; b); sup�2�:jj � 0;njj��n k(@=@ 
0)gn(�)� g (�; 
0)k = op(1) for

all constants �n ! 0:

(iii) Under f
ng 2 �(
0;1; !0); sup�2�n(�n) k((@=@�
0)gn(�)� g�(�; 
0))B

�1(�n)k = op(1)

for all constants �n ! 0:

When gn(�) takes the form of a sample average, Assumption GMM2
� can be veri�ed

by a uniform LLN and the switch of E and @ under some regularity conditions.

Lemma 3.2. Assumption GMM2� implies Assumption GMM2.

Example 1 (cont.). We verify Assumption GMM2 in this example using the su¢ cient
condition Assumption GMM2�: The key quantities in Assumption GMM2� are

@

@ 0
gn(�) = n�1

nX
i=1

Zid ;i(�)
0 and

@

@�0
gn(�) = n�1

nX
i=1

Zid�;i(�)
0: (3.9)

Assumption GMM2�(i) holds with the partial derivatives given in (3.9). Assumption

GMM2�(ii) holds by the uniform LLN given in Lemma 12.1 in Supplemental Appendix

C under the conditions in (2.11). Assumption GMM2�(iii) holds by this uniform LLN

and �=�n = 1 + o(1) for � 2 �n(�n): �

3.3. Assumption GMM3

Under Assumptions GMM1 and GMM2, Assumption GMM3 below is used when

establishing the asymptotic distribution of the GMM estimator under weak and semi-

strong identi�cation, i.e., when f
ng 2 �(
0; 0; b):
De�ne the k � d� matrix of partial derivatives of the average population moment

function wrt the true � value, ��; to be

Kn;g(�; 

�) = n�1

nX
i=1

@

@��0
E
�g(Wi; �); (3.10)

where 
� = (��; ��; ��; ��): The domain of the function Kn;g(�; 

�) is �� � �0; where

�� = f� 2 � : jj�jj < �g and �0 = f
a = (a�; �; �; �) 2 � : 
 = (�; �; �; �) 2 � with
jj�jj < � and a 2 [0; 1]g for some � > 0:7

7The constant � > 0 is as in Assumption B2(iii) stated below. The set �0 is not empty by Assumption
B2(ii).
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Assumption GMM3. (i) gn (�) takes the form gn(�) = n�1
Pn

i=1 g(Wi; �) for some

function g (Wi; �) 2 Rk 8� 2 �:
(ii) E
�g(Wi;  

�; �) = 0 8� 2 �; 8i � 1 when the true parameter is 
� 8
� =
( �; ��; ��) 2 � with �� = 0:
(iii) Under f
ng 2 �(
0; 0; b); n�1=2

Pn
i=1(g(Wi;  0;n; �n)� E
ng(Wi;  0;n; �n))!d N(0;


g(
0)) for some k by k matrix 
g(
0):

(iv) (a) Kn;g(�; 

�) exists 8(�; 
�) 2 �� � �0; 8n � 1: (b) For some non-stochastic

k � d� matrix-valued function Kg( 0; �; 
0); Kn;g( n; �; e
n) ! Kg( 0; �; 
0) uniformly

over � 2 � for all non-stochastic sequences f ng and fe
ng such that e
n 2 �; e
n ! 
0 =

(0; �0; �0; �0) for some 
0 2 �; ( n; �) 2 �; and  n !  0 = (0; �0): (c) Kg( 0; �; 
0) is

continuous on � 8
0 2 � with �0 = 0:
(v) 8!0 2 Rd� with jj!0jj = 1; Kg( 0; �; 
0)!0 = g ( 0; �; 
0)S for some S 2 Rd if and

only if � = �0:

(vi) Under f
ng 2 �(
0; 0; b); n�1
Pn

i=1(@=@ 
0)E
ng(Wi;  ; �)j( ;�)=�n ! g (�0; 
0):

Assumption GMM3(iii) can be veri�ed using a triangular array CLT. Although As-

sumption GMM3(iv) is somewhat complicated, it is not restrictive, see the veri�cation of

it in the two examples. A set of primitive su¢ cient conditions for Assumption GMM3(iv)

is given in Appendix A of AC1-SM.8

In Assumption GMM3(v), the equality holds for � = �0 with S = �[Id� : 0d��d� ]0!0
by Lemma 9.3 in AC1-SM under the assumptions therein. For any � 6= �0; Assumption

GMM(v) requires that any linear combination of the columns of Kg( 0; �; 
0) cannot

be in the column space of g ( 0; �; 
0):

With identically distributed observations, Assumption GMM3(vi) can be veri�ed by

the exchange of E and @ under suitable regularity conditions.

Example 1 (cont.). For this example, the key quantities in Assumption GMM3 are

g(Wi; �) = (Yi � �h(X1;i; �)�X 0
2;i�)Zi;


g(
0) = E�0U
2
i ZiZ

0
i; and

Kg;n(�; 

�) = Kg(�; 


�) = E��h(X1;i; �
�)Zi: (3.11)

Assumption GMM3(i) holds with g(Wi; �) in (3.11).

8The su¢ cient conditions are for Assumption C5 of AC1, which is the same as Assumption GMM3(iv)
but with m(Wi; �) of AC1 in place of g(Wi; �):
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To verify Assumption GMM3(ii), we have

E��g(Wi; �) = E��
�
Ui + ��h(X1;i; �

�)� �h(X1;i; �) +X 0
2;i(�

� � �)
�
Zi: (3.12)

When � = �� = 0 and � = ��; E��g(Wi; �) = 0 8� 2 �:
Next, we show that Assumption GMM3(iii) holds with 
g(
0) in (3.11). De�ne

Gg;n(�n) = n�1=2
nX
i=1

�
g(Wi;  0;n; �n)� E�ng(Wi;  0;n; �n)

�
(3.13)

= n�1=2
nX
i=1

UiZi + �n[n
�1=2

nX
i=1

�
h(Xi; �n)Zi � E�nh(Xi; �n)Zi

�
]:

By the CLT for triangular arrays of row-wise i.i.d. random variables given in Lemma

12.3 in Supplemental Appendix C, n�1=2
Pn

i=1 UiZi !d N(0;
g(
0)): The second term

in the second line of (3.13) is op(1) because �n ! 0 and n�1=2
Pn

i=1(h(Xi; �n)Zi �
E�nh(Xi; �n)Zi) = Op(1) by the CLT in Lemma 12.3 in Supplemental Appendix C.

Hence, Gg;n(�n)!d N(0;
g(
0)):

Next, we show that Assumption GMM3(iv) holds with Kg;n(�; 

�) and Kg(�; 


�) in

(3.11). Assumption GMM3(iv)(a) is implied by (3.12) and the moment conditions in

(2.11). The convergence in Assumption GMM3(iv)(b) holds because �n ! �0 induces

weak convergence of (Xi; Zi) by the de�nition of the metric on �� and E� sup�2� jjh(X1;i;

�)Zijj1+� � C for some � > 0 and C < 1 by the conditions in (2.11). The con-

vergence holds uniformly over � 2 � by Lemma 12.1 in Supplemental Appendix C

because � is compact and E�� sup�2� jjh�(X1;i; �)jj � jjZijj � C for some C < 1: As-

sumption GMM3(iv)(c) holds because � is compact, h(x; �) is continuous in �; and

E�� sup�2� jjh(X1;i; �)jj � jjZijj � C for some C < 1 by the conditions in (2.11). This

completes the veri�cation of Assumption GMM(iv).

To verify Assumption GMM3(v), note that for S 2 RdX2+1 we have

Kg( 0; �; 
0)!0 � g ( 0; �; 
0)S

= E�0Zih(X1;i; �0)!0 + E�0Zid ;i(�)
0S

= E�0Zid
�
 ;i(�0; �)

0�2; where �2 = (!0; S) 6= 0d�+2: (3.14)

Because E�0Zid
�
 ;i(�0; �)

0 has full column rank for all � 6= �0 by (2.11),Kg( 0; �; 
0)!0 6=
g ( 0; �; 
0)S for any � 6= �0: When � = �0; Kg( 0; �; 
0)!0 = g ( 0; �; 
0)S if S =
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(�!0; 0d�) (2 Rd�+1): This completes the veri�cation of Assumption GMM3 for this

example. �

3.4. Assumption GMM4

To obtain the asymptotic distribution of b�n when �n = O(n�1=2) via the continuous

mapping theorem, we use Assumption GMM4 stated below.

Under Assumptions GMM1(i) and GMM1(ii), W( 0; �; 
0) does not depend on �
when �0 = 0: For simplicity, let W( 0; 
0) abbreviate W( 0; �; 
0) when �0 = 0:
The following quantities arise in the asymptotic distributions of b�n and various test

statistics when f
ng 2 �(
0; 0; b) and jjbjj <1: De�ne


(�1; �2; 
0) = g ( 0; �1; 
0)
0W( 0; 
0)
g(
0)W( 0; 
0)g ( 0; �2; 
0);

H(�; 
0) = g ( 0; �; 
0)
0W( 0; 
0)g ( 0; �; 
0); and

K( 0; �; 
0) = g ( 0; �; 
0)
0W( 0; 
0)Kg( 0; �; 
0): (3.15)

Let G(�; 
0) denote a mean zero Gaussian process indexed by � 2 � with bounded

continuous sample paths and covariance kernel 
(�1; �2; 
0) for �1; �2 2 �:
Next, we de�ne a �weighted non-central chi-square� process f�(�; 
0; b) : � 2 �g

that arises in the asymptotic distributions. Let

�(�; 
0; b) = �
1

2
(G(�; 
0) +K(�; 
0) b)

0H�1(�; 
0) (G(�; 
0) +K(�; 
0)b) : (3.16)

Under Assumptions GMM1-GMM3, f�(�; 
0; b) : � 2 �g has bounded continuous sam-
ple paths a.s.

Assumption GMM4. Each sample path of the stochastic process f�(�; 
0; b) : � 2 �g
in some set A(
0; b) with P
0(A(
0; b)) = 1 is minimized over � at a unique point

(which may depend on the sample path), denoted ��(
0; b); 8
0 2 � with �0 = 0; 8b
with jjbjj <1:

In Assumption GMM4, ��(
0; b) is random.

Next, we provide a su¢ cient condition for Assumption GMM4. We partition g (�; 
0)

2 Rk�d as

g (�; 
0) = [g�(�; 
0) : g�(�; 
0)]; (3.17)

where g�(�; 
0) 2 Rk�d� and g�(�; 
0) 2 Rk�d� : When �0 = 0; g�( 0; �; 
0) does not
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depend on � by Assumptions GMM1(i) and GMM3(i) and is denoted by g�( 0; 
0) for

simplicity: When d� = 1 and �0 = 0; de�ne

g� ( 0; �1; �2; 
0) = [g�( 0; �1; 
0) : g�( 0; �2; 
0) : g�( 0; 
0)] 2 Rk�(d�+2): (3.18)

Assumption GMM4�. (i) d� = 1 (e.g., � is a scalar).
(ii) g� ( 0; �1; �2; 
0) has full column rank, 8�1; �2 2 � with �1 6= �2; 8
0 2 � with
�0 = 0:

(iii) 
g(
0) is positive de�nite, 8
0 2 � with �0 = 0:

Lemma 3.3. Assumptions GMM1-GMM3 and GMM4� imply Assumption GMM4.

Example 1 (cont.). We verify Assumption GMM4 in this example using the su¢ cient
condition Assumption GMM4�: The key quantity in Assumption GMM4� is

g� ( 0; �1; �2; 
0) = �E�0Zi(h(X1;i; �1); h(X1;i; �2); X
0
2;i) = �E�0Zid

�
 ;i(�1; �2): (3.19)

Assumption GMM4�(i) holds automatically. Assumption GMM4�(ii) holds because

E�0Zid
�
 ;i(�1; �2) has full column rank 8�1; �2 2 � with �1 6= �2 by (2.11). Assumption

GMM4�(iii) holds with 
g(
0) = E�0U
2
i ZiZ

0
i because E�0ZiZ

0
i is positive de�nite and

E(U2i jZi) > 0 a.s. This completes the veri�cation of Assumption GMM4. �

3.5. Assumption GMM5

Under Assumptions GMM1 and GMM2, Assumption GMM5 is used below to estab-

lish the asymptotic distribution of the GMM estimator under semi-strong and strong

identi�cation, i.e., when f
ng 2 �(
0;1; !0):

Assumption GMM5. Under f
ng 2 �(
0;1; !0);

(i) n1=2gn(�n)!d N(0; Vg(
0)) for some symmetric and positive de�nite d� � d� matrix

Vg(
0);

(ii) for all constants �n ! 0; sup�2�n(�n) jj(g�(�; 
0)� g�(�n; 
0))B
�1(�n)jj = o(1); and

(iii) g�(�n; 
0)B
�1(�n)! Jg(
0) for some matrix Jg(
0) 2 Rk�d� with full column rank.9

9In the vector � case, Jg(
0) may depend on !0 as well as 
0:
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Now, we de�ne two key quantities that arise in the asymptotic distribution of the

estimator b�n when f
ng 2 �(
0;1; !0): Let

V (
0) = Jg(
0)
0W(�0; 
0)Vg (
0)W(�0; 
0)Jg (
0) and

J(
0) = Jg(
0)
0W(�0; 
0)Jg (
0) : (3.20)

Let G�(
0) � N(0d� ; V (
0)) for 
0 2 �:

Example 1 (cont.). The key quantities in Assumption GMM5 for this example are

Vg(
0) = E�0U
2
i ZiZ

0
i and Jg(
0) = �E�0Zidi(�0)

0: (3.21)

Assumption GMM5(i) holds by the CLT for triangular arrays of row-wise i.i.d. ran-

dom variables given in Lemma 12.3 in Supplemental Appendix C. Assumption GMM5(ii)

holds with g�(�; 
0) de�ned as in (3.2) because �n=� = 1 + o(1) for � 2 �n(�n) and
g�(�; 
0)B

�1(�) = �E�0Zidi(�)0 is continuous in � uniformly over � 2 �; which in turn
holds by the moment conditions in (2.11) and the compactness of �:

Assumption GMM5(iii) holds because

g�(�n; 
n)B
�1(�n) = �E�nZidi(�n)

0 ! �E�0Zidi(�0)
0; (3.22)

where the convergence holds because (i) E�nZidi(�)
0 ! E�0Zidi(�) uniformly over � 2 �

by arguments analogous to those used in the veri�cation of Assumption GMM3(iv)(b)

and (ii) �n ! �0: The matrix Jg(
0) has full column rank by (2.11). This completes the

veri�cation of Assumption GMM5. �

3.6. Minimum Distance Estimators

Assumptions GMM1, GMM2, GMM4, and GMM5 apply equally well to the MD

estimator as to the GMM estimator. Only Assumption GMM3 does not apply to the MD

estimator. In place of part of Assumption GMM3, we employ the following assumption

for MD estimators.

Assumption MD. Under f
ng 2 �(
0; 0; b); n1=2gn( 0;n; �n) = Op(1):
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3.7. Parameter Space Assumptions

Next, we specify conditions on the parameter spaces � and �:

De�ne ��� = f� 2 �� : jj�jj < �g; where �� is the true parameter space for �; see
(2.3). The optimization parameter space � satis�es:

Assumption B1. (i) int(�) � ��:
(ii) For some � > 0; � � f� 2 Rd� : jj�jj < �g�Z0�� � ��� for some non-empty open
set Z0�Rd� and � as in (2.5).

(iii) � is compact.

Because the optimization parameter space is user selected, Assumption B1 can be made

to hold by the choice of �:

The true parameter space � satis�es:

Assumption B2. (i) � is compact and (2.3) holds.
(ii) 8� > 0; 9
 = (�; �; �; �) 2 � with 0 < jj�jj < �:

(iii) 8
 = (�; �; �; �) 2 � with 0 < jj�jj < � for some � > 0; 
a = (a�; �; �; �) 2 �
8a 2 [0; 1]:

Assumption B2(ii) guarantees that � is not empty and that there are elements 
 of �

whose � values are non-zero but are arbitrarily close to 0; which is the region of the true

parameter space where near lack of identi�cation occurs. Assumption B2(iii) ensures

that � is compatible with the existence of the partial derivatives that arise in (3.10) and

Assumption GMM3.

Example 1 (cont.). Given the de�nitions in (2.9)-(2.11), the true parameter space
� is of the form in (2.3). Thus, Assumption B2(i) holds. Assumption B2(ii) follows

from the form of B� given in (2.9). Assumption B2(iii) follows from the form of B� and
the fact that �� is a product space and ��(��) does not depend on ��: Hence, the true

parameter space � satis�es Assumption B2.

The optimization parameter space � takes the form

� = B � Z � �; where B = [�b1; b2] � R; (3.23)

b1 > b�1; b2 > b�2; Z � Rd� is compact, � � Rd� is compact, Z� � int(Z); and
B� � int(B): Given these conditions, Assumptions B1(i) and B1(iii) follow immediately.
Assumption B1(ii) holds by taking � < minfb�1; b�2g and Z0 = int(Z): �
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4. GMM Estimation Results

This section provides the asymptotic results of the paper for the GMM estimator b�n:
De�ne a concentrated GMM estimator b n(�) (2 	(�)) of  for given � 2 � by

Qn(b n(�); �) = inf
 2	(�)

Qn( ; �) + o(n�1): (4.1)

Let Qc
n(�) denote the concentrated GMM criterion function Qn(b n(�); �): De�ne an

extremum estimator b�n (2 �) by
Qc
n(b�n) = inf

�2�
Qc
n(�) + o(n�1): (4.2)

We assume that the GMM estimator b�n in (2.4) can be written as b�n = (b n(b�n); b�n):
Note that if (4.1) and (4.2) hold and b�n = (b n(b�n); b�n); then (2.4) automatically holds.
For 
n = (�n; �n; �n; �n) 2 �; let Q0;n = Qn( 0;n; �); where  0;n = (0; �n): Note that

Q0;n does not depend on � by Assumption GMM1(i).

De�ne the Gaussian process f�(�; 
0; b) : � 2 �g by

�(�; 
0; b) = �H�1(�; 
0)(G(�; 
0) +K(�; 
0)b)� (b; 0d�); (4.3)

where (b; 0d�) 2 Rd : Note that, by (3.16) and (4.3), �(�; 
0; b) = �(1=2)(�(�; 
0; b) +
(b; 0d�))

0H(�; 
0)(�(�; 
0; b) + (b; 0d�)): Let

��(
0; b) = argmin
�2�

�(�; 
0; b): (4.4)

Theorem 4.1. Suppose Assumptions GMM1-GMM4, B1, and B2 hold. Under f
ng 2
�(
0; 0; b) with jjbjj <1;

(a)

 
n1=2(b n �  n)b�n

!
!d

 
�(��(
0; b); 
0; b)

��(
0; b)

!
; and

(b) n
�
Qn(b�n)�Q0;n

�
!d inf�2� �(�; 
0; b):

Comments. 1. The results of Theorem 4.1 and Theorem 4.2 below are the same

as those in Theorems 3.1 and 3.2 of AC1, but they are obtained under more primitive

conditions, which are designed for GMM estimators.
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2. De�ne the Gaussian process f��(�; 
0; b) : � 2 �g by

��(�; 
0; b) = S��(�; 
0; b) + b; (4.5)

where S� = [Id� : 0d��d� ] is the d� � d selector matrix that selects � out of  : The

asymptotic distribution of n1=2b�n (without centering at �n) under �(
0; 0; b) with jjbjj <
1 is given by ��(��(
0; b); 
0; b): This quantity appears in the asymptotic distributions

of the Wald and t statistics below.

3. Assumption GMM4 is not needed for Theorem 4.1(b).

Theorem 4.2. Suppose Assumptions GMM1-GMM5, B1, and B2 hold. Under f
ng 2
�(
0;1; !0);

(a) n1=2B(�n)(b�n � �n)!d �J�1(
0)G�(
0) � N(0d� ; J
�1(
0)V (
0)J

�1(
0)); and

(b) n(Qn(b�n)�Qn(�n))!d �1
2
G�(
0)

0J�1(
0)G
�(
0):

Comment. The results of Theorems 4.1 and 4.2 hold for minimum distance estimators
under the assumptions listed in Appendix A.

5. Wald Con�dence Sets and Tests

In this section, we consider a CS for a function r(�) of � by inverting aWald test of the

hypotheses H0 : r(�) = v for v 2 r(�): We also consider Wald tests of H0: We establish

the asymptotic distributions of the Wald statistic under drifting sequences of null and

alternative distributions that cover the entire range of strengths of identi�cation. We

determine the asymptotic size of standard Wald CS�s. We introduce robust Wald CS�s

whose asymptotic size is guaranteed to equal their nominal size. The results in this

section apply not just to Wald statistics based on GMM estimators, but to Wald tests

based on any of the estimators considered in AC1 and AC2 as well.

5.1. Wald Statistics

The Wald statistics are de�ned as follows. Let

�(
0) = J�1 (
0)
0 V (
0)J

�1(
0) and b�n = bJ�1n bVn bJ�1n ; (5.1)
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where bJn and bVn are estimators of J(
0) and V (
0): The Wald statistic takes the form
Wn(v) = n(r(b�n)� v)0(r�(b�n)B�1(b�n)b�nB�1(b�n)r�(b�n)0)�1(r(b�n)� v); (5.2)

where r�(�) = (@=@�
0)r(�) 2 Rdr�d� :

When dr = 1; the t statistic takes the form

Tn(v) =
n1=2(r(b�n)� v)

(r�(b�n)B�1(b�n)b�nB�1(b�n)r�(b�n)0)1=2 : (5.3)

Although these de�nitions of the Wald and t statistics involve B�1(b�n); they are the
same as the standard de�nitions used in practice. By Theorem 4.2(a), when �0 6= 0;

B�1(�0)�(
0)B
�1(�0) is the asymptotic covariance matrix of b�n: In the Wald statistics,

the asymptotic covariance is replaced by the estimator B�1(b�n)b�nB�1(b�n): The same
form of the Wald statistics is used under all sequences of true parameters 
n 2 �(
0):
In the results below (except in Section 5.6), we consider the behavior of the Wald

statistics when the null hypothesis holds. Thus, under a sequence f
ng; we consider the
sequence of null hypotheses H0 : r(�) = vn; where vn equals r(�n) and 
n = (�n; �n):We

employ the following notational simpli�cation:

Wn = Wn(vn); where vn = r(�n): (5.4)

5.2. Rotation

To obtain the asymptotic distribution of the Wald statistic we consider a rotation

of r(b�n) and r�(b�n) by a matrix A(b�n): The rotation is designed to separate the e¤ects
of the randomness in b n and b�n; which have di¤erent rates of convergence for some
sequences f
ng: Similar rotations are carried out in the analysis of partially-identi�ed
models in Sargan (1983) and Phillips (1989), in the nonstationary time series literature,

e.g., see Park and Phillips (1988), and in the GMM analysis in Antoine and Renault

(2009, 2010).

We partition r�(�) conformably with � = ( ; �):

r�(�) = [r (�) : r�(�)]: (5.5)

Suppose rank(r�(�)) = d�� (� min(dr; d�)) 8� 2 �� for some � > 0: (This is Assumption
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R1(iii) below). For � 2 ��; let A(�) = [A1(�)
0 : A2(�)

0]0 2 O(dr); where the rows of

A1(�) 2 R(dr�d
�
�)�dr span the null space of r�(�)0; the rows of A2(�) 2 Rd���dr span the

column space of r�(�); and O(dr) stands for the orthogonal group of degree dr over the

real space. Hence,

A(�)r�(�) =

"
A1(�)r�(�)

A2(�)r�(�)

#
=

"
0(dr�d��)�d�

r��(�)

#
; (5.6)

where r��(�) 2 Rd���d� has full row rank d��: For simplicity, hereafter we write the 0

matrix as 0 when there is no confusion about its dimension.

With the A(�) rotation, the derivative matrix r�(�) becomes

rA� (�) = A(�)r�(�) =

"
r� (�) 0

r0 (�) r��(�)

#
; (5.7)

where the (dr � d��)� d matrix r� (�) has full row rank dr � d��: When d
�
� = dr; A1(�)

and [r� (�) : 0] disappear. When d
�
� = 0; A2(�) and [r

0
 (�) : r

�
�(�)] disappear.

The e¤ect of randomness in b�n on r(b�n) is concentrated in the full rank matrix r��(b�n)
because the upper right corner of rA� (b�n) is 0: The e¤ect of randomness in b n on r(b�n)
is incorporated in both r� (b�n) and r0 (b�n):
Using the rotation by A(b�n); the Wald statistic in (5.2) can be written as
Wn = n(r(b�n)� v)0A(b�n)0(rA� (b�n)B�1(b�n)b�nB�1(b�n)rA� (b�n)0)�1A(b�n)(r(b�n)� v); (5.8)

where the �rst dr � d�� rows of A(b�n)r(b�n) only depend on the randomness in b n; notb�n; asymptotically by the choice of A(b�n):
De�ne a dr � d� matrix

r��(�) =

"
r� (�) 0

0 r��(�)

#
: (5.9)

The matrix r��(�); rather than r
A
� (�); appears in the asymptotic distribution below.

The reason is as follows. Because b n converges faster than b�n under f
ng 2 �(
0; 0; b); as
shown in Theorems 4.1 and 4.2, the e¤ect of randomness in b�n is an order of magnitude
larger than that in b n: As a result, the limit of r0 (b�n) in (5.7) does not show up in the
asymptotic distributions of the Wald and t statistics. On the other hand, the limit of
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r� (
b�n) does appear in the asymptotic distribution because it is the e¤ect of randomness

in b n separated from that in b�n:
When r�(�) has full row rank, i.e., d�� = dr; for all � 2 ��; we have A(�) = Idr ;

rA� (�) = r�(�); and r��(�) = [0 : r�(�)]: In this case, rotation is not needed to concentrate

the randomness in b�n: Also, when dr = 1; we have A(�) = 1; so no rotation is employed.
De�ne

�n(�) =

(
n1=2A1(�)(r( n; �)� r( n; �n)) if d�� < dr

0 if d�� = dr:
(5.10)

5.3. Function r(�) of Interest

The function of interest, r(�); satis�es the following assumptions.

Assumption R1. (i) r(�) is continuously di¤erentiable on �:
(ii) r�(�) is full row rank dr 8� 2 �:
(iii) rank(r�(�)) = d�� for some constant d

�
� � min(dr; d�) 8� 2 �� = f� 2 � : jj�jj < �g

for some � > 0:

Assumption R2. �n(b�n)!p 0 under f
ng 2 �(
0; 0; b) 8b 2 (R [ f�1g)d� :

Three di¤erent su¢ cient conditions for the high-level Assumption R2 are given by

Assumptions R2�(i)-(iii) below. Any one of them is su¢ cient for Assumption R2 (under

the conditions in Lemma 5.1 below).

Assumption R2�. (i) d�� = dr:

(ii) dr = 1:

(iii) The column space of r�(�) is the same 8� 2 �� for some � > 0:

Assumption R2�(i) requires that the restrictions only involve �: Alternatively, As-

sumption R2�(ii) requires that only one restriction appears. Alternatively, R2�(iii) is

satis�ed when r�(�) = a(�)R�; where a(�) : �� ! R; a(�) 6= 0; and R� 2 Rdr�d� : A

special case is when r�(�) is constant due to the restrictions being linear.

Assumption RL. r(�) = R�; where R 2 Rdr�d� has full row rank dr:

Assumption RL is a su¢ cient condition for Assumptions R1 and R2.

Lemma 5.1. Assumptions R2�(i) and R2�(ii) each (separately) implies Assumption
R2. Assumption R2�(iii) combined with Assumption GMM1 (or Assumptions A and

B3(i)-(ii) of AC1) implies Assumption R2.

Lemma 5.2. Assumption RL implies Assumptions R1 and R2.
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5.4. Variance Matrix Estimators

The estimators of the components of the asymptotic variance matrix are assumed to

satisfy the following assumptions. Two forms are given for Assumption V1 that follows.

The �rst applies when � is a scalar and the second applies when � is a vector. The

reason for the di¤erence is that the normalizing matrix B(�) is di¤erent in these two

cases.

When � is a scalar, let J(�; 
0) and V (�; 
0) for � 2 � be some non-stochastic d��d�
matrix-valued functions such that J(�0; 
0) = J(
0) and V (�0; 
0) = V (
0); where J(
0)

and V (
0) are as in (3.20) (or as in Assumptions D2 and D3 of AC1). Let

�(�; 
0) = J�1(�; 
0)V (�; 
0)J
�1(�; 
0) and �(�; 
0) = �( 0; �; 
0): (5.11)

Let ���(�; 
0) denote the upper left (1,1) element of �(�; 
0):

Assumption V1 below applies when � is a scalar.

Assumption V1 (scalar �). (i) bJn = bJn(b�n) and bVn = bVn(b�n) for some (stochastic)
d� � d� matrix-valued functions bJn(�) and bVn(�) on � that satisfy sup�2� jj bJn(�) �
J(�; 
0)jj !p 0 and sup�2� jjbVn(�) � V (�; 
0)jj !p 0 under f
ng 2 �(
0; 0; b) with

jbj <1:

(ii) J(�; 
0) and V (�; 
0) are continuous in � on � 8
0 2 � with �0 = 0:
(iii) �min(�(�; 
0)) > 0 and �max(�(�; 
0)) <1 8� 2 �; 8
0 2 � with �0 = 0:

When � is a vector, i.e., d� > 1; we reparameterize � as (jj�jj; !); where ! = �=jj�jj
if � 6= 0 and by de�nition ! = 1d�=jj1d� jj with 1d� = (1; :::; 1) 2 Rd� if � = 0:

Correspondingly, � is reparameterized as �+ = (jj�jj; !; �; �): Let �+ = f�+ : �+ =
(jj�jj; �=jj�jj; �; �); � 2 �g: Let b�+n and �+0 be the counterparts of b�n and �0 after repara-
metrization.

When � is a vector, let J(�+; 
0) and V (�
+; 
0) denote some non-stochastic d� � d�

matrix-valued functions such that J(�+0 ; 
0) = J(
0) and V (�
+
0 ; 
0) = V (
0): Let

�(�+; 
0) = J�1(�+; 
0)V (�
+; 
0)J

�1(�+; 
0) and

�(�; !; 
0) = �(jj�0jj; !; �0; �; 
0): (5.12)

Let ���(�; !; 
0) denote the upper left d� � d� sub-matrix of �(�; !; 
0):

Assumption V1 below applies when � is a vector.
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Assumption V1 (vector �). (i) bJn = bJn(b�+n ) and bVn = bVn(b�+n ) for some (stochastic)
d��d� matrix-valued functions bJn(�+) and bVn(�+) on�+ that satisfy sup�+2�+ jj bJn(�+)�
J(�+; 
0)jj !p 0 and sup�+2�+ jjbVn(�+)�V (�+; 
0)jj !p 0 under f
ng 2 �(
0; 0; b) with
jjbjj <1:10

(ii) J(�+; 
0) and V (�
+; 
0) are continuous in �

+ on �+ 8
0 2 � with �0 = 0:
(iii) �min(�(�; !; 
0)) > 0 and �max(�(�; !; 
0)) <1 8� 2 �; 8! 2 Rd� with jj!jj = 1;
8
0 2 � with �0 = 0:
(iv) P (��(��(
0; b); 
0; b) = 0) = 0 8
0 2 � with �0 = 0 and 8b with jjbjj <1:

The following assumption applies with both scalar and vector �:

Assumption V2. Under �(0;1; !0); bJn !p J(
0) and bVn !p V (
0):

Example 1 (cont.). In this example, � is a scalar. The estimators of J(
0) and V (
0)
are bJn = bJn(b�n) and bVn = bVn(b�n); (5.13)

respectively, where

bJn(�) = bJg;n(�)0Wn
bJg;n (�) ;bVn(�) = bJg;n(�)0Wn
bVg;n (�)Wn

bJg;n (�) ;bJg;n(�)0 = n�1
nX
i=1

Zidi(�)
0; and bVg;n (�) = n�1

nX
i=1

U2i (�)ZiZ
0
i: (5.14)

The key quantities in Assumption V1 (scalar �) are

J(�; 
0) = Jg(�; 
0)
0W(
0)Jg(�; 
0) and

V (�; 
0) = Jg(�; 
0)
0W(
0)Vg(�; 
0)W(
0)Jg(�; 
0); where

Jg(�; 
0) = �E�0Zidi(�)
0; W(
0) = (E�0ZiZ

0
i)
�1; and (5.15)

Vg(�; 
0) = E�0U
2
i ZiZ

0
i + 2E�0 [�0h(X1;i; �0)� �h(X1;i; �) +X2;i(�0 � �)]ZiZ

0
i

+E�0 [�0h(X1;i; �0)� �h(X1;i; �) +X 0
2;i(�0 � �)]2ZiZ

0
i:

Assumption V1(i) holds by the uniform LLN given in Lemma 12.1 in Supplemental

Appendix C using the moment conditions in (2.11), Assumption GMM1(ii), and the

continuous mapping theorem. Assumption V1(ii) holds by the continuity of h(x; �) and

h�(x; �) in � and the conditions in (2.11).

10The functions J(�+; 
0) and V (�
+; 
0) do not depend on !0; only 
0:
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To verify Assumption V1(iii), note that

�(�; 
0) = J�1( 0; �; 
0)V ( 0; �; 
0)J
�1( 0; �; 
0); where

Jg( 0; �; 
0) = �E�0Zidi(�)
0 and Vg( 0; �; 
0) = E�0U

2
i ZiZ

0
i (5.16)

when �0 = 0:We have: �(�; 
0) is positive de�nite (pd) and �nite 8� 2 � because both
J( 0; �; 
0) and V ( 0; �; 
0) are pd and �nite, which in turn holds because (i) W(
0)
is pd and �nite by Assumption GMM1(vii), (ii) Jg( 0; �; 
0) 2 Rk�d� has full rank by

(2.11), and (iii) Vg( 0; �; 
0) is pd and �nite by (2.11). This completes the veri�cation

of Assumption V1.

Assumptions V1(i) and V1(ii) hold not only under f
ng 2 �(
0; 0; b); but also under
f
ng 2 �(
0;1; !0) in this example. This and b�n !p �0 under f
ng 2 �(
0;1; !0);

which holds by Theorem 4.2 (because Assumptions GMM1-GMM5, B1, and B2 have

been veri�ed above), imply that Assumption V2 holds. This completes the veri�cation

of Assumption V2. �

5.5. Asymptotic Null Distribution of the Wald Statistic

The asymptotic null distribution of the Wald statistic under H0 depends on the

following quantities. The limit distribution of b!n(�) = b�n(�)=jjb�n(�)jj under �(
0; 0; b)
with jjbjj <1 is given by

!�(�; 
0; b) =
��(�; 
0; b)

jj��(�; 
0; b)jj
for � 2 �; (5.17)

where ��(�; 
0; b) is de�ned in (4.5). Let B(�; 
0; b) be a dr� dr matrix-valued function
of ��(�; 
0; b) de�ned as

B(�; 
0; b) =

"
I(dr�d��) 0

0 �(��(�; 
0; b))Id��

#
(5.18)

where �(�) = � when � is a scalar and �(�) = jj�jj when � is a vector.
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Let

r��(�) = r��( 0; �); r
�
 (�) = r� ( 0; �) and

�(�; 
0; b) =

(
�(�; 
0) if � is a scalar

�(�; !�(�; 
0; b); 
0) if � is a vector,
(5.19)

where �(�; 
0) and �(�; !; 
0) are de�ned in (5.11) and (5.12), respectively.

De�ne a stochastic process f�(�; 
0; b) : � 2 �g by

�(�; 
0; b)

= �A(�; 
0; b)
0B(�; 
0; b)(r

�
�(�)�(�; 
0; b)r

�
�(�)

0)�1B(�; 
0; b)�
A(�; 
0; b); where

�A(�; 
0; b) =

 
r� (�)�(�; 
0; b)

A2( 0; �)(r( 0; �)� r( 0; �0))

!
2 Rdr : (5.20)

With linear restrictions, the stochastic process �(�; 
0; b) can be simpli�ed. Under

Assumption RL, r�(�) = R does not depend on �; and, hence, A(�) and r��(�) do not

depend on �: De�ne R� = r��(�) under Assumption RL. Speci�cally,

RA = AR =

"
R� 0

R0 R��

#
and R� =

"
R� 0

0 R��

#
; (5.21)

where R� 2 R(dr�d
�
�)�d and R�� 2 Rd���d� :

De�ne a stochastic process f�L(�; 
0; b) : � 2 �g by

�L(�; 
0; b)

= �(�; 
0; b)
0R�0B(�; 
0; b)(R

��(�; 
0; b)R
�0)�1B(�; 
0; b)R

��(�; 
0; b); where

�(�; 
0; b) = (�(�; 
0; b)
0; (� � �0)

0)0 2 Rd� : (5.22)

Under the linear restriction of Assumption RL, �L(�; 
0; b) = �(�; 
0; b) and the as-

ymptotic distribution of the Wald statistic can be simpli�ed by replacing the stochastic

process f�(�; 
0; b) : � 2 �g with f�L(�; 
0; b) : � 2 �g in the asymptotic results below.
The following theorem establishes the asymptotic null distribution of the Wald sta-

tistic for nonlinear restrictions that satisfy Assumption R2. (The null holds by the

de�nition Wn = Wn(vn) in (5.4).)

Theorem 5.1. Suppose Assumptions B1-B2, R1-R2, and V1-V2 hold. In addition,
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suppose Assumptions GMM1-GMM5 hold (or Assumptions A, B3, C1-C8, and D1-D3

of AC1 hold).

(a) Under f
ng 2 �(
0; 0; b) with jjbjj <1; Wn !d �(�
�(
0; b); 
0; b):

(b) Under f
ng 2 �(
0;1; !0); Wn !d �
2
dr
:

A special case of Theorem 5.1 is the following result for linear restrictions.

Corollary 5.1. Suppose Assumptions B1-B2, RL; and V1-V2 hold. In addition, sup-
pose Assumptions GMM1-GMM5 hold (or Assumptions A, B1-B3, C1-C8, and D1-D3

of AC1 hold).

(a) Under f
ng 2 �(
0; 0; b) with jjbjj <1; Wn !d �L(�
�(
0; b); 
0; b):

(b) Under f
ng 2 �(
0;1; !0); Wn !d �
2
dr
:

Speci�c forms of the stochastic process �(�; 
0; b) are provided in the following ex-

amples. In Examples r1-r4, r(�) is linear in � and Corollary 5.1 applies. In Example r5,

r(�) is nonlinear in � and Assumption R2 is veri�ed.

Example r1. When r(�) =  ; R = R� = [Id : 0]; and �L(�; 
0; b) = �(�; 
0; b)
0�
�1
  (�;


0; b)�(�; 
0; b); where �  (�; 
0; b) is the upper left d � d block of �(�; 
0; b):

Example r2. When r(�) = �; R = R� = [0 : Id� ]; and �L(�; 
0; b) = jj��(�; 
0; b)jj2(��
�0)

0�
�1
��(�; 
0; b)(���0); where ���(�; 
0; b) is the lower right d��d� block of �(�; 
0; b):

Example r3. When d = d� and r(�) =  + �; R = [Id : Id� ]; R
� = [0d : Id� ];

and �L(�; 
0; b) = jj��(�; 
0; b)jj2(� � �0)0�
�1
��(�; 
0; b)(� � �0): Note that �L(�; 
0; b) is

the same in this example as in Example r2. This occurs because d�� = dr so that the

randomness in b n is completely dominated by that in b�n: Although R is di¤erent in

Examples r2 and r3, R� is the same in both examples.

Example r4. When r(�) = �; R = R� = Id� ; and �L(�; 
0; b) = �(�; 
0; b)
0B(�; 
0; b)

�
�1
(�; 
0; b)B(�; 
0; b)�(�; 
0; b):

Example r5. When � = (�; �)0; r(�) = (�; �2)0; and � and � are scalars, we have

r�(�) = r��(�) =

"
1 0

0 2�

#
; and A(�) = I2: (5.23)

Assumption R2�(iii) holds because A2(�) does not depend on �: This implies that As-

sumption R2 holds. The stochastic process f�A(�; 
0; b) : � 2 �g can be simpli�ed to
�A(�; 
0; b) = (�(�; 
0; b); �

2 � �20):
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Next we show that Assumption R2 is not super�uous. In certain cases, the Wald

statistic diverges to in�nity in probability under H0:

Theorem 5.2. Suppose Assumptions B1-B2, R1, and V1 hold. In addition, suppose
Assumptions GMM1-GMM4 hold (or Assumptions A, B1-B3, and C1-C8 of AC1 hold).

Under f
ng 2 �(
0; 0; b); Wn !p 1 if jj�n(b�n)jj !p 1:

Comment. This theorem provides a high-level condition under which the Wald statistic
diverges to in�nity in probability under the null. The Wald statistic, which uses r�(b�n) in
the covariance matrix estimation, is designed for the standard case in which b�n converges
to �n at rate n�1=2: When b�n is inconsistent or converges to �n slower than n�1=2; the
estimator of the covariance matrix does not necessarily provide a proper normalization

for the Wald statistic to have a non-degenerate limit.

Example r6. We now demonstrate that restrictions exist for which Assumption R2
fails to hold. Suppose � = (�; �)0; r(�) = ((� + 1)�; �2)0; and � and � are both scalars.

Then, we have

r�(�) =

"
� � + 1

0 2�

#
; A1(�) =

1

jj(�2�; � + 1)jj(�2�; � + 1); and

�n(�) = �
n1=2

jj(�2�; � + 1)jj [�2�(�n + 1)(� � �n) + (� + 1)(�
2 � �2n)]: (5.24)

Under f
ng 2 �(
0; 0; b) with jjbjj <1; �n(b�n) = jj(�2b�n; 1)jj�1n1=2(b�n��0)2+op(n1=2)
!p 1: The divergence to in�nity in probability holds because b�n !d �

�(
0; b) under

f
ng 2 �(
0; 0; b) by Theorem 4.1(a) under Assumptions B1, B2, and GMM1-GMM4

(or Assumptions A, B1-B3, and C1-C6 of AC1) and P (��(
0; b) = �0) = 0 provided �

contains more than one element.

5.6. Asymptotic Distribution of the Wald Statistic

Under the Alternative

Next, we provide the asymptotic distributions of the Wald test under alternative

hypotheses, which yield power results for the Wald test and false coverage probabilities

for Wald CS�s. Suppose the conditions of Theorem 5.1 hold. The following results

are obtained by altering of the proof of Theorem 5.1. Suppose the sequence of null
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hypothesis values of r(�) are fvnulln;0 : n � 1g:11 We consider the case where the true
parameters f
ng satisfy r(�n) 6= vnulln;0 :

First, consider the alternative hypothesis distributions f
ng 2 �(
0; 0; b) with b 2
Rd� : Suppose the sequence of true values f�ng satis�es n1=2(r(�n) � vnulln;0 ) ! d for

some d 2 Rdr : Then, the asymptotic distribution of Wn(v
null
n;0 ) is given by the expres-

sion in Theorem 5.1(a), but with �A(�; 
0; b) in the de�nition of �(�; 
0; b) replaced by

�A�(�; 
0; b) = �A(�; 
0; b) + (A1( 0; �)d; 0d��): Alternatively, suppose the sequence of

true values satis�es r(�n) � vnulln;0 ! d0 2 Rdr and d0 6= 0: When A1(�) 6= 0 8� 2 �;
Wn(v

null
n;0 ) !p 1: When A1(�) = 0 8� 2 �; the asymptotic distribution of Wn(v

null
n;0 )

is given by the expression in Theorem 5.1(a), but with �A(�; 
0; b) in the de�nition of

�(�; 
0; b) replaced by �
A��(�; 
0; b) = �A(�; 
0; b) + (0dr�d�� ; A2( 0; �)d0):

Next, consider the alternative hypothesis distributions f
ng 2 �(
0;1; !0) with

�0 6= 0:When n1=2(r(�n)� vnulln;0 )! d for some d 2 Rdr ; Wn(v
null
n;0 ) converges in distribu-

tion to a non-central �2drdistribution with noncentrality parameter �
2 = d0(r�(�0)B

�1(�0)

�(
0)B
�1(�0)r�(�0)

0)�1d: Alternatively, when r(�n)� vnulln;0 ! d0 for some d0 2 Rdr with

d0 6= 0; Wn !p 1:

Lastly, consider the alternative hypothesis distributions f
ng 2 �(
0;1; !0) with

�0 = 0: Suppose the restrictions satisfy r(�) = (r1( ); r2(�)) for r2(�) 2 Rd�� with d�� � 0
and the d�� � d� matrix (@=@�0)r2(�) has full rank d��:

12 Let vnulln;0 = (vnulln;0;1; v
null
n;0;2) for

vnulln;0;2 2 Rd�� : When

n1=2(r1(�n)� vnulln;0;1)! d1 2 Rdr�d�� and n1=2�(�n)(r2(�n)� vnulln;0;2)! d2 2 Rd�� ; (5.25)

the asymptotic distribution of Wn(v
null
n;0 ) is a non-central �

2
dr
distribution with non-

centrality parameter �2 = d0(r��(�0)�(
0)r
�
�(�0)

0)�1d; where d = (d1; d2) 2 Rdr : Note

that the local alternatives in (5.25) are n�1=2-alternatives for the r1( ) restrictions, but

are more distant n�1=2�(�n)
�1-alternatives for the r2(�) restrictions due to the slower

n1=2�(�n)-rate of convergence of b�n in the present context. Alternatively, when r(�n)�
vnulln;0 ! d0 for some d0 2 Rdr with d0 6= 0; Wn !p 1:

11By allowing vnulln;0 to depend on n; we obtain results for drifting null values. For example, if r(�) = �;
this provides results when the null and local alternative values of � are n�1=2-local to zero. This is
useful for obtaining asymptotic false coverage probabilities of CS�s for � when the true value of � is
close to zero. In this case, the relevant null values also are close to zero, in a n�1=2-local to zero sense.
12Under these conditions on r(�); one can take A(�) = Idr :
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5.7. Asymptotic Size of Standard Wald Con�dence Sets

Here, we determine the asymptotic size of a standard CS for r(�) 2 Rdr obtained by

inverting a Wald statistic, i.e.,

CSW;n = fv : Wn(v) � �2dr;1��g; (5.26)

where the Wald statisticWn(v) is as in (5.2), �2dr;1�� is the 1�� quantile of a chi-square
distribution with dr degree of freedom, and 1� � is the nominal size of the CS.

The asymptotic size of the CS above is determined using the asymptotic distribution

of Wn = Wn(r(�n)) under drifting sequences of true parameters, as given in Theorems

5.1 and 5.2. For jjbjj <1; de�ne

h = (b; 
0); H = fh = (b; 
0) : jjbjj <1; 
0 2 � with �0 = 0g; and
W (h) = �(��(
0; b); 
0; b): (5.27)

As de�ned, W (h) is the asymptotic distribution of Wn under f
ng 2 �(
0; 0; b) for

jjbjj <1 determined in Theorem 5.1(a).

Let cW;1��(h) denote the 1� � quantile of W (h) for h 2 H:
As in (2.24), AsySz denotes the asymptotic size of a CS of nominal level 1��: The

asymptotic size results use the following distribution function (df) continuity assump-

tion, which typically is not restrictive.

Assumption V4. The df of W (h) is continuous at �2dr;1�� and suph2H cW;1��(h) 8h 2
H:

Theorem 5.3. Suppose Assumptions B1-B2, R1-R2, V1-V2, and V4 hold. In addition,
suppose Assumptions GMM1-GMM5 hold (or Assumptions A, B1-B3, C1-C8, and D1-

D3 of AC1 hold). Then, the standard nominal 1� � Wald CS satis�es

AsySz = minf inf
h2H

P (W (h) � �2dr;1��); 1� �g:

Comment. Under Assumption RL (i.e., linearity of r(�)), Theorem 5.3 holds with

W (h) replaced by the equivalent, but simpler, quantity WL(h) = �L(�
�(
0; b); 
0; b) for

h = (b; 
0): This holds by Corollary 5.1(a).

Theorem 5.2 shows that the Wald statistic Wn diverges to in�nity in some circum-

stances, e.g., see Example r6 in Section 5.5 above. In such cases, the standard Wald CS
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has asymptotic size equal to 0.

Corollary 5.2. Suppose Assumptions B1-B2, R1, and V1 hold. In addition, suppose
Assumptions GMM1-GMM5 hold (or Assumptions A, B1-B3, C1-C8, and D1-D3 of

AC1 hold). If jj�n(b�n)jj !p 1 under f
ng 2 �(
0; 0; b) for some 
0 2 � and jjbjj <1;

the standard nominal 1� � Wald CS has AsySz = 0:

5.8. Robust Wald Con�dence Sets

Next, we construct Wald CS�s that have correct asymptotic size. These CS�s are

robust to the strength of identi�cation. The CS�s for r(�) are constructed by inverting a

robust Wald test that combines the Wald test statistic with a robust critical value that

di¤ers from the usual �2dr-quantile, which is designed for the strong-identi�cation case.

The �rst robust CS uses the least favorable (LF) critical value. The second robust CS,

called a type 2 robust CS, is introduced in AC1. It uses a data-dependent critical value.

It is smaller than the LF robust CS under strong identi�cation and, hence, is preferable.

5.8.1. Least Favorable Critical Value

The LF critical value is

cLFW;1�� = maxfsup
h2H

cW;1��(h); �
2
dr;1��g: (5.28)

The LF critical value can be improved (i.e., made smaller) by exploiting the knowl-

edge of the null hypothesis value of r(�): For instance, if the null hypothesis speci�es

the value of � to be 3; then the supremum in (5.28) does not need to be taken over

all h 2 H; only over the h values for which � = 3: We call such a critical value a null-

imposed (NI) LF critical value. Using a NI-LF critical value increases the computational

burden because a di¤erent critical value is employed for each null hypothesis value.13 ;14

13To be precise, let H(v) = fh = (b; 
0) 2 H : jjbjj < 1; r(�0) = vg; where 
0 = (�0; �0): By
de�nition, H(v) is the subset is H that is consistent with the null hypothesis H0 : r(�0) = v; where �0
denotes the true value. The NI-LF critical value, denoted cLFW;1��(v); is de�ned by replacing H by H(v)
in (5.28) when the null hypothesis value is r(�0) = v: Note that v takes values in the set Vr = fv0 :
r(�0) = v0 for some h = (b; 
0) 2 Hg:
14When r(�) = � and the null hypothesis imposes that � = v; the parameter b can be imposed to

equal n1=2v: In this case, H(v) = Hn(v) = fh = (b; 
0) 2 H : b = n1=2vg: The asymptotic size results
given below for NI-LF CS�s and NI robust CS�s hold in this case.
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When part of 
 is unknown under H0 but can be consistently estimated, then a plug-

in LF (or plug-in NI-LF) critical value can be used that has correct size asymptotically

and is smaller than the LF (or NI-LF) critical value. The plug-in critical value replaces

elements of 
 with consistent estimators in the formulae in (5.28) and the supremum

over H is reduced to a supremum over the resulting subset of H; denoted bHn; for which

the consistent estimators appear in each vector 
:15

5.8.2. Type 2 Robust Critical Value

Next, we de�ne the type 2 robust critical value. It improves on the LF critical value.

It employs an identi�cation category selection (ICS) procedure that uses the data to

determine whether b is �nite.16 The ICS procedure chooses between the identi�cation

categories IC0 : jjbjj < 1 and IC1 : jjbjj = 1: The identi�cation-category selection

statistic is

An =
�
nb�0nb��1��;nb�n=d��1=2 ; (5.29)

where b���;n is the upper left d� � d� block of b�n; which is de�ned in (5.1).
The type 2 robust critical value provides a continuous transition from a weak-

identi�cation critical value to a strong-identi�cation critical value using a transition func-

tion s(x): Let s(x) be a continuous function on [0;1) that satis�es: (i) 0 � s(x) � 1; (ii)
s(x) is non-increasing in x; (iii) s(0) = 1; and (iv) s(x)! 0 as x!1: Examples of tran-

sition functions include (i) s(x) = exp(�c �x) for some c > 0 and (ii) s(x) = (1+ c �x)�1

for some c > 0:17 For example, in the nonlinear regression model with endogeneity, we

use the function s(x) = exp(�2x):
The type 2 robust critical value is

bcW;1��;n = ( cB if An � �

cS + [cB � cS] � s(An � �) if An > �; where

cB = cLFW;1�� +�1; cS = �2dr;1�� +�2; (5.30)

15For example, if � is consistently estimated by b�n; then H is replaced by bHn = fh = (b; 
) 2 H : 
 =

(�;b�n; �; �)g: If a plug-in NI-LF critical value is employed, H(v) is replaced by H(v)\ bHn; where H(v)
is de�ned in a footnote above. The parameter b is not consistently estimable, so it cannot be replaced
by a consistent estimator.
16When � is speci�ed by the null hypothesis, it is not necesary to use an ICS procedure. Instead, we

recommend using a (possibly plug-in) NI-LF critical value, see the footnote above.
17If cLFW;1�� = 1; s(x) should be taken to equal 0 for x su¢ ciently large, where 1� 0 equals 0 in

(5.30). Then, the critical value bcW;1��;n is in�nite if An is small and is �nite if An is su¢ ciently large.
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and �1 � 0 and �2 � 0 are asymptotic size-correction factors that are de�ned below.
Here, �B�denotes Big, and �S�denotes Small. When An � �; bcW;1��;n equals the LF
critical value cLFW;1�� plus a size-correction factor �1: When An > �; bcW;1��;n is a linear
combination of cLFW;1��+�1 and �2dr;1��+�2; where �2 is another size-correction factor.

The weight given to the standard critical value �2dr;1�� increases with the strength of

identi�cation, as measured by An � �:

The ICS statistic An satis�es An !d A(h) under f
ng 2 �(
0; 0; b) with jjbjj < 1;

where A(h) is de�ned by

A(h) =
�
��(�

�; 
0; b)
0��1�� (�

�; 
0)��(�
�; 
0; b)=d�

�1=2
; (5.31)

where �� abbreviates ��(
0; b); ��(�; 
0; b) is de�ned in (4.5), and ���(�; 
0) is the upper

left (1,1) element of �( 0; �; 
0) for �(�; 
0) = J�1(�; 
0)V (�; 
0)J
�1(�; 
0):

18 ;19 ;20

Under 
n 2 �(
0; 0; b) with jjbjj < 1; the asymptotic null rejection probability of a

test based on the statistic Wn and the robust critical value bcW;1��;n is equal to
NRP (�1;�2;h) = P (W (h) > cB & A(h) � �) + P (W (h) > cA(h) & A(h) > �)

= P (W (h) > cB) + P (W (h) 2 (cA(h); cB] & A(h) > �); where

cA(h) = cS + (cB � cS) � s(A(h)� �): (5.32)

The constants �1 and �2 are chosen such that NRP (�1;�2;h) � � 8h 2 H: In par-
ticular, we de�ne �1 = suph2H1 �1(h); where �1(h) � 0 solves NRP (�1(h); 0;h) = �

(or �1(h) = 0 if NRP (0; 0;h) < �); H1 = f(b; 
0) : (b; 
0) 2 H & jjbjj � jjbmaxjj +Dg;
bmax is de�ned such that cW;1��(h) is maximized over h 2 H at hmax = (bmax; 
max) 2 H
for some 
max 2 �; and D is a non-negative constant, such as 1: We de�ne �2 =

suph2H �2(h); where �2(h) solves NRP (�1;�2(h);h) = � (or �2(h) = 0 if NRP (�1; 0;

18The convergence in distribution follows from Theorem 4.1(a) and Assumption V1.
19In the vector � case, ��1�� (�

�; 
0) is replaced in (5.31) by a slightly di¤erent expresssion, see footnote
51 of AC1. When the type 2 robust critical value is considered in the vector � case, h is de�ned to
include !0 = limn!1 �n=jj�njj 2 Rd� as an element, i.e., h = (b; 
0; !0) and H = fh = (b; 
0; !0) :
jjbjj <1; 
0 2 � with �0 = 0; jj!0jj = 1g because the true value !0 a¤ects the asymptotic distribution
of An:
20Alternatively to the ICS statistic An; one can use a NI-ICS statistic An(v); which employs the

restricted estimator e�n(v) of � in place of b�n and a di¤erent weight matrix. See AC1 for details.
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h) < �):21 ;22 As de�ned, �1 and �2 can be computed sequentially, which eases compu-

tation.

Given the de�nitions of �1 and �2; the asymptotic rejection probability is always

less than or equal to the nominal level � and it is close to � when h is close to hmax (due

to the adjustment by �1) and when jjbjj is large (due to the adjustment by �2):

The type 2 robust critical value can be improved by employing NI and/or plug-in

versions of it, denoted by bcW;1��;n(v): These are de�ned by replacing cLFW;1�� in (5.30)
by the NI-LF or plug-in NI-LF critical value and making cB; �1; and �2 depend on

the null value v; denoted cB(v); �1(v); and �2(v): We recommend using these versions

whenever possible because they lead to smaller CS�s.

For any given value of �; the type 2 robust CS has correct asymptotic size due to the

choice of �1 and �2: In consequence, a good choice of � depends on the false coverage

probabilities (FCP�s) of the robust CS. (An FCP of a CS for r(�) is the probability that

the CS includes a value di¤erent from the true value r(�):) The numerical work in this

paper and in AC1 and AC2 shows that if a reasonable value of � is chosen, such as

� = 1:5 or 2:0; the FCP�s of type 2 robust CS�s are not sensitive to deviations from this

value of �: This is because the size-correction constants �1 and �2 have to adjust as �

is changed in order to maintain correct asymptotic size. The adjustments of �1 and �2

o¤set the e¤ect of changing �:

One can select � in a simple way, i.e., by taking � = 1:5 or 2:0; or one can select � in

a more sophisticated way that explicitly depends on FCP�s. Both methods yield similar

results for the cases that we have considered.

The more sophisticated method of choosing � is to minimize the average FCP of

the robust CS over a chosen set of � values denoted by K: First, for given h 2 H; one

chooses a null value vH0(h) that di¤ers from the true value v0 = r(�0) (where h = (b; 
0)

and 
0 = (�0; �0)): The null value vH0(h) is selected such that the robust CS based on a

reasonable choice of �; such as � = 1:5 or 2; has a FCP that is in a range of interest, such

21When NRP (0; 0;h) > �; a unique solution �1(h) typically exists because NRP (�1; 0;h) is always
non-increasing in �1 and is typically strictly decreasing and continuous in �1: If no exact solution to
NRP (�1(h); 0;h) = � exists, then �1(h) is taken to be any value for which NRP (�1(h); 0;h) � � and
�1(h) � 0 is as small as possible. Analogous comments apply to the equation NRP (�1;�2(h);h) = �
and the de�nition of �2(h):
22When the LF critical value is achieved at jjbjj = 1; i.e., �2dr;1�� � suph2H cQLR;1��(h); the

standard asymptotic critical value �2dr;1�� yields a test or CI with correct asymptotic size and constants
�1 and �2 are not needed. Hence, here we consider the case where jjbmaxjj <1: If suph2H cQLR;1��(h)
is not attained at any point hmax; then bmax can be taken to be any point such that cQLR;1��(hmax) is
arbitrarily close to suph2H cQLR;1��(h) for some hmax = (bmax; 
max) 2 H:
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as close to 0:50:23 Second, one computes the FCP of the value vH0(h) for each robust

CS with � 2 K: Third, one repeats steps one and two for each h 2 H; where H is a

representative subset of H:24 The optimal choice of � is the value that minimizes over

K the average over h 2 H of the FCP�s at vH0(h):

5.8.3. Asymptotic Size of Robust Wald CS�s

In this section, we show that the LF and data-dependent robust CS�s de�ned above

have correct asymptotic size. The asymptotic size results rely on the following df conti-

nuity conditions, which are not restrictive in most examples.

Assumption LF. (i) The df of W (h) is continuous at cW;1��(h) 8h 2 H:
(ii) If cLFW;1�� > �2dr;1��; c

LF
W;1�� is attained at some hmax 2 H:

Assumption NI-LF. (i) The df ofW (h) is continuous at cW;1��(h) 8h 2 H(v); 8v 2 Vr:
(ii) For some v 2 Vr; cLFW;1��(v) = �2dr;1�� or c

LF
W;1��(v) is attained at some hmax 2 H:

For h 2 H; de�ne

bcW;1��(h) = ( cB if A(h) � �

cS + [cB � cS] � s(A(h)� �) if A(h) > �:
(5.33)

As de�ned, bcW;1��(h) equals bcW;1��;n with A(h) in place of An: The asymptotic distrib-
ution of bcW;1��;n under f
ng 2 �(
0; 0; b) for jjbjj <1 is the distribution of bcW;1��(h):
De�ne bcW;1��(h; v) analogously to bcW;1��(h); but with cLFW;1��; �1; and �2 replaced

by cLFW;1��(v); �1(v); and �2(v); respectively, for v 2 Vr: The asymptotic distribution ofbcW;1��;n(v) under f
ng 2 �(
0; 0; b) for jjbjj <1 is the distribution of bcW;1��(h; v):
Assumption Rob2. (i) P (W (h) = bcW;1��(h)) = 0 8h 2 H:
(ii) If �2 > 0; NRP (�1;�2;h

�) = � for some point h� 2 H; where �1 and �2 are

de�ned following (5.32).

Assumption NI-Rob2. (i) P (W (h) = bcW;1��(h; v)) = 0 8h 2 H(v); 8v 2 Vr:
(ii) For some v 2 Vr;�2(v) = 0 orNRP (�1(v);�2(v);h

�) = � for some point h� 2 H(v);
where �1(v) and �2(v) are de�ned following (5.32).

23When b is close to 0; the FCP may be larger than 0:50 for all admissible v due to weak identi�cation.
In such cases, vH0(h) is taken to be the admissible value that minimizes the FCP for the selected value
of � that is being used to obtain vH0

(h):
24When r(�) = �; we do not include h values in H for which b = 0 because when b = 0 there is no

information about � and it is not necessarily desirable to have a small FCP.
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Theorem 5.4. Suppose Assumptions B1-B2, R1-R2, and V1-V2 hold. In addition,
suppose Assumptions GMM1-GMM5 hold (or Assumptions A, B1-B3, C1-C8, and D1-

D3 of AC1 hold). Then, the nominal 1� � robust Wald CS has AsySz = 1� � when

based on the following critical values: (a) LF, (b) NI-LF, (c) type 2 robust, and (d) type

2 NI robust, provided the following additional Assumptions hold, respectively: (a) LF,

(b) NI-LF, (c) Rob2, and (d) NI-Rob2.

Comments. 1. Plug-in versions of the robust Wald CS�s considered in Theorem 5.4

also have asymptotically correct size under continuity assumptions on cW;1��(h) that

typically are not restrictive. For brevity, we do not provide formal results here.

2. If part (ii) of Assumption LF, NI-LF, Rob2, or NI-Rob2 does not hold, then the
corresponding part of Theorem 5.4 still holds, but with AsySz � 1� �:

3. A third type of robust critical value, referred to as type 1, is considered in AC1.

Critical values of this type can be employed with Wald statistics. The resulting type 1

robust CS�s out-perform LF robust CS�s in terms of FCP�s, but are inferior to type 2

robust CS�s. However, they are easier to compute than type 2 robust CS�s.

6. QLR Con�dence Sets and Tests

In this section, we introduce CS�s based on the quasi-likelihood ratio (QLR) statistic.

For brevity, theoretical results for the QLR procedures are given in AC1. However, we

de�ne QLR procedures here because numerical results are reported for them in the

numerical results section.

We consider CS�s for a function r(�) (2 Rdr) of � obtained by inverting QLR tests.

The function r(�) is assumed to be smooth and to be of the form

r(�) =

"
r1( )

r2(�)

#
; (6.1)

where r1( ) 2 Rdr1 ; dr1 � 0 is the number of restrictions on  ; r2(�) 2 Rdr2 ; dr2 � 0 is
the number of restrictions on �; and dr = dr1 + dr2 :

For v 2 r(�); we de�ne a restricted estimator e�n(v) of � subject to the restriction
that r(�) = v: By de�nition,

e�n(v) 2 �; r(e�n(v)) = v; and Qn(e�n(v)) = inf
�2�:r(�)=v

Qn(�) + o(n�1): (6.2)
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For testing H0 : r(�) = v; the QLR test statistic is

QLRn(v) = 2n(Qn(e�n(v))�Qn(b�n))=bsn; (6.3)

where bsn is a real-valued scaling factor that is employed in some cases to yield a QLR
statistic that has an asymptotic �2dr null distribution under strong identi�cation. See

AC1 for details.

Let cn;1��(v) denote a nominal level 1 � � critical value to be used with the QLR

test statistic. It may be stochastic or non-stochastic. The usual choice, based on the

asymptotic distribution of the QLR statistic under standard regularity conditions, is the

1� � quantile of the �2dr distribution: cn;1��(v) = �2dr;1��:

A critical value that delivers a robust QLR CS for r(�) that has correct asymptotic

size can be constructed using the same approach as in Section 5.8.3. Details are in AC1.

Given a critical value cn;1��(v); the nominal level 1� � QLR CS for r(�) is

CSQLRr;n = fv 2 r(�) : QLRn(v) � cn;1��(v)g: (6.4)

7. Numerical Results: Nonlinear Regression Model

with Endogeneity

In this section, we provide asymptotic and �nite-sample simulation results for the

nonlinear regression model with endogeneity.

The model we consider consists of a structural equation with two right-hand side

endogenous variables X1 and X2; where X1 is a nonlinear regressor and X2 is a linear

regressor, and two reduced-form equations for X1 and X2; respectively:

Yi = �1 + � � h(X1;i; �) + �2X2;i + Ui;

X1;i = �1 + �2Z1;i + V1;i;

X2;i = �3 + �4Z2;i + �5Z3;i + V2;i; (7.1)

where Yi; X1;i; X2;i 2 R are endogenous variables, Z1;i; Z2;i; Z3;i 2 R are excluded exoge-
nous variables, h(x; �) = (jxj� � 1)=�, and � = (�; �1; �2; �)0 2 R4 is the unknown para-
meter.25 The data generating process (DGP) satis�es (�1; �2) = (�2; 2); (�1; �2) = (3; 1);
25The absolute value of x is employed in h(x; �) to guarantee h(x; �) 2 R when � is not an integer.

43



­1 0 1
0

2

4

6
Asy, b=0

­1 0 1
0

2

4

6
Asy, b=4

­1 0 1
0

2

4

6
Asy, b=10

­1 0 1
0

2

4

6
Asy, b=30

­1 0 1
0

2

4

6
n=500, b=0

­1 0 1
0

2

4

6
n=500, b=4

­1 0 1
0

2

4

6
n=500, b=10

­1 0 1
0

2

4

6
n=500, b=30

Figure 1. Asymptotic and Finite-Sample (n = 500) Densities of the Estimator of � in
the Nonlinear Regression Model with Endogeneity when �0 = 1:5:

(�3; �4; �5) = (0; 1; 1); f(Z1;i; Z2;i; Z3;i; Ui; V1;i; V2;i) : i = 1; :::; ng are i.i.d., (Z1;i; Z2;i; Z3;i)
and (Ui; V1;i; V2;i) are independent, (Z1;i; Z2;i; Z3;i) � N(0; I3); Ui � N(0; 0:25); Vk;i �
N(0; 1) and Corr(Ui; Vk;i) = 0:5 for k = 1 and 2; and Corr(V1;i; V2;i) = 0:5:

The IV�s for the GMM estimator of � are Zi = (1; Z1;i; Z21;i; Z2;i; Z3;i)
0 2 R5: Thus,

�ve moment conditions are used to estimate four parameters.

The true parameter space for � is [1:5; 3:5] and the optimization space for � is

[1; 4]: The �nite-sample results are for n = 500: The number of simulation repetitions is

20,000.26

Figures 1 and 2 provide the asymptotic and �nite-sample densities of the GMM

estimators of � and � when the true � value is �0 = 1:5. Each Figure gives the densities

for b = 0; 4; 10; and 30; where b indexes the magnitude of �. Speci�cally, for the �nite-

sample results, b = n1=2�: Figures S-1 and S-2 in Supplemental Appendix D provide

analogous results for �0 = 3:0:

Figure 1 shows that the ML estimator of � has a distribution that is very far from a

normal distribution in the unidenti�ed and weakly-identi�ed cases. The �gure shows a

build-up of mass at 0 in the unidenti�ed case and a bi-modal distribution in the weakly-

identi�ed case. Figure 2 shows that there is a build-up of mass at the boundaries of the

optimization space for the estimator of � in the unidenti�ed and weakly-identi�ed cases.

Figures 1 and 2 indicate that the asymptotic approximations developed here work very

well.

Figures S-3 to S-6 in Supplemental Appendix D provide the asymptotic and �nite-

With the data generating process speci�ed below, X1;i is positive with probability close to 1: Hence,
h(X1;i; �) is approximately the Box-Cox transformation of X1;i:
26The discrete values of b for which computations are made run from 0 to 30, with a grid of 0:2 for b

between 0 and 10; a grid of 1 for b between 10 and 20, and a grid of 2 for b between 20 and 30:
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Figure 2. Asymptotic and Finite-Sample (n = 500) Densities of the Estimator of � in
the Nonlinear Regression Model with Endogeneity when �0 = 1:5:

sample (n = 500) densities of the t and QLR statistics for � and � when �0 = 1:5: These

Figures show that in the case of weak identi�cation the t and QLR statistics are not

well approximated by standard normal and �21 distributions. However, the asymptotic

approximations developed here work very well.

Figure 3 provides graphs of the 0:95 asymptotic quantiles of the jtj and QLR statistics
concerning � and � as a function of b for �0 = 1:5; 2:0; 3:0; and 3:5: For the jtj statistic
concerning �; for small to medium b values, the graphs exceed the 0:95 quantile under

strong identi�cation (given by the horizontal black line). This implies that tests and CI�s

that employ the jtj statistic for � and the standard critical value (based on the normal
distribution) have incorrect size. For the QLR statistic for �, the graphs slightly exceed

the 0:95 quantile under strong identi�cation when b is 0 or almost 0 and fall below the

0:95 quantile under strong identi�cation for other small to medium b values. The graphs

in Figure 3(b) imply that tests and CI�s that employ the QLR statistic for � and the

standard critical value (based on the �21 distribution) have small size distortions due to

the under-coverage for b values close to 0: Given the heights of the graphs in Figure 3(c)

and 3(d), tests and CI�s that employ the jtj statistic for � have correct asymptotic size
when �0 = 1:5 and 2:0 and have slight size distortion when �0 = 3:0 and 3:5; whereas

those that employ the QLR statistic for � always have correct asymptotic size.

Figure 4 reports the asymptotic and �nite-sample CP�s of nominal 0:95 standard jtj
and QLR CI�s for � and � when �0 = 1:5: For example, the smallest asymptotic and

�nite-sample CP�s (over b) are around 0:68 and 0:93 for the jtj and QLR CI�s for �;

respectively. There is no size distortion for the jtj and QLR CI�s for �: Note that the
asymptotic CP�s provide a good approximation to the �nite-sample CP�s. Figure S-7 in

Supplemental Appendix D provides analogous results for �0 = 3:0:
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Figure 3. Asymptotic 0.95 Quantiles of the jtj and QLR Statistics for Tests Concerning
� and � in the Nonlinear Regression Model with Endogeneity.
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Figure 4. Coverage Probabilities of Standard jtj and QLR CI�s for � and � in the
Nonlinear Regression Model with Endogeneity when �0 = 1:5:
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Figure 5. Coverage Probabilities of Robust jtj and QLR CI�s for � and � in the Nonlinear
Regression Model with Endogeneity when �0 = 1:5: No smooth transition is employed.

Next, we consider CI�s that are robust to weak identi�cation. For the robust CI for

�; we impose the null value of b = n1=2�0; where �0 is the true value of � under the null.

With the knowledge of b under the null, no identi�cation-category-selection procedure

is needed. Imposing the null value of b also results in a smaller LF critical value. As

indicated in Figure 3(a), the NI-LF critical values for the jtj CI for � is attained at
�0 = 1:5 for all b values. In consequence, the robust jtj CI for � is asymptotically
similar when �0 = 1:5; as shown in Figure 5(a). Figure 5(a) also reports the �nite-

sample (n = 500) CP�s of the robust jtj CI for �: The smallest and largest �nite-sample
CP�s are around 0.91 and 0.97, as opposed to 0.68 and 1.00 for the standard jtj CI.
Figure 5(b) shows that the robust QLR CI for � tends to over-cover for a range of small

to medium b values, but the asymptotic size is correct. Figures S-8(a) and S-8(b) in

Supplemental Appendix D provide analogous results for �0 = 3:0: The robust CI�s for

� are not asymptotically similar when �0 = 3:0; but they have correct asymptotic size

and the asymptotic and �nite-sample CP�s are close for all b values.

The robust CI�s for � are constructed with the null value �0 imposed. When �0 = 1:5;

the robust jtj and QLR CI�s are the same as the standard jtj and QLR CI�s, respectively,
because the NI-LF critical values equal the standard critical values in both cases. In

47



consequence, Figures 5(c) and 5(d) are the same as Figures 4(c) and 4(d), respectively.

The robust jtj and QLR CI�s for � when �0 = 3:0 are reported in Figures S-8(c) and

S-8(d) in Supplemental Appendix D. In this case, the NI-LF critical value for the robust

jtj CI for � is slightly larger than the standard critical value, as shown in Figure 3(c).
We apply the smooth transition in (5.33) to obtain critical values for the robust jtj CI
for �; where the transition function is s(x) = exp(�2x) and the constants are � = 1:5
and D = 1: The choices of s(x) and D were determined via some experimentation to

be good choices in terms of yielding CP�s that are relatively close to the nominal size

0:95 across di¤erent values of b: A wide range of � values yield similar results (because

the constants �1 and �2 adjust to maintain correct asymptotic size as � is changed).

Figures S-7(c) and S-8(c) show that, when �0 = 3:0; the standard jtj CI for � su¤ers from
size distortion but the robust jtj CI for � has correct asymptotic size. When �0 = 3:0;
the robust QLR CI for � is the same the standard QLR CI for �; as shown in Figures

S-7(d) and S-8(d).

Besides b and �0; the construction of a robust CI also requires the � value in order to

obtain the LF (or NI-LF) critical value through simulation. In this model, � = (�1; �2)
0:

Because � can be consistently estimated, we recommend plugging in the estimator b�n
in place of �0 in practice. To ease the computational burden required to simulate the

CP�s, the �nite-sample CP�s of the robust CI�s reported in Figures 5 and S-8 are con-

structed using the true value �0; rather than the estimated value b�n:27 However, the
di¤erence between the robust CI�s constructed with b�n and �0 typically is relatively mi-
nor. A comparison is reported in Table S-1 of AC2 in the context of a smooth transition

autoregressive model.

8. Probit Model with Endogeneity: Veri�cation

of Assumptions

In this section, we verify Assumptions GMM1-GMM5 and V1-V2 for the probit

model with endogeneity and possibly weak instruments. Assumptions B1 and B2 hold

27With a single sample, the computational burden is the same whether the true value �0 or the
estimated value b�n is employed. However, in a simulation study, it is much faster to simulate the
critical values for a range of true values of b and �0 and the single true value of �0 one time and then
use them in each of the simulation repetitions, rather than to simulate a new critical value for each
simulation repetition, which is required if b�n is employed.
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immediately in this model given the de�nitions of �; ��; and ��(�) in Section 2.3.

8.1. Veri�cation of Assumption GMM1

Assumption GMM1(i) holds by (2.19) and (2.20) because Z 0i�� does not depend on

� when � = 0:

The quantity g0(�; 
) that appears in Assumptions GMM1(ii)-(v) is

g0(�; 
0) = E
0ei(�)
 Zi = E
0e0;i(�)
 Zi; where

e0;i(�) =

�
w1;i(�)(Li(�0)� Li(�))

Z 0i(�0 � �)�X 0
i(�2;0 � �2)

�
2 R2: (8.1)

The �rst uniform convergence condition in Assumption GMM1(ii) follows from the

ULLN given in Lemma 12.1 in Supplemental Appendix C because E
0(yijXi; Zi) =

Li(�0) when the true value is 
0 = (�0; �0): Assumptions GMM1(iii) and GMM1(iv)

hold because P�0(Z
0
ic = 0) < 1 for any c 6= 0 in (2.21), w1;i(�) > 0 for 8� 2 �; and L(�)

is strictly increasing.

When Wn(�) is the identity matrix, W(�; 
0) in Assumption GMM1(ii) also is the
identity matrix. WhenWn(�) is the optimal weight matrix de�ned in (2.20), Assumption

GMM1(ii) holds with

W(�; 
0) = E
0 (ei(�)ei(�)
0)
 (ZiZ

0
i) = E
0(We;i(�; 
0)
 (ZiZ

0
i); where

We;i(�; 
0) = E
0
�
ei(�)ei(�)

0jZi

�
=

 
W11;i(�) W12;i(�)

W12;i(�) W22;i(�)

!
(8.2)

andW11;i(�);W12;i(�); andW22;i(�) are de�ned in (12.3)-(12.6) in Section 12.2.2 in Sup-

plemental Appendix C.28 The convergence condition in Assumption GMM1(ii) holds for

the optimal weight matrix Wn(�) by the ULLN given in Lemma 12.1 in Supplemental

Appendix C. Assumptions GMM1(v) and GMM1(vi) hold by the continuity of w1;i(�)

and Li(�) in � and the moment conditions in (2.21).

To verify Assumptions GMM1(vii) and GMM1(viii), (12.3)-(12.6) in Supplemental

28Note that W11;i(�);W12;i(�); and W22;i(�) all depend on 
0: We omit 
0 from these terms for
notational simplicity.
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Appendix C imply that when  =  0;

W11;i(�) = w1;i(�)
2(Li(�0)� 2Li(�0)Li(�) + Li(�)

2);

W12;i(�) = w1;i(�)L
0
i(�0)��v; and W22;i(�) = �2v: (8.3)

In Section 12.2.2 in Supplemental Appendix C, we show thatW11;i(�)W22;i(�) >W2
12;i(�)

a.s. when � = ( 0; �); 8� 2 �; 8
0 2 �: Moreover, W11;i(�);W22;i(�) > 0 8� 2 �: In
consequence, �min(We;i(�; 
0)) > 0 a.s. when � = ( 0; �): This implies that Assumption

GMM1(vii) holds because W( 0; �; 
0) = E�0 [We;i(�; 
0)
 (ZiZ
0
i)]; ZiZ

0
i is nonsingular

a.s., and E�0(jjZijj4+" + w4+"1;i ) <1 for some " > 0:

The partial derivatives g (�; 
0) and g�(�; 
0) in Assumptions GMM1(v) and GMM1

(viii) are

g (�; 
0) = E�0

�
Ziai(�)d1 ;i(�)

0

Zid02 ;i

�
and g�(�; 
0) = E�0

�
Ziai(�)d1;i(�)

0

Zid02;i

�
; where

d1 ;i(�) = (�Zi; Xi; 0dX ) 2 RdZ+2dX ; d2 ;i = (Zi; 0dX ; Xi) 2 RdZ+2dX ;

d1;i(�) = (d1 ;i(�); Z
0
i�) 2 RdZ+2dX+1; d2;i = (d2 ;i; 0) 2 RdZ+2dX+1; and (8.4)

ai(�) =
L0i(�)

2 + L00i (�)(Li(�)� Li(�0))

Li(�)(1� Li(�))
� L0i(�)

2(Li(�)� Li(�0))(1� 2Li(�))
Li(�)2(1� Li(�))2

:

Assumption GMM1(viii) holds becauseW( 0; �; 
0) is non-singular 8� 2 � and g ( 0; �;

0) has full column rank because P�0(Z

0
ic = 0) < 1 for all c 6= 0:

Assumption GMM1(ix) holds automatically by the Assumptions on the parameter

space.

Assumption GMM1(x) holds because 	(�) does not depend on � in this example.

8.2. Veri�cation of Assumption GMM2

We verify Assumption GMM2 using the su¢ cient condition Assumption GMM2�:

Assumption GMM2�(i) holds because ei(�) is continuously di¤erentiable in �: Assump-

tion GMM2�(ii) holds by the ULLN given in Lemma 12.1 in Supplemental Appendix C.

Assumption GMM2�(iii) holds by the uniform LLN given in Lemma 12.1 in Supplemen-

tal Appendix C using jj�jj=jj�njj = 1+ o(1) for � 2 �n(�n) and jj�njj 6= 0 for n large for
f
ng 2 �(
0;1; !0):
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8.3. Veri�cation of Assumption GMM3

Assumption GMM3(i) holds with

g(Wi; �) = ei(�)
 Zi: (8.5)

Assumption GMM3(ii) holds because E
�g(Wi;  
�; �) = E
�e0;i( 

�; �) 
 Zi = 0 when

�� = 0:

Assumption GMM3(iii) hold by the CLT for triangular arrays of row-wise i.i.d. ran-

dom variables given in Lemma 12.3 of Supplemental Appendix C. The variance matrix

is


g(
0) = E
0 (ei(�0)ei(�0)
0)
 (ZiZ

0
i)

= E
0

 
w1;i(�0)L

0
i(�0) w1;i(�0)L

0
i(�0)��v

w1;i(�0)L
0
i(�0)��v �2v

!


�
ZiZ

0
i

�
; (8.6)

where the second equality follows from (8.2) and (8.3) with � = �0 and w1;i(�0)(Li(�0)

�Li(�0)2) = L0i(�0):

To verify Assumption GMM3(iv), �rst note that

E
�g(Wi; �) = E
�

�
w1;i(�)(Li(�

�)� Li(�))

Z 0i(�
� � �)�X 0

i(�
�
2 � �2)

�

 Zi: (8.7)

The derivative of E
�g(Wi; �) wrt �
� is

Kn;g(�; 

�) = E��

 
w1;i(�)L

0
i(�

�)��ZiZ
0
i

ZiZ
0
i

!
(8.8)

8(�; 
�) 2 �� � �0 and 8n � 1: This veri�es Assumption GMM3(iv)(a). Assumptions

GMM3(iv)(b) and (c) hold with Kg(�; 
0) = Kn;g(�; 
0):

To verify Assumption GMM3(v), note that ai( 0; �) = w1;i(�0)L
0
i(�0) when �0 = 0:

Using (8.4) and (8.8), this yields

g ( 0; �; 
0) = E�0Mi(�0)

 
d1 ;i(�)

0

d02 ;i

!
; Kg( 0; �; 
0) = E�0Mi(�0)

 
�0Z

0
i

Z 0i

!
; where

Mi(�0) =

 
w1;i(�0)L

0
i(�0)Zi 0dZ

0dZ Zi

!
: (8.9)
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Assumption GMM3(v) holds because (i) Mi(�0) has full rank a.s., (ii) d2 ;iS = Z 0i

for S = (S1; S2; S3) 2 RdZ�dX�dX if and only if S1 = 1dZ and S3 = 0dX ; and (iii)

d1 ;i(�)S = �0Zi for S = (1dZ ; S2; 0dX ) if and only if S2 = 0dX and � = �0:

Assumption GMM3(vi) holds by (8.7), (8.9), an exchange of �E�and �@;�the mo-

ment conditions in (2.21), and some calculations. The left-hand side does not depend

on an average over n because the observations are identically distributed.

8.4. Veri�cation of Assumption GMM4

When dZ > 1; we do not have a proof that Assumption GMM4 holds. In this case, we

just assume that it does. However, when dZ = 1; Assumption GMM4 can be veri�ed by

verifying Assumption GMM4�: In this case, Assumption GMM4�(i) holds automatically.

Using (8.9), we obtain

g� ( 0; �1; �2; 
0) = E�0Mi(�0)

 
�1Z

0
i; �2Z

0
i; X

0
i; 0

0
dX

Z 0i; Z
0
i; 0

0
dX
; X 0

i

!
; (8.10)

whereMi(�0) is of full column rank a.s. Assumption GMM4�(ii) holds because P�0(Z
0
ic =

0) < 1 for c 6= 0 and �1 6= �2: Assumption GMM4�(iii) holds with 
g(
0) de�ned as in

(8.6). Section 12.2.2 in Supplemental Appendix C shows that 
g(
0) is positive de�nite.

8.5. Veri�cation of Assumption GMM5

The veri�cation of Assumption GMM5(i) is analogous to that of Assumption GMM3

(iii). The variance matrix Vg(
0) is equal to 
g(
0) de�ned in (8.6).

Assumption GMM5(ii) holds with g�(�; 
0) in (8.4) using jj�jj=jj�njj = 1 + o(1) for

� 2 �n(�n); jj�njj 6= 0 for n large for f
ng 2 �(
0;1; !0); and the moment conditions

in (2.21).

Assumption GMM5(iii) holds with

Jg(
0) = E�0Mi(�0)

�
�0Z

0
i; X

0
i; 0

0
dX
; Z 0i!0

Z 0i; 0
0
dX
; X 0

i; 0

�
(8.11)

using (8.4) and (8.9) and �n=jj�njj ! !0: The matrix Jg(
0) has full column rank

because P�(Z
0
ic = 0) < 1 for c 6= 0:
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8.6. Veri�cation of Assumptions V1 and V2 (Vector �)

Here we verify Assumptions V1(i)-V1(iii) (vector �) and V2. We do not verify

Assumption V1(iv) (vector �). However, it should hold because ��(�; 
0; b) is a Gaussian

process.

We estimate J(
0) and V (
0) by bJn = bJn(b�+n ) and bVn = bVn(b�+n ); respectively, where
bJn(�+) = bJg;n(�+)0Wn

bJg;n(�+); bVn(�+) = bJg;n(�+)0Wn
bVg;n(�+)Wn

bJg;n(�+);bJg;n(�+) = n�1
nX
i=1

Mi(�)

�
�Z 0i; X

0
i; 0

0
dX
; Z 0i!

Z 0i; 0
0
dX
; X 0

i; 0

�
and

bVg;n(�+) = n�1
nX
i=1

(ei(�)ei(�)
0)


�
ZiZ

0
i

�
: (8.12)

Assumption V1(i) (vector �) holds with

J(�+; 
0) = Jg(�
+; 
0)

0W(�0; 
0)Jg(�+; 
0) and
V (�+; 
0) = Jg(�

+; 
0)
0W(�0; 
0)Vg(�+; 
0)W(�0; 
0)Jg(�+; 
0); (8.13)

where Jg(�
+; 
0) and Vg(�

+; 
0) are de�ned analogously to bJg(�+) and bVg(�+); respec-
tively, but with n�1

Pn
i=1 replaced by E
0 : The uniform convergence conditions of As-

sumption V1(i) for bJn(�+) and bVn(�+) follow from the uniform convergence of bJg;n(�+)
and bVg;n(�+) and Wn !p W(�0; 
0): The former holds by the ULLN given in Lemma
12.1 in Supplemental Appendix C. WhenWn is the identity matrix, the latter holds au-

tomatically. When Wn is the optimal weight matrix that involves a �rst step estimator

�n and �n is based on the identity weight matrix, the convergence in probability of Wn

holds by Lemma 3.1. The assumptions of Lemma 3.1 follow from Theorems 4.1(a) and

4.2(a).

Assumption V1(ii) (vector �) holds by the continuity ofMi(�) and ei(�) in � and the

moment conditions in (2.21).

Assumption V1(iii) (vector �) holds provided that J(�+; 
0) and V (�
+; 
0) are both

�nite and non-singular when �0 = 0: To this end, we need that Jg(�
+; 
0); Vg(�

+; 
0);

andW(�; 
0) are all �nite and non-singular. This holds using the forms of these matrices
and P�(Z

0
ic = 0) < 1 for c 6= 0 by the arguments used in the veri�cations of Assumptions

GMM5(iii), GMM5(i), and GMM1(vii), respectively.

Assumption V2 follows from (i) the uniform convergence of bJg;n(�+) and bVg;n(�+),
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which holds by the ULLN given in Lemma 12.1 in Supplemental Appendix C, (ii) b�+n !p

�+0 under f
ng 2 �(
0;1; !0); which holds by Theorem 4.2(a) and b�n=jjb�njj ! !0 (see

Lemma 9.4(b) of Appendix B of AC1-SM), and (iii) Wn !p W(�0; 
0); which holds by
Lemma 3.1.
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9. Appendix A: Proofs of GMM Estimation Results

9.1. Lemmas

This Appendix proves the results in Theorems 4.1 and 4.2. The method of proof is

to show that Assumptions B1, B2, and GMM1-GMM5 imply the high-level assumptions

in AC1, viz., Assumptions A, B3, C1-C8, and D1-D3 of AC1. Given this, Theorems 3.1

and 3.2 of AC1 imply Theorems 4.1 and 4.2 because the results of these theorems are

the same, just the assumptions di¤er.

Lemma 9.1. Suppose Assumption GMM1 holds. Then,
(a) Assumption A of AC1 holds and

(b) Assumption B3 of AC1 holds with Q(�; 
0) = g0(�; 
0)
0W(�; 
0)g0(�; 
0):

Under Assumptions GMM1 and GMM2, Assumption GMM3 is used to show that the

"C" assumptions of AC1 hold for the GMM estimator. As above,W( 0; 
0) abbreviates
W( 0; �; 
0) when �0 = 0:

Lemma 9.2. Suppose Assumptions GMM1-GMM3 hold. Then, the following are true.
(a) Assumption C1 of AC1 holds with D Qn(�) = g ( 0; �; 
0)

0W( 0; 
0)gn(�) and
D  Qn(�) = g ( 0; �; 
0)

0W( 0; 
0)g ( 0; �; 
0):
(b) Assumption C2 of AC1 holds with m(Wi; �) = g ( 0; �; 
0)

0W( 0; 
0)g(Wi; �):

(c) Assumption C3 of AC1 holds with 
(�1; �2; 
0) = g ( 0; �1; 
0)
0W( 0; 
0)
g(
0)

�W( 0; 
0)g ( 0; �2; 
0):
(d) Assumption C4 of AC1 holds with H(�; 
0) = g ( 0; �; 
0)

0W( 0; 
0)g ( 0; �; 
0) =
D  Qn(�):

(e) Assumption C5 of AC1 holds with Kn(�; 

�) = g ( 0; �; 
0)

0W( 0; 
0)Kn;g(�; 

�) 2

Rd �d� ; and K( 0; �; 
0) = g ( 0; �; 
0)
0W( 0; 
0)Kg( 0; �; 
0):

(f) Assumption C7 of AC1 holds.

(g) Assumption C8 of AC1 holds.

Comments. 1. To obtain Lemma 9.2(a), Assumption GMM3 is su¢ cient but not
necessary. When gn(�) is not a sample average, as occurs with the MD estimator,

Assumption MD can be used in conjunction with Assumptions GMM1 and GMM2 to

obtain Lemma 9.2(a). In this case, Assumptions C2-C5 of AC1 can be veri�ed directly

without using Assumption GMM3.
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2. Lemma 9.2(c)-(e) provide the quantities that appear in Assumption C6 of AC1,
which is the same as Assumption GMM4.

Lemma 9.3. Suppose Assumptions GMM1, GMM2, and GMM5 hold.
(a) Assumption D1 of AC1 holds with DQn(�) = g�(�0; 
0)

0W(�0; 
0)gn(�) and
D2Qn(�) = g�(�0; 
0)

0W(�0; 
0)g�(�0; 
0):
(b) Assumption D2 of AC1 holds with J(
0) = Jg(
0)

0W(�0; 
0)Jg (
0) :
(c) Assumption D3 of AC1 holds with V (
0) = Jg(
0)

0W(�0; 
0)Vg (
0)W(�0; 
0)Jg (
0) :

9.2. Minimum Distance Estimators

For the MD estimator, Assumption MD can be used in place of Assumption GMM3

to obtain Assumption C1 of AC1.

Corollary 9.1. Assumptions GMM1, GMM2, and MD imply that Assumption C1 of

AC1 holds with D Qn(�) and D  Qn(�) de�ned as in Lemma 9.2(a).

In addition to the result of Corollary 9.1, Lemmas 9.1 and 9.3 show that Assumptions

A, B3, and D1-D3 of AC1 hold for the MD estimator under Assumptions GMM1, GMM2,

and GMM5. Hence, in order to obtain the results of Theorems 3.1 and 3.2 of AC1 for

MD estimators and other results concerning CS�s, one just needs to verify Assumptions

C2-C8 of AC1.

9.3. Proofs of Lemmas

Proof of Lemma 9.1. Assumption A of AC1 is implied by Assumption GMM1(i).
Assumption GMM1(ii) implies that Assumption B3(i) of AC1 holds with Q(�; 
0) =

g0(�; 
0)
0W(�; 
0)g0(�; 
0):

Now we verify Assumptions B3(ii) and B3(iii) of AC1 by using Lemma 8.1 in Ap-

pendix A of AC1-SM, which shows that Assumption B3� of AC1-SM is su¢ cient for

Assumptions B3(ii) and B3(iii) of AC1. Assumption B3�(i) of AC1-SM holds by Assump-

tions GMM1(v) and GMM1(vi). Assumption B3�(ii) of AC1-SM holds by Assumptions

GMM1(iii) and GMM1(vii). Assumption B3�(iii) of AC1-SM holds by Assumptions

GMM1(iv) and GMM1(vii). Hence, Assumption B3 of AC1 holds. �

We prove Lemma 9.3 �rst and then prove Corollary 9.1 and Lemma 9.2.
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Proof of Lemma 9.3. We start with the proof of part (a). For notational simplicity,
in this proof g0(�; 
0); g�(�; 
0); g (�; 
0); and W(�; 
0) are abbreviated to g0(�); g�(�);
g (�); and W(�); respectively.
We start with the case in which Wn(�) = Ik: When DQn (�n) and D2Qn (�n) take

the form in Lemma 9.3(a), the remainder term in Assumption D1 becomes

R�n(�) = kgn(�)k
2 =2�kgn(�n)k

2 =2�gn(�n)0g�(�0)(���n)�kg�(�0)(� � �n)k2 =2: (9.1)

We approximate R�n(�) by replacing g�(�0)(� � �n) by g0(�)� g0(�n) and get

Ryn(�) = kgn(�)k
2 =2� kgn(�n)k

2 =2� gn(�n)
0 (g0(�)� g0(�n))� kg0(�)� g0(�n)k2 =2:

(9.2)

Let a; c; and d be k�vectors for which a = c+ d: By the Cauchy-Schwarz inequality,

��kak2 � kck2�� = ��kdk2 + 2c0d�� � kdk2 + 2 kck kdk : (9.3)

Let a = g0(�)� g0(�n) and c = g�(�0)(� � �n); then

d = a� c = g0(�)� g0(�n)� g�(�0)(� � �n)

= [(g�(�
y
n)� g�(�0))B

�1(�n)]B(�n)(� � �n) = o(kB(�n) (� � �n)k); (9.4)

where the �rst two equalities hold by de�nition, the third equality follows from element-

by-element mean-value expansions, where �yn is between � and �n (and �
y
n may depend

on the row); and the last equality follows from Assumption GMM5(ii). By Assumptions

GMM5(ii) and GMM5(iii),

c = g� (�0) (� � �n) =
�
g� (�0)B

�1 (�n)
�
B (�n) (� � �n) = O (kB (�n) (� � �n)k) : (9.5)

Hence,

sup
�2�n(�n)

njRyn(�)�R�n(�)j
(1 + n1=2jjB(�n)(� � �n)jj)2

=
1

2
sup

�2�n(�n)

n
��2gn(�n)0d+ kg0(�)� g0(�n)k2 � kg�(�0)(� � �n)k2

��
(1 + n1=2jjB(�n)(� � �n)jj)2

(9.6)

� 1

2
sup

�2�n(�n)
n
�
2 kgn(�n)k kdk+kdk

2+2 kck kdk
�
=(1 + n1=2jjB(�n)(� � �n)jj)2 = op (1) ;
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where the �rst equality follows from (9.1) and (9.2), the inequality holds by (9.3), and

the second equality uses (9.4), (9.5), and gn (�n) = Op(n
�1=2), where the latter holds

by Assumption GMM5(i). Thus, it su¢ ces to show that Assumption D1(ii) holds with

R�n(�) replaced by R
y
n(�):

Note that

Ryn(�) = kgn(�)k
2 =2� kgn (�n) + g0 (�)� g0 (�n)k2 =2

= kegn(�)� egn(�n)k2 =2 + (g0(�)� g0(�n) + gn(�n))
0 (egn(�)� egn(�n)); (9.7)

where the �rst equality follows from (9.2) and the second equality uses kak2 � kck2 =
ka� ck2+2c0(a�c) with a = gn (�) ; c = gn(�n)+g0(�)�g0(�n); and a�c = egn(�)�egn(�n):
We have

�n = sup
�2�n(�n)

n1=2 kegn(�)� egn(�n)k
1 + n1=2 kB(�n)(� � �n)k

= op (1) ; (9.8)

where the op (1) term holds by Assumption GMM2(ii): By (9.7), (9.8), and the triangle

inequality,

sup
�2�n(�n)

2njRyn(�)j
(1 + n1=2 kB(�n)(� � �n)k)2

� �2n + 2 sup
�2�n(�n)

n1=2 kg0(�)� g0(�n)k+ n1=2jjgn(�n)jj
1 + n1=2 kB(�n)(� � �n)k

�n

= �2n +Op(1)�n = op(1); (9.9)

where the �rst equality holds because gn (�n) = Op(n
�1=2) and kg0 (�)� g0 (�n)k =

O(jjB(�n)(� � �n)jj) uniformly on �n (�n) : To see that the latter holds, element-by-
element mean-value expansions give

g0 (�)� g0 (�n) = (g�(�
y
n)B

�1(�n))B (�n) (� � �n) = (Jg(
0) + o (1))B (�n) (� � �n) ;

(9.10)

where �yn lies between � and �n and the last equality follows from Assumptions GMM5(ii)

and GMM5(iii). This completes the proof of Lemma 9.3(a) for the case in which

Wn (�) = Ik:

Next, Lemma 9.3(a) is established for the case where Wn(�) is as in Assumption

GMM1. By Assumptions GMM1(ii) and GMM1(vii), we know thatWn(�) is symmetric

and positive de�nite in a neighborhood of �0: Hence, bothW(�) andWn(�) have square
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roots, denoted by W1=2(�) and W1=2
n (�); respectively: The idea is to use the same proof

as above, but with gn(�); g0(�); and g�(�0) replaced by W
1=2
n (�)gn(�); W1=2(�0)g0(�);

and W1=2(�0)g�(�0): With these changes, R�n(�) in (9.1) becomes

R��n (�) = jjW1=2
n (�)gn(�)jj2=2� jjW1=2

n (�n)gn(�n)jj2=2� (9.11)

gn(�n)
0W1=2

n (�n)
0W1=2(�0)g�(�0)(� � �n)� jjW1=2 (�0) g�(�0)(� � �n)jj2=2:

To show the condition in Assumption D1(ii) holds for R��n (�) ; the method used for the

case Wn (�) = Ik works provided that Assumptions GMM2(ii) and GMM5, which are

used in the foregoing proof, hold with the same changes. Assumption GMM5 obviously

does with Vg (
0) and Jg (
0) adjusted toW1=2 (�0)Vg (
0)W1=2 (�0) andW1=2 (�0) Jg (
0) ;

respectively.

We now show Assumption GMM2(ii) also holds with the changes above. For � 2
�n(�n);

jjW1=2
n (�) gn (�)�W1=2 (�0) g0 (�)�W1=2

n (�n) gn (�n) +W1=2 (�0) g0 (�n) jj
� jjW1=2 (�0) jj kegn(�)� egn(�n)k+ jjW1=2

n (�)�W1=2 (�0) jj kgn (�)� gn (�n)k+
jjW1=2

n (�)�W1=2
n (�n) jj kgn (�n)k

� O (1) kegn(�)� egn(�n)k+ op (1) (kegn(�)� egn(�n)k+ kg0 (�)� g0 (�n)k) +
op (1) kgn (�n)k (9.12)

= op(n
�1=2 sup

�2�n(�n)
(1 + n1=2jjB(�n)(� � �n)jj)) +O (k(B (�n) (� � �n))k) = op(1);

where the �rst inequality follows from adding and subtracting W1=2 (�0) gn (�) ;

W1=2 (�0) gn (�n) ; and W
1=2
n (�) gn (�n) and invoking the triangle inequality, the sec-

ond inequality holds by Assumptions GMM1(ii), GMM1(vi), and GMM1(vii), the �rst

equality holds by Assumption GMM2(ii), (9.10), and gn (�n) = Op(n
�1=2); and the sec-

ond equality holds by the de�nition of �n(�n) and B(�n). By (9.12), the condition in

Assumption D1(ii) holds with R�n(�) changed to R
��
n (�):

When the random derivative matrices take the form in Lemma 9.3(a), the remainder

term in Assumption D1(i) is

R�n(�) = jjW1=2
n (�) gn(�)jj2=2� jjW1=2

n (�n) gn(�n)jj2=2� gn(�n)
0W (�0) g�(�0)

0(� � �n)�
jjW1=2 (�0) g�(�0)(� � �n)jj2=2: (9.13)
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We now show the di¤erence between R�n (�) and R
��
n (�) in (9.11) is small enough so that

the condition in Assumption D1(ii) holds for R�n (�) provided it holds for R
��
n (�) : For

� 2 �n(�n);

jR�n (�)�R��n (�) j = jgn(�n)0(W1=2
n (�n)�W1=2 (�0))

0W1=2 (�0) g�(�0)(� � �n)j
� kgn (�n)k � jjW1=2

n (�n)�W1=2 (�0) jj � jjW1=2 (�0) jj �


g�(�0)B�1 (�n)



 �
kB (�n) (� � �n)k

= op(n
�1=2 kB (�n) (� � �n)k) = op(1); (9.14)

where the second last equality holds by Assumptions GMM1 and GMM5. This completes

the proof of part (a).

Part (b) follows from part (a) and Assumptions GMM5(ii) and GMM5(iii).

Part (c) follows from part (a) and Assumptions GMM5(i)-(iii). �

We now prove Corollary 9.1 and then use Corollary 9.1 to prove Lemma 9.2.

Proof of Corollary 9.1. The proof is analogous to the proof of Lemma 9.3(a)

with (i) DQn (�n) and D2Qn (�n) in Lemma 9.3(a) changed to D Qn

�
 0;n; �

�
and

D  Qn

�
 0;n; �

�
in Lemma 9.2(a); (ii) R�n(�) changed to Rn( ; �); (iii) �n and � � �n

changed to ( 0;n; �) and  �  0;n; (iv) g� (�) changed to g (�); where as above g�(�) and
g (�) abbreviate g�(�; 
0) and g (�; 
0); respectively; (v) B(�n) and B�1(�n) deleted

throughout, (vi) �yn changed to ( 
y
0;n(�); �) with  y0;n(�) between  and  0;n; (vii)

� 2 �n (�n) changed to  2 	(�) and


 �  0;n



 � �n; and (viii) Op (1) and op (1)

changed to Op�(1) and op�(1); where the uniformity over � usually holds using the com-

pactness of �; and (ix)W (�0) changed toW( 0; 
0): Note that Assumptions GMM3(iii)
and MD hold with �n replaced by � 8� 2 � under Assumption GMM1(i). The assump-
tions that are referenced in the proof also are changed accordingly. Speci�cally, the

proof goes through with Assumption GMM2(ii) changed to Assumption GMM2(i), As-

sumption GMM5(i) changed to Assumption MD, Assumption GMM5(ii) changed to the

continuity of g (�; �) uniformly over �; which is implied by Assumption GMM1(vii) and

the compactness of �; and Assumption GMM5(iii) changed to the continuity of g (�):

(The assumption that Jg(
0) has full column rank is not used in the proof of Lemma

9.3(a).)

Assumption C1(iii) follows from the form of D Qn(�) and D  Qn(�) in Lemma 9.2

and Assumption GMM1(i). �
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Proof of Lemma 9.2. First we prove part (a). Under Assumption GMM3, we can
show Assumption MD holds using a proof that is similar to the proof of Lemma 9.1 in

Appendix B of AC1-SM with (i) D Qn

�
 0;n; �

�
changed to gn( 0;n; �); (ii) m (Wi; �)

changed to g (Wi; �) ; (iii) Assumptions C2, C3, and C5 of AC1 changed to the cor-

responding conditions in Assumptions GMM3. By Corollary 9.1, Lemma 9.2(a) holds

under Assumptions GMM1-GMM3.

Part (b) follows from part (a) and Assumptions GMM3(i) and GMM3(ii).

Part (c) follows from part (b) and Assumptions GMM1(i) and GMM3(iii).

Part (d) follows from part (a), H(�; 
0) = D  Qn( 0;n; �); and Assumption GMM1

(viii).

Part (e) follows from part (a) and Assumption GMM3(iv).

Now we verify part (f). Note that when �0 = 0 as in Assumption C7, Kg( 0; �; 
0)

does not depend on � by Assumptions GMM1(i) and GMM3(i). Given the form of

H(�; 
0) and K(�; 
0) in parts (d) and (e), for any � 2 �;

!00K(�; 
0)
0H�1(�; 
0)K(�; 
0)!0 = Y 0X(�)(X(�)0X(�))�1X(�)0Y � Y 0Y; where

X(�) =W1=2( 0; 
0)g ( 0; �; 
0), Y =W1=2( 0; 
0)Kg( 0; �; 
0)!0; (9.15)

and Y does not depend on �: The inequality in (9.15) holds becauseX(�)(X(�)0X(�))�1

X(�)0 is a projection matrix. The inequality holds as an equality when W1=2( 0; 
0)

�Kg( 0; �; 
0)!0 = W1=2( 0; 
0)g ( 0; �; 
0)S for some S 2 Rd : By Assumptions

GMM1(vii) and GMM3(v), the inequality in (9.15) holds as an equality i¤ � = �0:

This completes the veri�cation of Assumption C7.

To verify Assumption C8 as in part (g), we have

@

@ 0
E
nD Qn( n; �n) = g ( 0; �n; 
0)

0W( 0; 
0)
@

@ 0
E
ngn(�n)

= g ( 0; �n; 
0)
0W( 0; 
0)

 
n�1

nX
i=1

@

@ 0
E
ng(Wi; �n)

!
! g (�0; 
0)

0W( 0; 
0)g (�0; 
0) = H(�0; 
0); (9.16)

where the �rst equality holds by Lemma 9.2(a), the second equality holds by Assump-

tion GMM3(i), the convergence holds by Assumption GMM3(vi) and the continuity of

g (�; 
0) in � in Assumption GMM1(v), and the third equality holds by Lemma 9.2(d).

�
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9.4. Proofs of Section 3 Lemmas

Proof of Lemma 3.1. By the triangle inequality,



Wn(�n)�W(�0; 
0)


 � 

Wn(�n)�W(�n; 
0)



+ 

W(�n; 
0)�W(�0; 
0)

 ; (9.17)

where the �rst term on the rhs is op(1) because Wn(�) converges to W(�; 
0) uniformly
over �: When �0 6= 0; the second term on the rhs of (9.17) is op(1) because W(�; 
0)
is continuous in � and �n !p �0: When �0 = 0; to show the second term on the rhs of

(9.17) is op(1), we have

W(�n; 
0)�W(�0; 
0)


�


W( n; �n; ; 
0)�W( 0; �n; 
0)

+ jjW( 0; �n; 
0)�W( 0; �0; 
0)jj

� sup
�2�



W( n; �; ; 
0)�W( 0; �; 
0)

 ; (9.18)

where the �rst inequality holds by the triangle inequality, and the second inequality

holds because W( 0; �; 
0) does not depend on � when �0 = 0; which in turn holds

by Assumptions GMM1(i) and GMM1(ii): The third line of (9.18) is op(1) because

 n !p  0 and W( ; �; ; 
0) is continuous in  uniformly over � 2 �; where the latter
holds because W(�; 
0) is continuous in � and � is compact. This completes the proof.
�

Proof of Lemma 3.2. First we show that Assumption GMM2(ii) holds under As-

sumption GMM2�. For � 2 �n(�n);

egn(�; 
0)� egn(�n; 
0) = @

@�0
egn(�yn; 
0)(� � �n)

=

�
[
@

@�0
gn(�

y
n; 
0)� g�(�

y
n; 
0)]B

�1(�n)

�
B(�n)(� � �n)

= op(jjB(�n)(� � �n)jj); (9.19)

where the �rst equality holds by element-by-element mean-value expansions with �yn

between � and �n (and �
y
n may depend on the row); the second equality holds by the de-

�nition of egn(�; 
0); and the last equality holds uniformly over � 2 �n(�n) by Assumption
GMM2�(iii). Assumption GMM2(ii) follows from (9.19) using the "jjB(�n)(� � �n)jj"
part of the denominator in Assumption GMM2(ii).

The proof for Assumption GMM2(i) is analogous to the proof of Assumption
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GMM2(ii). For  2 	(�) : jj �  0;njj � �n;

egn( ; �; 
0)� egn( 0;n; �; 
0) = � @

@ 0
gn( 

y
0;n(�); �; 
0)� g ( 

y
0;n(�); �; 
0)

�
( �  0;n)

= op�(jj �  0;njj); (9.20)

where the �rst equality holds by element-by-element mean-value expansions with  y0;n(�)

between  and  0;n (and  
y
0;n(�) may depend on the row), and the second equality holds

uniformly over  2 	(�) : jj �  0;njj � �n by Assumption GMM2�(ii). Assumption

GMM2(i) follows from (9.20) using the "jj �  0;njj" part of the denominator in As-
sumption GMM2(i). �

Proof of Lemma 3.3. Assumption GMM4 is the same as Assumption C6 of AC1.
Hence, it su¢ ces to verify the latter. We verify Assumption C6 of AC1 by verifying the

su¢ cient condition Assumption C6�� given in Lemma 8.5 in Appendix A of AC1-SM.

Because � is a scalar, it remains to show Assumption C6��(ii) of AC1 holds. By Lemma

9.2(c), the covariance matrix 
G(�1; �2; 
0) in Assumption C6
��(ii) is


G(�1; �2; 
0) = g� ( 0; �1; �2; 
0)
0e
g(
0)g� ( 0; �1; �2; 
0)0; wheree
g(
0) = W( 0; 
0)
g(
0)W( 0; 
0) (9.21)

and e
g(
0) does not depend on �1 and �2 by Assumptions GMM1(i) and GMM3(i).
Because g� ( 0; �1; �2; 
0) 2 Rk�(d�+2) and k � d� � d� + 2; Assumption C6��(ii) is

implied by Assumptions GMM1�(vii), GMM4�(ii), and GMM4�(iii). �

10. Appendix B: Proofs for Wald Tests

10.1. Proofs of Asymptotic Distributions

Most of the results in Section 5 are stated to hold under some combination of As-

sumptions GMM1-GMM5 or under certain assumptions from AC1 (plus some other

assumptions). We prove the results of this section using the stated assumptions from

AC1. Lemmas 9.1-9.3 in Appendix A show that the appropriate combination of As-

sumptions GMM1-GMM5 imply the corresponding assumptions from AC1.

Proof of Lemma 5.1. (i) When d�� = dr; �n(
b�n) = 0 by de�nition in (5.10).
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(ii) When dr = 1; d�� = 0 or d
�
� = 1 by Assumption R1(iii). If d

�
� = 1; �n(

b�n) = 0
by de�nition in (5.10). If d�� = 0; r�(�) = 0 for � 2 �� by Assumption R1(iii). By the
mean-value expansion, we have

r( n; b�n)� r( n; �n) = r�( n; e�n)(b�n � �n); (10.1)

where e�n is between b�n and �n: For n large enough that jj�njj < �; ( n; e�n) 2 �� and
r�( n; e�n) = 0; which implies �n(b�n) = op(1):

(iii) From (10.1), we have

�(b�n) = n1=2A1(b�n)r�( n; e�n)(b�n � �n): (10.2)

Under Assumption R2�(iii), A1(b�n)r�( n; e�n) !p 0 because the column space of r�(�)

is the same for all � 2 ��; by de�nition the rows of A1(�) are in the null space of r�(�)0

8� 2 ��; and b�n 2 �� holds with probability that goes to one by Lemma 3.1(a) of AC1
using Assumptions A and B3(i)-(ii) of AC1. This gives the desired result. �

Proof of Lemma 5.2. Under Assumption RL, r�(�) = R 8� 2 � and R has full row

rank. Assumption R1 is satis�ed directly. Moreover, under Assumption RL, r�(�) does

not depend on �: This implies Assumption R2�(iii), which is a su¢ cient condition of

Assumption R2 by Lemma 5.1. �

The proof of Theorem 5.1 below uses the following Lemma. De�ne b!n = b�n=jjb�njj:
Lemma 10.1. Suppose Assumption V1 (vector �) holds. In addition, suppose Assump-
tions GMM1-GMM4 hold (or Assumptions A, B1-B3, and C1-C8 of AC1 hold).

(a) Under f
ng 2 �(
0; 0; b) with jjbjj <1; b!n !d !
�(��(
0; b); 
0; b):

(b) Under f
ng 2 �(
0;1; !0); b!n !p !0:

Proof of Lemma 10.1. To prove Lemma 10.1(a), we have

b!n = n1=2b�n=jjn1=2b�njj !d
��(�

�(
0; b); 
0; b)

jj��(��(
0; b); 
0; b)jj
= !�(��(
0; b); 
0; b) (10.3)

by the continuous mapping theorem, because n1=2b�n !d ��(�
�(
0; b); 
0; b) by Theorem

4.1(a) and Comment 2 to Theorem 4.1(a) and P (��(��; 
0; b) = 0) = 0 by Assumption

V1(iv) (vector �).
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Next, we prove that Lemma 10.1(b) holds when �0 = 0: By Lemma 3.4 in AC1,

jj�njj�1(b�n � �n) = op(1): This implies that b�n = �n + jj�njjop(1) and jjb�njj=jj�njj =
1 + op(1): Hence,

b!n = b�n
jjb�njj =

b�n � �n
jj�njj

jj�njj
jjb�njj + �n

jj�njj
jj�njj
jjb�njj !p !0: (10.4)

Under f
ng 2 �(
0;1; !0) with �0 6= 0; b!n ! !0 by the continuous mapping

theorem given that b�n !p �0 by Lemma 3.3(b) in AC1. �

Proof of Theorem 5.1. Under the null hypothesis H0 : r(�n) = vn; the Wald statistic

de�ned in (5.2) with v = vn becomes

Wn = n(r(b�n)� r(�n))
0(r�(b�n)B�1(b�n)b�nB�1(b�n)r�(b�n)0)�1(r(b�n)� r(�n)): (10.5)

Before proving the speci�c results in parts (a) and (b), we analyze the Wald statistic

under f
ng 2 �(
0; 0; b): With the rotation represented by A(b�n); the Wald statistic in
(10.5) can be written as

Wn = n(r(b�n)� r(�n))
0A(b�n)0(rA� (b�n)B�1(b�n)b�nB�1(b�n)rA� (b�n)0)�1A(b�n)(r(b�n)� r(�n)):

(10.6)

To deal with the normalizing matrix B�1(b�n); part of which diverges as n ! 1 and

�n ! 0; we de�ne a dr � dr matrix

B�(b�n) =
"
I(dr�d��) 0

0 �(b�n)Id��
#

(10.7)

where �(�) = � when � is a scalar and �(�) = jj�jj when � is a scalar . We write the
Wald statistic in (10.6) as

Wn = %(b�n)0(r�(b�n)b�nr�(b�n)0)�1%(b�n); where (10.8)

%(b�n) = n1=2B�(b�n)A(b�n)(r(b�n)� r(�n)) and r�(b�n) = B�(b�n)rA� (b�n)B�1(b�n):
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Note that

r�(b�n) = " r� (
b�n) 0

�(b�n)r0 (b�n) r��(
b�n)

#
= r��(

b�n) + " 0 0

�(b�n)r0 (b�n) 0

#
= r��(

b�n) + op(1);

(10.9)

where the op (1) term holds because �(b�n) = op (1) under f
ng 2 �(
0; 0; b) and r0 (b�n) =
Op(1) under Assumption R1(i).

The next step is to derive the asymptotic distribution of %(b�n) under f
ng 2 �(
0; 0; b):
Note that

r(b�n)� r(�n) = r(b n; b�n)� r( n; b�n) + r( n; b�n)� r( n; �n)

= r (b�n)(b n �  n) + (r( n; b�n)� r( n; �n)) + op(n
�1=2); (10.10)

where the �rst equality is trivial and the second equality holds by a mean-value expan-

sion, b n �  n = Op(n
�1=2); and Assumption R1(i). From (10.7) and A(�) = [A01(�) :

A02(�)]
0; we have

%(b�n) =  n1=2A1(b�n)(r(b�n)� r(�n))

n1=2�(b�n)A2(b�n)(r(b�n)� r(�n))

!
= %1(

b�n) + %2(
b�n) + op (1) ; where

%1(
b�n) =  n1=2A1(b�n)r (b�n)(b n �  n)

n1=2�(b�n)A2(b�n)(r( n; b�n)� r( n; �n))

!
;

%2(b�n) =
 

�n(b�n)
n1=2�(b�n)A2(b�n)r (b�n)(b n �  n)

!
=

 
�n(b�n)
op (1)

!
; (10.11)

the second equality in %(b�n) uses (10.10), and the op (1) term associated with %2(b�n)
holds by n1=2(b n �  n) = Op(1) and �(b�n) = op(1) under f
ng 2 �(
0; 0; b): Under

Assumption R2, �n(b�n) = op (1) ; and, hence, %2(b�n) = op (1) :

In part (a), in which case f
ng 2 �(
0; 0; b) and jjbjj <1; we have

%1(
b�n) = Bn(b�n)�An (b�n); where

�An (�) =

 
r� (
b n(�); �)n1=2(b n(�)�  n)

A2(b n(�); �)(r( n; �)� r( n; �n))

!
and

Bn(�) =

"
I(dr�d��) 0

0 �(n1=2b�n(�))Id��
#
: (10.12)
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Using Assumption R1(i), Lemma 3.1(a) of AC1, Lemma 9.2(b) in Appendix B of AC1-

SM, and �n(�) = n1=2(b n(�)�  n)) �(�; 
0; b) in (9.21) of AC1-SM, we have 
�An (�)
Bn(�)

!
)
 
�A(�; 
0; b)
B(�; 
0; b)

!
(10.13)

under f
ng 2 �(
0; 0; b) with jjbjj <1: From (10.8), (10.9), (10.11), and (10.12), in the

case of a scalar �; we have

Wn = �An (b�n)0Bn(b�n)(r��(b�n)b�nr��(b�n)0)�1Bn(b�n)�An (b�n) + op (1)

= �n(b�n) + op(1)!d �(�
�(
0; b); 
0; b); (10.14)

where �n(�) is de�ned implicitly, b�n = b�n(b�n) = bJn(b�n)�1bVn(b�n) bJn(b�n)�1 by Assump-
tion V1 (scalar �), and the convergence follows from the joint convergence (�n(�); b�n))
(�(�; 
0; b); ��(
0; b)) and the continuous mapping theorem. The latter joint convergence
holds by (10.13), Assumptions V1 (scalar �) and R1, Theorem 4.1(a), the uniform con-

sistency of b n(�) over � 2 �; and the fact that �An (�); Bn(�); and b�n are continuous
functions of the empirical process Gn(�) with probability one.
In the case of a vector �; (10.14) holds with b�n(b�n) replaced by b�n(b�+n ) = bJ�1n (b�+n )bVn(b�+n ) bJ�1n (b�+n ) using Assumption V1 (vector �) and with �n(b�n) replaced by �n(b�n; b!n);

which is de�ned implicitly. In this case, the convergence in (10.14) follows from the joint

convergence (�n(�); b�n; b!n) ) (�(�; 
0; b); ��(
0; b); !�(��(
0; b); 
0; b); which holds by
the same argument as above plus Lemma 10.1(a) and Assumption V1 (vector �). This

completes the proof of part (a).

The proof of part (b) is the same for the scalar and vector � cases because it relies on

Assumption V2 which applies in both cases. To prove part (b), we �rst analyze the case

where f
ng 2 �(
0;1; !0) and �0 = 0: In this case, f
ng 2 �(
0; 0; b) with b =2 Rd� ; so
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(10.6)-(10.11) apply. As in (5.1), �(
0) = J�1(
0)V (
0)J
�1(
0): We have

%1(b�n) =
 

n1=2r� (
b�n)(b n �  n)

n1=2�(b�n)A2(b�n)(r�(b�n) + op (1))(b�n � �n)

!

=

 
n1=2r� (

b�n)(b n �  n)

n1=2�(�n)A2(b�n)r�(b�n)(b�n � �n) + op (1)

!
= r��(

b�n)n1=2B(�n)(b�n � �n) + op(1)

!d N(0; r
�
�(�0)�(
0)r

�
�(�0)); (10.15)

where the �rst equality holds by a mean-value expansion, the fact that b�n is consistent
under f
ng 2 �(
0;1; !0), and the continuity of r�(�) which holds by Assumption R1,

the second equality holds by n1=2(b�n � �n) = Op(1) and jj�njjn1=2(b�n � �n) = Op(1)

under f
ng 2 �(
0;1; !0); the third equality holds by the de�nitions of B(�) and

r��(�); and the convergence in distribution holds by Theorem 4.2(a). The result of part

(b) follows from (10.8), (10.9), (10.11), (10.15), and Assumptions D2 and D3(ii) of AC1

and Assumption V2.

Under f
ng 2 �(
0;1; !0) and �0 6= 0;

n1=2(r(b�n)� r(�n))!d N(0; r�(�0)B
�1(�0)�(
0)B

�1(�0)r�(�0)
0) (10.16)

by Theorem 4.2(a) and the delta method. By Assumptions R1(i) and V2,

r�(b�n)B�1(b�n)b�nB�1(b�n)r�(b�n)0 !p r�(�0)B
�1(�0)� (
0)B

�1(�0)r�(�0)
0: (10.17)

The desired result follows from (10.5), (10.16), and (10.17). �

Proof of Corollary 5.1. By Lemma 5.2, Assumption R2 is satis�ed. Based on

Theorem 5.1, it su¢ ces to show that the stochastic process f�(�; 
0; b) : � 2 �g can be
written as f�L(�; 
0; b) : � 2 �g under Assumption RL. Under Assumption RL, r�(�);
A(�); and r��(�) do not depend on �; and, hence,

�A(�; 
0; b) =

 
r� �(�; 
0; b)

A2r� � (� � �0)

!
=

 
r� �(�; 
0; b)

r�� � (� � �0)

!
= R��(�; 
0; b): (10.18)

The desired result follows from (10.18) and r��(�) = R� 8� 2 �: �
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Proof of Theorem 5.2. From the proof of Theorem 5.1, we know that %1(b�n) = Op(1)

under f
ng 2 �(
0; 0; b): Therefore, when jj�n(b�n)jj !p 1; it follows from (10.11) that

jj%(b�n)jj !p 1: This result, together with (10.8), (10.9), and Assumptions R1 and V1,

completes the proof. �

10.2. Proofs of Asymptotic Size Results

Proof of Theorem 5.3. The proof is the same as the proof of Theorem 4.4 of AC1,

which is given in Appendix B of AC1-SM, but with jTnj; jT (h)j; and z1��=2 replaced by
Wn; W (h); and �2dr;1��; respectively; with Theorem 4.1 of AC1 replaced by Theorem

5.1; and with Assumption V3 of AC1 replaced by Assumption V4. �

Proof of Corollary 5.2. By Theorem 5.2, P
n(Wn � �2dr;1��) !p 0 under f
ng 2
�(
0; 0; b) for which jj�n(b�n)jj !p 1: As a result, the nominal 1 � � Wald CS has

AsySz = 0 by the de�nition of asymptotic size. �

Proof of Theorem 5.4. The proof of Theorem 5.4 is the same as the proof of Theorem
5.1 of AC1, which is given in Appendix B of AC1-SM, but with jTnj; jT (h)j; and z1��=2
replaced by Wn; W (h); and �2dr;1��; respectively; with c

LF
jtj;1��; cjtj;1��(h); ::: replaced by

cLFW;1��; cW;1��(h); ::: throughout; with Theorem 4.1 of AC1 replaced by Theorem 5.1;

and with Assumption V3 of AC1 replaced by Assumption V4. �
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11. Outline

This Supplement includes two Supplemental Appendices (denoted C and D) to the

paper �GMM Estimation and Uniform Subvector Inference with Possible Identi�cation

Failure.�Supplemental Appendix C gives some results that are used in the veri�cation of

the assumptions for the two examples in this paper. Supplemental Appendix D provides

additional numerical results to those provided in the paper for the nonlinear regression

model with endogeneity.

12. Supplemental Appendix C: Veri�cation of

Assumptions

In this Supplemental Appendix, we provide some results that are used in the main

paper when verifying the assumptions in the two examples considered.

12.1. Law of Large Numbers and Central Limit Theorem

Here we state some results that are useful in the veri�cation of Assumptions GMM1-

GMM5. Speci�cally, Lemma 12.1 is a uniform convergence result for non-stochastic

functions, Lemma 12.2 is a uniform LLN, and Lemma 12.3 is a CLT. The latter two

results are for strong mixing triangular arrays. These are standard sorts of results. The

proofs of these Lemmas are given in Appendix A of AC2.

Lemma 12.1. Let fqn(�) : n � 1g be non-stochastic functions on �: Suppose (i)
qn(�)! 0 8� 2 �; (ii) jjqn(�1)� qn(�2)jj � C� 8�1; �2 2 � with jj�1 � �2jj � �; 8n � 1;
for some C <1 and all � > 0; and (iii) � is compact. Then, sup�2� jjqn(�)jj ! 0:

Assumption S1. Under any 
0 2 �; fWi : i � 1g is a strictly stationary and strong
mixing sequence with mixing coe¢ cients �m � Cm�A for some A > d�q=(q � d�) and

some q > d� � 2; or fWi : i � 1g is an i.i.d. sequence and the constant q equals 2 + �

for some � > 0:

Lemma 12.2. Suppose (i) Assumption S1 holds, (ii) for some function M1(w) :W !
R+ and all � > 0; jjs(w; �1) � s(w; �2)jj � M1(w)�; 8�1; �2 2 � with jj�1 � �2jj � �;

8w 2 W ; (iii) E
 sup�2� jjs(Wi; �)jj1+" + E
M1(Wi) � C 8
 2 � for some C < 1 and

1



" > 0; and (iv) � is compact. Then, sup�2� jjn�1
Pn

i=1 s(Wi; �) � E
0s(Wi; �)jj !p 0

under f
ng 2 �(
0) and E
0s(Wi; �) is uniformly continuous on � 8
0 2 �:

Comment. Note that the centering term in Lemma 12.2 is E
0s(Wi; �); rather than

E
ns(Wi; �):

Lemma 12.3. Suppose (i) Assumption S1 holds, (ii) s(w) 2 R and E
js(Wi)jq � C

8
 2 � for some C < 1 and q as in Assumption S1: Then, n�1=2
Pn

i=1(s(Wi) �
E
ns(Wi)) !d N(0; Vs(
0)) under f
ng 2 �(
0) 8
0 2 �; where Vs(
0) =

P1
m=�1

Cov
0(s(Wi); s(Wi+m)):

12.2. Probit Model with Endogeneity

Here we establish some results that are used when verifying Assumptions GMM1-

GMM5 for the probit model with endogeneity.

12.2.1. Moment Conditions in (2:17)

First, we show that E
0(`(�)jXi; Zi) is maximized at (a; �1) = (a0; �1;0): Note that

E
0(`(�)jXi; Zi) = Li(�0) logLi(�) + (1� Li(�0)) log(1� Li(�))

because E
0(yijXi; Zi) = Li(�0): Now we view E
0(`(�)jXi; Zi) as a function of Li(�):

The �rst- and second-order derivatives of E
0(`(�)jXi; Zi) wrt Li(�) are

@

@Li(�)
E
0(`(�)jXi; Zi) =

Li(�0)� Li(�)

Li(�)(1� Li(�))
and

@2

@L2i (�)
E
0(`(�)jXi; Zi) = �

Li(�0) + L2i (�)� 2Li(�)Li(�0)
L2i (�)(1� Li(�))2

: (12.1)

The second-order derivative is negative for all � 2 �: When Li(�) = Li(�0); the �rst-

order derivative is 0: Hence, E
0(`(�)jXi; Zi); viewed as a function of Li(�); has a unique

global maxima at Li(�0): Because the df of the standard normal distribution is strictly

increasing, E
0(`(�)jXi; Zi) is maximized at � if and only if P�(Z 0i(����0�0)+X 0
i(�1�

�10) = 0) = 1: This implies that E
0(`(�)jXi; Zi) is maximized if and only if �� = �0�0

and �1 = �10 because P�(Z
0
ic = 0) < 1 for c 6= 0:

2



12.2.2. Weight Matrix

In this section, we derive the elements of We;i(�; 
0) in (8.2) and show that it is

positive de�nite a.s. 8� 2 �: Note that

P
0(yi = 1jZi) = Li(�0) and P
0(yi = 0jZi) = 1� Li(�0): (12.2)

The upper left element of We;i(�; 
0) is

W11;i(�) = E
0(w1;i(�)
2(yi � Li(�))

2jZi) = w1;i(�)
2(Li(�0)� 2Li(�0)Li(�) + Li(�)

2):

(12.3)

To calculate the o¤-diagonal term of We;i(�; 
0); note that

E
0(VijZi; yi = 1) = E
0(VijZi; Ui > �(Z 0i�0�0 +X 0
i�1;0)) = �v�

L0i(�0)

Li(�0)
and

E
0(VijZi; yi = 0) = E
0(VijZi;�Ui > Z 0i�0�0 +X 0
i�1;0) = ��v�

L0i(�0)

1� Li(�0)
. (12.4)

The o¤-diagonal term of We;i(�; 
0) is

W12;i(�)

= E
0(w1;i(�)(yi � Li(�))(Yi � Z 0i� �X 0
i�2)jZi)

= w1;i(�)
X
k=0;1

(k � Li(�))
�
E
0(VijZi; yi = k) + Z 0i(�0 � �) +X 0

i(�2;0 � �2)
�
P
0(yi = kjZi)

= w1;i(�)

�
(1� Li(�))�v�

L0i(�0)

Li(�0)
Li(�0) + Li(�)�v�

L0i(�0)

1� Li(�0)
(1� Li(�0)

�
+

w1;i(�) [(1� Li(�))Li(�0)� Li(�)(1� Li(�0))]
�
Z 0i(�0 � �) +X 0

i(�2;0 � �2)
�

= w1;i(�)
�
�v�L

0
i(�0) + (Li(�0)� Li(�))

�
Z 0i(�0 � �) +X 0

i(�2;0 � �2)
��
: (12.5)

The lower-right element of We;i(�; 
0) is

W22;i(�) = E
0((Yi � Z 0i� �X 0
i�2)

2jZi) = �2v + (Z
0
i(�0 � �) +X 0

i(�2;0 � �2))
2: (12.6)

Next we show thatWe;i(�; 
0) is positive de�nite a.s. when � = ( 0; �): This holds if

W11;i(�)W22;i(�)�W12;i(�)
2

= �2vw1;i(�)
2
�
Li(�0)� 2Li(�0)Li(�) + Li(�)

2 � �2L0i(�0)
2
�
> 0 a.s. (12.7)

3



Note that

Li(�0)� 2Li(�0)Li(�) + Li(�)
2 = (Li(�)� Li(�0))

2 + Li(�0)� Li(�0)
2 (12.8)

� Li(�0)(1� Li(�0)) = �(�Z 0i�0� �X 0
i�1;0)�(Z

0
i�0� +X 0

i�1;0)L
0
i(�0)

2 > �2L0i(�0)
2 a.s.,

where �(x) = (1 � L(x))=L
0
(x) for x 2 R: The last inequality holds because log �(x)

is strictly convex (see Baricz (2008)), which implies that �(�Z 0i�0� �X 0
i�1;0)�(Z

0
i�0� +

X 0
i�1;0) > �(0) > 1 � �2 a.s. Moreover,W11;i(�);W22;i(�) > 0 8� 2 �: Hence,We;i(�; 
0)

is positive de�nite a.s. when � = ( 0; �):

13. Supplemental Appendix D: Numerical Results

Here we report some additional numerical results for the nonlinear regression model

with endogeneity.

Figures S-1 and S-2 report asymptotic and �nite-sample (n = 500) densities of the

estimators for � and � when �0 = 3:0: Figures S-3 to S-6 report asymptotic and �nite-

sample (n = 500) densities of the t and QLR statistics for � and � when �0 = 1:5:

Figures S-7 and S-8 report CP�s of nominal 0:95 standard and robust jtj and QLR CI�s
for � and � when �0 = 3:0:
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Figure S-1. Asymptotic and Finite-Sample (n = 500) Densities of the Estimator of � in
the Nonlinear Regression Model with Endogeneity when �0 = 3:0:
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the Nonlinear Regression Model with Endogeneity when �0 = 3:0:
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Normal Density (Black Line).
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Figure S-4. Asymptotic and Finite-Sample (n=500) Densities of the QLR Statistic for �
in the Nonlinear Regression Model with Endogeneity when �0 = 1:5 and the �21 Density
(Black Line).
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Figure S-5. Asymptotic and Finite-Sample (n = 500) Densities of the t Statistic for �
in the Nonlinear Regression Model with Endogeneity when �0 = 1:5 and the Standard
Normal Density (Black Line).
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Figure S-6. Asymptotic and Finite-Sample (n=500) Densities of the QLR Statistic for �
in the Nonlinear Regression Model with Endogeneity when �0 = 1:5 and the �21 Density
(Black Line).
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Figure S-7. Coverage Probabilities of Standard jtj and QLR CI�s for � and � in the
Nonlinear Regression Model with Endogeneity when �0 = 3:0:
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Figure S-8. Coverage Probabilities of Robust jtj and QLR CI�s for � and � in the
Nonlinear Regression Model with Endogeneity when �0 = 3:0; � = 1:5; D = 1; and
s(x) = exp(�2x):
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