
 
 
 

OPTIMISM AND PESSIMISM WITH EXPECTED UTILITY 
 
 

By 
 

David Dillenberger, Andrew Postlewaite, and Kareen Rozen 
 
 
 

October 2011 
 
 
 
 
 
 

COWLES FOUNDATION DISCUSSION PAPER NO. 1829 
 
 
 
 
 
 
 
 
 
 
 
 
 

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS 
YALE UNIVERSITY 

Box 208281 
New Haven, Connecticut 06520-8281 

 
 http://cowles.econ.yale.edu/  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6472378?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Optimism and Pessimism with Expected Utility�

David Dillenberger
University of Pennsylvania

Andrew Postlewaitey

University of Pennsylvania

Kareen Rozenz

Yale University

October 2011

Abstract

Savage (1954) provided a set of axioms on preferences over acts that were equiva-
lent to the existence of an expected utility representation. We show that in addition
to this representation, there is a continuum of other �expected utility�representations
in which for any act, the probability distribution over states depends on the corre-
sponding outcomes. We suggest that optimism and pessimism can be captured by the
stake-dependent probabilities in these alternative representations; e.g., for a pessimist,
the probability of every outcome except the worst is distorted down from the Savage
probability. Extending the DM�s preferences to be de�ned on both subjective acts
and objective lotteries, we show how one may distinguish optimists from pessimists
and separate attitude towards uncertainty from curvature of the utility function over
monetary prizes.
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If one has really technically penetrated a subject, things that previously seemed in

complete contrast, might be purely mathematical transformations of each other.

� John von Neumann (1955, p. 496).

1. Introduction

Consider a decision maker (DM) who is faced with gambles on whether a coin �ip will come

up heads. He is told that if the outcome is heads (H) he will get $100 and if tails (T ) he

will also get $100. When asked what he thinks the probability of H is, he responds :5. He is

then told about another gamble in which the outcome for T is unchanged but the outcome

for H is increased to $1000, and is asked what he thinks the probability of H is now. He

responds that he thinks the probability of H is now :4. When asked how he can think the

probability of H can di¤er across the two gambles when it is the same coin, DM simply says

that random outcomes tend to come out badly for him. After being o¤ered a third gamble

that gives $100 for T and $10,000 for H, he says that faced with that gamble, he thinks the

probability of H is :2.

When faced with a choice between any two gambles, each of which speci�es the amount

received conditional on the realized state, DM says that he maximizes expected utility. He

has a utility function over money, and for any two gambles (x1; x2) and (y1; y2), he will

have two probability distributions over the states, p(x1; x2) and p(y1; y2). DM�s probability

assessments re�ect his belief that luck is not on his side. For each gamble he computes

its expected utility under the associated probability, and then chooses the gamble with the

higher expected utility.

Confronted by such a DM, one might well judge him irrational. But would that judgment

change if one discovered that the DM�s revealed preferences satisfy Savage�s axioms? We

show below that for any preferences over acts that satisfy Savage�s axioms, there will be rep-

resentations of those preferences as described in the paragraph above: there will be a utility

function over outcomes and, for any act, a probability distribution over states that depends

on the payo¤s the act generates, with preferences given by expected utility. Furthermore,

the probability distribution depends on the payo¤s as in the example above: the probability

of the state with the good outcome is smaller than the Savage probability, and it decreases

when the good outcome is replaced by an even better outcome.

We suggest that a DM who describes his decision-making process as above can be thought

of as pessimistic. When good outcomes get better, he thinks it is less likely he will win

them. In addition to the multitude of pessimistic representations of preferences that satisfy

Savage�s axioms, there is a continuum of �optimistic�representations. Here, the probability
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distribution on states associated with a given act will, as in the pessimistic case, depend on

the outcomes associated with the act, but the probability of the state with the best outcome

is higher than under the Savage probability distribution, and will increase if that outcome

is replaced with an even better one.

We may still want to characterize the DM above as being irrational, but notice that we

cannot make that determination on the basis of his choices: his preferences over acts are the

same as those of a person who uses an analogous decision process using the Savage represen-

tation utility function and associated �standard�probability distribution. Any distinction

between the rationality of the Savage representation and the alternative representation must

be done on the basis of the underlying process by which the DM makes decisions and not

only on the decisions themselves.

We lay out the model in Section 2 and demonstrate how pessimistic and optimistic

representations can be constructed for the case in which there are two states, where our

basic idea is most transparent. In Section 3 we show how the two-state case can be extended

to an arbitrary �nite number of states. Section 4 examines how one may be able to distinguish

optimism from pessimism, and how we may use our model to separate attitude to uncertainty

from utility over prizes. We conclude by discussing further implications of using di¤erent

representations for the same underlying preferences.

2. Optimism and pessimism with two states

There are two states of nature, s1 and s2. Let X � R be a set of monetary prizes. Consider
a DM whose preferences over the set of (Savage) acts satisfy Savage�s axioms, and who

prefers more money to less.1 Formally, an act is a function l : fs1; s2g ! X. For notational

convenience, in the text we simply denote an act by an ordered pair of state contingent

payo¤s, x = (x1; x2), where xi is the payo¤ received in state i. Let v (x1; x2) = p1u (x1) +

p2u (x2) represent the DM�s preferences over the act (x1; x2). Here pi 2 (0; 1) is the subjective,
stake-independent, probability that he assigns to state i, and p = (p1; p2) is the probability

distribution.

We now consider a di¤erent representation of the same preferences, in which the proba-

bilities are stake-dependent, that is, the probability assigned to state i is Pi (x1; x2; p). We

look for an alternative representation v̂ of the form

v̂ (x1; x2) = P1 (x1; x2; p) û (x1) + (1� P1 (x1; x2; p)) û (x2) : (1)

1Although Savage�s original work applies only to the case where the state space is not �nite, it has been
shown how to derive a Savage-type representation when there are only a �nite number of states (see, e.g.,
Wakker (1984) or Gul (1992)).
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Recall that v̂ and v represent the same preferences if and only if each is a monotonic transfor-

mation of the other. Consider a strictly increasing function (and for simplicity, di¤erentiable)

f : R ! R, and de�ne v̂(x1; x2) := f(v(x1; x2)). Then, we seek probabilities Pi(x1; x2; p)

and a utility over prizes û such that (1) is satis�ed. By considering the case that the out-

comes in each state are the same (that is, the case of constant acts), note that (1) implies

that v̂ (z; z) = û (z) = f(v(z; z)) = f (u (z)) for all z. Then the desired representation (1)

simpli�es to

v̂ (x1; x2) = f (v (x1; x2)) = P1 (x1; x2; p) f (u (x1)) + (1� P1 (x1; x2; p)) f (u (x2)) :

Solving for P1 (x1; x2; p), we get

P1 (x1; x2; p) =
f (v (x1; x2))� f (u (x2))
f (u (x1))� f (u (x2))

for x1 6= x2. Note that P1(x1; x2; p) is always between zero and one because, by properties
of expected utility, v(x1; x2) is always between u(x1) and u(x2). As x1 ! x2, P1(x1; x2; p)

converges to p1. Naturally, P2(x1; x2; p) := 1� P1(x1; x2; p).
When x1 > x2, the denominator of P1(x1; x2; p) is positive. Thus, when f is convex,

Jensen�s inequality implies that

P1(x1; x2; p) �
p1f(u(x1)) + (1� p1)f(u(x2))� f(u(x2))

f(u(x1))� f(u(x2))
= p1;

that is, the probability of the larger prize is distorted down. Similarly, when f is concave,

the probability of the larger prize is distorted up. (Analogous characterizations hold when

x2 > x1: the probability of the smaller prize is distorted up when f is convex, and distorted

down when f is concave). Stated di¤erently, the pessimist holds beliefs that are �rst-order

stochastically dominated by the standard Savage distribution, while the optimist holds beliefs

that �rst-order stochastically dominate it.

For speci�c classes of convex and concave functions, we can say more.

Proposition 1. Suppose X � R2+, x1 6= x2, and r 2 f2; 3; : : :g. Then @Pi(x1;x2;p1)
@xi

< 0 for

f(z) = zr and @Pi(x1;x2;p1)
@xi

> 0 for f(z) = z
1
r .

The proof appears in the appendix. The case r = 1 would correspond to the standard

Savage formulation in which there is no stake-dependent probability distortion. When f(z) =

zr, the DM�s probability assessments re�ect a stronger notion of pessimism. The better

the consequence in any state, the less likely he thinks that this state will be realized. In
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particular, improving the best outcome reduces his assessment of its probability (as in the

example in the introduction), and worsening the worst outcome increases his assessment of

its probability. When f(z) = z
1
r the comparative statics are �ipped. For the optimist, the

better is the best outcome, the more likely the DM thinks it is; and the worse is the worst

outcome, the less likely he thinks it is. By construction, however, choice behavior in either

case is indistinguishable from that of a DM with a Savage-type representation.

Remark 1. Based on Aumann�s 1971 exchange of letters with Savage (reprinted in Drèze
(1987)), the following argument has often been used to point out that the Savage repre-

sentation could have multiple state-dependent expected utility representations, leaving the

(single) probability distribution ill-de�ned. Consider a Savage representation of the form

p1u (x1) + p2u (x2). Then for any bp with the same support as p, this expression is equal
to bp1bu (x1; s1) + bp2bu (x2; s2), where bu (xs; s) := psu(xs)bps is a state-dependent utility func-

tion. Now imagine using the same idea to generate stake-dependent probabilities. Fix

any strictly positive utility function over prizes, u. Then p1u (x1) + p2u (x2) is the same

as p(s1; x1)u (x1) + p(s2; x2)u (x2), where p(s; xs) :=
psu(xs)
u(xs)

. But note that p(s; xs) is not a

probability distribution unless we normalize it by p(s1; x1)+ p(s2; x2), a scaling factor which

generically depends on the stakes in all states (that is, unless u is a scalar multiple of u).

The resulting utility representation, therefore, will not longer represent the same preferences

as the original Savage representation.

3. The general case

The two-state case showed how one could �nd a continuum of (nonlinearly transformed)

utility functions and an associated distortion of probabilities for each, so that under any of

these representations, the certainty equivalent of every act is the same as that under the

original Savage representation. We show next that this can be done for an arbitrary �nite

number of states.2

Let S = fs1; :::; sng be the set of states and let x = (x1; :::; xn) 2 Rn be an act, where
xi corresponds to the outcome in state si. For ease of exposition, we will assume that

x1 > � � � > xn; it is straightforward to handle the general case at the cost of more complicated
notation. Consider a Savage expected utility representation, with p the probability vector

and u the utility function over prizes. We look for a representation of the form

v̂ (x) =
Xn

i=1
Pi(x; p)û (xi) ; (2)

2Alternatively, it can be done for simple (�nite support) acts on a continuum state space.
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where Pi(x; p), i = 1; : : : ; n, constitute a stake-dependent probability distribution, and v̂

represents the same preferences as the Savage expected utility function. As before, this

implies that û(z) = f(u(z)) for some increasing function f , and that

v̂ (x) = f (v (x)) =
Xn

i=1
Pi(x; p)f (u (xi)) : (3)

Including the above equation and the obvious restriction that
Pn

i=1 Pi(x; p) = 1, we have two

equations with n unknowns. While this su¢ ced for a unique solution in the case n = 2, when

n � 3 there will generally be many ways to construct a probability distortion, corresponding
to di¤erent ways a DM might allocate weight to events.

We will demonstrate one simple construction of an optimistic distortion; the case of

pessimism is analogous. For an act x, let c(x; ~u; ~p) be the certainty equivalent of x given

a utility function ~u and a probability vector ~p, that is, u(c(x; ~u; ~p)) =
Pn

i=1 ~pi~u (xi). Let

û = f(u) for an increasing and concave transformation function f . Since û is more risk

averse than u; c(x; û; p) < c(x;u; p). De�ne P�(x) = � � (1; 0; : : : ; 0) + (1 � �) � p to be
the convex combination of the Savage probability p and the distribution (1; 0; : : : ; 0), which

puts probability one on the best state. Note that c(x; û; P0(x)) = c(x; û; p) < c(x;u; p)

and that c(x; û; P1(x)) = x1 > c(x;u; p). It is clear that c(x; û; P�(x)) is continuous and

strictly increasing in �, so for any x there is a unique �� 2 (0; 1) such that c(x; û; P��(x)) =
c(x;u; p):3 This construction ensures that for each act x, the certainty equivalent given û and

P (x; p) is the same as the certainty equivalent given the Savage representation. Thus û and

P (x; p) form an alternate representation of the preferences represented by the original Savage

representation, u and p. The constructed representation can be thought of as optimistic; it

is straightforward to see that for every act, the distorted probability distribution over states

�rst-order stochastically dominates the Savage distribution p. For any r 2 (0; 1), if f(z) = zr

then the probability distribution can be shown to satisfy one side of the comparative statics

exhibited in the case n = 2: as the worst outcome becomes worse, the DM is more convinced

that the best outcome will occur (see the supplement for the proof).

There are, of course, many ways to modify this construction. Any function P�(x),

� 2 [0; 1]; that satis�es (i) P0(x) = p; (ii) P1(x) = (1; 0; : : : ; 0); and (iii) P�(x) �rst-order

stochastically dominates ~P�0(x) if � > �
0 could have been used to construct P (x; p): Thus for

each of the continuum of concave transformations û of the Savage utility function u, there is

a continuum of probabilities P (x; p) that could be coupled with û to generate an alternative

3More generally, if the best payo¤ occurs in state j, replace (1; 0; : : : ; 0) above with the distribution that
puts probability one on state j. If for a given x the best payo¤ occurs under several states, any distribution
for which the support is contained in the set of those best states would do. If xj is the best outcome,

�� =
f(
Pn

i=1 piu(xi))�
Pn

i=1 pif(u(xi))

f(u(xj))�
Pn

i=1 pif(u(xi))
. Since f is increasing and concave, �� 2 (0; 1).
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optimistic representation of the preferences over acts. For a pessimistic distortion, we would

use instead an arbitrary increasing and convex transformation f to generate û = f(u). Since

u is more concave than û, c(x; û; p) > c(x;u; p). Then, for example, the stake-dependent

distribution P (x; p) could be generated by a convex combination of the Savage distribution

p and (0; : : : ; 0; 1), the distribution which puts probability one on the worst outcome. In this

case, p stochastically dominates the constructed P (x; p). Alternatively, one can construct a

probability distortion using a di¤erent method altogether (an example of such a construction

can be found in the supplemental appendix).

4. Implications on a larger domain

We next examine how one may be able to distinguish optimism from pessimism, and how

we may use our model to separate attitude to uncertainty from utility over prizes. Suppose

the DM�s preferences � are de�ned over the domain of choice 	 = L1 [ F , where L1 is
the set of (purely objective) simple lotteries over the set of prizes X, and F is the set of

(purely subjective) Savage acts over X.4 Assume that the DM satis�es the axioms of Savage

over subjective acts, leading to a subjective expected utility representation with Bernoulli

function v. Assume also that the DM satis�es the axioms of vNM over objective lotteries,

leading to an expected utility representation with Bernoulli function u.

Suppose we observe that the DM is ambiguity averse, in the sense that he is more risk

averse in uncertain settings than in objective settings; that is, v = f (u) for some increasing

and concave function f .5 Note that it is impossible to keep u and v the same without

assuming identical risk attitude in both settings, as risk preferences are entirely characterized

by the utility for prizes under the conventions of the expected utility representation. A

natural focal point, however, is for the DM�s utility over prizes (which captures his tastes for

the ultimate outcomes) to be consistent across the objective and subjective domains; that

is, u = v. Simply put, the prizes are the same in both domains; it is only the probabilities

that di¤er in the two situations. The behavioral implication is that the DM is indi¤erent

4Note that this domain is essentially a strict subset of the domain of Anscombe and Aumann (1963), in
which the outcome of an act in every state is an objective lottery. This domain is similar to the one used in
Chew and Sagi (2008). Using their language, the sets L1 and F can be thought of as two di¤erent sources
of uncertainty, on which the DM�s preferences may di¤er. This domain allows us to talk about ambiguity
while avoiding the multistage complications of Anscombe and Aumann (1963)�s model.

5This corresponds to Ghirardato and Marinacci�s (2002) de�nition of ambiguity aversion, used in the
context of Anscombe-Aumann acts in Grant, Polak, and Strzalecki (2009). According to that de�nition, the
DM is more risk averse in uncertain settings than in objective settings if there exists a probability distribution
p over S, such that for all � 2 L1 and l 2 F , l � � implies that �l;p � �, where �l;p is the objective lottery
under which the prize l(s) is received with probability p(s). The intuition behind this axiom is that if the
DM prefers an act to a given lottery, it would also be better to simply receive that �act�with the objective
probabilities that would ultimately be speci�ed by the Savage distribution.
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between a degenerate lottery that yields the prize z with certainty and the degenerate act

that yields z in each state of nature.

Our model allows comparing the risk attitude of the DM on the subjective and objective

domains while attributing to him the same utility for prizes in the two domains, simply by

viewing him as a pessimist. In particular, if v = f (u) and f is concave, then there exists

a unique convex transformation g = f�1 such that g (v) = u.6 Given the results above, the

Savage representation with utility function v is equivalent to a pessimistic representation

using the more convex u. That is, we may attribute the DM�s greater risk aversion in the

subjective domain to pessimistic probability assessments, rather than a change in his utility

for prizes. Under this convention, his utility over prizes is always u, which is elicited in the

presence of well-de�ned risks. Analogously, if a DM is discovered to be less risk averse in the

subjective domain than in the objective one, he may be viewed as an optimist using the same

utility function over prizes in both domains. Much in the same way that probabilities are

identi�ed under Savage�s convention of state-independent utility for prizes (as discussed in

Remark 1), optimism and pessimism are identi�ed under a convention of source-independent

utility for prizes.

5. Discussion and related literature

Should we care? We have demonstrated the existence of alternative representations of

preferences over acts that satisfy Savage�s axioms and that involve stake-dependent prob-

abilities and a stake-independent utility function. Should we care about such alternate

representations?

It is useful to distinguish between a utility representation (or model), which is a con-

struct for imagining how a DM makes decisions, and choice behavior, which is the observable

data. The standard point of view is that the representation is nothing more than an analyt-

ically convenient device to model a DM�s choices. In this approach, termed paramorphic by

Wakker (2010), the representation does not suggest that a DM uses the utility function and

a probability distribution to make choices, or indeed, that a DM even has a utility function

or probability distribution. An alternative approach is that the models we employ should

6More formally, the assumptions above imply that for any � 2 	, there are increasing transformations h
and bh such that the DM�s preference is represented by

U (�) =

�
h (
P

x � (x)u (x)) � = � 2 L1bh (Ps psv (l (s))) � = l 2 F

Indi¤erence between a degenerate lottery and act would imply u (x) = h�1
�bh (v (x))� := g (v (x)). If the

DM is more risk averse in uncertain settings than in objective settings, then the transformation g is convex.
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not only capture the choices agents make, but should match the underlying processes in

making decisions. Wakker (2010) lays out an argument for this approach, which he terms

homeomorphic. In his words, �we want the theoretical parameters in the model to have plau-

sible psychological interpretations.�This stance is also common in the behavioral economics

literature, where mental processes and psychological plausibility are of particular interest.7

As Dekel and Lipman (2010) note, a utility representation is, at minimum, useful for

organizing our thoughts around the elements of that representation (e.g., in terms of proba-

bilities, utilities, and expectations).8 Indeed, the expected utility representation has strongly

in�uenced the view of �rational�behavior. Gilboa, Postlewaite, and Schmeidler (2009) argue

that given the axiomatic foundations provided by Savage, �one may conclude that we should

formulate our beliefs in terms of a Bayesian prior and make decisions so as to maximize

the expectation of a utility function relative to this prior.�This normative statement links

Savage�s axioms to a particular process of decision making. In a recent survey, Gilboa and

Marinacci (2011) express a similar idea, according to which Savage�s axiomatic foundations

essentially say,�Even if you don�t know what the probabilities are, you should better adopt

some probabilities and make decisions in accordance with them, as this is the only way to

satisfy the axioms.�

In this paper, we show that a DM may want to satisfy Savage�s axioms but still view

the world with (our notion of) optimism or pessimism, and in particular, without having

a stake-independent prior. We should emphasize that this is a positive issue of how peo-

ple actually think and behave. Looking at implied choice behavior, a model that assumes

expected utility maximization accommodates people who might think in an �irrationally�

pessimistic or optimistic way. Only by characterizing the full set of representations can we

know the full range of possible decision processes that are consistent with the analysis in

our standard models. This means that one need not always modify the standard model to

include psychologically plausible decision processes. Hey (1984), for example, introduces a

notion of pessimism and optimism very similar to our own: an optimist (pessimist) revises

up (down) the probabilities of favorable events and revises down (up) the probabilities of

unfavorable events. Hey incorporates consequence-dependent probabilities in a Savage-like

7A similar discussion appears in Karni (2011). Karni distinguishes between the de�nitional meaning of
subjective probabilities, according to which subjective probabilities de�ne the DM�s degree of belief regarding
the likelihood of events, and the measurement meaning, according to which subjective probabilities measure,
rather than de�ne, the DM�s beliefs. That is, the DM�s beliefs are cognitive phenomena that directly a¤ect
the decision-making process.

8They further argue that the �story�of a model is relevant and may provide a reason for preferring one
model to the other, even if the two models predict the same choices. Dekel and Lipman emphasize that while
the story�s plausibility (or lack thereof) may a¤ect our con�dence in the predictions of the model, it cannot
refute or con�rm those predictions; and that even if the story suggested by the representation is known to
be false, it may still be valuable to our reasoning process.
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representation, which can generate behavioral patterns that are inconsistent with expected

utility because additional restrictions are not placed on the distorted probabilities. The no-

tion that optimism and pessimism are inconsistent with Savage�s axioms is implicit in his

analysis, whereas our paper suggests that this is not necessarily the case.9

There are good arguments for the approach that takes the elements of the representation

as actual entities in themselves. Consider a situation in which a DM may have little or

no information about the relative likelihoods of outcomes associated with di¤erent choices

she confronts. An expert who is informed about those likelihoods could determine which of

the choices is best if he knew the DM�s utility function. Through a sequence of questions

about choices in a framework that the DM understands, the expert can, in principle, elicit

the utility function, which can then be combined with the expert�s knowledge about the

probabilities associated with the choices in the problem at hand in order to make recommen-

dations. Wakker (2008, 2010) and Karni (2009) treat problems of this type in the context

of medical decision making. Under this point of view, it may be important to understand

which representation is being elicited. If a DM had stake-dependent pessimistic beliefs but

was assumed to have a �standard�Savage representation, the elicited utility function would

exhibit greater risk aversion than the true utility function. Analogously, if the DM was

optimistic, the elicited utility function would exhibit less risk aversion than her true utility

function.

Related literature. The observation that the Savage-type representation and the opti-

mist (or pessimist) case support the same underlying preferences, and hence cannot be dis-

tinguished by simple choice data, is related to general comments about model identi�cation.

In a series of papers, Karni (2011 and references therein) points out that the identi�cation of

probabilities in Savage�s model rests on the (implicit) assumption of state-independent util-

ity, and proceeds to propose a new analytical framework within which state independence

of the utility function has choice-theoretic implications.10 In the context of preference over

menus of lotteries, Dekel and Lipman (2011) point out that a stochastic version of Gul and

Pesendorfer (2001)�s temptation model is indistinguishable from a random Strotz model.

9By contrast, Wakker (1990) discusses optimism and pessimism as phenomena that can be accommodated
in models such as rank-dependent expected utility (RDU), but cannot in expected utility. Wakker de�nes
pessimism through behavior (similarly to uncertainty aversion) and shows that within RDU, pessimism
(optimism) holds if greater decision weights are given to worse (better) ranks. Unlike in our model, �xing
the ranks, changes in outcomes do not a¤ect changes in decision weights in Wakker�s model.
10Grant and Karni (2005) argue that there are situations in which Savage�s notion of subjective probabilities

(which is based on the convention that the utilities of consequences are state-independent) is inadequate for
the study of incentive contracts. For example, in a principal-agent framework, misconstrued probabilities
and utilities may lead the principal to o¤er the agent a contract that is acceptable yet incentive incompatible.
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Chatterjee and Krishna (2009) show that a preference with a Gul and Pesendorfer (2001)

representation also has a representation where there is a menu-dependent probability that

the choice is made by the tempted (the �alter-ego�) self, and otherwise the choice is made

by the untempted self. Spiegler (2008) extends Brunnermeier and Parker�s (2005) model of

optimal expectations by adding a preliminary stage to the decision process, in which the DM

chooses a signal from a set of feasible signals. Spiegler establishes that the DM�s behavior

throughout the two-stage decision problem, and particularly his choices between signals in

the �rst stage, is indistinguishable from those of a standard DM who tries to maximize the

expectation of some state-dependent utility function over actions. In the context of prefer-

ences over acts, Strzalecki (2011) shows that for the class of multiplier preferences, there is no

way of disentangling risk aversion from concern about model misspeci�cation. Consequen-

tially, he points out that �...policy recommendations based on such a model would depend

on a somewhat arbitrary choice of the representation. Di¤erent representations of the same

preferences could lead to di¤erent welfare assessments and policy choices, but such choices

would not be based on observable data.�Some of the papers above suggest an additional

choice data that is su¢ cient to distinguish between the models. For example, in Dekel and

Lipman (2011) as well as in Chatterjee and Krishna (2009), the two indistinguishable models

predict di¤erent choices from menus, suggesting that data on second-stage choice is needed.

Can our model be distinguished from Savage�s? In the spirit of the papers above,

can we �nd a domain of choice in which optimism and pessimism may be distinguished both

from each other and from a simple expected utility maximizer? One might think that a

person with pessimistic (or optimistic) beliefs could be identi�ed on the basis of choice by

confronting the DM with choices over acts whose prizes are based on objective probabilities;

for example, by soliciting enough responses to questions of the sort �Which do you prefer: a

lottery that gives you $100 with probability .5 and $0 with probability .5 or getting $40 for

sure?�The responses to such questions would allow one to elicit the DM�s utility function,

and once this is known, one can determine whether the DM has stake-dependent probabilities

over subjective events. (See the discussion in Section 4). This argument, however, presumes

that the DM takes these probabilities at face value. Her choices will depend on the likelihoods

in her mind of getting the various prizes. She may well think �I�m very unlikely to get the

$100 if I take the gamble - I never win anything.�There is no compelling reason to believe

that a pessimistic or optimistic DM�s mental assessment of the likelihood of an event can

be controlled by arguing what the DM �should�believe. This is reminiscent of a point in

Pesendorfer (2006), who questions whether it is reasonable in the face of a failure of one

aspect of the standard model to assume that the other aspects continue to apply.
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Another approach for attempting to distinguish the models would be to study their be-

havior after receiving additional information, such as a signal about the true state. This

involves specifying a somewhat arbitrary updating rule for optimists and pessimists. Since

the DM is distorting the subjective probability distribution p, the most standard choice that

comes to mind is to distort the Bayesian updated subjective probability distribution (this

is similar to the choice of Spiegler (2008) in extending Brunnermeier and Parker�s (2005)

model to include signals). The updated beliefs of the optimist or pessimist would lead to

choices that would, once again, be indistinguishable from an expected utility maximizer us-

ing Bayesian updating. Other choices of updating rules (for example, performing a Bayesian

update on the distortion) may well lead to di¤erent behaviors. In general, it is not imme-

diately clear why an individual who views the likelihood of events as dependent upon their

consequences would employ standard Bayesian updating.

A reduced form interpretation. The pessimistic representation may capture a DM who

su¤ers from performance anxiety. Consider a DM who is about to perform a task that yields

high stakes upon succeeding. But the high stakes may increase his anxiety and stress, which,

in turn, reduces the probability of success.11 If the DM can foresee his performance anxiety

and were to bet on his success, then he will bias down that probability.

Alternatively, suppose that the probability of success depends monotonically on the

amount of e¤ort the DM exerts. In a stylized principal-agent model, the principal, who

likes to induce the agent to exert high e¤ort, will need to incentivise him by increasing the

stakes. If the agent responds to these incentives and puts higher e¤ort, then the probability

of success is indeed higher. More generally, one can think of a situation in which the agent

simply believes that he can a¤ect the probabilities by putting more e¤ort. Our notion of

optimism captures such a situation, without explicitly mentioning the e¤ort dependence; the

higher the stakes are, the more likely the DM believes the good state occurs.12

11Ariely (2010) found that potentially large bonuses may lower employee performance due to stress.
12A related idea appears in Drèze (1987). Drèze develops a decision theory with state-dependent pref-

erences and moral hazard, based on the Anscombe and Aumann model, in which the reversal of order
assumption (which requires indi¤erence between ex-ante and ex-post randomization) is relaxed. The DM
might display preferences for ex-ante randomization (that is, preferences to knowing the outcome of a lot-
tery before the state of nature becomes known) if he believes that he can in�uence the outcome by his
(unobserved) actions. Drèze derives a representation that entails the maximization of subjective expected
utility over a convex set of subjective probability measures.
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Appendix

Proof of Proposition 1

Using @f
@z
(a) := @f

@z
jz=a, and assuming that x2 is a point such that @f@z (u (x2)) 2 (0;1):

@P1 (x1; x2; p1)

@x1
� 0 for all x1; x2 and for �xed p1 2 (0; 1)

if and only if

(f (u (x1))� f (u (x2)))
@f
@z
(u (x1))

� (f (u (x2) + p (u (x1)� u (x2)))� f (u (x2)))
@f
@z
(v (x1; x2)) p

:

Divide both sides by u (x1)� u (x2). If u (x1)� u (x2) > 0 then

(f (u (x1))� f (u (x2)))
@f
@z
(u (x1)) (u (x1)� u (x2))

� (f (u (x2) + p (u (x1)� u (x2)))� f (u (x2)))
@f
@z
(pu (x1) + (1� p)u (x2)) (u (x1)� u (x2)) p

: (4)

A su¢ cient condition is that the right hand side (4) is decreasing in p (so that it is

minimized at p = 1). Take f (z) = zr with r > 1. Note that the right hand side (4) is then

(u (x2) + p (u (x1)� u (x2)))r � (u (x2))r

p (u (x1)� u (x2)) r (u (x2) + p (u (x1)� u (x2)))r�1
=
1

r

"
r�1X
j=0

�
u (x2)

u (x2) + p (u (x1)� u (x2))

�j#
;

(5)

since the term (u (x2) + p (u (x1)� u (x2)))r � (u (x2))r can be factored as

p (u (x1)� u (x2))
"
r�1X
j=0

(u (x2) + p (u (x1)� u (x2)))r�1�j (u (x2))j
#
:

Since all the summands in the right hand side of (5) are decreasing with p (recall that

(u (x1)� u (x2)) > 0 and u (x2) > 0), the whole term is decreasing with p:

If u (x1)� u (x2) < 0 then

(f (u (x1))� f (u (x2)))
@f
@z
(u (x1)) (u (x1)� u (x2))

� (f (u (x2) + p (u (x1)� u (x2)))� f (u (x2)))
@f
@z
(pu (x1) + (1� p)u (x2)) (u (x1)� u (x2)) p

: (6)

Again, a su¢ cient condition would be that the right hand side of (6) is increasing with p.

But, for f (z) = zr this is indeed the case since the factorization of the right hand side is as

above, but now the coe¢ cient of p in the denominator is (u (x1)� u (x2)) < 0:
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For the optimist, we would like the following condition to hold:

@P1 (x1; x2; p1)

@x1
� 0 (for all (x1; x2) and for �xed p 2 (0; 1) ).

Mimicking the calculations in the pessimism case, the condition is (for u (x1)� u (x2) > 0)

(f (u (x1))� f (u (x2)))
@f
@z
(u (x1)) (u (x1)� u (x2))

� (f (u (x2) + p (u (x1)� u (x2)))� f (u (x2)))
@f
@z
(pu (x1) + (1� p)u (x2)) (u (x1)� u (x2)) p

: (7)

A su¢ cient condition is that the right hand side (7) is increasing in p (so that it is max-

imized at p = 1). Take, for example, f (z) = z
1
r with r > 1. By factoring and rearranging,

note that the right hand side (7) is then,

(u (x2) + p (u (x1)� u (x2)))
1
r � u (x2)

1
r

(u (x1)� u (x2)) p1r (u (x2) + p (u (x1)� u (x2)))
1�r
r

=
(u (x2) + p (u (x1)� u (x2)))

1
r � u (x2)

1
r

(u (x2) + p (u (x1)� u (x2))� u (x2)) 1r (u (x2) + p (u (x1)� u (x2)))
1�r
r

=
(u (x2) + p (u (x1)� u (x2)))

1
r � u (x2)

1
r��

(u (x2) + p (u (x1)� u (x2)))
1
r

�r
�
�
u (x2)

1
r

�r�
1
r
(u (x2) + p (u (x1)� u (x2)))

1�r
r

=
1hPr�1

j=0 (u (x2) + p (u (x1)� u (x2)))
r�1�j

r u (x2)
j
r

i
1
r
(u (x2) + p (u (x1)� u (x2)))

1�r
r

=
r (u (x2) + p (u (x1)� u (x2)))

r�1
rhPr�1

j=0 (u (x2) + p (u (x1)� u (x2)))
r�1�j

r u (x2)
j
r

i
=

r�Pr�1
j=0(u(x2)+p(u(x1)�u(x2)))

r�1�j
r u(x2)

j
r

(u(x2)+p(u(x1)�u(x2)))
r�1
r

�
=

r�Pr�1
j=0

�
u(x2)

(u(x2)+p(u(x1)�u(x2)))

� j
r

� :
Since u (x1) > u (x2), each summand is decreasing with p and hence the entire expression is

increasing with p. Similarly, if u (x1) < u (x2) the expression is decreasing with p (and the

� sign in (7) is reversed).
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Supplement to �Optimism and Pessimism with
Expected Utility�by DPR

In this supplement, we (1) prove the comparative statics for the example of

an optimistic distortion described in the text of Section 3, and (2) provide an

alternate construction of a probability distortion and study the corresponding

comparative statics.

For ease of exposition, we will assume that x1 > � � � > xn; it is straightforward to handle
the general case at the cost of more complicated notation.

Comparative statics for the optimism example

Proposition 2. Consider f(z) = zr for r 2 (0; 1). Let P�(x) = � � (1; 0; 0;...; 0)+ (1� �) � p,
where � solves c(x; f(u); P�(x)) = c(x;u; p). Then the probability placed by P�(x) on the

best outcome increases when the worst outcome becomes worse.

Proof. The � solving c(x; f(u); P�(x)) = c(x;u; p) is given by

� =
f (
Pn

i=1 piu(xi))�
Pn

i=1 pif (u (xi))

f (u (x1))�
Pn

i=1 pif (u (xi))
: (8)

By construction of P�(x), it su¢ ces to show that @�
@xn

< 0 when f(z) = zr for r 2 (0; 1).
Taking the derivative of (8) and rearranging, this is true if and only if

f(u(x1))�
Pn

i=1 pif(u(xi))

f 0(u(xn))
<
f(u(x1))� f(

Pn
i=1 piu(xi))

f 0(
Pn

i=1 piu(xi))
: (9)

For �xed x, de�ne

F (p) =
u(x1)

r

u(xn)r�1
� 1

u(xn)r�1

nX
i=1

piu(xi)
r � u(x1)

r

(
Pn

i=1 piu(xi))
r�1 +

nX
i=1

piu(xi):

Then (9) is equivalent to F (p) < 0. We proceed in two steps. First, we show that F (p) is

convex in p. Let �(x) := (1� r)r(
Pn

i=1 piu(xi))
�r�1 > 0. Then the Hessian of F is given by

HF (p) = �(x)

0BBBBB@
(u (x1))

2 (u (x1)) (u (x2)) � � � (u (x1)) (u (xn))

(u (x1)) (u (x2)) (u (x2))
2 � � � (u (x2)) (u (xn))

... � � � . . .
...

(u (x1)) (u (xn)) (u (x2)) (u (xn)) � � � (u (xn))
2

1CCCCCA ;

16



where the i; j-th entry is the cross-partial derivative of F with respect to pi and pj. HF is a

positive constant times a Gramian matrix, hence is positive semi-de�nite.

Second, since F is a convex function, it achieves its maximum on the vertices of the

probability simplex. Let ei be an n�dimensional vector such that eij = 0 for j 6= i and

eii = 1. Then for any p = (p1; p2; :::; pn), F (p) = F (
P

i pie
i) � pi

P
i F (e

i) : Since x1 > xi
for i = 2; ::; n, note after some rearrangement that

F (ei) =

8>><>>:
0 if i = 1

0 if i = n

(u(x1)
r � u(xi)r)( 1

u(xn)r�1
� 1

u(xi)r�1
) < 0 otherwise.

Hence F (p) is weakly negative, and strictly so whenever we are not in the two state case.

An alternate construction

Here we demonstrate one (of the many) additional ways to construct a pessimistic distortion.

Let Pi(x; p) be the probability of the state that yields the ith-best outcome among all n

states. To �x a distribution, we normalize the ratio of the probabilities of any pair of states

(except of the state giving the worst prize) to be equal to the ratio of the Savage probabilities

corresponding to these two states. That is,

Pj(x; p)

Pj+1(x; p)
=

pj
pj+1

for j = 1; 2; :::; n� 2: (10)

Substitute (10) and Pn(x; p) = 1�
Pn�1

i=1 Pi(x; p) in (3) and solving for P1(x; p) yields

P1(x; p) = p1
f (v (x))� f (u (xn))Pn

i=1 pif (u (xi))� f (u (xn))
: (11)

When f is convex, Jensen�s inequality says that
Pn

i=1 pif (u (xi)) � f (v (x)). Thus

P1(x; p) = p1
f (v (x))� f (u (xn))Pn

i=1 pif (u (xi))� f (u (xn))
� p1:

Furthermore, for j = 2; :::; n� 1, Pj(x; p) = pj
p1
P1(x; p) � pj. Hence

Pn(x; p) = 1�
Xn�1

i=1
Pi(x; p) � 1�

Xn�1

i=1
pi = pn:

We have now proved the �rst part of the upcoming result.
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Proposition 3. For a convex transformation function f , the probability distribution con-

structed above is �rst-order stochastically dominated by the original Savage distribution.

Moreover, if f (z) = zr for r > 1, an increase in the best prize causes a decrease in all

probabilities except that of the worst outcome.

Proof. It is enough to show that @P1
@x1
(x; p) � 0, since Pj(x; p) =

pj
p1
P1(x; p) for j � n � 2.

Taking derivatives and rearranging, if

(
Pn

i=1 pi (u (xi))
r � (u (xn))r)

(u (x1))
r�1 �

Xn

i=1
piu (xi)�

(u (xn))
r

(
Pn

i=1 piu (xi))
r�1 :

Let p = (p1; :::; pn) and de�ne, for �xed consequences x,

F (p) =
(
Pn

i=1 pi (u (xi))
r � (u (xn))r)

(u (x1))
r�1 �

Xn

i=1
piu (xi) +

(u (xn))
r

(
Pn

i=1 piu (xi))
r�1 : (12)

We proceed from here in two steps. First, we show that F (p) is convex. Let �(x) :=

�r (1� r) (u (xn))r (
Pn

i=1 piu (xi))
�r�1

> 0. The Hessian matrix of F is

HF (p) = �(x)

0BBBBB@
(u (x1))

2 (u (x1)) (u (x2)) � � � (u (x1)) (u (xn))

(u (x1)) (u (x2)) (u (x2))
2 � � � (u (x2)) (u (xn))

... � � � . . .
...

(u (x1)) (u (xn)) (u (x2)) (u (xn)) � � � (u (xn))
2

1CCCCCA ;

where the i; j-th entry is the cross-partial derivative of F with respect to pi and pj. HF is a

positive constant times a Gramian matrix, hence is positive semi-de�nite.

Second, since F is a convex function, it achieves its maximum on the vertices of the

probability simplex. Since x1 > xi for i = 2; 3; ::; n, note that

F
�
ei
�
=
(u (xi))

r � (u (xn))r

(u (x1))
r�1 � (u (xi))

r � (u (xn))r

(u (xi))
r�1

8>><>>:
= 0 if i = 1

= 0 if i = n

< 0 otherwise.

We conclude that F (p) is weakly negative (and strictly negative whenever we are not in the

two-state case), and thus @P1
@x1
(x; p) � 0.
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