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1 Introduction and Preliminaries

This paper deals with a vector optimization problem and its dual variables (Lagrange multi-

pliers or shadow prices) that we want to investigate in details. To this aim, we present some

scalarization methods and, subsequently, the interpretation of dual variables is given by means

of sensitivity analysis. We propose also a scheme to derive marginal rates of substitution be-

tween two different objective functions and also between an objective and a constraint. The

setting is the linear case; in fact, it is the simplest to operate in at the beginning of the work,

but obviously our intent is to propose in the future similar results in a more general framework

and to focus also on duality arguments.

The paper deals mainly with scalarization methods. As it is well known, under convexity as-

sumptions, a weighting scalarization technique permits to find all the optimal solutions of a

vector optimization problem.

Otherwise, without any assumption on the given problem, a way of scalarizing consists in the

construction of ℓ scalar problems - as many as the objective functions - called ε-constraint prob-

lems (see (3.2.1) of [11]).

Another scalarization method, without any assumption, is proposed in [9]. All the optimal points

of the vector minimum problem are found by solving a scalar quasi-minimum problem, that, in

the linear case, reduces to establish whether or not a parametric system of linear inequalities has

a unique solution that is exactly the value of the parameter; a necessary and sufficient condition

is given, which allows us to obtain this result. We also will point out some relationships between

the two above methods.

The paper is organized as follows. In Sect.2, we present the scalarization techniques and some

results about them; then, we describe a way to find all the optimal solutions of a vector opti-

mization problem. Sect.3 is devoted to the study of shadow prices. Starting from a complete

vector Lagrangian function, through scalarization and sensitivity analysis, we can derive two

matrices of marginal rates of substitution, or rates of change; the former, call it Θ, refers to the

rates of change between two objectives; the latter, call it Λ, refers to the rates of change between

an objective and a constraint. In Subsect.3.1, we obtain these matrices trough the ε-constraint

method and we prove that the matrix Θ is reciprocal and consistent; in Subsect.3.2, we obtain

these matrices by means of the scalarization technique proposed in [9] and we point out the

relationships between these two methods. The properties and the relations between Θ and Λ
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are then outlined. All these aspects are discussed in Sect.4 through examples.

In the remaining part of this section, we recall the notations and basic notions useful in the

sequel. On denotes the n-tuple, whose entries are zero; when there is no fear of confusion the

subfix is omitted; for n = 1, the 1-tuple is identified with its element, namely, we set O1 = 0.

Let the positive integers ℓ,m, n, the cone C ⊆ R
ℓ, the vector-valued functions f : Rn → R

ℓ

and g : Rn → R
m and the subset X ⊆ R

n be given. In the sequel, it will be assumed that C

be convex, closed and pointed with apex at the origin (so that it identifies a partial order) and

with intC 6= Ø, namely with nonempty interior. Set C0 := C\{O}. We consider the following

vector minimization problem, called generalized Pareto problem:

minC0
f(x) subject to x ∈ K = {x ∈ X : g(x) ≥ O}, (1.1)

where minC0
denotes vector minimum with respect to the cone C0: x0 ∈ K is a (global) vector

minimum point (for short, v.m.p.) to (1.1), if and only if

f(x0) �C0
f(x), ∀x ∈ K, (1.2)

where the inequality means f(x0) − f(x) /∈ C0. In what follows, we will assume that v.m.p.

exist. Obviously, x0 ∈ K is a v.m.p. of (1.1), i.e (1.2) is fulfilled, if and only if the system (in

the unknown x)

f(x0) − f(x) ∈ C, f(x0) − f(x) 6= O, g(x) ≥ O, x ∈ X (1.3)

is impossible. System (1.3) is impossible if and only if H ∩ K(x0) = Ø, where H := C0 × R
m
+

and K(x0) := {(u, v) ∈ R
ℓ × R

m : u = f(x0) − f(x), v = g(x), x ∈ X}. In the sequel, when

there is no fear of confusion, K(x0) will be denoted merely by K. H and K are subsets of

R
ℓ × R

m, that is called image space; K is called image of problem (1.1). In general, to prove

directly H ∩ K(x0) = Ø is a difficult task; hence this disjunction can be proved by means of a

sufficient condition, that is the existence of a function, such that two of its disjoint level sets

contain H and K, respectively. To this end, let us consider the sets U = C0, V = R
m
+ and

U∗
C0

:= {Θ ∈ R
ℓ×ℓ : Θu ≥C0

O, ∀u ∈ U}, V ∗
C := {Λ ∈ R

ℓ×m : Λv ≥C O, ∀v ∈ V }. Let us

introduce the class of functions w : Rℓ ×R
m → R

ℓ, defined by:

w = w(u, v,Θ, Λ) = Θu + Λv, Θ ∈ U∗
C0

, Λ ∈ V ∗
C (1.4)

where Θ,Λ play the role of parameters. For every vector-valued function of family (1.4) the

positive and nonpositive level sets are given by:
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WC0
(u, v; Θ,Λ) = {(u, v) ∈ R

ℓ ×R
m : w(u, v, Θ,Λ) ≥ C0};

WC0
(u, v; Θ, Λ) = {(u, v) ∈ R

ℓ ×R
m : w(u, v,Θ, Λ) � C0}.

Proposition 1.1. (see Proposition 1 of [9]) Let w be given by (1.4). We have H ⊂ WC0
,

∀Θ ∈ U∗
C0

, ∀Λ ∈ V ∗
C .

Proposition 1.1 is a first step towards a sufficient condition for the optimality of x0. It is obvious

that, if we can find one of the functions of class (1.4) such that K(x0) ⊂ WC0
, then the optimality

of x0 is proved. Indeed, we have the following result.

Theorem 1.1. (see Theorem 1 of [9]) Let x0 ∈ K. If there exist matrices Θ ∈ U∗
C0

,Λ ∈ V ∗
C ,

such that

w(f(x0) − f(x), g(x),Θ, Λ) = Θ(f(x0) − f(x)) + Λg(x) �C0
O, ∀x ∈ X, (1.5)

then x0 is a (global) v.m.p. of (1.1).

If C = R
ℓ
+, then (1.1) becomes the classic Pareto vector problem and (1.2) is the definition of

Pareto optimal point.

At ℓ = 1 and C = R+, the above theorem collapses to an existing one for scalar optimization

(see Corollary 5.1 of [7]). Observe that the identity matrix of order ℓ, say Iℓ, belongs to U∗
C0

and that, when ℓ = 1, Θ can be replaced by 1.

2 Scalarization of Vector Problems

There exist many scalarization methods; we recall here those ones exploited in this work to

deepen the study of shadow prices.

A) Weighting method (see (3.1.1), Part II of [11]).

Problem (1.1), where C = R
ℓ
+, is associated with the following scalar problem:

min
ℓ

∑

i=1

wifi(x) subject to x ∈ K, (2.1)

where the wi are weighting coefficients, such that wi ≥ 0 ∀i,
∑ℓ

i=1 wi = 1.

Classical results are represented by the following propositions (see [11]).
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Proposition 2.1. A minimum point of problem (2.1) is Pareto optimal if the weighting coeffi-

cients are positive, that is wi > 0, ∀i = 1, . . . , ℓ.

Proposition 2.2. If there exists a unique minimum point of problem (2.1), then it is Pareto

optimal.

Proposition 2.3. Let (1.1) be convex. If x0 ∈ K is Pareto optimal, then there exists a weighting

vector w (wi ≥ 0, i = 1, . . . , ℓ,
∑ℓ

i=1 wi = 1), such that x0 is a minimum point of (2.1).

B) ε-constraint method (see (3.2.1), Part II of [11]).

Problem (1.1), when C = R
ℓ
+, is associated with the following ℓ scalar problems:

Pk(ε) : min fk(x) s.t. fj(x) ≤ εj ∀j 6= k, x ∈ K; k = 1, . . . , ℓ, (2.2)

where εj is an upper bound for function fj with j = 1, . . . , ℓ. For the proofs of the following

results we refer to [11].

Proposition 2.4. A vector x0 ∈ K is Pareto optimal if and only if it is a minimum point of all

problems Pk(ε), ∀k = 1, . . . , ℓ, at εj = fj(x
0) for j = 1, . . . , ℓ, j 6= k.

Therefore it is possible to find every Pareto optimal solution to (1.1) by the ε-constraint method.

Further results are the following ones.

Proposition 2.5. A point x0 ∈ K is Pareto optimal if it is the unique minimum point of an

ε-constraint problem for some k with εj = fj(x
0) for j = 1, . . . , ℓ, j 6= k.

Proposition 2.6. The unique minimum point of the kth ε-constraint problem, i.e. Pk(ε), is

Pareto optimal for any given upper bound vector ε = (ε1, . . . , εk−1, εk+1, . . . , εℓ).

Proposition 2.7. Let x0 ∈ K be a minimum point of (2.1) and wi ≥ 0, ∀i = 1, . . . , ℓ; we have:

i) if wk > 0, then x0 is a solution to Pk(ε) for εj = fj(x
0), with j = 1, . . . , k, j 6= k;

ii) if x0 is the unique solution to (2.1), then x0 is a solution to (2.2) for εj = fj(x
0).

Moreover, if (1.1) is convex and x0 ∈ K is a minimum point of (2.2) and εj = fj(x
0) for

j = 1, . . . , ℓ, j 6= k, then there exists a weighting vector wi ≥ 0, ∀i = 1, . . . , ℓ, with
∑ℓ

i=1 wi = 1,

such that x0 is also a minimum point of (2.1).
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Finally, we will shortly recall the scalarization approach proposed in [9] for solving vector opti-

mization problems.

C) Scalarization by Separation.

In [9] it has been shown how to set up a scalar minimization problem, which leads to detect

either all the v.m.p. of (1.1) or merely only one.

For every y ∈ X, let us define the following set:

S(y) := {x ∈ X : f(x) ∈ f(y) − C}.

Then, let us consider any fixed p ∈ C∗ := {z ∈ R
n : 〈z, x〉 ≥ 0,∀x ∈ C} and introduce the

(scalar) quasi-minimum problem (in the unknown x):

min 〈p, f(x)〉, s.t. x ∈ K ∩ S(y), (2.3)

whose feasible region depends on the parameter y.

We stress the fact that, in what follows, unlike y, p will not play the role of a parameter and

will be considered fixed. Observe that, if C = R
ℓ
+, then S(y) = {x ∈ X : f(x) ≤ f(y)}, so that

S(y) is a (vector) level set of f .

As it will be clear in the sequel, it is interesting to find conditions under which the set K ∩S(y)

(which obviously contains y) is a singleton.

Proposition 2.8. K ∩ S(x0) = {x0} if and only if x0 is a v.m.p. of (1.1) and ∄x ∈ K\{x0}

such that f(x) = f(x0).

Proof. K ∩ S(x0) = {x0} if and only if

f(x0) − f(x) /∈ C, ∀x ∈ K\{x0}, (2.4a)

or, equivalently,

f(x0) − f(x) /∈ C ⇐⇒ f(x0) − f(x) /∈ C0 and f(x0) − f(x) 6= O. (2.4b)

Then (2.4) is equivalent to claim that x0 is a v.m.p. of (1.1) and f(x0) 6= f(x), ∀x ∈ K\{x0}.

The scalarization approach of [9] is based on the results expressed by the following propositions.

Proposition 2.9. Let any p ∈ intC∗ be fixed. Then x0 is a v.m.p. of (1.1), if and only if it is

a (scalar) minimum point of (2.3) at y = x0.
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Proposition 2.10. If x0 is a (global) minimum point of (2.3) at y = y0, then x0 is a (global)

minimum point of (2.3) also at y = x0.

Proposition 2.10 suggests a method for finding a v.m.p. of (1.1). Let us choose any p ∈ intC∗;

p will remain fixed in the sequel. Then, we choose any y0 ∈ K and solve the (scalar) problem

(2.3) at y = y0. We find a solution x0. According to Proposition 2.9, x0 is a v.m.p. of (1.1).

If we want to find all the v.m.p. of (1.1) – this happens, for instance, when a given function

must be optimized over the set of all v.m.p. of (1.1) – then, starting with y = x0, we must

parametrically move y ∈ K and maintain y itself as a solution to (2.3). Propositions 2.9 and

2.10 guarantee that all the solutions to (1.1) will be reached. Note that such a scalarization

method does not require any assumption on (1.1).

This method is proposed also in [17] and [3], and problem (2.3) is sometimes called “hybrid

problem” (see (3.3.1), Part II of [11]), but in [9] the results are obtained, by means of separation

arguments, independently of [17] and [3]. The following example shows the application of the

above scalarization approach.

Example 2.1. Let us set ℓ = 3, m = 1, n = 2, X = R
2, C = R

3
+ and

f1(x) = x1 + 2x2, f2(x) = 4x1 + 2x2, f3(x) = x1 + 3x2, g(x) = −|x1| + x2.

Choose p = (1, 1, 1) and y0 = (0, 1). Then (2.3) becomes:

min(6x1 + 7x2), s.t. − |x1| + x2 ≥ 0, x1 + 2x2 ≤ 2, 2x1 + x2 ≤ 1, x1 + 3x2 ≤ 3. (2.4)

The (unique) solution to (2.4) is easily found to be x0 = (0, 0). Because of Proposition 2.9, x0

is a v.m.p. of (1.1) in the present case. Furthermore, we have K ∩ S(x0) = {x0}, namely the

parametric system (in the unknown x):

−|x1| + x2 ≥ 0, x1 + 2x2 ≤ y1 + 2y2, 2x1 + x2 ≤ 2y1 + y2, x1 + 3x2 ≤ y1 + 3y2 (2.5)

has the (unique) solution x0. In order to find all the v.m.p. of (1.1), we have to search for all

y ∈ K, such that (2.5) has y itself as the (unique) solution. (2.5) is equivalent to



















|x1| ≤ x2 ≤ −1
2x1 + 1

2y1 + y2

x2 ≤ −2x1 + 2y1 + y2

x2 ≤ −1
3x1 + 1

3y1 + y2

(2.6)
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Due to the simplicity of the example, it is easy to see, by direct inspection, that y ∈ R
2 is the

unique solution to (2.6), if and only if y1 + y2 = 0, y1 ≤ 0 or

y = (y1 = −t, y2 = t), t ∈ [0,+∞),

which gives us all the v.m.p. of (1.1).

We wish to propose a general method for solving the problem of finding the unique solution to

K ∩ S(x0), but this is not a simple matter. Meanwhile let us introduce a way to do this in the

linear case. First of all, we suppose to have a non-parametric system.

Theorem 2.1. Given a matrix A ∈ R
m×n and a vector b ∈ R

m, a bounded and nonempty

polyhedron P := {x ∈ R
n : Ax ≥ b} is a singleton if and only if

max
x∈P

〈

ci, x
〉

= min
x∈P

〈

ci, x
〉

, ∀i ∈ J := {1, . . . , n}, (2.7)

where c1, . . . , cn ∈ R
n are fixed linearly independent vectors.

Proof. The necessity is trivial. The sufficiency is proved ab absurdo: if ∃x1, x2 ∈ P with x1 6= x2,

then two cases are possible for x̂ := x2 − x1: either x̂ is orthogonal to every ci, i ∈ J , or ∃h ∈ J

such that x̂ is not orthogonal to ch. In the former case, we have x̂ = O, because x̂ is orthogonal

to n linearly independent vectors; hence x1 = x2 which contradicts the assumption. In the latter

case, we contradict (2.8) since 〈ch, x̂〉 6= 0 and we have

max
x∈P

〈

ci, x
〉

6= min
x∈P

〈

ci, x
〉

for x = x̂ and ci = ch. Finally, we conclude that P is a singleton.

Remark 1. Let R(y) := {x ∈ R
n : Āx ≥ B̄y + b̄}, where

Ā :=





A

−F



 ∈ R
(m+ℓ)×n, B̄ :=





Om×n

−F



 ∈ R
(m+ℓ)×n and b̄ :=





b

Oℓ



 ∈ R
(m+ℓ).

The set

Y := {y ∈ R
n : max

x∈R(y)

〈

ci, x
〉

= min
x∈R(y)

〈

ci, x
〉

, i = 1, . . . , n; y ∈ arg max
x∈R(y)

〈

c1, x
〉

}

is the set of parameters y we are looking for to obtain as unique solution to K ∩ S(x0), y = x0.

Note that Y 6= Ø if and only if R(y) is a singleton; moreover, the following theorem gives a

sufficient condition to have Y = Ø.
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Theorem 2.2. Assume that R(y) 6= Ø. If Ā∗ := {x ∈ R
n :

〈

āi, x
〉

≥ 0 i = 1, . . . ,m+ℓ} 6= {O},

then Y = Ø.

Proof. By hypothesis ∃x̂ 6= O such that
〈

āi, x
〉

≥ 0 i = 1, . . . ,m + ℓ, i.e., Āx̂ ≥ O. From

R(y) 6= Ø follows ∃x̃ ∈ R(y) such that Āx̃ ≥ B̄y+ b̄. Let us consider the vectors x̃+αx̂, ∀α > 0;

we have Ā(x̃+αx̂) ≥ B̄y + b̄ and hence, since x̂ 6= O, x̃+αx̂ is an element of R(y) for any choice

of α. We have found that R(y) is not a singleton, and from Theorem 2.1 and Remark 1, follows

Y = Ø.

In other words we have proved that if the positive polar cone of the cone generated by the rows

of Ā does not collapse to the origin O ∈ R
n, then ∄y ∈ R

n such that it is the unique solution to

the system Āx ≥ B̄y + b̄.

3 Shadow Prices

This section aims at carrying on the study of the dual problem of (1.1) and the strictly related

analysis of the shadow prices. A sufficient optimality condition, given in Theorem 1.1, states that

x0 ∈ K is a v.m.p. of (1.1) if Θ(f(x0) − f(x)) + Λg(x) �C0
O, ∀x ∈ X, for Θ ∈ U∗

C0
, Λ ∈ V ∗

C .

From this condition, and remembering the form for a complete vector Lagrangian function

L : R
n × R

ℓ×ℓ × R
ℓ×m → R

ℓ: L(x; Θ,Λ) := Θf(x) − Λg(x), we can observe that there are

two kinds of dual variables: Λ = (λij), i = 1, . . . , ℓ, j = 1, . . . ,m is the matrix of Lagrangian

multipliers, where λij denotes the change of the constrained optimal value of the ith objective

function with respect to the level of the jth constraining function, while Θ = (θik), i, k = 1, . . . , ℓ,

is the matrix of Lagrangian multipliers, where θik denotes the rate of change in the value of

fi when it occurs a change in the value of fk, sometimes called trade-off. Hence, in Vector

Optimization it is easy to understand the interest not only in studying the rate of change of

every objective function with respect to the movement of any constraint, but also in evaluating,

by means of the dual variables, the rate of change of every objective function with respect to

the change of the other objectives. To this aim, we will study problems (2.2) and the scalar

quasi-minimum problem (2.3). More precisely, we refer to Proposition 2.4 for the ε-constraint

method, and to Proposition 2.9 for the quasi-minimum problem. In both cases, the analysis will

be accomplished in the linear case; nevertheless, since the results of Sect.2 do not require any

assumption on (1.1), it is possible to apply the same arguments to more general cases. Hence,
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let us consider the following positions: C = R
ℓ
+; f(x) = Fx, with F ∈ R

ℓ×n; g(x) = Ax − b,

with A ∈ R
m×n and b ∈ R

m; X = R
n. ∀i ∈ I, we will denote by Fi the ith row of the matrix

F ; problem (1.1) becomes:

min
Rℓ

+
\{O} Fx, s.t. x ∈ K = {x ∈ R

n : Ax ≥ b}. (3.1)

3.1 Shadow prices by means of ε-constraint method

In the linear case, when ε = Fx0, problems (2.2) become:

Lk(x
0) : min〈Fk, x〉, s.t. x ∈ {x ∈ R

n : Ax ≥ b, 〈Fi, x〉 ≤ 〈Fi, x
0〉, i ∈ I \ {k}}, k ∈ I.

In the sensitivity analysis, we will assume that x0 be a v.m.p. of (3.1) and hence also of all

problems Lk(x
0),∀k ∈ I. Since we are considering the linear case, at least one of the constraints

of problem (3.1) is fulfilled as equality at an optimal solution x0; let B ∈ R
n1×n and d ∈ R

n1 ,

with n1 < m, be the submatrix of A and the subvector of b corresponding to a subset of the

binding constraints at x0. Now, let us pay attention to Lk(x
0) for a fixed k ∈ I: suppose that

Bk be a basis corresponding to the solution x0 and that the first n1 rows of Bk are those of B

and the remaining n2 = n − n1 > 0 are from F . Therefore, it results:

Bk =





B

−F T
i , i ∈ Ink

2



 ,

where Ink
2

is a subset of I \ {k} of cardinality n2. Among all the bases fulfilling the above

properties, let us consider only those for which x0 is also a minimum point of the problem:

min〈Fk, x〉, s.t. x ∈ Rk := {x ∈ R
n : Bx ≥ d, 〈−Fi, x〉 ≥ 〈−Fi, x

0〉, i ∈ Ink
2
}. (3.2)

Observe that, in general, such a property is not maintained for any basis Bk; in the sequel, it

will be understood. Define the perturbed problem:

min〈Fk, x〉, s.t. x ∈ Rk(η; ξ) := {x ∈ R
n : Bx ≥ d+η, 〈−Fi, x〉 ≥ 〈−Fi, x

0〉+ ξi, i ∈ Ink
2
}, (3.3)

where η ∈ R
n1 and ξ ∈ R

nk
2 . Now, let us consider the Kuhn-Tucker multipliers of the problem

(3.2); they are the solution to the following system:

BT λk −
∑

i∈I
nk
2

Fiϑ
k
i = Fk, λ̃k ∈ R

n1

+ , ϑ̃k
i ∈ R+, i ∈ Ink

2
. (3.4)
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It is well known that they are the derivatives of the optimal value of the function 〈Fk, x〉 with

respect to the level of the constraint function (when it is binding at x0, as previously supposed):

λ̃k
i =

∂

∂ηi

(

min
x∈Rk(η;ξ)

〈Fk, x〉

)

, i = 1, . . . , n1, (3.5)

ϑ̃k
i =

∂

∂ξi

(

min
x∈Rk(η;ξ)

〈Fk, x〉

)

, i ∈ Ink
2
. (3.6)

Recall the following definitions [13].

Definition 3.1. Let A be an n × n matrix with non-zero elements. A is said to be reciprocal,

if and only if aij = 1
aji

∀i, j = 1, . . . , n.

Definition 3.2. Let A be an n × n reciprocal matrix. A is said to be consistent, if and only if

aijajk = aik ∀i, j, k = 1, . . . , n.

We have the following results.

Proposition 3.1 (Reciprocity). Let j, k ∈ I be such that for the corresponding problems

Lj(x
0) and Lk(x

0) there exist two bases Bj and Bk, such that Ink
2
∪ {k} = I

n
j
2

∪ {j}. Then, it

results that ϑ̃k
j = 1/ϑ̃j

k.

Proof. ϑ̃k
j is the jth component of the solution ϑ̃k of (3.4), while ϑ̃j

k is the kth component of the

solution ϑ̃j of the following system:

BT λj −
∑

i∈I
n

j
2

Fiϑ
j
i = Fj .

ϑ̃k
j and ϑ̃j

k can be determined by applying the Cramer rule. Hence:

ϑ̃k
j =

det

(

BT
∣

∣

∣ − Fi, i ∈
(

Ink
2
\ {j}

)

∪ {k}

)

det

(

BT

∣

∣

∣ − Fi, i ∈ Ink
2

) ,

where the order of the indexes i ∈
(

Ink
2
\{j}

)

∪{k} is rearranged in such a way that j is replaced

by k. Likewise and with the same remark about the indexes, it results:

ϑ̃k
j =

det

(

BT
∣

∣

∣ − Fi, i ∈
(

I
n

j
2

\ {k}
)

∪ {j}

)

det

(

BT

∣

∣

∣
− Fi, i ∈ I

n
j
2

) .

11



Since, by assumption, we have Ink
2
∪ {k} = I

n
j
2

∪ {j}, it results
(

Ink
2
∪ {k}

)

\ {j} = I
n

j
2

and
(

I
n

j
2

∪ {j}
)

\ {k} = Ink
2
. We can conclude that

ϑ̃k
j =

det

(

BT
∣

∣

∣
− Fi, i ∈ I

n
j
2

)

det

(

BT

∣

∣

∣ − Fi, i ∈ Ink
2

) , ϑ̃j
k =

det

(

BT
∣

∣

∣
− Fi, i ∈ Ink

2

)

det

(

BT

∣

∣

∣ − Fi, i ∈ I
n

j
2

) ;

i.e., that ϑ̃k
j = 1/ϑ̃j

k.

Proposition 3.2 (Consistency). Let j, k, s ∈ I. Consider the problems Lj(x
0) and Lk(x

0)

having 〈Fj , x〉 and 〈Fk, x〉 as the objective functions, respectively. Suppose that:

(i) for Lj(x
0) there exist two bases

Bjk =





B

−F T
i , i ∈ I

n
jk
2



 and Bjs =





B

−F T
i , i ∈ I

n
js
2





with k ∈ I
n

jk
2

, s ∈ I
n

js
2

and I
n

jk
2

∪ {s} = I
n

js
2

∪ {k};

(ii) the matrix Bjs maintains the optimality of x0 also for problem Lk(x
0); i.e.,

Bk =





B

−F T
i , i ∈ Ink

2



 , with Ink
2

= I
n

js
2

.

Then, it results that ϑ̃j
kϑ̃

k
s = ϑ̃j

s.

Proof. ϑ̃j
k is the kth component of the solution ϑ̃j of the following system:

BT λj −
∑

i∈I
n

jk
2

Fiϑ
j
i = Fj .

Therefore, by the Cramer rule, it turns out:

ϑ̃j
k =

det

(

BT
∣

∣

∣ − Fi, i ∈
(

I
n

jk
2

\ {k}
)

∪ {j}

)

det

(

BT

∣

∣

∣ − Fi, i ∈ I
n

jk
2

) .

By assumption (i), we have that

I
n

jk
2

\ {k} = I
n

js
2

\ {s} (3.7)

12



and hence:

ϑ̃j
k =

det

(

BT
∣

∣

∣ − Fi, i ∈
(

I
n

js
2

\ {s}
)

∪ {j}

)

det

(

BT

∣

∣

∣
− Fi, i ∈ I

n
jk
2

) .

Now, calculate ϑ̃k
s , that is the sth component of the solution ϑ̃k of (3.4):

ϑ̃k
s =

det

(

BT
∣

∣

∣
− Fi, i ∈

(

Ink
2
\ {s}

)

∪ {k}

)

det

(

BT

∣

∣

∣ − Fi, i ∈ Ink
2

) .

By (3.7) and by assumption (ii), it results I
n

jk
2

\ {k} = Ink
2
\ {s} or, equivalently, I

n
jk
2

=
(

Ink
2
\ {s}

)

∪ {k}. It follows that:

ϑ̃j
kϑ̃

k
s =

det

(

BT
∣

∣

∣ − Fi, i ∈
(

I
n

js
2

\ {s}
)

∪ {j}

)

det

(

BT

∣

∣

∣ − Fi, i ∈ Ink
2

) =

det

(

BT
∣

∣

∣ − Fi, i ∈
(

I
n

js
2

\ {s}
)

∪ {j}

)

det

(

BT

∣

∣

∣ − Fi, i ∈ I
n

js
2

) ,

where the second equality is again because of (ii). In conclusion, by the Cramer rule, we have

that ϑ̃j
kϑ̃

k
s is the sth component of the solution ϑ̃j of the system

BT λj −
∑

i∈I
n

js
2

Fiϑ
j
i = Fj ,

and hence ϑ̃j
kϑ̃

k
s = ϑ̃j

s.

From statement (3.6) and the thesis of Proposition 3.1 follows the interpretation of the reciprocity

as rule for deriving the inverse function, while from (3.6) and the thesis of Proposition 3.2 the

consistency property can be interpreted as rule for deriving the composed function.

Now, we are in the position to define the shadow prices matrices Θ and Λ. ∀k ∈ I, let us

consider the problem Lk(x
0), and ∀i ∈ Ink

2
solve the corresponding system (3.4). Define Θ as

the ℓ × ℓ matrix whose diagonal elements are equal to 1 and ϑki = −ϑ̃k
i , i ∈ Ink

2
; observe that

the change of sign of ϑ̃k
i is because of the change of sign in the corresponding constraint in

the calculus of ϑ̃k
i by means of (3.4). The result expressed by (3.6) justifies the definition of

“shadow prices matrix” for Θ and gives the following meaning of ϑki: how the kth objective

function depends on the level of the ith one at the optimal solution x0. In general, not all

the elements of the matrix Θ are obtained by means of the above procedure, it is possible to

complete the matrix Θ by imposing that Θ be reciprocal and consistent. From Proposition 3.1

13



and Proposition 3.2, it turns out that the elements of Θ defined by the above procedure satisfy

the property of reciprocity and consistency, except for the sign. From these properties follows

also that Θ has null determinant and hence its inverse does not exists. Moreover, starting from

the solution of system (3.4), define the matrix Λ ∈ R
ℓ×n1 of shadow prices corresponding to the

binding constraints Bx ≥ d as the matrix whose kth row is the vector λ̃kT
, ∀k ∈ I. In this case

too, due to (3.5), the kth row of Λ shows as the kth objective function depends on the levels of

the binding constraints at the optimal solution. Observe that, in general, the matrices Λ and Θ

are not univocally determined.

The following example shows how to calculate the shadow prices matrices Θ and Λ by means of

the procedure just before outlined.

Example 2.1 (continuation). Same data as in Example 2.1, with the sole exception of g, which

is now split into g1(x) = x1 + x2 and g2(x) = −x1 + x2; so that in the present case (1.1)

becomes a linear problem; i.e. (3.1). Choose x0 = (−2, 2) as optimal solution to (3.1) and

consider the three problems Lk(x
0), k = 1, 2, 3. Observe that in (3.1) only the constraint g1(x)

is binding at x0 = (−2, 2), and hence, in any basis that we will consider, there is the sub-matrix

B =
(

1 1
)

, while g2(x) can be disregarded in the problems Lk(x
0), k = 1, 2, 3. It results:

L1(x
0) : min(x1 + 2x2), s.t. x1 + x2 ≥ 0, 4x1 + 2x2 ≤ −4, x1 + 3x2 ≤ 4.

There are two bases containing the original constraint x1 +x2 ≥ 0 and one between 4x1 +2x2 ≤

−4 and x1 + 3x2 ≤ 4. If we consider the former of them, that is B1 =





1 1

−4 −2



, then x0 is

again an optimal solution to the sub-problem:

min(x1 + 2x2), s.t. x1 + x2 ≥ 0, 4x1 + 2x2 ≤ −4.

The Lagrangian multipliers λ̃1
1, θ̃1

2 are the solutions of the system







λ1
1 − 4θ1

2 = 1

λ1
1 − 2θ1

2 = 2
. Therefore,

it turns out λ̃1
1 = 3, θ̃1

2 = 1
2 ; this implies θ12 = −1

2 . If we consider the latter basis; i.e.,




1 1

−1 −3



, then x0 it is no more an optimal solution to the sub-problem:

min(x1 + 2x2), s.t. x1 + x2 ≥ 0, x1 + 3x2 ≤ 4,

14



and hence such a basis is not considered in order to define the shadow prices matrices Θ and Λ.

Now, consider the problem:

L2(x
0) : min(4x1 + 2x2), s.t. x1 + x2 ≥ 0, x1 + 2x2 ≤ 2, x1 + 3x2 ≤ 4.

In this case, there are two bases maintaining the optimality of x0:

B21 =





1 1

−1 −2



 and B23 =





1 1

−1 −3



 .

The Lagrangian multipliers corresponding to B21 are the solution to the system







λ2
1 − θ2

1 = 4

λ2
1 − 2θ2

1 = 2
.

Therefore, it results λ̃2
1 = 6, θ̃2

1 = 2; this implies θ21 = −2. Observe that θ12 = 1/θ21.

The multipliers corresponding to B23 are the solution to the system







λ2
1 − θ2

3 = 4

λ2
1 − 3θ2

3 = 2
. Therefore,

it results λ̃2
1 = 5, θ̃2

3 = 1; this implies θ23 = −1. Lastly, let us consider the problem:

L3(x
0) : min(x1 + 3x2), s.t. x1 + x2 ≥ 0, x1 + 2x2 ≤ 2, 4x1 + 2x2 ≤ −4.

Only the basis B3 =





1 1

−4 −2



 maintains the optimality of x0; for such a matrix the

corresponding Lagrangian multipliers are the solution to the system







λ3
1 − 4θ3

2 = 1

λ3
1 − 2θ3

2 = 3
.

Therefore, it results λ̃3
1 = 5, θ̃3

2 = 1; this implies θ32 = −1. Observe that θ23 = 1/θ32.

The above procedure allows us to define the following elements of the matrix Θ:

Θ =











∗ −1
2 ∗

−2 ∗ −1

∗ −1 ∗











,

where * denotes the missing elements. The complete matrix Θ is obtained by putting the

diagonal elements equal to 1 and by applying the properties of reciprocity and consistency.

Therefore, the shadow prices matrix associated to the objective functions for the given problem

is the following:

Θ =











1 −1
2

1
2

−2 1 −1

2 −1 1











.
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The matrix Λ ∈ R
3×1 is not univocally determined because of the two bases associated with

L2(x
0); in fact, they give two choices for the second row of Λ. Hence, there are two shadow

prices matrices associated with the binding constraint of the given problem:

Λ1 =











3

6

5











and Λ2 =











3

5

5











.

3.2 Shadow prices by means of the Scalarization by Separation

Also in this second approach, we start by the assumption that x0 is a v.m.p. of (3.1) and hence

(see Proposition 2.9) also of the following problem

min〈pT F, x〉, s.t. x ∈ {x ∈ R
n : Ax ≥ b, Fx ≤ Fx0}.

Since we are considering the linear case, x0 is an optimal solution to:

min〈pT F, x〉, s.t. x ∈ {x ∈ R
n : Bx ≥ d, Fx ≤ Fx0}, (3.8)

where B ∈ R
n1×n and d ∈ R

n1 , with n1 ≤ m, are respectively the submatrix of A and the

subvector of b corresponding to a subset of the binding constraints at x0; let us consider a basis

corresponding to the optimal solution x0:





B

−F T
i , i ∈ In2



 ,

where In2
is a subset of I of cardinality n2, with n1 + n2 = n. Among all the bases fulfilling

the above properties, let us consider only those for which x0 is again an optimal solution to the

problem:

min〈pT F, x〉 s.t. x ∈ {x ∈ R
n : Bx ≥ d, 〈−Fi, x〉 ≥

〈

−Fi, x
0
〉

, i ∈ In2
}.

Let us consider the problem:

min〈pT F, x〉 s.t. x ∈ R(η, ξ) := {Bx ≥ d + η, 〈−Fi, x〉 ≥
〈

−Fi, x
0
〉

+ ξ, i ∈ In2
}, (3.9)
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where η ∈ R
n1 and ξ ∈ R

n2 . Consider the Kuhn-Tucker multipliers λ̃S ∈ R
n1

+ , ϑ̃S
i ∈ R+, i ∈ In2

,

of the problem (3.9); they are the solution to the system BT λS −
∑

i∈In2

Fiϑ
S
i = pT F ; then, as

previously noted for problem (3.3), it turns out that:

λ̃S
i =

∂
(

minx∈R(η,ξ) 〈p
T F, x〉

)

∂ηi
, i = 1, . . . , n1; ϑ̃S

i =
∂
(

minx∈R(η,ξ) 〈p
T F, x〉

)

∂ξi
, i ∈ In2

.

The following proposition provides an alternative procedure to obtain the same shadow prices

matrix Θ obtained by the ε-constraint method; recall that In2
and ϑ̃k

j are those of Subsect.3.1.

Proposition 3.3. Given problem (3.9), suppose that there are two bases maintaining the op-

timality of x0 for problem (3.9):

Bj =





B

−F T
i , i ∈ I

n
j
2



 Bk =





B

−F T
i , i ∈ Ink

2



 ,

where I
n

j
2

⊂ I\{j} and Ink
2
⊂ I\{k} are of cardinality n2 and such that I

n
j
2

∪ {j} = Ink
2
∪ {k}.

Then we have ϑ̃k
j = ϑ̃S

j /ϑ̃S
k with k, j ∈ In2

.

Proof. Starting from the above positions we get

ϑ̃S
k =

det
(

BT
∣

∣

∣ − Fi, i ∈ I
n

j
2

\{k}
∣

∣

∣pT F
)

det
(

BT

∣

∣

∣ − Fi, i ∈ I
n

j
2

)

and ϑ̃S
j =

det
(

BT
∣

∣

∣ − Fi, i ∈ Ink
2
\{j}

∣

∣

∣pT F
)

det
(

BT

∣

∣

∣ − Fi, i ∈ Ink
2

)

,

where pT F substitutes the column vector −Fk in the first equality and the column vector −Fj

in the second equality. By observing that the assumption I
n

j
2

∪ {j} = Ink
2
∪ {k} is equivalent to

I
n

j
2

\{k} = Ink
2
\{j}, we obtain

ϑ̃S
j /ϑ̃S

k =
det

(

BT
∣

∣

∣ − Fi, i ∈ I
n

j
2

)

det
(

BT

∣

∣

∣ − Fi, i ∈ Ink
2

)

= ϑ̃k
j

where we recall that that ϑ̃k
j is the jth component of the solution to system (3.4).

We note that changing the set of indexes of cardinality n2 we get all the elements ϑS
i with

i = 1, . . . , ℓ.

Moreover, we want to stress that the quantity ϑ̃S
j /ϑ̃S

k is the quotient between the derivative of

the scalarized function with respect to the jth objective and the derivative of the scalarized

function with respect to the kth objective, it results that it can be thought as the derivative of

the kth objective function with respect to the change of the jth objective, i.e., ϑ̃k
j .
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Applying the same procedure to the multipliers corresponding to the original binding constraints,

the quantity λ̃S
t /θ̃S

k , with k ∈ In2
, t = 1, . . . , n1, is the quotient between the derivative of the

scalarized function with respect to the tth constraint and the derivative of the scalarized function

with respect to the kth objective; unfortunately, it depends on the parameter p, in fact, we have

λ̃S
t

θ̃S
k

=
det

(

B−tT
∣

∣

∣pT F
∣

∣

∣ − Fi, i ∈ I
n

j
2

)

det
(

BT

∣

∣

∣ − Fi, i ∈ I
n

j
2

\{k}
∣

∣

∣pT F
)

,

where pT F substitutes the tth column of BT , and B−tT denotes the matrix BT without its tth

column.

Now we want to emphasize some interesting similarities between solving a vector linear problem

by the ε-constraint method and solving the same problem by the scalarization method proposed

in [9]. In the former case, we have ℓ scalar primal problems, each of them with n variables,

m + (ℓ− 1) constraints and hence ℓ dual problems with m + (ℓ− 1) variables and n constraints;

in the latter case, we have only one scalar primal problem with n variables, (m + ℓ) constraints

and a dual problem with (m + ℓ) variables and n constraints. Therefore, in the former case,

we have Θ ∈ R
ℓ×ℓ and Λ ∈ R

ℓ×m that collects all the information given by the ℓ problems and

the ith row of the matrices refers to the ith problem, i ∈ I; while, in the latter case, we have

the vectors θ ∈ R
ℓ and λ ∈ R

m which evidently resume the previous results. The continuation

of Example 2.1 elucidates the result of Proposition 3.3 and gives some other hints about the

relationships between these two methods.

Example 2.1 (continuation). Our aim is to highlight different aspects of the same problem.

We have a scalarized primal and dual problem and three primal and dual problems by the ε-

constraint method. We set the parameters a = θ12, b = θ13. From Propositions 3.1 and 3.2, we

know that Θ is reciprocal and, if positive, also consistent, then we get:

Θ =











1 a b

1/a 1 b/a

1/b a/b 1











.

This kind of matrices Θ ∈ R
ℓ×ℓ is defined by ℓ−1 parameters, has a maximum eigenvalue γ = ℓ

with the other eigenvalues equal to zero, and eigenvector θ̄T = ( 1
k
, 1

ka
, 1

kb
), ∀k ∈ R\{0}, (see e.g.
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[10]). We can express the elements of Λ depending on a, b in this way:

Λ =











1 + 4a + b

(1 + 4a + b)/a

(1 + 4a + b)/b











or Λ =











2 + 2a + 3b

(2 + 2a + 3b)/a

(2 + 2a + 3b)/b











Since the dual problems of the ε-constraint method have a feasible region described by 2 equa-

tions and 3 unknowns, thus the parameter to set is only one and we may impose a = 1/2 + b.

One can easily see that the matrix Λ is obtained as follows Λ = θ̄λ∗T where λ∗
i = cT

i θ, i = 1, 2,

and c1 = (1, 4, 1), c2 = (2, 2, 3), while Θ = θ̄θT .

We observe that these matrices satisfy ∀a, b ≥ 0 the sufficient optimality condition:

Θ(f(x0) − f(x)) + Λg(x) �C0
O, ∀x ∈ X.

The scalarized primal problem is:

min((p1 + 4p2 + p3)x1 + (2p1 + 2p2 + 3p3)x2)

s.t. x1 + x2 ≥ 0, −x1 − 2x2 ≥ −2, −4x1 − 2x2 ≥ 4, −x1 − 3x2 ≥ −4

and its dual is:

max(−2θ1 + 4θ2 − 4θ3)

s.t. λ1 − θ1 − 4θ2 − θ3 = (p1 + 4p2 + p3), λ1 − 2θ1 − 2θ2 − 3θ3 = (2p1 + 2p2 + 3p3).

The dual feasible region is described by 2 equations and 4 unknowns, so we have 2 parameters to

choose. Call λ1 the unknown related to the original constraint and let θ1, θ2, θ3 be the unknowns

corresponding to the constraints of the feasible region S(x0). Finally, let θT = (k, ka, kb) be the

vector of parameters, that is (θ1, θ2, θ3). From these positions, we can express a feasible λ1 as

λ1 = (1, 4, 1)(θ + p) or λ1 = (2, 2, 3)(θ + p).

To understand the relationships between the scalarized problem and the ε-constraint problems

we may proceed by applying Proposition 3.3. We get θS
1 = p1 − 2p2 + p3, θS

2 = −1
2p1 + p2 −

p3, θS
3 = 1

2p1 − p2 + p3. By the quotients of these elements we obtain the matrix Θ by setting

θk
j = θS

j /θS
k and hence we may see that the matrix Θ does not depend on the choice of the

parameter p. Alternatively, one can find the derivatives of the scalarized objective function with

respect to every constraint. In particular, from the derivatives of the scalarized function with

respect to every objective now converted in constraint, we get the vector θ ∈ R
3 from which we
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obtain also the matrix Θ ∈ R
3×3 previously found. We suppose that when we move from the

solution x0 = (−2, 2) we stay on the direction given by the constraint.

4 Numerical Examples

In this section we propose some examples to explain different cases that point out some partic-

ular situations. The first one treats a feasible region with 2 binding constraints at x0.

Example 4.1. Let us consider problem (3.1) and the positions: ℓ = 3, m = 2, n = 2

F1 = (1,−2), F2 = (−1, 1), F3 = (−1,−1),

A =





−1 −2

−2 −1



 and b =





−2

−2



 .

We now apply the ε-constraint method starting from the optimal point x0 = (2
3 , 2

3); we get 3

sub-problems:

Li(x
0) : min 〈Fi, x〉 , s.t. Ax ≥ b, 〈−Fj , x〉 ≥

〈

−Fj , x
0
〉

, j 6= i; i = 1, 2, 3.

For every Li(x
0), i = 1, 2, 3, we consider the Kuhn-Tucker multipliers corresponding to the

basis composed by one (of two) original constraints and one (of two) objective functions now

transformed in constraints; hence, we have 4 bases for every single problem. By applying the

procedure of Subsect.3.1, we do not have uniqueness in determining the shadow prices matrix

Θ; in fact, we obtain the following two matrices:

Θ1 =











1 −4/3 −4

−3/4 1 3

−1/4 1/3 1











Θ2 =











1 −5/3 5

−3/5 1 −3

1/5 −1/3 1











Alternatively, we can consider the dual problems of Li(x
0), i = 1, 2, 3. Every dual problems has

2 equations and 4 unknowns; if we set a = θ12, b = θ13, we have the matrix

Θ =











1 a b

1/a 1 b/a

1/b a/b 1










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depending on the 2 parameters a and b. Consequently, we obtain:

Λ =











(−3a + b + 5)/3 (3a + b − 4)/3

(−3a + b + 5)/3a (3a + b − 4)/3a

(−3a + b + 5)/3b (3a + b − 4)/3b











.

As in Example 2.1, we introduce the scalarized problem:

PS :



















min((p1 − p2 − p3)x1 + (−2p1 + p2 − p3)x2)

−x1 − 2x2 ≥ −2, −2x1 − x2 ≥ −2,

−x1 + 2x2 ≥ 2/3, x1 − x2 ≥ 0, x1 + x2 ≥ 4/3

and its dual

DS :



















max(−2λ1 − 2λ2 + 2
3θ1 + 4

3θ3)

−λ1 − 2λ2 − θ1 + θ2 + θ3 = (p1 − p2 − p3),

−2λ1 − λ2 + 2θ1 − θ2 + θ3 = (−2p1 + p2 − p3)

The feasible region of the dual is described by 2 equations and 5 unknowns, so we have 3

parameters to characterize the shadow prices matrices. From this problem we get the feasible

pair:

λ1 = 1
3(−4, 3, 1)(θ + p) = c1(θ + p) and λ2 = 1

3(5,−3, 1)(θ + p) = c2(θ + p).

From these results we can conclude that Λ = θ̄λ∗T where λ∗
i = cT

i θ, i = 1, 2 and Θ = θ̄θT .

When we move from the solution x0 = (2
3 , 2

3), we can choose to remain in the direction given

either by the first constraint of K or the second one. Thus, we obtain two vectors θSi, i = 1, 2.

In the former case, we have θS1
1 = −p1+ 3

4p2+ 1
4p3, θS1

2 = 4
3p1−p2+ 1

3p3, θS1
3 = 4p1−3p2−p3,

while in the latter we have θS2
1 = −p1+

3
5p2−

1
5p3, θS2

2 = 5
3p1−p2+

1
3p3, θS2

3 = −5p1+3p2−p3.

Then, by the quotient of these elements we obtain the matrices Θi by setting θi
kj = θSi

j /θSi
k and

again we may observe that these elements do not depend on vector p.

The aim of the next example is to illustrate the results stated in Proposition 3.3.

Example 4.2. Let us consider (3.1) with the following positions: ℓ = 3, m = 3, n = 3,

F1 = (1, 2,−1), F2 = (4, 2, 1), F3 = (1, 3, 1),

A =











1 1 0

−1 1 0

0 0 1











and b =











0

0

0











.
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As starting optimal point, choose x0 = (−2, 2, 2). Since only the first constraint is binding at

x0, then the scalarized problem we consider is:

PS :



















min((p1 + 4p2 + p3)x1 + (2p1 + 2p2 + 3p3)x2 + (−p1 + p2 + p3)x3)

x1 + x2 ≥ 0, −x1 − 2x2 + x3 ≥ 0,

−4x1 − 2x2 − x3 ≥ 2, −x1 − 3x2 − x3 ≥ −6

We get 3 bases to choose:

B1 =











x1 + x2

−4x1 − 2x2 − x3

−x1 − 3x2 − x3











, B2 =











x1 + x2

−x1 − 2x2 + x3

−x1 − 3x2 − x3











, B3 =











x1 + x2

−x1 − 2x2 + x3

−4x1 − 2x2 − x3











.

The corresponding vectors θ have the following components: θS1
2 = 4p2−3p1

−4 , θS1
3 = −p1+4p3

−4 , θS2
1 =

4p2−3p1

3 , θS2
3 = −3p3+p2

3 , θS3
1 = −4p3+p1

−1 , θS3
2 = −3p3+p2

−1 . From the relation θi
j = θSi

j /θSj
i , we get:

θ1
2 = −

3

4
, θ1

3 = −
1

4
, θ2

1 = −
4

3
, θ2

3 = −
1

3
, θ3

1 = −4, θ3
2 = −3.

While, from ε-constraint method, verifying the optimality condition F T
i (Bi)−1 ≥ 0, and follow-

ing the procedure of Subsect.3.1, we have:

Θ =











1 −3/4 −1/4

−4/3 1 −1/3

−4 −3 1











.

We observe that Θ is still reciprocal, but it is no longer consistent. In the end we note that,

from the dual of PS we obtain λ = (1, 4, 1)(θ + p) or λ = (2, 2, 3)(θ + p) and if we consider

θT = (k, ka, kb) and

Θ =











1 a b

1/a 1 b/a

1/b a/b 1











,

then

Λ = θ̄λ∗T =











1 + 4a + b

(1 + 4a + b)/a

(1 + 4a + b)/b











=











2 + 2a + 3b

(2 + 2a + 3b)/a

(2 + 2a + 3b)/b











.

If we substitute a = 3/4 and b = 1/4 we get the matrix

Λ =











17/4

17/3

17










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which is the same that we obtain following the other approaches. In fact, in this case, every

subproblem Li(x
0) has an optimal basis, that is the optimality condition F T

i (Bi)−1 ≥ 0 is

verified for all basis Bi, i = 1, . . . , 3.

In the next example, we want to show what may happen when we start the analysis from an

optimal point that binds both constraints.

Example 4.3. Let us consider (3.1) with the following positions: ℓ = 3, m = 2, n = 3,

F1 = (−1, 0, 0), F2 = (0,−1, 0), F3 = (0, 0,−1),

A =





−2 −3 −4

−4 −1 −1



 and b =





−12

−8



 .

We want to outline three different cases of optimal points to start with:

i) the first constraint is binding at x1 = (0, 0, 3);

ii) the second constraint is binding at x2 = (2, 0, 0);

iii) both constraints are binding at x3 = (6/5, 16/5, 0).

Case i). The scalarized problem we obtain is:

PS :







min(−p1x1 − p2x2 − p3x3)

−2x1 − 3x2 − 4x3 ≥ −12, x1 ≥ 0, x2 ≥ 0, x3 ≥ 3

We get 3 bases:

B1 =











−2 0 0

−3 1 0

−4 0 1











, B2 =











−2 1 0

−3 0 0

−4 0 1











, B3 =











−2 1 0

−3 0 1

−4 0 0











.

The corresponding vectors θ have the following components: θS1
2 = 2p2−3p1

2 , θS1
3 = −4p1+2p3

2 , θS2
1 =

2p2−3p1

−3 , θS2
3 = 3p3−4p2

3 , θS3
1 = 2p3−4p1

−4 , θS3
2 = 3p3−4p2

−4 . From the relation θi
j = θSi

j /θSj
i , we get:

θ1
2 = −

3

2
, θ1

3 = −2, θ2
1 = −

2

3
, θ2

3 = −
4

3
, θ3

1 = −
1

2
, θ3

2 = −
3

4
.

While, from ε-constraint method, verifying the optimality condition F T
i (Bi)−1 ≥ 0, we have:

Θ1 =











1 −3/2 −2

−2/3 1 −4/3

−1/2 −3/4 1











, Λ1 =











1/2

1/3

1/4











.
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We observe that from the direct calculus of the derivatives one gets the same result.

Case ii). The scalarized problem we obtain is:

PS :







min(−p1x1 − p2x2 − p3x3)

−4x1 − x2 − x3 ≥ −8, x1 ≥ 2, x2 ≥ 0, x3 ≥ 0

We get 3 bases:

B1 =











−4 0 0

−1 1 0

−1 0 1











, B2 =











−4 1 0

−1 0 0

−1 0 1











, B3 =











−4 1 0

−1 0 1

−1 0 0











.

We may find the corresponding vectors θ from the ratios θSi
j /θSj

i = θi
j or from ε-constraint

method, verifying the optimality condition F T
i (Bi)−1 ≥ 0, or from the calculus of the derivatives;

in any case, we get the matrices:

Θ2 =











1 −1/4 −1/4

−4 1 −1

−4 −1 1











, Λ2 =











1/4

1

1











.

Case iii). The scalarized problem is:

PS :



















min(−p1x1 − p2x2 − p3x3)

−4x1 − x2 − x3 ≥ −8, −2x1 − 3x2 − 4x3 ≥ −12,

x1 ≥ 6/5, x2 ≥ 16/5, x3 ≥ 0

Both constraints are binding at the point x3 = (6/5, 16/5, 0), then, if we want to consider all the

constraints of K we can add only one constraint of S(x3) to the basis. All the bases we obtain

are:

B12 = B32 =











−2 −4 0

−3 −1 1

−4 −1 0











, B13 = B23 =











−2 −4 0

−3 −1 0

−4 −1 1











, B21 = B31 =











−2 −4 1

−3 −1 0

−4 −1 0











;

B1
1 =











−2 0 0

−3 1 0

−4 0 1











, B2
1 =











−2 1 0

−3 0 0

−4 0 1











, B3
1 =











−2 1 0

−3 0 1

−4 0 0











;
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B1
2 =











−4 0 0

−1 1 0

−1 0 1











, B2
2 =











−4 1 0

−1 0 0

−1 0 1











, B3
2 =











−4 1 0

−1 0 1

−1 0 0











.

From the first group of bases, we cannot construct the matrices Θ and Λ; the other groups are

the same of case i) and ii), hence, even for this point, the pairs (Θ1,Λ1) and (Θ2,Λ2) are the

shadow prices matrices. From the calculus of the derivatives, or from Proposition 3.3, we get

the matrix:

Θ =











1 −1/14 1/10

−14 1 −7/5

10 −5/7 1











that collects the information about the variation of one objective function with respect to an-

other, but does not exist a corresponding matrix Λ with all positive elements; in fact, the two

possible matrices Λ corresponding to Θ are:











−1/14 2/7

1 4

2/7 −1/7











or











−1/10 3/10

2/5 −1/5

1 3











.

5 Concluding Remarks

In this section we want to underscore the main topics of the preceding sections with some ob-

servations and remarks about some results, and open questions.

In the linear case, when only one constraint of K is binding at the starting optimal solution,

we are obliged to move on it when we perturb the original objective functions now converted

in constraints. If the binding constraints are more then one, we have the possibility to choose

which one enters in the basis to consider; this is the case of Example 4.1, where we get therefore

two matrices Θ, while in Example 4.3 we cannot choose the basis with both original constraints,

because it is not optimal.

In connection with this fact, another observation is about the sign of Θ elements. If we are, for

instance, in R
2 and we have only one binding constraint, we are bound to move on a line, then

if we take other lines moving on it, the possible directions are only two; we want to say that if

f1 moves in the opposite direction of f2 and of f3, then necessarily f2 and f3 moves in the same
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direction; consequently, if we have θ12 < 0, θ13 < 0, then θ23 > 0. Obviously, if we are in R
3 a

binding constraint individuates a plane, and the fact that f1 moves in an opposite direction of

f2 and of f3, does not imply that f2 and f3 move in the same direction, thus the elements of Θ

could be: θ12 < 0, θ13 < 0 and θ23 < 0; this fact renders Θ reciprocal, but not consistent.

Another thorny problem is about the relationship between the matrices of Kuhn-Tucker multi-

pliers and the separating hyperplane. In the scalar case, there exists a correspondence between

the vector of multipliers and the parameters of the separating function. In this context, instead,

the matrices Θ and Λ that we get from the examples do not satisfy the sufficient condition (1.5),

moreover they do not define a separation function as in (1.4). Only if we take the elements of

the matrix Θ in their absolute value, then we can try to verify condition (1.5), since now the

pair (Θ,Λ) is such that Θ ∈ U∗
C\{O}, Λ ∈ V ∗

C .

From these considerations the formalization of a necessary optimality condition is required,

especially given by means of vector separation; this could be matter of future studies.
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