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Abstract 

 

There is ample empirical evidence on the presence of structural changes in financial time 

series. Structural breaks are also shown to contribute to the leptokurtosis of financial 

returns and explain at least partly the observed persistence of volatility processes. This 

paper explores whether detecting and taking into account structural breaks in the 

volatility model can improve upon our Value at Risk forecast. VAR is used by banks as a 

standard risk measure and is accepted by regulation in setting capital, which makes it an 

issue for the central bank guarding against systemic risk.  

This paper investigates daily BUX returns over the period 1995-2002. The Bai-Perron 

algorithm found several breaks in the mean and volatility of BUX return. The shift in the 

level of unconditional mean return around 1997-1998 is likely to be explained by the 

evolving efficiency of the market, but most of all by the halt of a strong upward trend in 

the preceding period. Volatility jumped to very high levels due to the Asian and Russian 

crisis. There were longer lasting shift too, most likely due to increasing trading volume. 

When in-sample forecasts are evaluated, models with SB dummies outperform the 

alternative methods. According to the rolling-window estimation and out-of-sample 

forecast the SB models seem to perform slightly better. However the results are sensitive 

to the evaluation criteria used, and the choice on the probability level.  

 

JEL classification numbers: G10, G21, C22, C53 

Keywords: Structural Break tests, volatility forecasting, Value-at-Risk, backtest 
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Introduction 

The aim of this paper is to investigate the impact of structural breaks on volatility and 

Value-at-Risk (henceforth ‘VAR’) forecasting. In the financial sector, VAR has become a 

widely used tool for measuring risk. As a risk measure, it is used in setting capital 

requirements, trading limits, making portfolio decisions and evaluating investment 

performance. It is also accepted as a risk measure by regulation. There is a growing body 

of literature, which, on the one hand, focuses on the theoretical and empirical properties 

of VAR as a risk measure, and, on the other, the performance of various quantitative 

methods available for estimation. This paper joins the latter branch of this literature by 

comparing different methods for forecasting volatility, where forecasting performance is 

evaluated according to both statistical and economic criterion―i.e. how good these 

methods are at forecasting VAR. The rationale behind the use of different criteria is the 

following. First, volatility is not observable, but the standard approximation (squared 

return) used is very noisy. Furthermore, volatility is forecasted in order to use it as an 

input to price assets, measure the risk of investment alternatives or calculate VAR and 

capital. This raises the obvious requirement of assessing our forecast in a practical 

framework. In this regard, a VAR forecast is considered accurate if the number of hits 

(cases, when the actual loss exceeds the value of VAR) corresponds to the chosen 

coverage rate or probability level. Furthermore, we require the failures to be independent 

through time, as any clustering of VAR failures could easily force a bank into bankruptcy. 

The presence of structural breaks (henceforth ‘SB’) in economic and financial time series 

has long been suspected. The last decade has seen important advances in the 

econometrics of detecting shifts of unknown number and location in more and more 

general frameworks. Armed with these new techniques, long-standing issues have been 

investigated, often yielding new results and insights in areas such as efficient market 

hypothesis, existence of cointegrating relationship, unit root tests or volatility modelling. 

Regarding financial time series, ample of evidence of the presence of SBs has been 

found. Moreover, SBs are also shown to contribute to the fatness of the tail of the asset 

return’s distribution, which is the major challenge in modelling return and in particular in 

calculating Value-at-Risk. Should the return distribution be leptokurtic, the often-

employed assumption of normality renders the VAR forecast inaccurate and results in 

lower-than-necessary capital. These findings provide the motivation for undertaking the 

analysis outlined above. 

The approach followed in this paper is unique, in the sense that models with and without 

 

 

6



structural breaks are compared in terms of their VAR forecast. As far as I know no 

similar attempt has been taken in the literature. I use structural break tests (developed by 

Bai and Perron (1998, 2003)) to detect the presence of and to estimate the location of 

breaks. Then, the VAR forecast of different unconditional and conditional models (MA, 

EWMA, AR-GARCH, AR-GARCH with structural break dummies) are compared. 

When the breaks are ignored, the models can be misspecified and their forecasting 

performance deteriorates. However, the model with the best fit does not necessarily 

provide better forecasts. Thus, the major issue is whether a model of better fit leads to 

superior out-of-sample forecasts. 

Our findings may have implications in all areas where VAR is used as a risk measure by 

financial institutions, mainly in financial risk management, but also in pricing and in 

performance evaluation. For the central bank and the regulator, the major concern is 

how well VAR models perform to set capital. In addition, due to better modelling of 

volatility, the paper can contribute to the methodology of constructing stress scenarios, 

where we use VAR-type measures as well. 

We perform the analysis on daily log-returns of the Hungarian stock index (BUX) for the 

period 1995-2002. Emerging markets are especially prone to regime changes, therefore 

they provide excellent examples for investigating the problem of SBs. 

The structure of the paper is as follows: First, the basic concepts (VAR and SB) are 

clarified along with a review of the empirical literature. Then, the methodology of the 

paper is outlined. The third and fourth chapters report the results of the SB tests and the 

findings based on the evaluation of forecasting performance. Finally, the conclusions are 

presented. 
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I. Structural breaks and VAR 

In this chapter the two major concepts of the paper are discussed along with the relevant 

literature. 

I.1. VAR 

During the 1990s Value-at-Risk1 became a standard measure of risk in financial decisions. 

It replaced standard deviation or volatility in several areas, such as investment decisions 

(Sharpe ratio based on VAR) and financial risk management. Why it became so popular, 

what are the major critiques, what are the empirical findings―those issues are 

investigated in the next chapter. 

I.1.1. The concept of VAR 

VAR is an estimate of the maximum loss one might incur on a portfolio―i.e. a change in 

its value relative to its current value or to a benchmark―with a given probability during a 

given holding period. VAR can be interpreted as the amount of capital needed to avoid 

default with a given probability. 

Let X be a random variable (e.g. return).2 The VAR is an (α) quantile measure of risk, 

VARα (X), where Prob(X<VAR)= α. Or given the cumulative distribution function F of 

X, VARα(X)=F-1(α), where α is the chosen probability level. 

VAR is not a simple number: it is conditional on several parameters. We have to choose 

the probability level, which is typically 95-98% for financial institutions, although 99% 

is required by regulators. This probability should correspond to the risk appetite of the 

owners of the bank.3 The high confidence level required by regulation reflects its 

conservative nature. The decision on the holding period depends on the type of 

asset/investment and the liquidity of the market. The holding period should correspond 

to the time needed to liquidate the position. Banks usually calculate daily VARs, which 

are then aggregated into 10-day VAR (for regulatory reporting) by using the square root 

of time rule. As for the time window over which parameters are estimated, there are two 

conflicting considerations. One is the need to rely more recent observations, the other to 

                                                 
1 For more on VAR, see Jorion (2002), Duffies and Pan (1997). 
2 VAR can be expressed in terms of prices but also as returns.  
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the default probabilities of the desired credit rating. However, the degree of risk aversion or risk 

appetite is only partially captured by the choice of probability level.  



obtain reliable estimation, which requires a longer time window. The Basel Regulation 

recommends at least one-year estimation window. 

During the 1990s VAR (often calculated from internal risk models) became the common 

standard market risk measure, used by financial institutions. Aside from its support by 

regulation, why has it become so popular? Instead of concentrating on individual sources 

of risk and certain types of asset (as previous risk management techniques), VAR is able 

to capture the overall risk of the entire portfolio. In doing so, VAR takes into account 

the interaction between elements of the portfolio (correlation), and thus captures the 

effect of diversification and hedging on the overall portfolio risk. It calculates not only 

the sensitivity of asset returns to risk factors, but also calculates the associated losses, 

taking into account current knowledge on the behaviour of risk factors. As risk is 

expressed in terms of losses, any type of risk can be compared or added. As we cannot 

know the future with certainty, VAR should be a probability risk measure. To provide a 

probability measure, internal VAR models rely extensively on quantitative models and 

modern statistical techniques. 

VAR has not only become a standard risk measure, but is also employed as an active 

risk management tool. At strategic level, it is used to measure risk and to make decision 

on hedging accordingly, but it also provides tools to set capital. At trading desk level 

trading limits, capital allocation, performance measurement (RAROC) are all based on 

VAR. 

I.1.2. Critique of VAR 

Despite its above-mentioned appeal, VAR is often criticised on several grounds. First, 

VAR methods are criticised because of their unrealistic assumptions and simplification 

(normality and linearity). Second, VAR estimates are not robust―they are very sensitive 

to the choice on parameters (holding period, probability) and valuation models, as well as 

the composition of the portfolio. Beyond model/parameter risk, there is also significant 

implementation risk. The forecasting properties of certain VAR models can be quite 

weak even during normal periods. Finally, the strongest critique of VAR is its collapse 

during crises, when it is most needed.4 During a crisis volatility jumps, correlations 

breakdown, the relationship between market and credit risk changes and liquidity 

evaporates. 

                                                 
4Some even argue that VAR played a role in amplifying the impact of crises in 1997-1998. See Dunbar  
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The theoretical critique focuses on the limitations of VAR as a risk measure. The first 

problem is that VAR is not a coherent risk measure (see Altzner et al.). Unless 

multivariate normality is assumed, VAR fails to be sub-additive. One can easily construct 

a portfolio (typically of credits or options) and divide it into sub-portfolios in such a way, 

that the VAR of the entire portfolio exceeds the sum of calculated sub-VARs. The lack 

of sub-additivity limits the applicability of VAR both in regulation and risk management. 

It creates an incentive against diversification and fails to recognise the concentration of 

risk. Furthermore, it renders the allocation of capital and trading limits difficult. It also 

encourages firms to organise their activities in separate entities―in order to avoid a 

higher capital requirement. 

VAR and VAR-based risk management is also criticised for focusing on the probability 

of loss, but ignoring its magnitude. However, risk-averse investors are not only 

interested in the probability of loss, but also in the expected value of losses below VAR. 

Consequently, VAR cannot take into account differences in risk attitude (see 

Schroder, 2000) and leads to sub-optimal decisions for risk-averse agents. In the special 

case of normally distributed asset returns, the use of VAR corresponds to the Markovitz 

µ/σ criterion and is capable of comparing the risk of alternative portfolios. The Sharpe 

ratio (µ-fF)/VAR used in optimal capital allocation and the RAROC measures µ/VAR 

used in performance measurement are similarly appropriate only if normality of asset 

returns applies. However, in a non-normal world, the above-described VAR-based 

measures result in sub-optimal decisions. For example, a risk-averse investor might 

choose A instead of B, according to their VARs, although B has much fatter tail beyond 

VAR. Similarly, when used as a trading limit or part of a compensation scheme, VAR 

creates an incentive for traders to choose “high loss with low probability” strategies. 

Which generate almost sure profit but large losses (below VAR) with a small probability. 

To address these shortcomings, Schroder recommends a measure of shortfall risk, which 

is the generalised concept of VAR and suitable for any distribution and any kind of risk-

averse investors. The so-called lower partial moment is defined as: 

. Where z is the minimum return and F is the return’s 

distribution. The special case of n=0 gives VAR itself.

)()()( RdFRzzlpm
z

n
n ∫

∞−

−=

5 When n=1, it is called the target 

shortfall, that is the expected loss below z. According to Schroder, the shape of the 

utility function, in particular the degree of risk aversion should decide on n and z. A risk-
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averse investor has a utility function with U’>0 and U’’<0, in which case she should use 

n=1. If she is even more risk averse (U’’’>0) then n=2 should be used. That means the 

further away the return is from the minimum (z), the larger the weight attached to it. 

In order to address these shortcomings, in addition to VAR, this paper investigates a 

modified version of Target (or Expected) Shortfall: 

( ) ( ) ( )[ XVARXXVARXEXEES ααα ≥−= ]

                                                

. Here, instead of using the expected value 

of shortfall, the expected value of “excess” shortfall (shortfall – VAR) is calculated. 

I.1.3. Empirical literature on VAR 

Here only a very small―but for us the most relevant―segment of the empirical literature 

is reviewed: those papers which compare different volatility forecasting methods in terms 

of their VAR forecasts.6 The range of models to be compared covers historical MA, 

EWMA, GARCH, Stochastic Volatility (SV) and implied volatility (IV) models. 

Overall, moving average models seem to be the worst. Otherwise, there is no 

straightforward result, and one cannot establish a ranking among the models. The results 

are very sensitive to the type of loss functions used, the chosen probability level of VAR, 

the period being turbulent or normal etc. Some also find a trade-off between model 

sophistication and uncertainty. To illustrate the above findings, for example Lehar 

(2002) finds that more complex volatility models (GARCH and SV) are unable to 

improve on constant volatility models for VAR forecast, although they do for option 

pricing. In contrast, in Gonzalez et al. (2002), SV is the preferred model to forecast VAR 

of the S&P500. Wong et al. (2003) concludes that GARCH models, often found 

superior in forecasting volatility, consistently fail the Basel backtest. Several papers 

investigate the issue of trade-off in model choice; for example Caporin (2003) finds that 

the EWMA (used by the popular RiskMetrics approach) compared to GARCH-based 

VAR forecast provides the best efficiency at a lower level of complexity. Bams (2002) 

draws similar conclusions, although sophisticated tail modelling results in better VAR 

estimates but with more uncertainty. EWMA is a special case of GARCH.7 Supposing 

that GDP is close to be integrated, the use of the more general GARCH model 

introduces estimation error, which might result in the superiority of EWMA. Guermat 

and Harris (2002) show that EWMA-based VAR forecasts are excessively volatile and 

unnecessarily high, when returns do not have conditionally normal distribution but fat 

 
6 A good review on volatility forecasting performance is provided by Poon and Granger (2001). 
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tail. This is because EWMA put too much weight on extremes. According to Brooks 

and Persand (2003), the relative performance of different models depends on the loss 

function used. However, GARCH models provide reasonably accurate VAR. 

Christoffersen (2001) shows that different models (EWMA, GARCH, Implied 

Volatility) might be optimal for different probability levels. Finally in the paper by Billio 

(2000) regime-switching models outperform EWMA and GARCH VAR forecasts for 

Italian stocks. Actually that is one of the two papers, which investigates an issue similar 

to that of our paper. The other is Guidolin and Timmermann (2003), who find regime 

switching models’ out of sample risk forecast superior at longer horizon (between 6 

month – 2 years) only. They investigate a portfolio of US stocks, bonds and T-bills. 

In my view, SB tests and the use of dummies result in simpler and less parameterised 

models compared to regime switching models.  

I.2. Structural breaks 

The majority of quantitative methods, econometric models applied in risk management 

assume the stability of individual return (mean and volatility) processes.8 However, the 

longer the data period used to estimate the data generating process (DGP) the more 

likely, that structural breaks occur. 

I.2.1.What are structural breaks? 

The simplest definition of SB is an instability or break in the parameters of the data 

generating process (or in the forecasting model). Let us take a simple example. Suppose 

the return series is described as an AR(1) process. 

2

2

1

1
][

1
][

*

β
σ
β

µ
εβµ

−
=

−
=

++= −

yVar

yE

yy ttt

 

where εt ~ iid(0,σ2). SB can occur due to a change in the intercept (level), in the slope 

parameter or in the volatility of the error term. Regarding its moments, the first two 

causes its mean to change, while the second and third cause its volatility to change. That 

is, a change in the intercept/residual’s volatility does not have any effect on the 

variance/mean, since they do not depend on those parameters. A change in the slope 

parameter influences both moments. SBs are detected by finding changes in the 
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parameters of the conditional model, but they imply shifts in the unconditional mean 

and/or variance. Although the DGP is non-stationary over the entire period, it may be 

stationary between two consecutive SBs.9 

To obtain a more precise definition, it is worthwhile to highlight the difference between 

SB and other concepts. According to Timmermann, what distinguishes a break from a 

shock is that, although both are low frequency events, the former has a long-run 

(persistent) effect. Let us take an example from Hungarian exchange rate history. While 

the official devaluations of the currency during the narrow intervention band regime can 

be considered as outliers, the increased volatility following the widening of intervention 

band suggests a SB. 

It is also worth mentioning here the importance and difficulty in differentiating between 

the time-varying nature of conditional variance (called heteroscedasticity) and shifts in 

unconditional variance. While the first describes the short-term dynamics of volatility, the 

second refers to change in the unconditional volatility. 

Brooks (2002) define SBs versus regime switches as irreversible change (once and for 

all) as opposed to moving and then reverting from one regime to the other. This seems 

to be a straightforward differentiation. In practice, however, it is not always obvious even 

ex post, whether it was a SB or regime shift. Moreover, the ways we can deal and test 

them is not so distinct either. For example, regime switching models may include a non-

recurring state, which is well suited to model SBs (see Timmermann, 2001). On the other 

hand, SB tests are capable of detecting regime shifts of a recurring nature.10  

Why do structural breaks occur? They are usually associated with significant economic 

and political events. Changes in foreign exchange regimes (from fixed to free or managed 

float), monetary policy shifts, other economic policy measures (liberalisation of capital 

movements), building up and bursting of asset price bubbles and even the development 

of stock markets (in terms of efficiency), or shifts in the required risk premium. Most of 

the literature on SB tests focuses on one-off shifts (SB) in mean and volatility. There is, 

however, no guarantee that breaks detected by the tests are of this type. In some cases 

the underlying event is one-off type (capital market liberalisation or monetary policy 

regime changes). In other cases changes are related to the business cycle, which can be 

                                                 
9 In a more general univariate setting, where a trend component is included too, changes can take place 

not only in level and volatility, but also in the trend (characterises many macroeconomic and financial 

series, see for example, Wang and Zivot). 
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rather captured by regime switching models, or to moves which are not easily 

identifiable. Sometimes pure luck causes lower level of volatility: a decreased volatility of 

exogenous shocks. Here, we take the practical view: find any break and include them in 

the model: irrespective of whether the underlying event is a type of the first or the 

second, or whether the causes are identified or not. Nevertheless, we do seek for 

plausible explanation for each break that is found. 

I.2.2. Why do structural breaks matter? 

There is ample empirical evidence on structural breaks in economic and financial time 

series (see for example Hansen (2001), Stock and Watson (2002) or Aggarwal et al. 

(2001)). What problems do unaccounted SBs cause? In general, ignoring the presence of 

SBs leads to incorrect conclusions regarding the behaviour of certain variables. It has 

serious implications. To mention only a few: 

- When one estimates a model over a period when a structural break occurred (broken 

trend, for example), the estimated DGP might be misspecified – either its functional 

form is wrong, or the estimated parameters are far from the true parameters. We not only 

obtain an incorrect picture of the behaviour of the given variable, but also our forecasts 

may become unreliable. Clement and Hendry (1998) view SB as a key determinant of 

forecasting performance. However, being misspecified does not always imply worse 

forecasts. 

- Econometric tests might lose their power and lead to incorrect inferences. SBs cause 

unit root tests to have low power – we might wrongly fail to reject it. Furthermore, SB 

can also cause the spurious rejection of unit root. That is, not only is the power low (the 

probability of not rejecting a wrong H0 is high) but at the same time the 1st type error is 

high (the probability of wrongly rejecting a true H0). The seminal paper of Perron (1989) 

showed first how to modify the null and alternative hypothesis of unit root test to 

incorporate potential breaks in time trend. In contrast to previous empirical results, the 

application of his new test suggests that many macroeconomic time series may be 

stationary around a broken deterministic trend. 

- In volatility forecasting omitted breaks induce significant bias into conventional 

volatility estimation (expanding or fixed window moving averages). Pesaran and 

Timmermann (1999, 2003) devoted two papers to the issue of how SBs influence the 

decision on optimal window size in forecasting and on model selection with the aim of 

sign forecasting. 

- The presence of breaks also influences the estimation of other parameters, when more 
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complicated volatility models (GARCH, ARFIMA) are used. For example, omitted 

breaks cause an increase in the estimated persistence and the order of integration in 

GARCH/ARFIMA models. It has consequences on risk management, asset allocation, 

asset pricing―in all areas where volatility is used.11 One example is forex volatility, which 

is often found close to be integrated. This persistence disappears or decreases 

significantly when breaks are taken into account, for example, by simply estimating the 

models for the sub-periods. If IGARCH is not proper any more, that questions the use 

of EWMA as well. 

- Ordinary descriptive statistics of actual data become misleading when SBs are present: 

mean, variance, autocorrelation. The verification of any theory which requires 

comparison of the data generated (simulated) by a model (representing the theory) and 

the actual data (characterised by its moments) over a period with a SB will lead to 

incorrect conclusions. 

- Often provides different or new results compared to previous studies on issues such as: 

Efficient Market Hypothesis – random walk versus mean reversion, existence of 

cointegrating relationships, Purchasing Power Parity, business cycle theory, equity risk 

premium puzzle, sources of stock return predictability. For example Chaudhuri and Wu 

(2003) show that accounting for SBs―arising due to liberalisation―in emerging market 

stock indices leads to the rejection of random walk for many of those markets. This 

stands in contrast to the previous (rather surprising) evidence. Another area of 

application of unit root tests adjusted with SB is Purchasing Power Parity tests. Baum et 

al. (1999) find no evidence on absolute long-run PPP, where PPP corresponds to unit 

root test in real exchange rates. On the contrary, Sabate et al. (2003) do find evidence 

on PPP for peseta-sterling when SBs are considered. Cointegration tests were also 

modified to adjust for SB. Voronkova (2003) shows that this test finds more 

cointegrating relationship between some Central-European and more mature stock 

markets than its counterpart without SB. 
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I.2.3. Connection between SB and other stylised facts of returns 

There are some empirical properties of asset returns, which have been challenging the 

econometric society for a long time. Those stylised facts are: conditional 

heteroscedasticity and volatility clustering, leverage, fat tail, persistence and long memory. 

They all characterise the dispersion or the volatility of the return and its dynamics. Fat 

tail is a distributional property. It means that the number of extreme return observations 

exceeds that implied by the often-assumed normal distribution. All the others represent 

facts about the dynamics of volatility. Heteroscedasticity only means time-varying 

conditional volatility. Leverage is the asymmetric response of volatility to bad versus 

good news. The remaining concepts have very similar meaning. Volatility clustering is the 

observed autocorrelation in the time-varying conditional return volatility. It is used to 

capture the tendency of large/small price changes to be followed by large/small moves. 

Persistence means that any shock/news has a long-lasting effect on volatility. Long 

memory is the slowly decaying autocorrelation observed in the absolute return series. As 

we will see later, these concepts are interrelated. Furthermore, SB may cause all those 

stylised facts and models with SB provide a promising way to capture them. 

Volatility clustering and leverage are typically captured by various GARCH models. The 

GARCH effect does cause fattening of the tail as well. However, accounting for the 

GARCH effect is often not enough to get normal errors: the standardised error still has 

higher then normal kurtosis. This calls for additional approaches. 

Long memory is often modelled by fractionally integrated (ARFIMA) model in absolute 

return. 

How does SB fit into this picture? There is ample evidence based on analytical 

calculation, simulation and actual data that SBs, on one hand, can generate all the stylised 

facts above (fat tail, GARCH and long memory). On the other hand, SB and GARCH, 

SB and long memory are interrelated. They are very easy to confuse. Should any one be 

present, the estimation of the other is distorted. For example, when either GARCH or 

long memory is present, SBs are spuriously detected. And vice versa, when SBs are 

ignored, the long memory parameter and the degree of persistence are overestimated. 

The connection between SB and long memory and persistence is investigated in several 

papers. Lamoureux and Lastrapes (1990) were among the first to suggest that the 

persistence in volatility might be overstated due to structural changes in variance. 

Granger and Hyung (1999) investigate the relationship between SB and long memory. 
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They show via simulation that linear processes with SBs in mean can produce the same 

pattern in sample autocorrelation as fractionally integrated I(d) processes. They also find 

that the number of breaks is often spuriously overstated when the underlying process is 

not stationary but I(1) or I(d). There is a positive relationship between d and the number 

of breaks detected in finite samples (and also the magnitude of break). Even if the I(d) or 

I(1) underlying process does not have shift, breaks will be found. Their conclusion based 

on the empirical analysis of the S&P500 is that the choice between I(d) and SB is not 

obvious, although they prefer the latter one. 

Diebold and Inoue (2001) show analytically that long memory and regime switching or 

structural change can be easily confused under certain conditions (when the number of 

regime switches is small). D&I argue, that even if structural changes do occur, long 

memory models may provide a convenient way to generate the observed features of the 

data and to forecast. I disagree with the latter claim. Long memory and SB do generate 

similar acf pattern, but they assume different behaviour (stationarity, speed of mean 

reversion, impact of shocks). This might imply different forecasts, too. 

As to empirical applications, Gil-Alana (2002) show, that when mean shift is included in 

the regression model of US interest rates, the order of integration decreases―still non-

stationary, but the mean reversion property accelerates. Gadea et al. (2004) show using 

the example of three countries’ inflation series that ignoring SBs induces upward bias 

into the estimation of long-memory parameters (in the period of 1874-1998 for UK, Italy 

and Spain). Bachmann and Dubois (2001) highlight the difficulties of trying to 

disentangle unconditional breaks and conditional heteroscedasticity. Applying their 

alternative methods12 they detect much fewer breaks in variance in 10 emerging stock 

market indices than previous studies. Morana et al. (2002) investigates fx rates and 

show that long memory is only partially explained by unaccounted regime changes. 

Regarding forecasting performance Markov switching models of realised volatility 

outperform ARFIMA models only for longer horizon (5-10 days) but not for 1-day 

forecasts. 

Based on the above evidence, the inclusion of SB in volatility models seems to provide a 

very promising way to capture the leptokurtosis present in stock returns and avoid some 

spurious findings on the behaviour of return. It is of special importance when the aim is 

to forecast VAR, for example with the purpose of setting capital, where the tail is in the 

centre of interest. 
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I.2.4. Simulation 

To illustrate the impact of structural breaks discussed in the previous chapter, a simple 

simulation is conducted. Based on the actual estimation on unconditional variances in 

our dataset (see below), 8 samples of normally distributed returns are generated 

(N=5000) with zero mean and the following variances: 

1. Table: Variances used in the simulation exercise 

x1 x2 x3 x4 x5 x6 x7 x8 
0.5 1 3 5 7 10 15 20 

 

Then structural breaks are induced by taking all possible combinations of the above 

variables. For example x1 followed by x2 gives the first series (out of altogether 28). The 

series with structural breaks are then investigated. Although the series is normally 

distributed between and after the SB, the entire series is found to be leptokurtic. The 

larger the break is, the fatter the tail is. 

2. Table: Kurtosis in various models 

 x2 x3 x4 x5 x6 x7 x8 
x1 3.381 4.539 5.080 5.173 5.624 5.506 5.775 
x2  3.736 4.374 4.582 5.122 5.164 5.506 
x3   3.220 3.410 3.928 4.226 4.692 
x4    3.051 3.376 3.653 4.121 
x5     3.141 3.344 3.770 
x6      3.127 3.442 
x7       3.068 

 

The autocorrelation function on the squared return series shows significant ARCH effect 

for all of the series, recommending the use of GARCH models. Although we know that 

in the two sub-periods the series is iid, without any ARCH effect. LM-ARCH tests give 

the same conclusion. When GARCH models are estimated, the parameters are significant 

and in all cases the persistence is very high (close to 1). 

This simple exercise demonstrates how SBs can lead to spurious results – strong ARCH 

effect and very strong persistence is found by the standard tests when none is present. 

I.2.5. Different options to model shifts in the DGP 

There are different approaches to model changes in the DGP depending on the nature 

of the shift. One is regime-switching model. Typically, two-three (finite number of) 

regimes are defined, one representing normal or quiet markets, the other more turbulent 
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periods of high volatility.13 So-called Markov switching models define a probability 

transition matrix, which governs the shifts between regimes. They can capture for 

example business cycle effects. One of the major challenges of MSMs is the estimation of 

transition probabilities simultaneously with the parameters of each regime. 

In threshold auto-regressive models the value of a state variable governs movements 

between regimes, that is the major difference between threshold and MSM models. 

When it exceeds a threshold, the DGP jumps from one regime into the other, whereas in 

MSM the transition probabilities determine the dynamics of the process. 

Mixture of normal distributions is another option to capture the changes of return 

distribution. Regime switching represents one type of this. However, mixtures of normals 

provide much simpler models too, when shifts are allowed only in the variance but not in 

the mean. In that case, one can assume that the sample is drawn from two distributions 

with the same mean but with different volatility. Mixtures of normals are often successful 

in mimicking the observed high kurtosis of actual data (see Alexander (2002)). 

Another alternative method is extreme value theory, which concentrates on extreme 

observations only. The implicit assumption of EVT is that extreme observations are 

generated by a different DGP. 

SB models deal with shifts in a specific way. The so-called two-step approaches use 

specific tests designed to detect SBs endogenously, then incorporate them into the model 

(by slope and/or intercept dummies). Others simply adjust the estimation window; 

ignore all or some of the pre-break observations. In this paper, a two-step approach is 

followed. 

I.2.6. Tests to detect the number and location of structural breaks 

Recent econometric advances provide a rich methodology to test14 endogenously the 

presence of SBs of unknown location in a more and more general framework. 

Algorithms and tests have been developed to detect and locate breaks. The econometrics 

of SBs concentrates on the following issues: 

- Construct tests to detect the presence and number of break.15 

- Build an algorithm to find the breaks sequentially or simultaneously; 

                                                 
13 Sometimes three or more states are defined. 
14 Alternatives to SB tests are the fluctuation test of Sen, Nyblom instability test, graphical analysis of 

recursive and rolling window parameter estimates, tests based on recursive estimates etc. 
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- Establish the asymptotic properties (convergence, consistency, distribution) of the 

location estimator. Then calculate confidence intervals around them. 

There are three basic approaches followed in the construction of SB tests: OLS-based 

tests, CUSUM-type tests and SB detection as a model selection exercise (based on 

Information Criterion). 

OLS-based tests are used to detect breaks both in mean and variance. They are OLS-

based because the derived test statistics rely on the sum of squared of OLS residuals. The 

roots of SB tests go back to the Chow-test. When the time of the break is known, one 

can use Chow (F-) test (when errors are normal) or the Wald, Lagrange Multiplier or 

Likelihood Ratio statistics (when errors are not normal) to test the null of no break. They 

are based on the comparison of the SSR of a restricted (no break) and un-restricted (with 

break) model. 

When the k is not known, it complicates the testing procedure because of the presence 

of a nuisance parameter (k), which appears only in the alternative hypothesis. The OLS-

based test for the case of unknown break location (k) was first developed by Quandt 

(1960). He came up with the idea to calculate the Wald statistic over all possible values of 

k,16 then to take the maximum value of the Wald statistics, which is called the SupWald. 

However, the limiting distribution is not χ2 any more – unlike in the case of known k. 

Years after the idea of Quandt, Andrews (1993) derived the limiting distribution of the 

SupWald statistic and critical values. The p-values were tabulated later by Hansen (1997). 

When the null is rejected, the location of break (k) is estimated as the argmax SupWald.17 

OLS-based SB test are used to detect breaks in mean and variance as well. Later, other 

versions of the test (m against 0, m+1 against m breaks) were developed. 

To find more than 1 break the testing procedure should be applied sequentially. When 

the first break is found, one should rerun the test on the sub-samples, as long as the SB 

test statistic is significant. Often the found break points are refined. Let k1 and k2 be the 

first two break points found, then k1 needs to be re-estimated on the sub-period [1,k2] 

or [k2,T] depending on whether k1<k2 or k1>k2. 

An alternative procedure for testing shifts in the variance of a series was introduced by 

Inclan and Tiao (1994). It goes back to the CUSUM test of Brown, Durbin and Evans 

(1975), which was originally formulated to test the stability of a forecasting model. The 

                                                 
16 More precisely the beginning and end of the sample is trimmed, to ensure large enough sub-samples 

to estimate parameters. The typical value of trimming is between 5% and 15%. 
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Andrews and Ploberger (1994)). 



test statistic of Inclan and Tiao is based on the centred and normalised cumulative sum 

of squares of (the standardised or demeaned) return, which should oscillate around zero. 

The algorithm (called ICSS – iterated cumulative sum of squares) to find all the breaks, 

one at a time, is brought about as above: carry on locating breaks until the test statistic 

becomes insignificant. The major advantage of their approach lies in the computational 

simplicity relative to other approaches. One of its weaknesses is the iid assumption, 

which is not met when the volatility follows a GARCH process. 

Finally, the decision on the number and location of breaks can be interpreted as a model 

selection problem. Choose the model with the minimum value of Information Criterion 

(AIC and BIC are used). If for any k the model with structural break has a lower IC value 

than the model without SB, it is regarded as evidence of a break. When the first break is 

found, one can proceed in applying the idea for the sub-periods. 

Empirical papers very often use more than one approach. It seems that different 

approaches may yield different results (number or location of breaks). Therefore, in this 

paper two approaches are used – OLS and IC-based. 

II. Methodology of the paper 

II.1. Description of the data 

Trading on the Budapest Stock Exchange (BSE) started in 1990. A real boom in equity 

capitalisation and trading volume started in 1996. It followed a period of consolidation 

and privatisation, which was a sharp response to the transition crisis. The Hungarian 

economy and the equity section of BSE have some characteristics, which may be 

important when the results of our analysis are assessed. Hungary is a small open market 

economy with entirely liberalised capital markets. The share of foreign investors is 

high in the domestic capital markets, amounting to around 70% on the equity section of 

BSE throughout the period investigated.18 Furthermore, Hungary is an emerging country. 

Therefore, prices (and volatility) on the stock market are not only affected by 

fundamentals and profit prospects of registered companies, but also by the international 

economic environment, the risk appetite of international investors, and the overall 

assessment of emerging market risk. The fact that BSE is integrated into global 

markets is documented in several papers. Voronkova (2003) find evidence on long-term 

linkages among three Central European stock markets (Hungary, Poland and Czech 

Republic) and between Hungary and Germany, France and the USA. Scheicher (2001) 
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also reported strong influence of global factors on the BUX. Compared to other CEE 

stock markets, the liquidity on BSE is relatively high (see Jaksity 2002), but much 

smaller than on more developed markets. Therefore, foreign capital in- and outflows can 

cause jumps in prices on the market. 

The following table documents the rapid development of the equity section on BSE, in 

terms of capitalisation and turnover, which halted significantly only in 2001, due to the 

general recession on capital markets.19 

3. Table. Some indicators of the equity section on BSE 

 1995 1996 1997 1998 1999 2000 2001 2002 
Number of equities 

listed 42 45 49 55 66 60 56 49 

Capitalisation as % of 
GDP 5.99 12.86 36.64 29.9 36.05 20.25 19.38 19.4 

Capitalisation (bn 
HUF) 327.8 852.5 3058.4 3020.1 4144.9 3393.9 2848.8 2947.2 

Turnover (bn HUF, 
double counted) 87.3 490.5 2872.7 6920.7 6862.7 6834.1 2771.4 3027.4 

Number of 
transactions 60 851 153 937 478 236 1 011 514 1 461 482 1 612 482 902 381 730 822 

 

The BUX was launched on 2 January 1991 with a value of 1000 points. The index took 

its final form on 1 January 1995, and that is where our time series starts. However, 

technical details and rules did change even after 1995. For example, prior to April 1997 it 

was calculated on the basis of daily average prices of the basket stocks. After that date, 5-

seconds index prices were calculated, together with the closing prices of the BUX. 

Another important change took place in 1998, when open-outcry trading was replaced by 

electronic remote trading. It is a capitalisation-weighted index reflecting dividend 

payments. The maximum number of equities allowed in the basket is 25. Prior to 

October 1999, the weight of each single security was limited to 15%, and since then the 

index is calculated from capitalisation adjusted by free float. 

The evolution of the index value and return of the BUX are displayed on Graph 1 and 2. 
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1. Graph: Value of the BUX 

 
12000 

10000 

8000 

6000 

4000 

2000 

0 
01.95 07.95 01.96 07.96 01.97 07.97 07.01 01.02 07.02 01.98 07.98 01.99 07.99 01.00 07.00 01.01

 

2. Graph: Daily log-return of the BUX (%) 

 
20 

15 

10 

5 

0 

-5 

-10 

-15 

-20 
01.95 07.95 01.96 07.96 01.97 07.97 07.01 01.02 07.02 01.98 07.98 01.99 07.99 01.00 07.00 01.01

 

II.2.Modelling the BUX return with SB 

In this paper, the return and volatility of BUX is modelled as an AR-GARCH process 

with SB dummies. Why may SBs occur? Regarding unconditional mean, the weak form 

of the efficient market hypothesis implies that the return series is not autocorrelated 

(the AR term is insignificant). However, in the case of the BUX we assume that during 

the first part of the observed period the market was not efficient enough to remove all 

autocorrelation from the return series. It was a newly founded stock market in an 

emerging country, and consequently initial capitalisation, turnover and liquidity were low. 

Transaction cost or lack of experience may have played a role as well. Even if we 
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suppose that markets are efficient, and prices follow a random walk with drift, the drift 

component might change with the business cycle or the risk premium – which might 

be captured by changes in the intercept term or the level of long-run mean. In summary, 

changes in the long-run mean might occur due to: evolving efficiency, changes in risk 

premium or in the business cycle. 

As to volatility, we assume that GARCH representation will be necessary: this is 

supported by the data as well. Shifts in the level of variance are likely to occur more often 

than in case of the mean. All of the events affecting the slope parameter of the mean 

equation will trigger shifts in volatility as well. Therefore, changes in the efficiency of the 

market do alter the long-run level of volatility as well. Not only the level, but the 

persistence of volatility is also affected by increasing efficiency (we use efficiency in terms 

of speed of prices adjusting to new information). In addition, there is ample of empirical 

evidence on a positive relationship between trading volume and volatility.20 Thus, the 

rapid expansion of stock markets in emerging markets might have contradictory impacts 

on volatility: supposing that some predictability (significant AR term) was present in the 

series, increasing efficiency tends to lower the level and persistence of volatility, but 

larger volume might push its level up. Volatility is raised due to other reasons too, for 

example when jumps/news in the return series arrive more often and are of larger 

magnitude than usual (shift in the volatility of error term). The increasing integration of 

the local stock market into international capital markets may amplify that impact. 

Following the recommendations of Pitarakis (2002), first we detect breaks in the mean, 

then in the variance. A break in mean is defined as break in the intercept and the AR 

term. 

The log return series (yt=100*ln(Pt/Pt-1)) is specified as an AR(1)-GARCH(1,1) process: 
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where εt∼NID(0,1) . 

We run test on the first equation to check if there was any break in the mean parameters 

(µ,φ). When the number (n) and the location (km,i, i=1,…n) of the breaks have been 

                                                 
20 See, for example, Gallant et al. (1992), Jones et al. (1994). The theoretical support is given by the 

market microstructure literature, which links trade (order flow) to price adjustment, which causes the 

positive correlation between volatility and volume. Trading volume is proved to be helpful in 
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estimated, we assume that both the intercept and slope parameters are affected. Then the 

mean equation with structural breaks takes the form of:  
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where Di=1 for km,i-1≤ t < km,i,  0 otherwise; km,i is the location of i-th break found 

in mean and  km,0 =1 (the first observation).  

The model for each (altogether n+1) sub-period is given by the above estimated 

parameters. However, while φi equals the slope for each period between two consecutive 

breaks, the µi gives the deviation of intercept in the i-th sub-period from that in the last, 

(n+1st) period.21 We use the above models irrespective of the significance of individual 

parameters. 

In order to run SB tests in variance, we take the squared errors of the above equation 

(ut
2), and use the Bai-Perron algorithm again. We are looking for break in the mean of the 

variance:22 
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We test the null of vi=0 against the non-linearity of parameters. After m and kv’s, the 

number and location of breaks in variance have been identified, the following AR-

GARCH specification is estimated by quasi ML method. 
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II.3. The Bai-Perron method to detect SBs 

Bai and Perron (1998 and 2003) consider a linear regression model with multiple but 

unknown numbers of structural changes in a very general setup. Their methods can be 

applied for both pure and partial structural breaks. They allow serial correlation and 

                                                                                                                                            
explaining heteroscedasticity as well– see Lamourex and Lastrapes (1990) and Wagner and Marsh 

(2004). 
21 To avoid multicollinearity only n intercept dummy can be introduced. 
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simple constant mean. This kind of model misspecification does not influence our result. The tests have 

power against this type of misspecification. 



heteroscedasticity of errors, different distribution of regressors and errors across 

segments/sub-periods. 

First let us consider the tests used to detect the presence of SBs. In addition to the 

standard SupWald test of 1 break against 0, they also propose test with an alternative 

hypothesis of unknown number of SBs up to a maximum, and l+1 number of changes 

against l. 

To decide the number and location of SBs their programs include several alternatives. 

First, they develop an efficient algorithm based on dynamic programming to estimate all 

the breaks simultaneously, where the number of breaks is fixed. It is called Global 

Minimisation of RSS. The problem with global minimisation is that the RSS continues 

to decrease with the number of breaks. One usual response to this is to use Information 

Criterion (a penalty factor) to decide the number of changes. Their Gauss program 

includes an IC based algorithm (a modified Bayesian Information Criterion). However, 

Bai and Perron recommend a sequential procedure. It starts with the first k, obtained 

from global minimisation and carries on estimating the break points until their new test 

statistic, F(l+1|l), becomes insignificant. As they point out, compared to the IC-based 

approach, the sequential procedure has the advantage of being able to take into account 

heterogeneity of data across segments and serial correlation of errors. Their simulation 

results (Perron 1997, Bai and Perron 2000) also highlight the sensitivities of individual 

methods to different assumptions, and also provide advice on how to improve results. 

Overall, they find the sequential method performs better than IC-based approaches. 

Finally, the break point estimates gained from the sequential method can be improved by 

applying their repartition method. They also construct confidence intervals at 5% under 

very general assumptions about the data and errors. 
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II.4. Volatility forecasting models and evaluation criteria 
We use the following models to forecast volatility and VAR: 

4. Table: Volatility forecasting models to be compared 

Models Volatility forecast VAR forecast 

Unconditional models: 
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Where: 

- F-1(α) gives the α quantile of the standard normal distribution (5;1;0.5 are used). 

The underlying assumption is that the standardised error of the basic and SB models 

follow N(0,1) distribution. 

- ht+k-1 is the conditional variance for k=1 and the static forecast for k>1, 

estimated from the basic and SB models. 

- rˆt+k-1 is the fitted value of return for k=1 and the static forecast for k>1  

- λ=0.94 is taken from RiskMetrics  

In addition to VAR, we also calculate Expected “Excess” Shortfall as the average of 

excess losses above VAR. 

In case of conditional models we conduct two analyses. First, the entire dataset (1995-

2002) is used for estimation and in-sample forecasting is evaluated. Second, we perform a 

rolling window estimation. We find SBs and estimate the model on the first 500 

observations, make 125 (half-year) static forecasts, then roll the estimation window 

forward, re-estimate the model and do the forecasts again. 
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Forecasting performance is evaluated by 4 statistical loss functions:  
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Here, actual volatility is approximated by the square of demeaned daily return.  

When VAR forecasts are assessed, one has to consider the following. VAR is often used 

to determine the level of capital required both by regulators and the owners of banks. If 

the actual loss of value of assets is larger than the VAR, it means that the bank does not 

have enough capital to absorb the losses. Or in other words, compared to its capital, it 

takes too much risk. On the other hand, if the VAR is much higher on average than the 

losses which have taken place, the bank holds too much capital, which raises its 

(opportunity) cost.23 Consequently, a good VAR forecast is not exceeded much more 

often than implied by the chosen p. It shouldn’t be too high either, exceeded rarely 

relative to p. Another issue of concern for both banks and central banks―guarding 

against systemic risk―is the clustering of hits. Even if a model ensures correct 

unconditional coverage, the clustering of violations (large losses over VAR coming in 

clusters) make the VAR model unacceptable, for it increases the probability of bank 

default. 

There is a rich body of literature on how to measure the accuracy of VAR forecasts. In 

this paper we use the following measures: 

- We calculate the number of exceedences (hits) in percentage and compare this to 

the chosen probability level. We also compare the average value of exceedences 

in excess of VAR (EES), for we are not only interested in the frequency of model 

failure but also in the average value of loss over capital. 

- We use Kupiec’s unconditional and Christoffersen’s conditional coverage 

(percentage of failures, hereafter POF) test. 

The first one tests the null hypothesis of the actual ratio of failures (when the actual loss 

exceeds the VAR forecast) being equal the chosen probability level (in our case 5%, 1% 

and 0.5%). Christoffersen has improved the test by supplementing it with a test of 

independence. Where the H0 is that the hits are not clustered in time, or in other words, 
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there is no higher-order dynamics in the hit series.24 In this sense the test of 

Christoffersen incorporates both requirements (nominal coverage, independence) argued 

for above. 

Software used: for SB tests: Bai-Perron algorithm in GAUSS (run under Ox), for model 

estimation and forecasting:  PcGive 

 

III. Results over the entire period 

III.1. Structural breaks found 

First, we apply the BP method on the return series of the BUX to find breaks in mean. 

One important input parameters users need to decide on in order to run the tests is the 

minimum distance between two consecutive breaks (h). Since the result is sensitive to 

this choice, we decided to use several values for h (25, 50, 100). We also run tests and 

estimate breaks on sub-periods to conduct a kind of sensitivity analysis. Both the results 

of IC and SP are used.25 As to significance level, 1% is chosen in the first place, but 5 and 

10% results are considered as well. 

The tests resulted in a different number of breaks and change-points, depending on 

different parameters. First, the smaller the fixed length of each segment (h) was, the 

larger the number of breaks were. However, they occur only in 1997 and 1998, and with 

decreasing h they became closer to each other. Second, BIC (breaks selected according to 

Bayesian Information Criterion) and SP (breaks detected by the Sequential Procedure26) 

sometimes give slightly different models. 

In light of these findings, we decided to consider more than a single model. To capture 

the dispersion of results, we included the following models: 

 

                                                 
24 Other tests used in the literature are, for example, the dynamic quantile test developed by Engle and 

Manganelli (1999) to check non-predictability of hits, or the duration-based test of Christoffersen 

(2003). 
25 Following the recommendation of Mr Pitarakis, we also run the test without imposing 

heteroscedasticity of error. Mr Pitarakis suggested that some breaks might remain undetected when 

heteroscedasticity is assumed. 
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5. Table: SB in mean models 

M1 (BIC,SP, 

h=100,h=50) 

M2 (SP, 

h=25) 

M3 (BIC,  

h=25) 

M4 (SP, h=25 

hetvar=0) 

1997.10.28 1997.09.19 1997.09.19 1997.01.16 
 1997.10.31 1997.10.28 1997.09.19 
  1998.08.10 1997.10.28 
  1998.09.21 1997.12.04 

 

Then 4 AR-GARCH models with the breakpoints-in-mean above were estimated, the 

squared errors stored and used to detect breaks in the volatility.27 Again three length of 

segment (h=100, 50, 25) were considered. 

As to BIC-based procedure, one striking feature of the results is that given h, the four 

mean models give almost exactly the same break-point estimates. That implies that the 

results are robust with respect to different mean model specifications. Furthermore, 

breaks in variance become closer to each other with h, but their number does not change 

significantly. There are three periods when breaks in variance occurred. Two coincide 

with the periods of breaks in mean: in autumn 1997 and 1998. Meaning that in those 

periods, shifts occurred both in mean and volatility. The additional third is March 1999. 

The results got from SP are a bit messier. Compared to the BIC estimates, here we have 

more and different break-points. Breaks in volatility are found not only in 1997 and 1998, 

but also at the beginning and at the end of the sample. Nevertheless, given h, the 

breakpoints of the four mean models are rather similar. 

Finally, we decided to choose 2 SB and 2 BIC models, given by h=100 and h=25 for 

both mean and volatility. Hereafter, these model combinations are referred to as SB1, 

SB2, SB3 and SB4 (BIC100, BIC25, SP100, SP25). They are AR(1)-GARCH(1,1) models 

with dummies corresponding to the following break points in mean and volatility: 
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of the mean model relying on SP or BIC-based break-points. 



3. Graph: Breakpoints found by the 4 SB model on the entire period 

sb
1_

r

sb
1_

v1 sb
1_

v2 sb
1_

v3 sb
1_

v4

sb
2_

r1

sb
2_

r2

sb
2_

r3

sb
2_

r4

sb
2_

v1

sb
2_

v2

sb
2_

v3

sb
2_

v4 sb
2_

v5

sb
3_

r1

sb
3_

v1

sb
3_

v2 sb
3_

v3

sb
3_

v4

sb
3_

v5

sb
4_

r1 sb
4_

r2

sb
4_

r3

sb
4_

r4

sb
4_

v1

sb
4_

v2

sb
4_

v3

sb
4_

v4

sb
4_

v5

sb
4_

v6

sb
4_

v7

01.95

12.95

12.96

12.97

12.98

12.99

12.00

11.01

   SB1                           SB2                                        SB3                                        SB4                     models:
 

What could be behind the shifts? Most of the breakpoints of mean and volatility are in 

1997 and 1998. Hungary was affected by the Russian and to a lesser extent also by the 

Asian crisis, which occurred in 1997 and 1998. The main channel was the increased risk 

aversion of international investors due to the events in Russia and Asia. In the former 

case, Hungary was affected directly too, because of the still significant economic ties 

between the two countries. However, strong fundamentals ensured a rather quick 

recovery from both shocks. One might doubt whether or not those events resulted in 

longer lasting shift in the mean and volatility process. To decide whether or not that was 

the case or if they only moved temporarily into another regime, I calculated the 

unconditional mean and volatility for each sub-period between consecutive SBs for the 4 

models. They also provide information about the size of the shift. 
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4.Graph: Unconditional mean of BUX return implied by various SB models 
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Different models indicate rather different behaviour of the mean in 1997-1998, but all 

report a sharp decline in November 1997. They all convey the same message about a real 

shift after 1998 as well. The unconditional mean declined from roughly 0.2 in 1995-1996 

to 0.03 after the turbulent years of 1997-1998. This suggests that either the risk premium 

declined sharply, or a long-run trend was broken or the market become much more 

efficient. As to the risk premium, despite the steadily improving sovereign rating of the 

country (Moody’s rating improved from Ba1 in 1996 to A1 by the end of 2002), the risk 

premium (spread on government bonds) fluctuated widely, jumping to a higher level after 

the Russian crisis, falling in 2000 and then rising again after 9/11. Based on this, the role 

of risk premium in the mean shift can be rejected. 

5. Graph: Spread on Hungarian government bonds 
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Looking at the development of BUX (1.Graph), there is visual evidence of a very 
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strong upward trend in the value of the index in 1996-1997―resulting in about 100% 

yearly return, which disappeared after the Asian crisis.28 This is very likely to contribute 

to the decline in the long-run mean. 

The improving efficiency of the market may have played a role as well. Starting in 1996, 

the stock market expanded in terms of capitalisation, and turnover, liquidity increased 

too. The crises are also likely to have a role in the sense, that those events provided a 

good learning field especially for the domestic agents (brokers, dealers and asset 

managers). 

Regarding volatility, a series of upward shifts can be detected (at the beginning of 1996, 

end of 1997, 1999).  

6. Graph: Unconditional volatility of BUX return implied by various SB models 
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The increased volatility is likely to be related primarily to the steadily increasing trading 

volume during this period. During the two crisis periods (Autumn 1997, 1998) volatility 

jumped dramatically, then it returned back to a level somewhat higher than in 1996.  

Two forces were at play: increasing efficiency of the market goes in hand with decreased 

long-run volatility, however the increase in volume29 and the two crises might have acted 

against it. For example, Giot (2003) found evidence of increased volatility, even several 

years after the Asian crisis, by investigating the VIX and its German counterpart 

                                                 
28 According to Ratkovicova (1999), this huge increase is partly attributable to the fact that shares were 

previously undervalued and foreign investors increased their presence on the market. 
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29 Cunar et al. (2004) investigated SB in volatility of the Spanish stock index over the period 1941-

2001. They also find evidence of positive volume-volatility relationship. 



(VDAX). Finally, unconditional volatility might increase merely because of the higher 

frequency or intensity of shocks affecting the market―for example the increased 

integration of BSE into global markets might have led to greater exposure to external 

shocks. 

The question of SB or regime change cannot be answered without ambiguity―unlike in 

the case of mean. The jumps in volatility during the crises might be modelled by regime-

switching model, however there are also signs of upward shifts in 1996, 1997 and after 

1998, which call for modelling with SB. 

III.2. Properties of the models with and without SB 

To start let us analyse the original return series over the period 1995-2002. 

6. Table: Descriptives of BUX return series 

Observations 1992 

Mean 0.0838 

Std.Devn. 1.9329 

Skewness -0.9655 

Excess Kurtosis 12.601 

Minimum -18.033 

Maximum 13.616 

Normality test: Chi^2(2) =   1858.3[0.0000]** 

Jarque-Bera test t=13488 [0.00000]** 

ARCH 1-2 test: F(2, 1985)=   99.459 [0.0000]** 

ARCH 1-5 test: F(5, 1979)=   48.386 [0.0000]** 

ARCH 1-10 test: F(10, 1969)=   28.031 [0.0000]** 

 

It is highly non-normal with negative skewness and very high leptokurtosis. There is also 

strong evidence of ARCH effect. 

Now let us turn to the question whether we can “improve” those characteristics by 

estimating conditional models. In this chapter, we compare 5 models in terms of their 

parameter estimates, diagnostics and persistence implied by their GARCH parameters. 

We compare the basic model (“basic” is an AR(1)-GARCH(1,1)) with the four SB 

models. 

Comparing the basic and SB models, we find that the persistence captured by the sum 

of the ARCH and GARCH parameter decreases when SBs are accounted for. That 

finding is in line with the literature suggesting that persistence is overstated due to 

unaccounted SB. The fall is largest in SB4 (SP25 model). 
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7. Table: Persistence in different models 

 Basic SB1 SB2 SB3 SB4 

alfa+beta 0.99 0.89 0.90 0.86 0.76 

 

We also compare the unconditional mean and variance implied by different models 

for each sub-period.30 Although in some cases the sub-periods are so small (25) that it 

makes the parameter estimates unreliable, even if that is kept in mind, the differences are 

striking. 

8. Table: Unconditional mean and volatility for sub-periods 

Unconditional mean Unconditional variance 

basic SB1 SB2 SB3 SB4 Basic SB1 SB2 SB3 SB4 

0.14 0.21 0.20 0.18 0.16 11.64 1.60 1.48 0.89 4.31 

 0.03 0.19 0.03 0.28  12.19 75.63 2.96 0.59 

  0.07  0.06  2.25 3.00 26.08 1.97 

  -2.56  0.38  24.68 73.11 4.23 46.94 

  0.03  0.04  2.92 10.93 1.88 4.03 

       2.67 4.34 53.30 

         10.91 

         6.06 

         2.42 

 

The basic model masks, for example, the fact that the average daily return declined, close 

to zero, in the second half of the sample. It also distorts dramatically the level of 

unconditional variance, which was very high in some short sub-periods but much 

lower―than suggested by the basic model―in the majority of the sample. 

When the diagnostics of the 5 models are compared, SB models seem to over-perform 

the basic model. The improvement is even more dramatic when compared to the original 

series. The standardised residuals of the SB models all have virtually zero mean and 1 

standard deviation. Their skewness is zero, however they stay leptokurtic with excess 

kurtosis between 2.3 – 3. Normality is rejected in all 4 cases. They do not have any 

ARCH effect, or serial correlation. The Nyblom statistics does not suggest instability in 

any of the parameter estimates. 
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30 It is rather for illustrative purposes; therefore the exact periods are not shown. One can go back and 

find them in the definition of each SB model. 



In contrast, the basic model’s standardised residual is still negatively skewed (-0.376), has 

higher excess kurtosis relative to the SB models (4.87). There is still some autocorrelation 

in standardised residuals at higher lags (Q(10) is significant). Although the ARCH F-test 

does not find any ARCH effect, the Q statistics on squared standardised residuals do 

reject no autocorrelation at 10%. According to the Nyblom statistics, the stability of the 

constant in both the mean and the GARCH equation can be questioned at 5%. 

III.3. In-sample forecasting performance 

First, in-sample forecast performance is evaluated using standard statistical loss 

functions, and then VAR back-tests are conducted. 

9. Table: In-sample forecasting performance for volatility 

 MAE MSE MAPE AMAPE 

SB1 181.8 4.25 352 197 57.9 

SB2 183.8 4.33 370 216 57.5 

SB3 184.7 4.24 320 598 57.2 

SB4 168.8 4.13 286 705 57.2 

Basic 195.0 4.46 378 462 58.2 

EWMA 187.9 4.28 519 348 57.6 

MA250 226.7 5.00 705 579 59.9 

MA500 264.9 5.51 740 065 60.9 

 

Based on the comparison of fitted and actual value31 of volatility, the SB models seem to 

outperform all the other models―except EWMA―by each measure. 

Different statistical loss functions yield very similar ranking of models. Among the SB 

models, SB4 is the winner by each measure. SB models are followed by EWMA and the 

basic model. The worst performance is shown by moving average models. 
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(r(t)-µ)2 , where µ is the sample mean of return. 



10. Table:Ranking by statistical loss functions 

 MAE MSE MAPE AMAPE Average Final 

SB1 2 3 3 5 3.3 3 

SB2 3 4 4 3 3.5 4 

SB3 4 2 2 2 2.5 2 

SB4 1 1 1 1 1.0 1 

Basic 6 6 5 6 5.8 6 

EWMA 5 5 6 4 5.0 5 

MA250 7 7 7 7 7.0 7 

MA500 8 8 8 8 8.0 8 

 

Regarding their VAR forecasts, the performance of various models depends on p. When 

the number of hits (cases when loss exceeds VAR) are counted, at p=5% only one model 

leads to higher then the theoretical rate of hits.  However, for 1% and 0.5% none of the 

models ensures VAR high enough to cover losses at those probabilities. 

11. Table: VAR forecasting performance(failures highlighted) 

P model exceed% Kupiec Christoffersen 
Basic 4.52 1.01 6.03 
SB1 5.07 0.02 5.84 
SB2 4.77 0.23 4.10 
SB3 4.42 1.48 9.08 
SB4 4.42 1.48 2.57 

EWMA 4.47 1.23 16.01 
MA250 4.25 2.18 15.87 

p=
5%

 

MA500 4.29 1.66 11.88 
Basic 1.51 4.46 11.18 
SB1 1.61 6.25 15.53 
SB2 1.46 3.66 4.26 
SB3 1.46 3.66 10.76 
SB4 1.61 6.25 6.63 

EWMA 1.81 10.58 23.40 
MA250 1.84 9.88 15.22 

p=
1%

 

MA500 2.08 13.35 22.03 
Basic 1.26 16.05 34.26 
SB1 1.26 16.05 25.43 
SB2 1.16 12.50 13.74 
SB3 1.31 17.95 26.28 
SB4 1.10 10.86 12.23 

EWMA 1.41 21.97 34.30 
MA250 1.32 16.21 20.61 

p=
0.

5%
 

MA500 1.47 16.51 21.04 
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According to Kupiec’s proportion of failures test32 none is rejected at 5%, but all the 

models fail at 0.5%. At 1% two SB and the basic models are still acceptable. However, 

according to the conditional test (Christoffersen) all the MA models fail at all p; 

moreover, the basic model passes the test only at 5%. SB2 and SB4 with h=25 is 

accepted even at 1%. 

When the ranking based on the value of the Christoffersen test33 across different 

confidence levels is investigated, the following picture emerges: surprisingly EWMA is 

the worst performer at almost all confidence level; it is followed by the two MA models; 

the ranking of the basic model sharply deteriorates with p; overall the SB models perform 

well, but their performance varies across confidence levels. The best performers across 

all p are the SB models with h=25 (SB2 and SB4). 

7. Graph: Ranking according to the Christoffersen test 
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The above results based on in-sample forecasting performance are very promising. 

However, best fit in-sample does not imply good out-of-sample forecasting performance. 

The next chapter extends the analysis in this direction. 

IV. Results of rolling-window estimation 

To do out-of-sample forecast we mimic the actual practice of banks and the 

requirements of Basel regulation. We estimate SBs and the various conditional and un-

                                                 
32 For rejection we use 97.5% and 2.5% critical values. As the chi-square test is two-sided this 

corresponds to p=5%. 
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33 Rank 1 is attached to all the models which are not rejected. The rank of the others depends on the 

value of the test statistic. Should some fall below the lower critical value, those would be preferred to 

the ones which exceed the upper critical value―those which result in too high VAR are preferred to 

those resulting in too low VAR. Actually none of the models failed due to low value of the test statistic. 



conditional model parameters over 2y’s (500) observations. Then we calculate 125 out-

of-sample static volatility- and VAR forecasts. The estimation window is then rolled 

forward by 125 observations and the whole process is repeated. Altogether we have 12 

estimation periods (P1 - P12) and 12*125=1500 forecasts. 

All the significant breaks, found by either IC or SP with h=25, 50, 100, are considered. 

Different models are compared by sub-periods, but I also combine them to obtain 

forecasts for the “entire” forecast period (T-500). As a result, the following SB models 

are constructed: 

12. Table: Combined SB models to cover the entire period 

BIC100 SP100 BIC50 SP50 BIC25 SP25 
P1_M1 P1_M2 P1_M3 P1_M4 P1_M3 P1_M4 
P2_M1 P2_M2 P2_M3 P2_M3 P2_M3 P2_M3 
P3_M1 P3_M2 P3_M3 P3_M4 P3_M5 P3_M6 
P4_M1 P4_M2 P4_M3 P4_M2 P4_M4 P4_M4 
P5_M1 P5_M2 P5_M3 P5_M4 P5_M5 P5_M6 
BASIC6 BASIC6 P6_M1 P6_M3 P6_M2 P6_M4 
BASIC7 P7_M1 BASIC7 P7_M1 P7_M2 BASIC7 
P8_M1 P8_M1 P8_M2 P8_M3 P8_M4 P8_M5 
BASIC9 BASIC9 BASIC9 BASIC9 BASIC9 BASIC9 
BASIC10 BASIC10 BASIC10 BASIC10 P10_M1 BASIC10 
BASIC11 P11_M1 BASIC11 P11_M1 P11_M2 P11_M1 
P12_M1 P12_M2 P12_M3 P12_M3 P12_M4 P12_M5 

 

Where no break was found by the given method (for example, BIC with h=100 has not 

found any break in period 7), the estimation and forecasts of the basic AR-GARCH 

model are used (BASIC7). In some cases, different SB models detected exactly the same 

breaks (as in period 12, where BIC50 and SP50 yield the same model: M3). 

The forecasting performance is compared by the same measures as before, however here 

more emphasis is placed on the time dimension of relative performance. 

IV.1. Structural breaks found 

The rolling-window exercise yields very similar results to the estimation based on the 

entire period. Obviously, as the window moves along the sample the SBs enter and leave 

with some lag (the SB close to the end of the sample is not detected yet). 
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8. Graph: SB in mean found by the two estimation methods (rolling window vs entire period) 
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The only “odd-one” is the break in mean found at the end of 1995, which is not detected 

when tests are run on the entire period. That corresponds to the start of the strong 

upward trend in the index, lasting until the Asian crisis. 

9. Graph: SB in volatility found by the two estimation methods (rolling window vs entire period) 
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The breaks in volatility detected by the two methods are very similar as well. 

IV.2. The basic versus the SB models 

When the basic and SB models are compared, the findings are in line with the 

expectations. SB models usually have much smaller persistence than the basic models 
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34―except in some turbulent periods, where the volatility process is very close to being 

integrated. The next graph highlights those differences. 

10. Graph: Persistence in the basic and SB models 
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The standardised residuals of the SB models show superior properties relative to the 

basic model. Although N(0,1) is assumed to apply for standardised residuals, normality is 

rejected by the Jarque-Berra test for all models for all sub-periods―except for some SB 

models in P12. Nevertheless, there is an improvement over time: for the basic model, 

after reaching its highest value in 1997-1998, both the skewness and kurtosis35 decline. 

Moreover, SB models usually have thinner tails and are less asymmetric than the basic 

model. In this sense, fitting SB models make the standardised residual get closer to 

normality.36 

                                                 
34It is interesting to have a look at the changes in the parameters of the basic GARCH model. Typically 

the α1 and β1 falls between 0-20 and 80-100 respectively. From 1999, that is true for the BUX return, 

however, in the preceding periods those parameter estimates are rather odd. 
35 When the data is normally distributed both the value of skewness and kurtosis equal zero. Kurtosis 

for N(0,1) equals 3, but most of the software adjust it by deducting 3 from the calculated statistics. 
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11. Graph: Skewness and kurtosis in the basic and SB models 
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IV.3. Out-of-sample forecasting performance 

Over the entire forecast horizon almost all the models fail according to the 

Christoffersen test (except BIC50 at p=5%), but at 5% none is rejected by the Kupiec 

test. As the Christoffersen test proved to be more conservative and test for 

independence as well, hereafter only that one is used. 

13. Table: Models rejected (1) by POF tests 

 ma250 ma500 ewma Basic BIC100 SP100 BIC50 SP50 BIC25 SP25 
Kupiec5 0 0 0 0 0 0 0 0 0 0 
Kupiec1 1 1 1 1 1 1 1 1 1 1 
Kupiec0.5 1 1 1 1 1 1 1 1 1 1 
Christ5 1 1 1 1 1 1 0 1 1 1 
Christ1 1 1 1 1 1 1 1 1 1 1 
Christ0.5 1 1 1 1 1 1 1 1 1 1 

 

Nevertheless, performance of the models varies through time and across p. When 

forecasts for 1 year (250) are considered, many models pass the test in certain periods. At 

p=5% rejections are more dispersed. Models are rejected in several periods (1997, 1998, 

1999, 2001). At p=1% rejections occur almost exclusively in 1997 and 1998 (only 2 SB 

and the EWMA models are not rejected there), the same applies to p=0.5%, but here 

some MA are rejected in 2001 as well. 

Overall, SB models slightly perform better than the alternatives, but the difference is not 

material. Why is this so? One of the reasons may be that we expect SB models to provide 
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better forecasts only in periods when shifts occurred in the estimation period but not in 

the forecast period. That applies only for 2000 and 2002.37 However, in both years all the 

models passed the tests, thus one cannot rank them. 

14. Table: Model rejection based on backtest on 1  year(250) forecasts  

   Ma250 ma500 ewma basic BIC100 SP100 BIC50 SP50 BIC25 SP25 
1997 0 0 1 0 0 0 0 0 0 0 
1998 0 0 0 1 0 0 0 0 0 0 
1999 1 1 0 0 1 1 0 1 0 1 
2000 0 0 0 0 0 0 0 0 0 0 
2001 1 1 1 1 1 1 1 1 1 1 

P=
0.

05
 

2002 0 0 0 0 0 0 0 0 0 0 

1997 1 1 0 1 1 1 1 1 1 1 
1998 1 1 1 1 1 1 1 1 0 0 
1999 0 0 0 0 0 0 0 0 0 0 
2000 0 0 0 0 0 0 0 0 0 0 
2001 0 0 1 0 0 0 0 0 0 0 

P=
0.

01
 

2002 0 0 0 0 0 0 0 0 0 0 

1997 1 1 1 1 1 1 1 1 1 1 
1998 1 1 1 1 1 1 1 1 1 0 
1999 0 0 0 0 0 0 0 0 0 0 
2000 0 0 0 0 0 0 0 0 0 0 
2001 1 0 1 0 0 0 0 0 0 0 

P=
0.

00
5 

2002 0 0 0 0 0 0 0 0 0 0 

 

We also looked at the rank among models based on the Statistical loss functions, the 

Expected Shortfall and the Christoffersen test. Again, based on the entire forecast there 

is some rather weak evidence on the superior performance of SB models. Models’ rank 

varies across evaluation criterions and p. Although no obvious ranking emerges, some 

findings might be drawn based on the overall performance: 

- The average value of losses above the capital (ES) is much lower for SB models, 

but only at higher probability. The ranking at p=5% is very different from the 

ranking at lower p. 

- The ranking by the backtest versus EES are often very different. 

- Across various evaluation criterion MA500 seems to be the worst, however 

interestingly MA250 does not perform so badly. 

- BASIC is the worst model according to the backtest. 
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- SB models usually get more good ranks and less bad ranks relative to the other 

models. Among them, BIC25 show good performance according to the loss 

functions, however results in high ES relative to the other models. 

15. Table: Ranking of  models 

Criterion 
Statistical 

loss 
function 

Christoffersen “Expected Excess 
Shortfall” 

p  5% 1% 0.5% 5% 1% 0.5% 
Basic 5 10 10 10 10 4 3 

EWMA 2 9 5 5 1 8 8 
MA250 5 6 3 2 2 9 9 
MA500 9 7 8 3 9 10 10 
SP100 3 5 6 9 5 7 2 

BIC100 10 4 4 8 6 5 1 
SP50 4 2 7 5 7 2 4 

BIC50 8 1 9 5 3 1 6 
SP25 7 8 1 1 4 3 5 

BIC25 1 3 2 3 8 6 7 
 

The first column is based on the average rank of the 4 statistical loss functions. 

Nonetheless, the average masks large differences in ranking by various statistical loss 

functions. The only exception is again BIC25, which shows superior performance by 

each measure. One might argue that the differences between MAE and MSE suggest that 

MA and basic perform better most of the time, but with a few major errors (the impact 

of large forecast errors are amplified by squaring in MSE, but not in MAE where the 

absolute value is used). However, we could not find any reasonable explanation for the 

other differences. 

16. Table: Ranking according to various statistical loss functions 

  MAE MSE MAPE AMAPE
basic 5 6 10 3
ewma 2 8 2 1
ma250 3 9 3 9
ma500 4 10 6 10
SP100 7 5 4 4
BIC100 10 7 9 6
SP50 6 2 5 8
BIC50 8 4 7 7
SP25 9 3 8 5
BIC25 1 1 1 2

 

To illustrate the variability of performance through time, we plotted the moving sum of 

exceedences and EES over 250 days for the different models. Each reach its peak in 
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1998-1999, due to the big jumps found in 1997-1998, which cause the performance of 

the unconditional models, but to a lesser extent even the conditional models to decline. 

During the last two years of the sample not much difference between various models can 

be seen, mainly because the magnitude and frequency of SB is much lower after 1998. 

To start with the number of hits over a year, we use the case with p=5% to illustrate the 

differences. However, the series show very much the same pattern for other p’s. 

First, the MA models (in particular MA500) show very poor performance: the number of 

hits fluctuates very widely, reaching its maximum (27) in 1998, but even drops to zero in 

2000. As we know, this method is very sensitive to extreme observations, and moreover, 

there are abrupt changes not only when those extremes move in but also when they 

move out from the estimation sample. 

It is also striking that the basic model has the largest hits in the critical 1998-1999 period. 

This is due to the presence of SB. 

Overall, SB models and the EWMA outperform the others in the sense that the number 

of hits stays in a rather narrow band around the theoretical value.38 The following graphs 

show the results in different groups. 

12. Graph: Moving sum of hits over 250 days at p=5% 
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13. Graph: Moving sum of hits over 250 days at p=5%; SB models 
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14. Graph: Moving sum of hits over 250 days at p=5%; best models 
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As to the average value of hits over VAR (EES), there is not much difference among 

models, when the sum of excess shortfall is divided by the number of hits. That means 

given the shortfall occur, its expected value (over VAR) through time does not differ 

significantly among models. They all are at a high level in 1998-1999, then drop to a 

much lower level. 
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15. Graph:Average value of EES over 250 days at p=5% 
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16. Graph Average value of EES over 250 days at p=5%; SB models 
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However, when the sum of shortfalls over 250 days is considered, the differences are 

more striking. In the critical 1998-1999 period SB models produce much lower losses 

over VAR. Those differences are nevertheless due to the differences in the frequency of 

hits. That is, MA and basic models relative worth performance is due to the high 

frequency of exceedences rather than the average value of excess shortfall. 
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17. Graph: Moving sum of EES over 250 days at p=5% 
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18. Graph: Moving sum of EES over 250 days at p=5%; SB models 
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V. Conclusion 

Using the Bai-Perron algorithm we detected several breaks in the mean and volatility of 

the BUX return over the period 1995-2002. There was a significant decrease in 

unconditional mean around 1997-1998. Evolving market efficiency and the halt in a 

strong upward trend are likely to explain that shift. Regarding volatility, several upward 

shifts in its unconditional level (1996, 1997, 1998) were located. Increased trading 

volume, the impact of the Russian and Asian crises and even bad luck might explain 

those changes. Some other SBs found signal rather regime changes than longer run level 

shift (Autumn 1997, 1998). The changes in unconditional mean and volatility do support 

the presence of shifts, thus underlining the need for modelling SB. 

When SBs are explicitly taken into account in our statistical models, the persistence 

decline sharply, implying faster adjustment to new information, than suggested by the 

basic AR-GARCH model. The diagnostics of the standardised residuals improve, 

growing closer to normality, relative to the basic AR-GARCH model, even more to the 

original return series. 

In-sample the models with SB outperform all the MA and basic models (but not EWMA) 

according to all the statistical and VAR loss functions. Although at higher probability all 

the models fail, at lower probability SB models perform better. Their relative 

performance (ranks based on test statistics) seem to be superior as well. However, out-

of-sample forecasting yields more mixed results. The relative performance of various 

models depends on the loss function used and the chosen probability level (p). The large 

number of breaks detected makes it difficult to highlight the differences in relative 

performance as there are very few cases where there is no SB in the forecasting period. 

Nevertheless, we do find some evidence on the superior performance of SB models. 

They lead to lower average loss over VAR, result in less rejection by the backtest, and 

overall they are assigned more good ranks than the other models. Based on the graphical 

analysis on the moving sum of hits (failures of models) SB and EWMA models should be 

favoured, as they fluctuate in a much narrower band. Their superiority is more 

pronounced in the turbulent periods of 1997-1998. 

These results shed some light on the importance of detecting SBs and incorporating 

them into our statistical models. In general, they add to our knowledge about the 

behaviour of the stock market and about its changes. Inclusion of SB also has advantages 

when used in financial risk management. However, the mixed results of forecast 

evaluation warn of the difficulties involved in using various tests as a means of model 

selection. 
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