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Abstract

This paper studies the implications of information-processing limits on the con-
sumption and savings behavior of households through time. It presents a dynamic
model in which consumers rationally choose the size and scope of the information
they want to process about their �nancial possibilities, constrained by a Shannon
channel. The model predicts that people with higher degrees of risk aversion ratio-
nally choose higher information. This happens for precautionary reasons since, with
�nite processing rate, risk averse consumers prefer to be well informed about their
�nancial possibilities before implementing consumption plan. Moreover, numerical
results show that consumers with processing capacity constraints have asymmetric
responses to shocks, with negative shocks producing more persistent e¤ects than
positive ones. This asymmetry results into more savings. I show that the predic-
tions of the model can be e¤ectively used to study the impact of tax reforms on
consumers spending. The results are qualitatively consistent with the evidence on
tax rebates (2001, 2008).
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[...]Multa esse probabilia quae quamquam non perciperentur tamen quia uisum quem-
dam haberent insignem et illustrem his sapientis vitae regeretur. (M. Tulli Ciceronis, De
Natura Deorum, Liber I, 5, 12)

1 Introduction

Looking at individual and aggregate evidence, we observe delayed responses of consump-
tion to shocks to income even when information about these shocks is fully available. For
example, consider tax rebates in the recent U.S. experience. Both 2001 and 2008 rebates
have been advertised before the checks were mailed to the bene�ciaries. Rational expec-
tations permanent income models predicts that rational agents should react by increasing
spending as soon as the rebates were announced.1 Moreover, the increase in spending
should be small since rational consumers discount the temporary changes over their life-
cycle. However, data tell us that consumers did not increase spending at the time of the
announcement. Data also tell us that for the rebate of 2001 two-thirds of the rebates
where spent when the check was mailed and in the following three-month period.2 Fur-
ther rejection of the neoclassical consumption theory comes from the empirical evidence
on asymmetric response to predictable income changes. Using the Panel Study of Income
Dynamics (PSID), Shea (1995) reports that consumption responds more strongly to a
negative predictable change in income than a positive one.3 A similar �nding comes from
the switching regression model of Garcìa, Lusardi and Ng (1997) applied to data drawn
from the Consumer Expenditure Survey (CEX). Using both PSID and CEX, Dynarski
and Gruber (1997) document asymmetric response of consumption -especially durables
and in the CEX data- to earning changes, with earnings reductions producing stronger
reaction than earnings increase. Finally, there is evidence on asymmetric response of
macroeconomic aggregates to monetary changes. Using quarterly U.S. post-war data,
Cover (1992) shows that negative money-supply shocks have contractionary e¤ects on
output whereas positive monetary shocks do not a¤ect output. De Long and Summers
(1988) show that Cover�s �ndings holds true at annual frequency as well as in pre-war
U.S. data.

Macroeconomists have recognized the necessity of matching these data within rational
expectations framework with a number of modelling strategies. Restrictions on the in-
formation available to the agents -such as costly acquisition and di¤usion of information-
rely on ad-hoc assumptions to generate smooth and delayed responses of, e.g., consump-
tion to shocks to income consistent with observed data. Moreover, these restrictions often
do not provide a way to account for asymmetries in speed and amount of reactions of
consumers to positive or negative changes in income.

This paper proposes a model in which optimal consumption of rational agents is

1Johnson, Parker and Souleles 2001, Broda and Parker, 2008.
2cfr. Johnson, Parker and Souleles 2001.
3Shea (1995) also points out that the asymmetry in consumption response to predictable changes in

income cannot be reconciled with liquidity constraints.
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sluggish and reacts asymmetrically to changes in personal income. Following Rational
Inattention (Sims, 2003, 2006), my model assumes that the agents maximize their lifetime
savings subject to a bound on their ability to process information at in�nite rate, given
by Shannon�s capacity.

With this information processing limit, people choose a signal that conveys infor-
mation about their wealth. The signal can provide any kind of information so long as
its overall content is within Shannon�s capacity. Consumers form expectations given
the signals and decide how much to consume. The bound on information �ow prevents
people from reacting quickly and precisely to �uctuations in income. Trading o¤ e¤ort
of processing information for speed of reactions to signals produces endogenous delayed
and smoothed response of consumption to changes in income. Combining iso-elastic
preferences, ex-ante uncertainty -not necessarily Gaussian- and information processing
constraints produces endogenous asymmetric response of consumption to shocks to in-
come.

My paper shows how to embed utility maximization with information processing
limits formally in an intertemporal setting. I assume that people do not know the exact
value of their wealth due to income �uctuations but they have a belief -prior- on their
wealth. A way of thinking about this assumption is that people do not constantly check
their account balance and even when they do check it, they cannot precisely map the
balance into current and future consumption possibilities. They need to think hard of
what that number means -i.e., process information- to sharpen their knowledge of how
much current and future consumption their wealth is worth. In such a framework, it
is possible to study how choices of information play out with people�s preferences when
they decide on savings consumption throughout their life.

The challenge of this model and, more generally, of models of rational inattention
is dealing with in�nite dimensional state space implied by having a prior as the state.
For this reason, applications of rational inattention have been limited to either a linear
quadratic framework where Gaussian uncertainty has been considered4 or a two-period
consumption-saving problem (Sims 2006) where the choice of optimal ex post uncertainty
is analyzed for the case of log utility and two CRRA utility speci�cations. The linear
quadratic Gaussian (LQG) framework can be seen as a particular instance of rational
inattention in which the optimal distribution chosen by the household turns out to be
Gaussian. Gaussianity has two main advantages. First, it allows an explicit analytical
solution for these kinds of model. Second it is easy to compare the results to a signal ex-
traction problem: when looking at consumers�behavior of rational inattentive consumers,
it is impossible to tell apart an exogenously given Gaussian noise in the signal extraction
model from endogenous noise that is optimally chosen to be Gaussian. Although the
Gaussian assumption can be a good approximation when uncertainty is small, data on
income �uctuations suggest that uncertainty at individual level might actually be large.
Most importantly, Gaussian uncertainty prevents rational inattention LQG models from
delivering endogenously asymmetric response to shocks. Thus, to fully assess the joint

4Such as Sims (1998, 2003), Luo (2008), Mackowiak and Wiederholt (2008a, 2008b), Mondria,(2006)
and Moscarini (2004).
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contribution of information constraints and people�s preferences, it is important to let
consumers select their information from a wider set of distributions that includes but it
is not limited to the Gaussian family.

The theoretical contribution of this paper is to provide the analytical and computa-
tional tools necessary to apply information theory in a dynamic context with optimal
choice of ex-post uncertainty. I propose a methodology to handle the additional com-
plexity without the LQG setting. I propose a discretization of the framework and derive
its theoretical properties. Then, I provide a computational strategy to solve the model
and an e¢ cient algorithm to handle the complexity associated with the high-dimensional
state space.

Several predictions emerge from the model. Evaluating the unconditional moments
of the time series of consumption for a given degree of risk aversion, the �rst result of
the paper is that higher shadow costs of processing information are associated with more
persistence and higher volatility. The intuition is that before modifying his consumption
pro�le a person might decide to wait and have more information about wealth. If the
person waits long enough, he might realize that he has saved more than he wanted
to , therefore he increases his consumption by a signi�cant amount. The combination
of waiting while processing information and sharp changes once information has been
processed through time generates sluggishness and volatility in consumption.

Second, by looking at the life-cycle pro�le of consumption I �nd that the behavior
of consumption is smooth and persistent along the simulated path. Moreover, people
with low processing capacity delay changes in consumption more than people with high
processing capacity. When a variation in consumption occur, people with low processing
capacity, who have waited to respond to wealth �uctuations over time, change sharply
their consumption pro�le. These results combined are suggestive of a precautionary
motive for savings driven by information processing limits.

Third, I �nd that consumers with processing capacity constraints have asymmetric
responses to income �uctuations, with negative shocks producing sharper and more per-
sistent e¤ects than positive ones. This e¤ect is stronger the higher the degree of risk
aversion. Compared with a situation in which there are no information-processing limits,
in a rational inattention consumption-savings model, an adverse temporary income shock
makes consumers reduce their consumption for a prolonged period of time. This happens
because risk-averse people who receive bad news about their �nances save right away
to hedge against the possibility of running out of wealth in the future. Once they have
enough savings and information, they gradually increase their consumption and smooth
the remaining e¤ect of the shock over time. This result also points towards precautionary
motive due to information-processing limits. Moreover, the predictions of the model can
be used to address important policy questions. In order to understand how initial values
of wealth a¤ect the asymmetric response, I focus on groups of people who start o¤ life
with low, middle and high wealth. I assume that all groups have the same income and
receive a temporary positive shock to their income. This experiment can be thought of
as a one-time tax rebate. My model predicts that the policy will have the faster e¤ect
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on individual with low income. However the policy will be most e¤ective for people with
low and middle income after several quarters, when the savings triggered by the rebates
will be sizeable. These predictions appear to be consistent with the evidence on the 2001
tax rebate and the preliminary evidence on the 2008 rebate.5

My results are observational distinct from the previous literature on consumption and
the one on consumption and information . The distinguished feature of my model with
respect to previous works is its ability to generate endogenously asymmetric response of
consumption to shocks. In particular, for a given degree of risk aversion and magnitude of
a shock, the response of consumption to a negative shock is stronger on impact and more
persistent than the one to a positive shock. This is consistent with empirical evidence in
Shea (1995).

The paper is organized as follows. Section 2 lays out the theoretical basis of rational
inattention and introduces informally the model. Section 3 states the problem of con-
sumers as a discrete stochastic dynamic programming problem, while Section 4 derives
the properties of the Bellman function. Section 5 provides the numerical methodology
used to solve the model. Section 6 delivers its main results. Section 7 concludes. The
main propositions of the paper are in Appendix A and B. Appendix C provides the
pseudocode whereas the mathematical details on the information theoretic apparatus are
in Appendix D.

2 Foundations of Rational Inattention

Rational inattention (Sims 1988,6 1998, 2003, 2005, 2006) blends information theory
and economics. The �rst draws mainly on the work of Shannon (1948). The main
contribution is to de�ne a measure of the choice involved in the selection of the message
and the uncertainty regarding the outcome. The measure used is entropy. Details on
this part are in Appendix D. Based on Shannon�s apparatus, the economic contribution
lies in the use of Shannon�s capacity as a technological constraint to capture individuals�
inability of processing information about the economy at in�nite rate. Given these limits,
people reduce their uncertainty by selecting the focus of their attention. The resulting
behavior depends on the choices of what to observe about the environment once the
information-processing frictions are acknowledged.

2.1 The Economics of Rational Inattention

Consider a person who wants to buy lunch. He does not know exactly his wealth but he
knows that he has some cash and a credit card in his pocket. Not recalling the expenses
charged on the credit card up to that point, he can go to the bank or simply check his

5Johnson, Parker and Souleles (2001), Broda and Parker, (2008).
6The bulk of the idea of rational inattention can be found in C. Sims�1988 comment in the Brooking

Papers on Economic Activity .
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wallet. Going to the bank to �gure out the exact wealth for lunch is beyond his time
and interest, so he decides to check his wallet. He browses it thinking what he wants
and can a¤ord for lunch. Mapping dollar bills into his knowledge of prices from previous
consumption, he realizes he can only a¤ord a sandwich instead of his favorite sushi roll.
Then, he uses the receipt to update his prior on the price of sandwiches, what he thinks
he has left in his wallet and, ultimately, his wealth. This updated knowledge will be used
for his next purchase. Such a story can be directly mapped into a rational inattention
framework using mutual information (Shannon, 1948) as the technology that regulates
the �ow of information that passes through the channel.

First, the person does not know his wealth, W , but he has a prior on it, p (W ).
Before processing any information, his uncertainty about wealth is the entropy of his
prior, H (W ) � �E[log2(p(W ))], where E [:] denotes the expectation operator.7 Before
processing any information, lunch too is a random variable, C, ranging from sandwiches
to sushi To reduce entropy, he can choose whether to have a detailed report from the
bank or to look at his wallet. The two options di¤er in amount of information and e¤ort
in processing their content. The choice of the option (signal) together with consumption
result in a joint probability p (c; w). Both dollar bills in the wallet and knowledge of
prices of sandwiches and sushi contribute to the reduction of uncertainty in wealth of
an amount equal to H (W jC) = �

R
p (w; c) log2 p (wjc) dcdw, which is the entropy of W

that remains given the knowledge of C. The information �ow, or maximum reduction of
uncertainty about the prior on wealth, is bounded by the information that the selected
signal conveys. In formulae:

I (C;W ) = H (W )�H (W jC) � � (1)

where � is measured in number of bits transmitted. Finally, the signal -peeking at the
wallet, p (w; c)- and the receipt for the sandwich, �c, are used to update the prior on wealth
via Bayes�rule and then the update is carried over for future purchases.

The example illustrates how people handle everyday decision weighting the e¤ort of
processing all the available information -personal net worth- against the precision of the
information they can absorb -walking to the bank versus checking the wallet- guided by
their interest -buying lunch-. This is the core of rational inattention: information is freely
available but people can process it at �nite rate. Information-processing limits make
attention a scarce resource. As for any other scarce resource, rational people use attention
optimally according to what they have at stake. By appending an information-processing
constraint to an otherwise standard optimization framework, the theory explains why
people react to changes in the economic environment with delays and errors.

The appeal of Shannon capacity as a constraint to attention is that it provides a
measure of uncertainty which does not depend on the characteristics of the channel.

7Entropy is a universal measure of uncertainty that can be de�ned for a density against any base
measure. The standard convention is to use base 2 for the logarithms, so that the resulting unit of
information is binary and called a bit, and to attribute zero entropy to the events for which p = 0.
Formally, given that s log (s) is a continuous function on s 2 [0;1), by l�Hopital Rule lims!0 s log (s) = 0.
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The quantity (1) is a probabilistic measure of the information shared by two random
variables and it applies to any channel. Thus, Shannon capacity does not require explicit
modelling of how individuals process information. Moreover, treating processing capacity
as a constraint to utility maximization produces inertial reactions to the environment as
a result of individual�s rational choices. A rational person may not �nd it worth it to
look beyond his wallet when deciding what to buy for lunch. The dollar bills in the
wallet provide little information about current and future activities of his balance. Thus,
if something happened to his current account -say, a sudden drop in his investment-,
checking his wallet would give him no acknowledgement of the event Nevertheless, the
signal is capable of guiding the consumer on his lunch�s choice. Over time and expenses,
the person would �gure out the drop in investment and modify his behavior even with
respect to lunch. Appendix D covers the mathematical details.

3 The Formal Set-up

3.1 The problem of the Household

In order to understand the implications of limits to information processing and con-
trast them with standard consumption-savings model, the starting point start is the full
information problem.

Let (
;B) be the measurable space where 
 represents the sample set and B the
event set. States and actions are de�ned on (
;B). Let It be the ��algebra generated
by fct; wtg up to time t, i.e., It = � (ct; wt; ct�1; wt�1; :::; c0; w0). Then, the collection
fItg1t=0 such that It � Is 8s � t is a �ltration. Let u (c) be the utility of the household
de�ned over a consumption good, c. I assume that the utility belongs to the CRRA
family, u (c) = c1�= (1� ) with  the coe¢ cient of relative risk aversion. Consumer�s
problem is:

max
fctg1t=0

E0

( 1X
t=0

�t
�
c1�t

1� 

������ I0
)

(2)

s.t.
wt+1 = R (wt � ct) + yt+1 (3)

w0 given (4)

where � 2 [0; 1) is the discount factor and R = 1=� is the (constant) interest on savings,
(wt � ct). I assume that yt 2 Y �

�
y1; y2; ::; yN

	
follows a stationary Markov process

with constant mean Et ((yt+1)j It) = �y:

Consider now a consumer who cannot process all the information available in the
economy to track precisely his wealth. This not only adds a constraint to the decision
problem but fundamentally a¤ects the set-up (2)-(4).

First, since the consumer doesn�t know his wealth, (4) no longer holds. His uncertainty
about wealth is given by the prior g (w0). Second, before processing any information,
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consumption is also a random variable. This is because the uncertainty about wealth
translates into a number of possible consumption pro�les with various levels of a¤ord-
ability. It follows that to maximize lifetime utility, consumers needs jointly to reduce
uncertainty about wealth and to choose consumption. Hence, when information cannot
�ow at in�nite rate the choice of the consumer is the distribution p (w; c) as opposite
to the stream of consumption fctg1t=0 in (2). Another way of looking at this is that the
consumer chooses a noisy signal on wealth where the noise can assume any distribution
selected by the consumer. Given that the agent has a probability distribution over wealth,
choosing this signal is akin to choosing p (c; w). The optimal choice of this distribution
is the one that makes the distribution of consumption conditional on wealth as close to
the wealth as the limits imposed by Shannon�s capacity allow.

Third, with respect to the program (2)-(4), there is a new constraint on the amount
of information the consumer can process. The reduction in uncertainty conveyed by the
signal depends on the attention allocated by the consumer to track his wealth. Paying
attention to reduce uncertainty requires spending some time and utility to process in-
formation. I model the task of focussing attention by appending a Shannon�s channel
to the constraint sets. Limits in the capacity of the consumers are captured by the fact
that the reduction in uncertainty conveyed by the signal cannot be higher than a given
number, ��: The information �ow available to the consumer is a function of the signal,
i.e., the joint distribution p (�ct ; �wt). In formulae:8

�� � �t � I (p (�ct ; �wt)) =
Z
p (ct; wt) log

�
p (ct; wt)

p (ct) g (wt)

�
dctdwt (5)

Fourth, the update of the prior replaces the law of motion of wealth using the budget
constraint in (3). To describe the way individuals transit across states, de�ne the operator
Ewt (Et (xt+1)j ct) � x̂t+1; which combines the expectation in period t of a variable in
period t + 1 with the knowledge of consumption in period t, ct, and the remaining
uncertainty over wealth. Applying Ewt (Et (�)j ct) to equation (3) leads to:9

ŵt+1 = R (ŵt � ct) + by (6)

where,by = Ewt (E (yt+1)j ct)
� Ewt (E ((yt+1)j It)j ct) + [Ewt (Et (yt+1)j ct)� Ewt (E ((yt+1)j It)j ct)]

LIE
= �y + Ewt [(E (yt+1)j ct)� (E (yt+1)j ct)]

= �y:

8In (5), I use the expression I (p (�ct ; �wt)) instead of the one in (1) to make explicit the dependency
of the mutual information on the joint distribution of C and W .

9The exogenous stochasticity of the model is given by �uctuations of income. For wealth not to be
known at each point in time, it has to be that current and past realizations of income are not known
to the consumer. However, I assume that the consumer does know that the income follows a Markov
process and he also knows the value of the mean, �y. Moreover, since consumers care about the linear
combination of savings and income as shown in (3) and information about such linear combination is
freely available, their state reduces to w.
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To fully characterize the transition from the prior g (wt) to its posterior distribution,
the consumer needs to take into account how the choice p (wt; ct) at time t a¤ects the
distribution of consumer�s belief after observing ct: Given the initial prior state, g (w0),
the successor belief state, denoted by g0ct (wt+1) is determined by revising each state
probability as displayed by the expression:

g0
�
wt+1jct

�
=

Z
~T (wt+1;wt; ct) p (wtjct) dwt (7)

known as Bayesian conditioning. In (7), the function ~T is the transition function rep-
resenting (6). Note that the belief state itself is completely observable. Meanwhile,
Bayesian conditioning satis�es the Markov assumption by keeping a su¢ cient statistics
that summarizes all information needed for optimal control.10 Thus, (7) replaces (3) in
the limited information-processing world.

Let � be the marginal value of using the channel (5). Note that in the problem there
is a one-to-one mapping between the shadow cost of processing information, �, and the
maximum processing capacity, ��. Fixing � allows one to study how consumers varies the
optimal amount of information �ow �t according to whether he wants to save more in a
particular point in time than another.11

Combining (5)-(7), the program of the household under information frictions is:

max
fp(wt;ct)g1t=0

E0

( 1X
t=0

�t
Z �

c1�t

1� 

�
p (ct; wt)� (dct; dwt)

����� I0
)

(8)

s.t.

(�)

�t = It (p (�ct ; �wt)) =
Z
p (ct; wt) log

 
p (ct; wt)�R

p (ŵt; ct) dŵt
�
g (wt)

!
dctdwt (9)

p (ct; wt) 2 D (w; c) (10)

g0
�
wt+1jct

�
=

Z
~T (wt+1;wt; ct) p (wtjct) dwt (11)

g (w0) given (12)

10See Astrom, K. (1965).
11To clarify this point, suppose that at some point the agent is considering whether or not to increase

his consumption pro�le. Before making a change in consumption, he wants to gather information to
make sure that his wealth is high enough to support the change for some time. In the current period,
he might �nd it optimal to have a better assessment of his wealth at the expenses of exercise more
e¤ort in processing information. Suppose that he collected enogh information and changes consumption
the following period. After accounting for the increase in consumption, the agent might think that it is
unlinkely that wealth has changed signi�cantly due to exogeneous shocks to income. Therefore, with �xed
shadow cost of processing information, the agent might �nd it optimal to process very little information
the periods following the changes and enjoy consumption. Sims (2006) and most recently Máckowiak
and Wiederholt (2008b) also follow this way of accounting for information processing constraint.
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where � (�) in (8) is the Dirac measure that accounts for discreteness in the optimal
choice p (c; w) and D (w; c) �

�
p (c; w) :

R
p (c; w) dcdw = 1; p (c; w) � 0;8 (c; w)

	
in

(10) restricts the choice of the agent to be drawn from the set of distributions.12

This problem is a well-posed mathematical problem with convex objective function
and concave constraint sets. What makes it hard to solve is that both state and control
variables are in�nite dimensional. To make progress in solving it, a) I discretize the
framework and b) I show that the resulting setting admits a recursive formulation. Then
I study the properties of the Bellman recursion and solve the problem. Before turning
to the solution, a brief digression on how constraint (9) operates and the di¤erence
between this model and the existing literature on rational inattention may help building
up intuition for the solution methodology and the results.

3.2 The role of Shannon�s capacity constraint

3.2.1 Shannon�s constraint in action

To get a sense of how Shannon�s capacity constraints a¤ect the decision of households,
I contrast the optimal policy function p� (c; w) for consumers that have identical charac-
teristics but di¤er in their bound on processing capacity.

A caveat is due. In order to explore the interaction between information �ow and
coe¢ cient of risk aversion, I solve the model in (8)-(12) by �xing the shadow cost of
processing information, �, attached to (9) and let � vary endogenously every period. In
this section I follow a di¤erent route. In order to clarify the mechanism behind Shannon�s
capacity as a constraint for information transmission, I focus on the optimal probability
distribution for the problem (8)-(12). I �x the number of bits, �, across utilities and adjust
the shadow cost � to map di¤erent coe¢ cients of risk aversion to the same information
�ow.13 First consider u (c) = log (c). In the full information case,14 the distribution g (w)

12Note that in this model is possible to assume that individuals cannot borrow and append a constraint
of the kind c � w.to (2)-(4). To encode this constraint without complicating the model, one may assume
that �t in (18) is the capacity left after the consumer has processed his spending limits.
13To be more speci�c, I solve the model with CRRA consumer assuming the same parameters as the

baseline model (�;R; �y)�(0:9881; 1:012; 1) and the same simplex point (prior) g ( ~w). I then adjust the
shadow cost of processing capacity, �, to get roughly the same information capacity (�log = 2:08 and
�crra = 2:13). The latter implies that the di¤erence in allocation of probabilities within the grid are
attributable solely on the coe¢ cient of risk aversion . As I will explain in more details in the solution
methodology, the same shadow cost (�) does deliver di¤erent information �ow (�) according to the degree
of risk aversion of the agents, with more risk averse agents having higher � for a given � than less risk
averse ones do. To get �log t �crra , I set �log = 0:02 in Figure 3 while �crra = 0:08 in Figure 4.
14Or, in the wording of the model, when information �ows at in�nite rate, �!1 in (9).
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is degenerate, the choice of p (ct; wt) reduces to that of c (wt) in (8).15 The resulting
optimal policy is given by

c�t (wt) = (1� �)wt + ��y: (13)

For comparison with the case with �nite �, I plot the policy function for the (discretized)
full information case as the joint distribution p (c; w) �c�(w) (c; w) with �c�(w) the Dirac
measure.16 Figure 1 plots such a distribution for a 20x20 grid where the equi-spaced
vector c ranges from 0:8 to 3 and w is also equi-spaced with support in [1; 10].17

0
2.895

5.263
7.631

10

0
1.263

1.842
2.421

3
0

0.05

0.1

0.15

w

pcw,
Log Utility, κ→∞

c

pc
w

Figure 1: Joint pdf p (c; w), high capacity.

Suppose now that capacity is low. In this case, rational consumers limit their process-
ing e¤ort by concentrating probability on the highest feasible value(s) of consumption.

15More formally, for I (p (�w; �c)) ! 1, the probabilities g (w) and p (�w; �c) are degenerate. Using
Fano�s inequality (Thomas and Cover 1991),

c (I (p (�w; �c))) = c (w)

which makes the �rst order conditions for this case the full information solution.

16Section 6 shows the optimal solution in terms of the optimal distribution of consumption conditional
on wealth, i.e., p� (cjw).
17The distribution of wealth presented in Figure 1-4 corresponds to the same simplex point g (w).

In section 4, I provide details on how I construct the whole simplex. The way the simplex is build
explains the reason why multimodality in the marginal distribution of wealth occurs. Here I want to
emphasize that the selection of this particular simplex point is based on choosing the simplex points
that put probability mass on most of the realizations considered.
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To see why, recall that consumers are risk averse (log-utility). They process the neces-
sary information to learn how much they can consume paying the least possible attention
to wealth. Since Shannon�s capacity places high restriction on information-processing,
these people consume roughly the same amount each period independently of their level
of wealth. This case captures situations in which people have a vague idea of their wealth
and prefer default savings/spending options (whether it is pension plan or health care)
rather than �guring out their exact net worth. Figure 2 displays the resulting optimal
policy.
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Figure 2: Joint pdf p (c; w), low capacity.

Given the grid on c and w, log-utility and for the simplex point chosen, consumers
�nd it optimal to set their consumption roughly constant and equal to the maximum
value of consumption compatible with a value of wealth that allows them to keep con-
suming the same amount without running out of wealth. This result is robust to di¤erent
speci�cations of the grid for c and w. 18

Finally, Figure 3 shows the optimal joint distribution for an intermediate case, 0 <
� <1. The �rst observation is that a person with �nite information �ow tries to make
18In particular, �xing all the other parameters equal and varying only the 20x20 equi-spaced grid

on c to [0; 1:5], the solution puts 0:52 probability on the 0:95 value of consumption (vs. 0:46 on the
highest value of consumption compatible to the lowest possible realization of wealth under the [0:8; 3]-
consumption grid, c = 1:031 in Figure 1). Moreover, the optimal solution gives 0:14 and 0:23 probability
to the realizations c = 1:026 and c = 0:8684 respectively whereas the corresponding values for the
[0:8; 3]-consumption grid, that is c = 1:147 and c = 0:915 get probabilities 0:18 and 0:25, respectively.
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p (cjw) as close to w as information process allows him to.

0
2.895

5.263
7.631

10

0
1.263

1.842
2.421

3
0

0.02

0.04

0.06

0.08

pcw:
Log Utility, κ=2.08

Figure 3. Joint distribution p (c; w), intermediate capacity.

The second observation is that the optimal policy function for the information-
constrained consumer places low weight, even zero, on low values of consumption for
high values of wealth. and high value of consumption for low values of wealth. The
reason why this happens depends on the utility function. A consumer with log-utility
wants to maintain a fairly smooth consumption pro�le throughout his lifetime, as can be
seen from (13). To avoid values of consumption that are either too low or too high, he
needs to be well informed about such events in order to reduce the probability of their
occurrence. The resulting optimal policy places higher probability mass on the central
values of consumption and wealth.

To see how the allocation of probability changes with the utility function, consider a
consumer that di¤ers from the previous one only in the utility speci�cation which now
assumes a CRRA form, u (c) = c1�= (1� ) with  = 2. As in the previous case, the
optimal policy function still places close-to-zero probability on low values of consumption
for high values of wealth but now the CRRA consumer trades o¤ probabilities about
modest values of consumption and wealth for increasing the likelihood of high values of
consumption for high values of wealth.
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Figure 4. Joint distribution p (c; w), CRRA utility.

In other words, with CRRA preferences, people want to be better informed on low and
middle values of wealth to enjoy high consumption every period. Figure 4 illustrates this
case. Also the results are robust for di¤erent speci�cations of the grid and all the simplex
points. 19

3.2.2 Shannon�s channel through the economic literature

The goal of this section is to compare my model with the literature in rational inatten-
tion. The �rst comparison is with the consumption-saving model in the linear quadratic
Gaussian (LQG) case 20 Sims(2003) fully characterizes the analytical solution of a con-
sumption saving model where utility is quadratic, u (c) = c�0:5�c2, constraints are linear
and ex-ante uncertainty is Gaussian. In this LQG setting, the optimal distribution of
ex-post uncertainty is also Gaussian. The Gaussian solution makes a model with rational
inattention in the LQG case observationally equivalent to a signal extraction problem à
la Lucas.
19In particular for the example in Figure 4, when changing the realizations of consumption to be in

an equispaced 20x20 [1; 12] grid, the optimal solution palces high probability on high value of wealth for
high value of consumption assigning 0:73 to p (c = 10jw = 10) instead of 0:61 for p (c = 3jw = 10) under
[0:8; 3]-grid, 0:11 to p (c = 9:47jw = 10) instead of 0:12 for p (c = 2:88jw = 10) under [0:8; 3]-grid, 0:01
to p (c = 8:94jw = 10) instead of 0:07 for p (c = 2:76jw = 10) under [0:8; 3]-grid. Moreover, the optimal
solution sets p (c = 11:42jw = 10) = p (c = 12jw = 10) = 0:
20See Sims (1998, 2003), Luo (2008), Lewis (2007).
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Note also that the analytical solution in Sims (2003) might not hold if one assumes a
restriction in the support of either c or w (e.g., the conventional c > 0) or a no-borrowing
constraint (e.g., ct � wt 8t). This is because both constraints break the LQ framework,
necessary to obtain Gaussianity in the optimal ex-post uncertainty.

The second issue with the LQG approach is that the linear quadratic approximation
gives valid predictions when uncertainty is small. This is similar to the argument for
linearizing the �rst order condition of a problem and getting locally a good approximation.
However, if one wants to explain observed consumption and savings time series through
limited processing constraints, the inertial behavior that we see in the data suggests that
uncertainty is fairly big. Thus, the tractability of the LQG framework comes at the
expenses of e¤ectiveness in matching the data.

The third issue -the most important for the purpose of this paper- is that rational
inattention LQG models do not allow to explain di¤erent speed and amounts of reactions
of people to di¤erent news about their wealth. For instance, consumption drops fast fol-
lowing a sudden layo¤while it increases slowly in the event of a tax break. The certainty
equivalence framework that arises with Gaussian ex ante uncertainty and quadratic util-
ity does not allow to di¤erentiate endogenously among these events. This paper pushes
forward another approach. The model in the paper assumes that information is freely
available and it does not constraint ex-ante uncertainty to be Gaussian. Moreover, the
paper explores the link between risk aversion and information-processing limits by allow-
ing utility speci�cations of the CRRA family.

Previous to this paper, Sims (2006) solves a two period model with non-Gaussian
ex-ante uncertainty and CRRA preferences. Sims (2006) assumes that agents live two
periods, the �rst of which they are inattentive while the second period their uncertainty
is resolved. This paper focusses on a fully dynamic rational inattention model. Two main
contribution stems from departing from the work of Sims (2006). The �rst contribution
is conceptual. A fully dynamic model with rational inattention allows to investigate time
series properties of consumption and savings. The resulting behavior is characterized
by endogenous noise and delays of consumption in response to shocks to income, with
negative income shocks producing faster reactions the higher the risk aversion. The
intuition for this result is that a risk averse individual reacts fast to negative news about
wealth by dropping his consumption. Information-processing limits and prudence might
want the person to wait before increasing his consumption in the event of a positive
shock. Complementary to these �ndings, richer dynamic makes the model suitable to
address policy questions such as reaction to a �scal policy stimulus as the last section
shows. This paper is also distinct from the one of Lewis (2008). The most prominent
di¤erences are that in Lewis (2008) households do not see consumption over time and
they optimize over a �nite horizon. Not observing consumption in turn implies that once
the stream of probabilities is chosen at the beginning of time, the update of the beliefs
is deterministic in the choice of the signal. While this framework does deliver upward-
sloping age pro�les as average consumption over a �xed time length, it does not allow to
study unconditional moments of consumption nor conditional response of consumption
to shocks as in this framework.
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The second contribution is methodological. A fully dynamic rational inattention
model involves facing an in�nite dimensional problem as displayed in (8)-(12). To work
with this framework, I develop analytical and computation tools suitable to address the
dynamics of a non-LQG model.

Moreover, my results are observational distinct from the previous literature on sticky
information (Mankiw and Reis, 2002) and consumption and information (Reis, 2006)).
Mankiw and Reis(2002) assume that every period an exogenous fraction of agents (�rms)
obtain perfect information concerning all current and past disturbances, while all other
�rms set prices based on old information. Reis (2006) shows that a model with a �xed
cost of obtaining perfect information can provide a microfoundation for this kind of
slow di¤usion of information. My model di¤ers from the literature on inattentiveness in
that I assume that information is freely available in each period. Only the bounds on
information-processing given by Shannon�s capacity limit consumers in the informative-
ness of the signals about wealth that they want to acquire. In this setting, the interaction
of information �ow and risk aversion delivers endogenous asymmetry in the response of
consumption to shocks both in terms of speed and amount. This prediction constitutes
a distinguished feature of my model with respect to the literature of inattentiveness and,
more generally, to the consumption-saving literature.

4 Solution Methodology

4.1 Discretizing the Framework

I consider wealth and consumption to be de�ned on compact sets. In particular, admis-
sible consumption pro�les belong to 
c � fcmin; :::; cmaxg : Likewise, wealth has support

w � fwmin; :::; wmaxg. I identify by j the elements of set 
c and by i the elements in

w: I approximate the state of the problem, i.e., the distribution of wealth by using the
simplex:

De�nition The set � of all mappings g : 
w ! R ful�lling g (w) � 0 for all w 2 
w
and

P
w2
w

g (w) = 1 is called a simplex. Elements w of 
w are called vertices of

the simplex �, functions g are called points of �.

Let jSj be the dimension of the belief simplex which approximates the distribution

g (w) and let � �
(
g 2 RjSj : g (i) � 0 for all i

jSjP
i=1

g (i) = 1

)
be the set of all probability

distribution on �. The initial condition for the problem is g (w0) :

The consumer enters each period choosing the joint distribution of consumption and
wealth. From the previous section, the control variable for the discretized set up is
the probability mass function Pr (w; c) where c 2 
c and w 2 
w. The restriction on
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Pr (w; c) is that it has to belong to the set of distributions. Given g (w0) and Pr (ct; wt)
and the observation of ct consumed in period t; the belief state is updated using Bayesian
conditioning:

g0
�
wt+1jct

�
=
X
wt2
w

T (wt+1;wt; ct) Pr (wtjct) (14)

where T (:) is a discrete counterpart of the transition function ~T (:). Note that ~T (:) is a
density function on the real line while T (:) is a discrete probability function on a compact
set with counting measure. The processing constraint, in terms of the discrete mutual
information between state and actions, is.:

It (p (�ct ; �wt)) =
X
wt2
w

X
ct2
c

Pr (ct; wt)

�
log

Pr (ct; wt)

p (ct) g (wt)

�
(15)

The interpretation of (15) is akin to its continuous counterpart. The capacity of the
agents to process information is constrained by a number, ��, which denotes the upper
bound on the rate of information �ow between the random variables C and W 21 at time
t. Finally, the objective function (8) in the discrete world is:

max
fp(wt;ct)g1t=0

E0

( 1X
t=0

�t

" X
wt2
w

X
ct2
w

�
c1�t

1� 

�
Pr (ct; wt)

#����� I0
)
: (16)

4.2 Recursive Formulation

The purpose of this section is to show that the discrete dynamic programming problem
under rational inattention has a solution and to recast it into a Bellman recursion. In
order to show that a solution exists, �rst note that the set of constraints for the problem is
a compact-valued concave correspondence. Second, note that the state space is compact.
Compactness comes from the curvature of the utility function and the fact that the
belief space has a bounded support in [0; 1]. Compact domain of the state and the fact
that Bayesian conditioning for the update preserves the Markovianity of the belief state
ensures that the transition Q : (
w � Y � B ! [0; 1]) and (14) has the Feller property.
Then the conditions for applying the Theorem of the Maximum are ful�lled which, in
turn, guarantee the existence of a solution. In the next section, I provide su¢ cient
conditions for uniqueness.

Casting the problem of the consumer in a recursive Bellman equation formulation,
the full discrete-time Markov program is:

V (g (wt)) = max
Pr(ct;wt)

26664
X
wt2
w

 X
ct2
c

u (ct) Pr (ct; wt)

!
+

+�
P

wt2
w

X
ct2
c

V
�
g0
cjt
(wt+1)

�
Pr (ct; wt)

37775 (17)

21Recall from the argument in Secton 2.1 that both W and C are random variables before the
household has processed any information.
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subject to:

(� :)

�t = It (p (�ct ; �wt)) =
X
wt2
w

X
ct2
c

Pr (ct; wt)

�
log

Pr (ct; wt)

p (ct) g (wt)

�
(18)

g0
�
wt+1jct

�
=
X
wt2
w

T (wt+1;wt; ct) Pr (wtjct) (19)

X
ct2
c

Pr (ct; wt) = g (wt) (20)

1 � Pr (ct; wt) � 0 8 (ct; wt) 2 B; 8t (21)

where B � f(ct; wt) : wt � ct; 8ct 2 
c;8wt 2 
w, 8tg and � is the shadow cost associ-
ated to (18).

The Bellman equation in (17) takes up as argument the marginal distribution of wealth
g (wt) and uses as control variable the joint distribution of wealth and consumption,
Pr (ct; wt). The latter links the behavior of the agent with respect to consumption (c),
on one hand, and income (w) on the other, hence specifying the actions over time. The
�rst term on the right hand side of (17) is the utility function u (:). The second term,P
wt2
w

X
ct2
c

V
�
g0
cjt
(wt+1)

�
Pr (ct; wt), represents the expected continuation value of being

in state g (:) discounted by the factor � = 1=R: The expectation is taken with respect to
the endogenously chosen distribution Pr (ct; wt). I have discussed the relations in (18)-
(21) earlier. Moreover, I appended the equation in (20) which constrains the choice of
the distribution to be consistent with the initial prior g (wt) :

Next, I analyze the main properties of the Bellman recursion (17) and derive con-
ditions under which it is a contraction mapping and show that the mapping is isotone.
The optimality conditions that characterize the solution to the problem (17)-(21), along
with a special case that admits close form solution are in Appendix D in the addendum.

4.3 Properties of the Bellman Recursion

To prove that the value function is a contraction and isotonic mapping, I shall intro-
duce the relevant de�nitions. Let me restrict attention to choices of probability distri-
butions that satisfy the constraints (18)-(21).To make the notation more compact, let
p � Pr (cjjwi), 8cj 2 
c, 8wi 2 
w and let � be the set that contains (18)-(21). I
introduce the following de�nitions:

D1. A control probability distribution p � Pr (ci; wj) is feasible for the problem (17)-
(21) if p 2 �: Let jW j be the cardinality of 
w and let

G �

8<:g 2 RjW j : g (wi) � 0; 8i;
jW jX
i=1

g (wi) = 1

9=;
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denote the set of all probability distributions on 
w. An optimal policy has a value
function that satis�es the Bellman optimality equation in (17):

V � (g) = max
p2�

"X
w2
w

 X
c2
c

u (c) p (cjw)
!
g (w) + �

X
w2
w

X
c2
c

(V � (g0c (�))) p (cjw) g (w)
#

(22)
The Bellman optimality equation can be expressed in value function mapping form.
Let V be the set of all bounded real-valued functions V on G and let h : G �
w �
(
w � 
c)� V ! R be de�ned as follows:

h (g; p; V ) =
X
w2
w

 X
c2
c

u (c) p (cjw)
!
g (w) + �

X
w2
w

X
c2
c

(V (g0c (�))) p (cjw) g (w) :

De�ne the value function mapping H : V ! V as (HV ) (g) = maxp2� h (g; p; V ).

D2. A value function V dominates another value function U if V (g) � U (g) for all
g 2 G:

D3. A mapping H is isotone if V , U 2 V and V � U imply HV � HU:

D4. A supremum norm of two value functions V , U 2 V over G is de�ned as

jjV � U jj = max
g2G

jV (g)� U (g)j

D5. A mapping H is a contraction under the supremum norm if for all V , U 2 V,

jjHV �HU jj � � jjV � U jj

holds for some 0 � � < 1:

Endowed with these notion, it is possible to derive some properties of the solution to
the Bellman equation.

First, note that uniqueness of the solution to which the value function converges
to requires concavity of the constraints and convexity of the objective function. It is
immediate to see that all the constraints but (18) are actually linear in p (c; w) and
g (w). For (18), the concavity of p (c; w) is guaranteed by Theorem (16.1.6) of Thomas
and Cover (1991). Concavity of g (w) is the result of the following:

Lemma 1. For a given p (cjw) ; the expression (18) is concave in g (w).

Proof. See Appendix B.

Next, I need to prove convexity of the value function and the fact that the value
iteration is a contraction mapping. All the proofs are in Appendix A
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Proposition 1. For the discrete Rational Inattention Consumption Saving value recur-
sion H and two given functions V and U , it holds that

jjHV �HU jj � � jjV � U jj ;

with 0 � � < 1 and jj:jj the supreme norm. That is, the value recursion H is a
contraction mapping.

Proposition 1 can be explained as follows. The space of value functions de�nes a
vector space and the contraction property ensures that the space is complete. Therefore,
the space of value functions together with the supreme norm form a Banach space and
the Banach �xed-point theorem ensures (a) the existence of a single �xed point and (b)
that the value recursion always converges to this �xed point (see Theorem 6 of Alvarez
and Stockey, 1998 and Theorem 6.2.3 of Puterman, 1994).

Corollary For the discrete Rational Inattention Consumption Saving value recursion H
and two given functions V and U , it holds that

V � U =) HV � HU

that is the value recursion H is an isotonic mapping.

The isotonic property of the value recursion ensures that the value iteration converges
monotonically.

These theoretical results establish that in principle there is no barrier in de�ning
value iteration algorithms for the Bellman recursion for the discrete rational inattention
consumption-savings model.

5 Numerical Technique and its Predictions

I solve the model by transforming the underlying partially observable Markov decision
process into an equivalent, fully observable, Markov decision process with a state space
that consists of all probability distributions over the core 22 state of the model (wealth).

For a model with n core states, w1; ::; wn, the transformed state space is the (n� 1)-
dimensional simplex, or belief simplex. Expressed in plain terms, a belief simplex is a
point, a line segment, a triangle or a tethraedon in a single, two, three or four-dimensional
space, respectively. Formally, a belief simplex is de�ned as the convex hull23 of belief

22The state of the model is a probability distribution of wealth, i.e., g (w). In lack of a better al-
ternative, I call core state the random variable w whose distribution is the state of the model. This
nomenclature is borrowed from information theory and AI literature. See Puterman (1994) .
23A convex hull of a set of points is de�ned as the closure of the set under convex combination.
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states from an a¢ nely independent24 set B. The points of B are the vertices of the belief
simplex. The convex hull formed by any subset of B is a face of the belief simplex. To
address the issue of dimensionality in the state space of my model, I use a grid-based
approximation approach. The idea of a grid based approach is to use a �nite grid to
discretize the uncountably in�nite continuous state space. The implementation has the
following steps: (1) place a �nite grid over the simplex point, (2) compute the values for
points in the grid. I use a kernel regression to interpolate solution points that fall outside
the grid.

5.1 Belief Simplex and Dynamic Programming

Had in�nite information-processing rate been available, previous history of the process
would have been irrelevant to the problem. However, since the consumer cannot com-
pletely observe wealth, he may require all the past information about the system to
behave optimally. The most general approach is to keep track of the entire history of
previous consumption purchases up to time t, denoted Ht = fg0; c1; ::; ct�1g. For any
given initial state probability distribution g0, the number of possible histories is (jCj)t
with C denoting the set of consumption behavior up to time t. This number goes to in�n-
ity as the decision horizon approaches in�nity, which makes this method of representing
history useless for in�nite-horizon problems.

To overcome this issue, Astrom (1965) proposed an information state approach. It is
based on the idea that all the information needed to act optimally can be summarized by
a vector of probabilities over the system, the belief state. Let g (w) denote the probability
that the wealth is in state w 2 
w where 
w is assumed to be a �nite set. Probability
distributions such as g (w) de�ned on �nite sets are in fact simplices. Let n be the
possible values that w can assume. The discretization of the core state is an equi-spaced
grid with n = 20 values of w ranging from 1 to 10. The points in the simplex � are
n distinct values for the marginal pdf g (w) in the interval I � [0; 1]. The simplex is
constructed using uniform random samples from the unit simplex. The rational for this
methodology is that it is computationally faster than non-uniform grid and it is able to
handle higher dimensional space.25 In the current setting, each point in the simplex is
an n-array whose column contains m random values in the [0; 1] range and whose sum
per row is 1. To span the simplex I use m = (n� 1)!.26 The distribution of values within
the simplex is uniform in the sense that it has the conditional probability of a uniform
distribution over the whole m-cube, given that the sum per row is 1. The algorithm
calls three types of random processes that determine the placement of random points

24A set of belief states fgig, 1 � i � z is called a¢ nely independent when the vectors fgi � gzg are
linearly independent for 1 � i � z.
25At least compared to the ndgrid library functions in Matlab. This is because the algorithm creates

the simplex directly while when using ndgrid it is necessary to de�ne a uniform grid over the whole n�1
space and then sectioning the resulting grid so that each simplex point sum to one.
26With n = 20, the proposed sampling produces the same results for sample size of m = (n� k)!, for

k = 1; ::; 5. I have not tried cases with k > 5: When k > 1, even if the algorithm produces the same
results it takes longer to converge (about 3 minutes more per iteration).
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in the n � 1�dimensional simplex. The �rst process considers values uniformly within
each simplex. The second random process selects samples of di¤erent types of simplex
in proportion to their volume. Finally, the third implements a random permutation in
order to have an even distribution of simplex choices among types.

For each simplex point, I initialize the corresponding joint distribution of consumption
c and wealth w. I assume n = 20 equi-spaced values for c ranging in 
c � [0:8; 3]. The
values in 
c are chosen so that w is about 3 times c, roughly consistent with individual
data on consumption and wealth.

Let core states and behavior state be sorted in descending order. Then, given the
symmetry in the dimensionality of 
c and 
w, the joint distribution of consumption and
wealth for a given multidimensional grid point is a square matrix with rows corresponding
to levels of consumption . Summing the matrix per row returns the marginal distribution
of consumption, p (c). Likewise, the columns of the matrix correspond to levels of wealth.
Evaluating the sum per columns of the matrix returns the marginal distribution of wealth,
g (w). Given the initial belief simplex, its successor belief state can be determined by
Bayesian conditioning at each multidimensional point of the simplex. The resulting
expression is:

g (w0jc) =
X
i

T (w0;wi; c) Pr (wijc) : (23)

Without loss of generality, I restrict the columns of the matrix Pr (c; w) to sum to the
marginal pdf of wealth in the main diagonal. Moreover, since some of the values of the
marginal g (w) per simplex-point are exactly zero given the de�nition of the envelope for
the simplex, I constrain the choices of the joint distributions corresponding to those values
to be zero. This handling of the zeroes implies that the parameter vectors being optimized
over have di¤erent lengths for di¤erent rows of the simplex . Hence the degrees of freedom
in the choice of the control variables for simplex points vary from a minimum of 0 to a
maximum of n�(n�1)

2
. Once the belief simplex is set up, I initialize the joint probability

distribution of consumption and wealth per belief point and solve the program of the
household by backward induction iterating on the value function V (g (w)). To map the
�ner state space into Matlab possibilities, I interpolate the value function with the new
values of (23) using a kernel regression of V (�) into g0 (w0ja) : I use an Epanechnikov
kernel with smoothing parameter h = 2:7. 27 A kernel regression approximates the
exact non linear value function in (17) with a piece-wise linear function. The following
propositions illustrate this point.

Proposition 2. If the utility is CRRA with parameter of risk aversion  2 (0;+1) and
if Pr (cj; wi) satis�es (18)-(21)., then the optimal n � step value function Vn (g)

27Epanechnikov kernel is optimum choice for smoothing because it minimizes asymptotic mean in-
tegrated squared error (cfr. Marron, J. S. and Nolan, D. (1988)). I use the algorithm proposed in
Beresteanu, A. and C. F. Manski (2000) and experiement with smoothing paramter h 2 [0:3; ::; 4:2]. For
the charactersitcs of the problem and the optimization routine used (csminwel) and for di¤erent speci-
�cation of utility functions and Lagrange multiplier �, the parameter h = 2:7 performs best in terms of
computational time and convergence of the value function.

22



de�ned over G can be expressed as:

Vn (g) = max
f�ingi

X
i

�n (wi) g (wi)

where the �� vectors, � : 
w ! R, are jW j �dimensional hyperplanes.

Intuitively, each �n�vector corresponds to a plan and the action associated with a
given �n�vector is the optimal action for planning horizon n for all priors that have such
a function as the maximizing one. With the above de�nition, the value function is:

Vn (g) = max
f�ingi



�in; g

�
;

and thus the proposition holds.

Using the above proposition and the fact that the set of all consumption pro�les
P � fc < w : p (c) > 0g is discrete, it is possible to show directly the convex properties
for the value function. For �xed �in�vectors, h�in; gi operator is linear in the belief space.
Therefore the convex property is given by the fact that Vn is de�ned as the maximum
of a set of convex (linear) functions and, thus, obtains a convex function as a result.
The optimal value function V � is the limit for n ! 1 and, since all the Vn are convex
function, so is V �.

Proposition 3. Assuming CRRA utility function and under the conditions of Proposi-
tion 1, let V0 be an initial value function that is piecewise linear and convex. Then
the ith value function obtained after a �nite number of update steps for a rational
inattention consumption-saving problem is also �nite, piecewise linear and convex
(PCWL).

To implement the optimization of the value function at each point of the simplex, I
use Sims�csminwel as gradient-based search method and iterate on the value function
up to convergence. The value iteration converges in about 202 iterations. Table 1 reports
the benchmark parameter values and the discretization of the grid.

I simulate the model for T = 80 periods by drawing from the optimal policy function,
p� (c; w), and generate time series path of consumption, wealth and expected wealth.
For each t = 1; ::; T , I use the joint distribution p�t (c; w) to evaluate the time path

of information �ow (��t �
P

i

P
j p

�
t (cj; wi) log

�
p�t (cj ;wi)

p�t (cj)g
�
t (wi)

�
). Finally, I derive impulse

response functions for the economy by assuming temporary shocks to the mean of income,
�y. A pseudocode that implements the procedure is in Appendix C.
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Benchmark V alues

Discretization
Wealth Space W [1; ::; 10]
Consumption Space C [0:8; ::; 3]
Mean of Income, �y 1.1
Joint Distribution per simplex point, p (c; w) 20�20
Marginal C 20�1
Marginal W 20�1
Coe¤. risk aversion,  1
Interest rate, R 1.012
Discount Factor, � 36 0.9881

Table 1

6 Results

In this section I investigate the dynamic interplay of information �ow and degree of risk
aversion. In particular, I study di¤erent speci�cations of the model changing degrees of
risk aversion,  2 f0:5; 1; 2; 5; 7g, and di¤erent shadow costs of processing information,
� 2 (0; 4], attached to (18).37 Time paths for each individual are average across simplex
points. For the time series of the aggregate economy, I perform 10; 000 Monte Carlo
runs and simulate the model for each path for T = 80 periods. Then, I take average
across runs and simplex-points. Sample statistics are calculated based on these averages.
I choose this way of calculating averages to compare my model, tailored for individual
behavior, to aggregate data. I divide the results into three parts: 1. interaction of
information �ow and risk aversion; 2. implications of information constraint on lifetime

37I choose the set of  = f0:5; 1; 2; 5; 7g as these values for the coe¢ cient of relative risk aversion
appear to be the most common in the literature. As far as the choices of � are concerned, �rst note that
� = 0 corresponds to the full information case and for � > 3 the results are the ones states in section 3.1:
consumers choose the maximum consumption compatible with the minimum value of wealth and avoid
processing information. For the values of � within the interval (0; 4] and in order to get a sense of the
magnitude involved, the di¤erence in expected lifetime consumption with respect to the full information
case for a log utility person is E (cj � = 0)� E (cj � = 2) = 1:124� 1:08 = 0:044 units of consumption
or 4% (= [E (cj � = 0)� E (cj � = 2)] =E (cj � = 0)) when � = 0:2. Under � = 2 the di¤erence becomes
0:214 units of consumption or 19%.
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consumption; 3. consumption�s reactions to temporary income shocks.

Statistics
�=0:2

CRRA  = 7 CRRA  = 5 Log Utility CRRA  = :5
E (C) 1.14 1.09 1.08 1.02
std (C) 0.08 0.09 0.11 0.14
� 2.03 1.99 1.87 1.72

�=2

CRRA  = 7 CRRA  = 5 Log Utility CRRA  = :5
E (C) 1.01 0.98 0.91 0.83
std (C) 0.15 0.18 0.21 0.33
� 1.41 1.20 0.86 0.78

Table 2

Result 1. Information �ow and risk aversion In the discrete rational inattention
consumption-savings model, higher degrees of risk aversion result in higher amount
of information processed for a given information-processing cost. Moreover, for a
given degree of risk aversion, the relation between information-processing cost and
volatility of consumption is non-monotonic.

With respect to the non monotonic relation between shadow cost of processing infor-
mation (�) and volatility of consumption, �xing the degree of risk aversion, , consider
Figure 5b. When the cost of processing information tends to zero or exceeds the upper
bound of the consumption grid (� > �c, �c = 3, for the current grid), the volatility of
consumption tends to zero. When � ranges in the interval (0; �c], the higher the cost of
processing information, the higher the volatility of consumption is. This result is robust
to di¤erent speci�cations of consumption grid -i.e., di¤erent upper bound, �c-. The �nding
is documented in Table 2 and Figures 5(a,b)-6. Figure 5a plots the di¤erence between the
mean of the time series of consumption between � = 0 and � > 0. After deriving the time
path of consumption, I compute the mean of the average across paths and subtract the
corresponding mean for the full information solution (� = 0).38 Figure 5a shows how this
di¤erence changes as � varies and when utility is logarithmic. Figure 5b plots the cor-
responding di¤erence in standard deviation of consumption as a function of �. For high
shadow cost of processing information, � > 3, consumption does not vary over time.39

When � is strictly bigger than the upper bound on consumption, an agent with concave
utility rationally prefers to give up processing information and consume very little rather
than spending all his e¤orts processing information without enjoying consumption.40 For

38For the parameter of the model, the solution with in�nite rate of information-processing (� = 0),

cft = �wt + (1� �) �y, has mean E
�
cft

�
= 1:124 and standard deviation std

�
cft

�
= 0:0713:

39Recall that �c = 3 is the maximum amount of consumption in the grid proposed.

40As an example, consider a person who check constantly his account balance in order to increase his
current consumption pro�le. If he spends all his time and e¤ort crunching numbers, not only he will not
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0 < � < 3, volatility of consumption increases with �. This result makes sense. To see
why, consider the full information version of the model. With R� = 1, the agent wants to
smooth consumption. People�s will to smooth consumption in full information is limited
by a �nite �ow of information available. When deciding the precision of their signals,
risk averse people trade o¤ lower volatility in consumption for better knowledge of low
value of wealth.

Loss in consumption due to increasing processing e¤ort
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Di¤erence in std. of consumption due to processing e¤ort.
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Figure 5b.

To appreciate how preferences toward risk play out with processing limits (� > 0),
consider Figure 6b. It plots the distribution of consumption that results from the optimal
choice p� (c; w) conditional on three particular values of w -w = 1, w = 5:3 and w = 9:5-
for two individuals :  ! 1 -represented by bars in the �gure- and  = 5 -represented
by dotted line in the �gure- when information is very costly to process (� = 3). In this
case, a rational agent places high probabilities on consuming a given amount every period
compatible with his wealth. Such a choice implies little attention and little dependence of
consumption to wealth, for it requires �guring out the limits of wealth and consume the
same amount from then on. The �rst panel of Figure 6b shows the optimal distribution
of consumption when w = 1.Note how a person with log utility places higher probability
on low values of consumption with respect to a person with CRRA utility and  = 5.
This result owns to two factors. First, agents with higher degree of risk aversion tend to
process more information than people with lower degree of risk aversion do. Thus, more
risk averse types have access to more precise signals about wealth than the other group.
Second, people with CRRA,  = 5 tend to avoid lower values of consumption for a given
value of wealth whereas a log utility person prefers keeping his consumption steady along

be able to increase his consumption but also by sitting on his computer and working all day he will not
consume at all.
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his life-time, even at the expenses of some consumption units. Given w = 1, preferences�
speci�cation and choice of information �ow jointly lead the consumer with  ! 1 to
assign probability 0:63 to the lowest value of consumption (c = 0:8) and 0:28 to c = 0:92
whereas the agent with  = 5 sets probability 0:18 to c = 0:8 and 0:71 to c = 0:92.
The second and third panels of Figure 6b show the optimal distribution of consumption
conditional on w = 5:3 and w = 9:5 respectively. Both panels show a pattern akin to
the one discussed for the optimal distribution of consumption conditional on w = 1. The
expected value of consumption is higher in all cases for the person with  = 5 given that
he assigns more probability mass to higher values of consumption than the log-utility
person does.

Conditional distribution, p(Cjw=:) for �=2 (solid line) )and �=0:2 (bar)
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Conditional distribution of Consumption, p(Cjw), �=3. Log utility (bar) and CRRA =5 (dotted line)
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Now consider Table 2 and Figures 6a The top panel of �gure 6a displays the con-
ditional distribution of consumption for an agent with log utility whereas the bottom
panel displays the same distribution for an agent with CRRA utility,  = 5. The �rst
row of the �gure shows the optimal distribution of consumption conditional on w = 1,
the second row shows the optimal distribution conditional on w = 5:3 and in the third
row shows the conditional distribution of consumption for a value of wealth w = 9:5. In
both panels, bars identify the optimal choices when � = 0:2 while solid lines represent
� = 2. Consider the case with � = 2. For this case, the higher the degree of risk aversion,
the higher the information �ow (�) is. This is exactly what Table 2 shows. In the table,
the higher the coe¢ cient of risk aversion, , the higher the information processed by the
agent, �, the higher the mean of consumption. As Figures 6a displays, the same story
can be told in terms of conditional probability distributions. In the top panel, people
with low shadow costs of processing information (� = 0:2, bars in the �gure) and log
utility enjoy higher value of consumption for a given w 2 (f1g ; f5:2g ; f9:5g) than their
� = 2 counterparts. This result occurs because lower information processing costs allow
for more precise signals on wealth. For instance, when w = 5:3 a person with log utility
and � = 0:2 knows that he can a¤ord consuming on average E (Cjw = 5:3) = 2:1 whereas
the same person with � = 2 expects to consume about 14% less than the better informed
type -or, E (Cjw = 5:3) = 1:8-. Likewise, in the bottom panel of Figure 6a, a person
with CRRA utility,  = 5 and a shadow cost of processing information of � = 0:2 has an
expected value of consumption E (Cjw = 5:3) = 2:4 when w = 5:3 whereas had he had
� = 2, his expected value would have dropped to E (Cjw = 5:3) = 2:0.
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To sum up, for a given level of �, a person with log utility will be better informed on
extreme values of wealth in order to avoid such values. This knowledge makes it possible
to assign high probability to middle value of consumption for a given value of wealth. By
contrast, a consumer with CRRA,  = 5, wants to avoid low values of consumption for
high values of wealth. Processing information about these events decreases the likelihood
of their occurrence and makes it possible to place high probability on high value of
consumption.

The results in Figures 6a and 6b and Table 2 build up intuition on the time series
properties of consumption, wealth and information �ow drawn from the optimal distrib-
utions. Figure 6a tells us that people with higher information �ow tend to concentrate
probability mass on fewer values of consumption whereas the optimal distribution of
people with higher shadow costs, �, have wider dispersion than that of less information
constrained types. Moreover, people with higher degree of risk aversion tend to avoid
lower values of consumption for a given value of wealth. This mechanism results in higher
expected value of consumption for those people (see Figure 6a-6b and Table 2). Combin-
ing these �ndings, one expects people with lower information �ow and lower risk aversion
to vary their consumption pro�le less frequently than the other types. Moreover, when
these types decide to change consumption after waiting to process information about
wealth, they do so by a sizeable amount since in the meanwhile they have accumulated
(or decreased) savings. Such a behavior produces higher volatility of consumption for
people with lower information �ow.

Time series paths of consumption, wealth and information �ow drawn from the opti-
mal policy p� (c; w) con�rm this intuition and o¤er further insights on the properties of
the model.

Aggregate Consumption
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Aggregate Consumption and Information Flow
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Result 2. Time path of consumption and savings. Changes in consumption over
time are infrequent and signi�cant. Moreover:

1. People with low information �ow delay substantial increases in consumptions more
than people with high processing capacity. The e¤ect is stronger the higher the
degree of risk aversion.

2. People with high information �ow have savings behavior that follows closely their
wealth because they have sharper signals on wealth. Furthermore, the lower the
degree of risk aversion, the higher the �uctuations of savings per period.

3. People with low information �ow tend to consume a constant amount every period.
They increase their consumption only if the information they process points them
towards a signi�cant increase in wealth. The higher the degree of risk aversion, the
less volatile the time path of consumption for those types is.

Figures 7(a,b,c)-8(a,b) illustrate these points for aggregate and individual time series
behaviors, respectively. The simulations are derived by drawing time path of consump-
tion and wealth from p� (c; w), after the value iteration has converged.41 To have some

41Figures 7a-7c plot average across Monte Carlo runs and simplex points -i.e., initial beliefs about
wealth-. Figure 7a shows aggregate consumption for a person with log utility with � = 2 -dotted line-
and � = 0:2 - full line- and Figure 7b displays aggregate consumption under high -� = 2, dotted line-
and low -� = 0:2, solid line- information processing cost for a person with CRRA utility,  = 2. Figure
7c shows aggregate consumption - left axes, dotted line- and information �ow -right axes, solid line-.
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interesting transitional dynamics, I begin the simulation with an initial condition for
wealth far from the steady state42.
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Individual savings and wealth
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To appreciate the results, consider what would happen under in�nite processing rate.
In such a case, consumption smoothing (R� = 1) implies an immediate (T = 1) ad-
justment of consumption to its long-run optimal value and no transient behavior. Thus,
from T = 2 onwards, the simulations lead to a constant time path. Now consider Figures
7(a-c)-8(a,b). The hump in consumption comes from Result 1 and a simple intuition:
information-constrained people are cautious (degree of risk aversion  � 1), consume a
little and collect information about wealth before they change consumption. For a �xed
�, the more risk averse they are (see Figure 7a with log utility and Figure 7b with CRRA,
 = 2), the longer they wait before increasing consumption. This inertial behavior in
consumption leads to an increase in savings and, as a result, in wealth (see Figure 8a-8b).

In the graph on the top left corner I show consumption and information �ow for log utility and � = 0:2.
while in the same row, the graph on the top right corner shows � = 2 and log utility. On the bottom row,
the graph on the bottom left corner displays the results for CRRA,  = 2 and � = 2 while the graph at
the bottom right corner shows the corresponding results for CRRA with  = 2 and � = 0:2. Individual
time series (Figures 8a-8b) are average of initial beliefs. Figure 8a shows individual consumption for a
log utility person (graph on the top) with high cost of processing information (� = 2, dotted line) and
low cost of processing information (� = 0:2, solid line). The bottom graph of Figure 8a provides the
same information for a person with CRRA utility,  = 2. Figure 8b shows individual savings - solid
line, right axes- and wealth - dotted line, left axes-. The top left graph displays savings and wealth for
a person with log utility and � = 0:2 while the bottom left graph shows savings and wealth for a person
with CRRA,  = 2, utility and � = 0:2. The two graphs on the right of Figure 8b display savings and
wealth when � = 2. The top graph on the right shows time paths of savings and wealth for a log utility
person whereas the bottom graph shows the same time paths for a CRRA person.
42For the grid in the model, the steady state value of wealth is �= 5:65 and I initialize the simulation

with w0 = 3.
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The hump in consumption is the mirrored image of the rise (until people know they rich)
and fall (once people know they are rich) in wealth. Note that, depending on the history
of income shocks, consumption can have more than one hump in its path. To see why,
consider a high realization of income occurring after an hump in consumption. Over time,
signals about wealth convey such information, consumers start savings and history as well
as humps repeat themselves. These e¤ects are enhanced by the shadow cost of processing
information, �, with higher costs forcing long periods of inertia in consumption followed
by sizeable changes. Note also the relationship between consumption and information
�ow (Figure 7c): risk averse agents would rather push forward consumption in times in
which they are processing information about wealth. Finally, note from 7(a-b)-8(a,b)
how the peak in consumption occurs later for an individual with higher degree of risk
aversion and lower information �ow. The rationale for this result is that more cautious
people wait to be better informed about wealth before modifying their consumption be-
havior. In particular, since a consumer with CRRA utility ( = 2) chooses to be better
informed about low values of wealth than a log utility one (see Figures 7a and 7b), he
processes news about high value of wealth slower than his log counterpart. The resulting
additional savings for precautionary motives are triggered by both the curvature of the
utility function and the limits on information-processing constraint.

The last result comes from studying how consumers with limited processing capacity
react to temporary changes in income (y). Before stating the result, it is worth compar-
ing to the predictions of standard consumption-saving literature. Under in�nite rate of
information, the response of consumption to either negative or positive temporary income
shocks are immediate: consumption adjusts in period T = 0 of an amount exactly equal
to the discounted present value of the shock, j�yj. This is the case regardless whether the
shock is adverse or favorable, so long as the absolute value of these shocks match each
other. The same holds true under certainty-equivalence with a linear constraints and
quadratic utility (LQ) framework. With risk averse agents and information-processing
limits, it happens that:

Result 3. Persistent and asymmetric response to shocks. Consumption�s response
to temporary �uctuations of wealth is asymmetric: Negative shocks trigger a sharper
reaction and higher persistence of consumption than positive ones.

Result 3 is the main �nding of the paper and it is novel to the consumption-saving
theoretical literature. Most importantly, Result 3 agrees with empirical evidence on
consumption documented in, e.g., Shea (1995).

The logic behind this �nding is the following. A risk averse person is more likely to be
alerted by negative events than positive ones. A risk averse person with limited capacity
rationally choose to pay more attention to signals that point to a decrease in wealth
than to news about high values of wealth. As soon as he receives signals that his wealth
is lower than what he thought, he reacts by decreasing consumption. The change in
behavior and its persistence are more conspicuous the more risk averse and information-
processing constrained the person is as this person awaits to gather more information
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before changing behavior and, in the meanwhile, he builds up a savings bu¤er. Thus,
the temporary change in income propagates slowly over time. A positive temporary
income shock triggers the opposite behavior in a risk averse uninformed person. The
intuition is that this type of consumers is concerned about negative wealth �uctuations
and allocate most of information capacity to prevent this events. A signal that indicates
positive wealth may be ignored, generating extra savings in the meanwhile. Once this is
acknowledged, a prudent consumer distributes the additional consumption driven by the
income shock plus savings throughout his lifetime.

IRF to a temporary increase in income
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Figure 9a.

IRF to a temporary decrease in income
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Figure 9b.

The impulse response functions are plotted in Figures 9a-9b.43 They display a posi-
tive (Figure 9a) and a negative (Figure 9b) shock to income. Note that for both log and
CRRA  = 2 and for di¤erent value of the shadow cost (� = 0:2 _ � = 2) the reaction to
a negative shocks (�y = j1j) starts from the very �rst period. However, the extent of the
reaction varies across utilities and information costs. When � = 0:2, a log utility -type
consumer reacts on impact by increasing savings of an amount lower than that of the
change in income. He then adjusts savings and consumption so to distribute the averse
shock throughout time. The same log-type but with � = 1 decreases consumption more
on impact than his � = 0:2 counterpart. He increases consumption slowly over time until
it reaches its new long-run value. Likewise, a consumer with risk aversion  = 2 varies

43To generate impulse response for this non-linear model, I simulate the model drawing 10; 000 times
from the same optimal policy distribution under two scenarios. In the �rst I draw from a distribution
with constant mean of the shock to income. In the second, I assume that the mean of the shocks
increase/decrease in the very �rst period (one-time shocks) and then revert back to its original distribu-
tion. Impulse responses of consumption are the di¤erence between the two income paths averaged over
simplex-points and 10; 000 Monte Carlo draws of income.

33



his saving when the shock hits. The amount of consumption�s change depends on the
person�s information �ow. In particular, note that for � = 2 the decrease in consumption
on impact and in the following periods is so signi�cant that consumers can use the accu-
mulated savings to restore their original consumption plan. The endogenous asymmetric
response to shocks makes rational inattention models observationally distinct from any
other standard macroeconomic consumption-saving models or rational inattention LQG
models. Furthermore, this asymmetry makes the theory of rational inattention appeal-
ing from an empirical standpoint and suitable to study the impact of di¤erent shocks to
income and e¤ectiveness of policy changes on consumers spending. Tax rebates provide
one example.

6.1 Policy Implications and Sensitivity Analysis

6.1.1 The e¤ect of a one-time increase in income

A feature of the model worth exploring is how consumption�s reaction to shocks depend
on the initial value of wealth. Drawing time series from the probability distribution
that solves the model, it is natural that the farther away wealth is from its steady
state, the more consumption reacts to changes to wealth. The asymmetric response of
consumption to shocks presented in section 6.1 holds true whether we start from a value
of wealth above or below the steady state. In both cases, the reactions are faster in
case of a negative shock than a positive one. However, extent and timing are di¤erent.
Exploring these two dimensions -extent and timing- in the contest of this framework
uncovers some additional features of the model that can be used to address important
policy questions. In particular, it can be used to analyze the e¤ectiveness of tax policy
reforms on individual consumption and savings decisions. Figure 10 displays the impulse
response function of consumption to a stimulus payment which increases income by 2%
with respect to its (constant) long run level. 44

44The discretized solutions are generated using equi-spaced grid of consumption and wealth, with 50
points each . Consumption takes up value in [0:5; 3] while wealth ranges from 1 to 10. I use the same
parameters (R = 1:012 and � = 1=R) of the baseline model and a simplex of size (50!) � (49) and two
speci�cations of utility functions.
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Impulse Response function as a function of wealth, �y=0:02
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Figure 10. Solid: w0 = 1:94; Star Dashed:w0 = 3:3; Dotted: w0 = 5:2

In both cases I choose � so that the capacities corresponds to �= 2:5 bits and 0:88
bits45. Once the value iteration has converged, I generate the impulse response function
by simulating time series path of consumption and wealth with 10; 000 Monte Carlo runs
for each initial condition on wealth. I consider three initial values of wealth as a proxy of
population with low, middle and high wealth. Then, I average the time series per quarters
and simplex points. Figure 10 gives interesting insights on the e¤ect of the stimulus on
consumer spending. For the degrees of risk aversion and information capacity considered,
the reaction of the stimulus is higher the lower the initial wealth. This is not surprising, as
the stimulus payments have bigger impact on the disposable income of credit constrained
consumers than richer people. For a given amount of information capacity and wealth,
the higher the risk aversion the lower the spending in the �rst quarters. This result also
makes sense. If a consumer is risk averse and have no credit frictions, it allocates more
attention in processing information about low values of wealth. This leads to processing
slower and, in turn, reacting slower to positive news to income (Result 3). Finally for a
given wealth and degree of risk aversion, the lower the information processing capacity,

45The constraint � = 2:5 corresponds to �log = 0:01 and �crra = 0:05 for the log case and the crra,
 = 2 case respectively, while � = 0:88 is given by �log = 0:1 and �crra = 0:9:
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the slower the response of consumption spending to the rebate. The �ndings in Figure
10 can be summarizes as:

Result 4. Economic stimulus and rational inattention. The impact of a one time
tax rebate on rationally inattentive consumers:

1. is faster the lower the initial net worth.

2. is more delayed the higher the degree of risk aversion.

3. is more persistent and more delayed the lower the information-processing capacity.

The insights one can gather from the model have strong policy implications on the
e¤ectiveness of tax reform on people�s behavior. Not surprisingly, the model predicts that
such a policy has the fastest impact for people that are credit constrained. However, the
strongest impact of the policy will be on people who are concerned about their wealth. As
Figure 10 suggests, the e¤ects of the policy for households with middle- (star-dashed line)
and high- (dotted line) income households will be spread out through several quarters.
Initially these people do not vary consumption when they acknowledge the rebate. After
savings accumulate, they start spending and increase consumption pro�le permanently.
Notwithstanding the stylized nature of the model, it is possible to map U.S. household
data on realized consumption into the current framework. Showing how this mapping
is done and how the results of this paper can be formally tested are the objects of a
companion paper. Here, I provide a qualitative comparison of evidence and model�s
results meant to suggest how rational inattention can be useful for policy analysis. Table
3 shows the fraction of the rebate, �y, spent in consumption for the 2001 tax rebate -1st
column-, the 2008 tax rebate -2nd column- and a one time 2% increase in income for the
model with capacity � = 2:5 and log utility -3rd column- and CRRA utility,  = 5 -last
column. Table 3 summarizes the e¤ect of the additional income on impact for the full
sample and low income sample as estimated by Johnson, Parker and Souleles (2001) and
Broda and Parker(2008).46

2001 Tax Rebate 2008 Tax Rebate Log Utility, CRRA
� = 2:5  = 5; � = 1:5

Perc. tax rebate spent:
Full Sample:

1st Quar. 27%� 19%�� 37% 12%
2nd and 3rd Quar. 66%� 33%�� 79% 21%

Low Income:
1st Quar. 76%� 32%�� 62% 24%

Table 3:Fraction of �y spent

*Source: Johnson, Parker and Souleles (2006); **Source: Broda and Parker(2008)

46The choice of time span and low-income households is due to the availability of evidence for this
income group.

36



Table 3 shows that the data and the results of the model are roughly consistent both
on impact -1st Quarter- and for the medium run -cumulative 2nd and 3rd Quarters-. One
point worth mentioning is how to relate the results for 2008 tax rebate to the ones of
the model with CRRA with  = 5. The model predicts that under rational inattention
people with relatively high risk aversion do not translate positive changes in income into
positive changes in consumption prior to be well informed about their wealth. As a
result, this group of people fails to adjust promptly their consumption in response to
the stimulus. Moreover, consumption remains sluggish for a long period of time even for
people of this group with low income.

The mild e¤ect of the stimulus for the 2008 tax rebate might re�ect mostly the un-
certainty in the economic condition associated to this particular period. Even though
the model does not account for other sources of uncertainty besides wealth(/income)
�uctuations, it is interesting to notice how the interplay of risk aversion and information
processing constraint seems to capture the reluctance of people to revise their consump-
tion plans upwards despite the predictable increase in their income.

6.1.2 The importance of risk aversion

In this section, I analyze the previous consumption-savings model under Shannon process-
ing limits with a quadratic utility in order to assess the role of the utility function in
choosing the optimal conditional distribution of consumption given wealth. To this end,
I use the same solution methodology and the same speci�cation for the grid as in Sections
4 and 5, varying only the utility function, u (ct) = (ct � :5c2t ). 47 The bars in Figure 11
display the optimal distribution of c conditional on w = 1 -�rst column-, w = 5:3 -second
column- and w = 9:5 -third column for the quadratic utility. For comparison, the solid
lines in Figure 11 correspond to the case u (ct) = log (ct). The top panel of Figure 11
displays the solution for � = 0:2 whereas the bottom panel shows the corresponding

47Note that even with quadratic utility, using discrete distributions prevents one to use the result in
Sims (2003) where the optimal solution has Gaussian distribution. If one assumes continuous distribu-
tions and full support for c and w, it is possible to show that even when the prior g (w) is not Gaussian,
the optimal p (c; w) will be close to a Gaussian distribution (see Sims (2003)).
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solution when � = 2.

Conditional distribution, p(Cjw=:) for �=0:2 (top panel ) and �=2 (bottom panel)
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Figure 11: Optimal solution under Quadratic (bars) and Log (solid line)
u (c).

For both values of shadow costs considered, the optimal distribution under quadratic
utility assigns more probability to central values of consumption for a given value of
wealth. Moreover, the optimal distribution appears to be more spread out than the cor-
responding choice of a person with log-utility. For � = 0:2, conditional on w = 1, the op-
timal solution assigns higher probability to the lowest value of consumption for quadratic
utility (Pr (c = 0:8jw = 1) = 0:4) than it does for log utility (Pr (c = 0:8jw = 1) = 0:2).
When � = 2, risk aversion for the person with log utility induces more precaution in
consumption than quadratic utility by setting 0:84 probability on the lowest two values
of consumption instead of 0:7 as the optimal solution under quadratic utility does. Con-
ditional on w = 5:2, the optimal distribution under quadratic utility assigns probabilities
0:38 to c = 1:96 and 0:43 to c = 1:84 when � = 0:2 and � = 2 respectively. With
log utility, the optimal distribution places probability 0:45 on c = 2:2 and about 0:60
probabilities on values of consumption c � 1:96. Finally, when w = 9:5, for each value of
�, the optimal conditional distribution of consumption is skewed towards higher values
of consumption for the person with log utility than it is for the person with quadratic
utility with about 0:8 (0:5) probability mass on values of c � 2:20 versus 0:10 (0:3) for
� = 0:2 (� = 2).
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Table 4 summarizes the average across simplex points of expected value and variance
of consumption and information �ow for the cases of CRRA  = 5;  ! 1,  = 0:5 and
quadratic utilities.

Statistics
�=0:02

CRRA  = 5 Log Utility CRRA  = :5 Quadratic
E (C) 2.14 2.08 1.91 1.11
std (C) 0.046 0.07 0.14 0.37
� 2.12 1.97 1.82 0.94

�=0:2

CRRA  = 5 Log Utility CRRA  = :5 Quadratic
E (C) 1.09 1.08 1.02 0.69
std (C) 0.09 0.11 0.14 0.42
� 1.99 1.87 1.72 0.78

�=2

CRRA  = 5 Log Utility CRRA  = :5 Quadratic
E (C) 0.98 0.91 0.83 0.45
std (C) 0.18 0.21 0.33 0.52
� 1.20 0.86 0.78 0.21

Table 4

Table 4 shows how a person with quadratic utility tends to acquire less information -
lower �- than people with higher degrees of risk aversion, on average for � = 0:02 -top
panel- � = 0:2 and � = 2 -middle and lower panels, respectively- This choice implies
lower expected value and higher variance for the consumption�s pro�le of a person with
quadratic utility than for a person with CRRA.

7 Conclusions

This paper applies rational inattention to a dynamic model of consumption and savings.
Consumers rationally choose the nature of the signal they want to acquire subject to the
limits of their information processing capacity. The dynamic interaction of risk aversion
and endogenous choice of information �ow enhances precautionary savings.

I showed that for a given degree of risk aversion, the lower the information �ow, the
�atter the consumption path. The model predicts that for a given information �ow, the
higher the degree of risk aversion, the more persistent consumption is. Also, for a given
degree of risk aversion, the lower the information �ow, the more volatile consumption is.

Furthermore, the model predicts that consumption path has humps. Under information-
processing constraints, an hump occurs when people consume a little and save a lot while
collecting information about wealth. When consumers realize that they are rich, they
increase consumption and decrease savings. This increase stops when they acknowledge
that their wealth is low again: they start savings and process more information. Thus,
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consumption decrease. Consistent with the previous two results, I �nd that the peak
in consumption is delayed the more risk averse and information-constrained the individ-
ual is. Di¤erent from other life-cycle models, in my setting there could be more than
one hump in the consumption path. Depending on the history of the income shocks, a
very low or very high realization of income a¤ects consumers�signal through its e¤ect
on wealth. Consumer react to the news by varying savings and information over time,
thereby generating another hump.

Finally, the model predicts that consumers with processing capacity constraints have
asymmetric responses to shocks, with negative shocks producing stronger and more per-
sistent e¤ects than positive ones. This asymmetry, observed in actual data, is novel to
the theoretical literature of consumption and savings. Studying the reactions of rational
inattentive people to temporary income shocks can also be used to assess the e¤ectiveness
of policy reforms on consumption spending. The model predicts that, for a given level of
wealth, the speed and magnitude of the adjustment of consumption to the income shock
depends on their processing capacity. Moreover, consumers with low wealth react faster
to temporary tax relief than wealthier people. The results agree with both intuition and
evidence on consumer spending for the 2001 and 2008 tax rebates.

The results suggest that enriching the standard macroeconomic toolbox with rational
inattention theory is a step worth making.

40



References

[1] Allen, F., S. Morris and H. S. Shin, (2006), Beauty Contests, Bubbles and Iterated
Expectations in Asset Markets Review of Financial Studies, 19, pp. 719-752.

[2] Alvarez, F. and N. Stockey, (1998), Dynamic Programming with Homogeneous Func-
tions, Journal of Economic Theory, 82, pp.167-189.

[3] Angeletos G.-M. and A. Pavan, (2004), Transparency of Information and Coordina-
tion in Economies with Investment Complementarities, American Economic Review,
papers and proceedings, 94 (2), pp.91-98.

[4] Astrom, K. (1965), Optimal Control of Markov decision process with incomplete state
estimation. Journal of Mathematical Analysis and Applications 10, pp.174-205

[5] Blanchard, O. J. and Mankiw, N G., (1988) Consumption: Beyond Certainty Equiv-
alence American Economic Review, American Economic Association, vol. 78(2), pp.
173-77.

[6] Broda, C. and J. Parker (2008), A preliminary analysis of how household spending
changed in response to the receipt of a 2008 economic stimulus payment. Mimeo.

[7] Caballero, R. J. (1990), Expenditure on Durable Goods: a case for slow adjustment,
The Quarterly Journal of Economics, Vol. 105, No. 3. pp. 727-743.

[8] Caballero, R. J. (1995), Near-rationality, Heterogeneity and Aggregate Consumption,
Journal of Money, Credit and Banking, 27 (1), pp29-48.

[9] Campbell, J.Y. (1987), Does Savings Anticipate Declining Labor Income? An alter-
native Test of the Permanent Income Hypothesis, Econometrica, 55, pp.1249-1273.

[10] Campbell, J.Y. and A. Deaton (1989), Why is Consumption so Smooth? Review of
Economic Studies, 56, pp.357-374.

[11] Campbell, J.Y. and N. G. Mankiw (1989), Consumption, Income and Interest Rates:
Reinterpreting the Time Series Evidence, NBER Macroeconomic Annual 4, pp.185-
216.

[12] Campbell, J.Y. and N. G. Mankiw (1989), Permanent Income, Current Income and
Consumption, Journal of Business and Economic Statistics, 8 (3), pp.265-279.

[13] Carroll, C. D. (2003) Macroeconomic Expectations of Households and Professional
Forecasters, Quarterly Journal of Economics, 118 (1), pp. 269-298.

[14] Cochrane, J.H. (1989), The Sensitivity of Tests of the Intertemporal Allocation
of Consumption to Near-Rational Alternatives, American Economic Review, 90,
pp.319-337.

[15] Cover, J. P., (1992), Asymmetric E¤ects of Positive and Negative Money-Supply
shocks, The Quarterly Journal of Economics, Vol. 107, No. 4, pp.1261-1282.

41



[16] Cover, T.M. and J. A. Thomas, Elements of Information Theory, John Wiley &
Sons, Inc., 1991

[17] Deaton, A. (1992), Understanding Consumption, Oxford, University Press.

[18] DeLong, J., and L. Summers (1988). How does macroeconomic policy a¤ect output?,
Brookings Papers on Economic Activity, 2: pp. 433-480.

[19] Dynarski, S. and J. Gruber (1997), Can Families Smooth Variable Earnings?, Brook-
ings Papers on Economic Activity, Vol.1997 No. 1, pp.229-284.

[20] Flavin, M. A. (1981), The Adjustment of Consumption to Changing Expectations
about Future Income, Journal of Political Economy, 89, pp. 974-1009.

[21] Friedman, M. (1957), A Theory of the Consumption Function, Princeton, Princeton
University Press.

[22] Garcia, R., Lusardi, A. and S. Ng, (1997), Excess sensitivity and asymmetries in
consumption: an empirical investigation, Journal of Money, Credit and Banking,
Blackwell Publishing, vol. 29 (2), pp. 154-76.

[23] Gourinchas, P-O, and J.A. Parker (2002), Consumption over the Life-Cycle, Econo-
metrica, vol. 70 (1), pp.47-89.

[24] Hall, R. (1978), Stochastic Implications of the Life Cycle-Permanent Income Hy-
pothesis: Theory and Evidence, Journal of Political Economy, 86, pp.971-987..

[25] Johnson, D., Parker, J. and N. Soules (2006) Household expenditure and the income
tax rebates of 2001. American Economic Review, Vol. 96, No. 5.

[26] Kim, J., Kim, S., Schaumburg, E. and C. Sims (2005). Calculating and Using Second
Order Accurate Solutions of Discrete Time Dynamic Equilibrium Models. Mimeo.

[27] Lewis, K. (2007), The life-cycle e¤ects of information-processing constraints.Work-
ing Paper, University of Iowa.

[28] Lewis, K. (2008), The Two-Period Rational Inattention Model: Accelerations and
Analyses, Computational Economics, Forthcoming. Currently available as Federal
Reserve Financial and Economics Discussion Series Paper, No. 2008-22, Board of
Governors .

[29] Lucas, R.E. (1972), Expectations and the Neutrality of Money. Journal of Economic
Theory, 4, 103-124.

[30] Luo, Y. (2008): Consumption Dynamics under Information Processing Constraints.
Review of Economic Dynamics, 11, pp, 366� 385

[31] MacKay, David J. C (2003). Information Theory, Inference, and Learning Algo-
rithms, Cambridge University Press, 2003

42
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8 Appendix A

8.1 Proof of Proposition 1.

The Bellman Recursion in the discrete Rational Inattention Consumption-
Saving Model is a Contraction Mapping.

Proof. The H mapping displays:

HV (g) = max
p
HpV (g) ;

with

HpV (g) =

"X
w2
w

 X
c2
c

u (c) p (cjw)
!
g (w) + �

X
w2
w

X
c2
c

(V (g0c (�))) p (cjw) g (w)
#
:

Suppose that jjHV �HU jj is the maximum at point g. Let p1 denote the optimal control
for HV under g and p2 the optimal one for HU

HV (g) = Hp1V (g) ;

HU (g) = Hp2U (g) :

Then it holds
jjHV (g)�HU (g)jj = Hp1V (g)�Hp2U (g) :

Suppose WLOG that HV (g) � HU (g) : Since p1 maximizes HV at g , I get

Hp2V (g) � Hp1V (g) :

Hence,

jjHV �HU jj =
jjHV (g)�HU (g)jj =
Hp1V (g)�Hp2U (g) �
Hp2V (g)�Hp2U (g) =

�
X
w2
w

X
c2
c

[(V p2 (g0c (�)))� (Up2 (g0c (�)))] p2g (w) �

�
X
w2
w

X
c2
c

(jjV � U jj) p2g (w) �

� jjV � U jj :
Recalling that 0 � � < 1 completes the proof.
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8.2 Proof of Corollary.

The Bellman Recursion in the discrete Rational Inattention Consumption-
Saving Model is an Isotonic Mapping.

Proof. Let p1 denote the optimal control for HV under g and p2 the optimal one for
HU

HV (g) = Hp1V (g) ;

HU (g) = Hp2U (g) :

By de�nition,
Hp1U (g) � Hp2U (g) :

From a given g, it is possible to compute g0c (�)jp1 for an arbitrary c and then the following
will hold

V � U =)
8g (w) ; c;

V
�
g0c (�)jp1

�
� U

�
g0c (�)jp1

�
=)X

c2
c

V
�
g0c (�)jp1

�
� p1g �

X
c2
c

U
�
g0c (�)jp1

�
� p1g =)

X
w2
w

 X
c2
c

u (c) p1

!
g (w) + �

X
c2
c

V
�
g0c (�)jp1

�
� p1g

�
X
w2
w

 X
c2
c

u (c) p1

!
=)

Hp1V (g) � Hp1U (g) =)
Hp1V (g) � Hp2U (g) =)
HV (g) � HU (g) =)

HV � HU:
Note that g was chosen arbitrarily and, from it, g0c (�)jp1 completes the argument that the
value function is isotone.

8.3 Proof of Proposition 2.

The Optimal Value Function in the discrete Rational Inattention Consumption-
Saving Model is Piecewise Linear and Convex (PCWL).
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Proof. The proof is done via induction. I assume that all the operations are well-
de�ned in their corresponding spaces. For planning horizon n = 0, I have only to take
into account the immediate expected rewards and thus I have that:

V0 (g) = max
p2�

"X
w2
w

 X
c2
c

u (c) p

!
g (w)

#
(24)

and therefore if I de�ne the vectors

�
�i0 (w)

	
i
�
 X
c2
c

u (c) p

!
p2�

(25)

I have the desired
V0 (g) = max

f�i0(w)gi



�i0; g

�
(26)

where h:; :i denotes the inner product h�i0; gi �
X
w2
w

�i0 (w) ; g (w).For the general case,

using equation (22):

Vn (g) = max
p2�

26664
X
w2
w

 X
c2
c

u (c) p (cjw)
!
g (w)+

+�
X
w2
w

X
c2
c

(Vn�1 (g
0
c (�)c)) p (cjw) g (w)

37775 (27)

by the induction hypothesis

Vn�1 (g (�)jc) = max
f�in�1gi



�in�1; g

0
c (�)
�

(28)

Plugging into the above equation (19) and by de�nition of h:; :i ,

Vn�1 (g
0
c (�)) = max

f�in�1gi

X
w02
w

�in�1 (w
0)

 X
w2
w

X
c2
c

T (�;w; c) Pr (w; c)
Pr (c)

!
(29)

With the above:

Vn (g) = max
p2�

266664
X
w2
w

 X
c2
c

u (c) p

!
g (w)+

+�maxf�in�1gi
X
w02
w

�in�1 (w
0)

 X
w2
w

 X
c2
c

T (�;w;c)
Pr(c)

� p
!
g (w)

!
377775

= max
p2�

"
hu (c) � p; g (w)i+ �

X
c2
c

1

Pr (c)
max
f�in�1gi

* X
w02
w

�in�1 (w
0)T (�;w; c) � p; g

+#
(30)
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At this point, it is possible to de�ne

�jp;c (w) =
X
w02
w

�in�1 (w
0)T (� : w; c) � p: (31)

Note that these hyperplanes are independent on the prior g for which I am computing
Vn: Thus, the value function amounts to

Vn (g) = max
p2�

"
hu (c) � p; gi+ �

X
c2
c

1

Pr (c)
max
f�jp;cg

j



�jp;c; g

�#
; (32)

and de�ne:
�p;c;g = arg max

f�jp;cg
j



�jp;c; g

�
: (33)

Note that �p;c;g is a subset of �jp;c and using this subset results into

Vn (g) = max
p2�

"
hu (c) � p; gi+ �

X
c2
c

1

Pr (c)
h�p;c;g; gi

#

= max
p2�

*
u (c) �+�

X
c2
c

1

Pr (c)
�p;c;g; g

+
: (34)

Now �
�in
	
i
=
[
8g

(
u (c) � p+ �

X
c2
c

1

Pr (c)
�p;c;g

)
p2�

(35)

is a �nite set of linear function parametrized in the action set.

8.4 Proof of Proposition 3.

Proof. The �rst task is to prove that f�ingi sets are discrete for all n. The proof proceeds
via induction. Assuming CRRA utility and since the optimal policy belongs to �, it is
straightforward to see that through (25), the set of vectors f�i0gi,

�
�i0
	
i
�
 X
w2
w

 X
c2
c

c1�

1�  p (cjw)
!
g (w)

!
p2�

is discrete. For the general case, observe that for discrete controls and assuming M =����jn�1	��, the sets ��jp;c	 are discrete, for a given action p and consumption c, I can only
generate �jp;c�vectors. Now, �xing p it is possible to select one of theM �jp;c�vectors for
each one of the observed consumption c and, thus, f�jngi is a discrete set. The previous
proposition, shows the value function to be convex. The piecewise-linear component of
the properties comes from the fact that f�jngi set is of �nite cardinality. It follows that
Vn is de�ned as a �nite set of linear functions.
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9 Appendix B

9.1 Concavity of Mutual information in the Belief State.

For a given p (cjw),Mutual Information is concave in g (w)

Proof. Let Z be the binary random variable with P (Z = 0) = � and let W = W1 if
Z = 0 and W = W2 if Z = 1. Consider

I (W;Z;C) = I (W ;C) + I (Z;CjW )
= I (W ;CjZ) + I (Z;C)

Condition on W , C and Z are independent, I (C;ZjW ) = 0: Thus,

I (W ;C) � I (W ;CjZ)
= � (I (W ;CjZ = 0)) + (1� �) (I (W ;CjZ = 1))
= � (I (W1;C)) + (1� �) (I (W2;C))

Q.E.D.

10 Appendix C.

Pseudocode

Let � be the shadow cost associated to �t = It (Ct;Wt). De�ne a Model as a pair (; �).
For a given speci�cation :

� Step 1: Build the simplex. equi-spaced grid to approximate each g (wt)-simplex point.

� Step 2: For each simplex point, de�ne p (ct; wt). and Initialize with V
�
g0cj (�)

�
= 0:

� Step 3: For each simplex point, �nd p� (c; w) s.t.

V0 (g (wt))jp�(ct;wt) = maxp(ct;wt)
� P
wt2
w

P
ct2
c

�
c1�t

1�

�
p� (ct; wt)� � [It (Ct;Wt)]

�
:

� Step 4: For each simplex point, compute g0cj (�) =
P

wt2
w T (�;wt; ct) p
� (wtjct). Use a

kernel regression to interpolate V0 (g (wt)) into g0cj (�).

� Step 5: Optimize using csminwel and iterate on the value function up to convergence.

Obs. Convergence and Computation Time vary with the speci�cation (; �).
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! 180-320 iterations each taking 8min-20min

� Step 6. For each model (; �), draw from the ergodic p� (c; w) a sample (ct; wt) and
simulate the time series of consumption, wealth, expected wealth and information �ow
by averaging over 1000 draws.

� Step 7. Generate histograms of consumption and impulse response function of consump-
tion to temporary positive and negative shocks to income.

11 Appendix D.

11.1 The Mathematics of Rational Inattention

This part addresses the mathematical foundations of rational inattention. The main
reference is the seminal work of Shannon (1948). Drawing from the information the-
ory literature, I overview Shannon�s axiomatic characterization of entropy and mutual
information and show the main theoretical features of these two quantities.

Formally, the starting point is a set of possible events whose probabilities of occurrence
are p1; p2; : : : ; pn. Suppose for a moment that these probabilities are known but that is
all we know concerning which event will occur. The quantity H = �

P
i pi log pi is called

the entropy of the set of probabilities p1; : : : ; pn. If x is a chance variable, then H (x)
indicates its entropy; thus x is not an argument of a function but a label for a number,
to di¤erentiate it from H (y) say, the entropy of the chance variable y.

Quantities of the form H = �
P

i pi log pi play a central role in Information Theory
as measures of information, choice and uncertainty. The quantity H goes by the name
of entropy 48 and pi is the probability of a system being in cell i of its phase space.

The measure of howmuch choice is involved in the selection of the events isH (p1; p2; ::; pn)
and it has the following properties:

Axiom 1 H is continuous in the pi.

Axiom 2 If all the pi are equal, pi = 1
n
, then H should be a monotonic increasing function of

n. With equally likely events there is more choice, or uncertainty, when there are
more possible events.

Axiom 3 If a choice is broken down into two successive choices, the original H should be the
weighted sum of the individual values of H.

Theorem 2 of Shannon (1948) establishes the following results:

48See, for example, R. C. Tolman, Principles of Statistical Mechanics, Oxford, Clarendon, 1938.
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Theorem 1 The only H satisfying the three above assumptions is of the form:

H = �K
nX
i=1

pi log pi

where K is a positive constant to account for the change in unit of measurement.

Figure a: Entropy of two choices with probability p and q=1�p as function of p:

Remark 1. . H = 0 if and only if all the pi but one are zero, this one having the value
unity. Thus only when we are certain of the outcome does H vanish. Otherwise H
is positive.

Remark 2. For a given n, H is a maximum and equal to log n when all the pi are equal
(i.e., 1

n
). This is also intuitively the most uncertain situation.

Remark 3. Suppose there are two random variables, X and Y ,

H(Y ) = �
X
x;y

p(x; y) log
X
x

p(x; y)

Moreover,
H(X; Y ) � H(X) +H(Y )

with equality only if the events are independent (i.e., p(x; y) = p(x)p(y)). This
means that the uncertainty of a joint event is less than or equal to the sum of the
individual uncertainties.

Remark 4. Any change toward equalization of the probabilities p1; p2; : : : ; pn increases
H. Thus if p1 < p2 an increase in p1, or a decrease in p2 that makes the two probabil-
ities more alike results into an increase inH. The intuition is trivial since equalizing
the probabilities of two events makes them indistinguishable and therefore increases
uncertainty on their occurrence. More generally, if we perform any �averaging�op-
eration on the pi of the form p0i =

P
j aijpj where

P
i aij =

P
j aij = 1, and all

aij � 0, then in general H increases49.

49The only case in which H remains unchanged is when the transformation results in just one permu-
tation of pj .
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Remark 5. Given two random variables X and Y as in Remark 3, not necessarily in-
dependent, for any particular value x that X can assume there is a conditional
probability px(y) that Y has the value y. This is given by

px(y) =
p(x; y)P
y p(x; y)

:

The conditional entropy of Y , is then de�ned as HX(Y ) and it is the average of
the entropy of Y for each possible realization the random variable X, weighted
according to the probability of getting a particular realization x. In formulae,

HX(Y ) = �
X
x;y

p(x; y) log px(y):

This quantity measures the average amount of uncertainty in Y after knowing X.
Substituting the value of px(y) , delivers

HX(Y ) = �
X
x;y

p(x; y) log p(x; y) +
X
x;y

p(x; y) log
X
y

p(x; y)

= H(X; Y )�H(X)

or
H(X; Y ) = H(X) +HX(Y ):

This formula has a simple interpretation. The uncertainty (or entropy) of the joint
event X;Y is the uncertainty of X plus the uncertainty of Y after learning the realization
of X.

Remark 6. Combining the results in Axiom 3 and remark 5, it is possible to recover
H(X) +H(Y ) � H(X; Y ) = H(X) +HX(Y ):

This reads H(Y ) � HX(Y ) and implies that the uncertainty of Y is never increased
by knowledge of X. If the two random variables are independent, then the entropy will
remain unchanged.

To substantiate the interpretation of entropy as the rate of generating information, it
is necessary to linkH with the notion of a channel. A channel is simply the medium used
to transmit information from the source to the destination, and its capacity is de�ned
as the rate at which the channel transmits information. A discrete channel is a system
through which a sequence of choices from a �nite set of elementary symbols S1; : : : ; Sn
can be transmitted from one point to another. Each of the symbols Si is assumed to have
a certain duration in time ti seconds . It is not required that all possible sequences of
the Si be capable of transmission on the system; certain sequences only may be allowed.
These will be possible signals for the channel. Given a channel, one may be interested
in measuring its capacity to transmit information. In general, with di¤erent lengths of
symbols and constraints on the allowed sequences, the capacity of the channel is de�ned
as:
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De�nition 2 The capacity C of a discrete channel is given by

C = lim
T!1

logN(T )

T

where N(T ) is the number of allowed signals of duration T .

To explain the argument in a very simple case, consider transmitting �les via comput-
ers. The speed at which one can exchange documents depends on the internet connection
and it is expressed in bits per seconds. The maximum amount of bits per second that can
be transmitted is negotiated with the provider. However, this does not means that the
computer will always be trasmitting data at this rate � this is the maximum possible
rate and whether or not the actual rate reaches this maximum depends on the usage and
the source of information which feeds the channel. The link between channel capacity
and entropy is illustrated by the following Theorem 9 of Shannon:

Theorem 3 Let a source have entropy H (bits per second) and a channel have a capacity
C (bits per second). Then it is possible to encode the output of the source in such a way

as to transmit at the average rate
C

H � " symbols per second over the channel where " is

arbitrarily small. It is not possible to transmit at an average rate greater than
C

H .

The intuition behind this result is that by selecting an appropriate coding scheme,
the entropy of the symbols on a channel achieves its maximum at the channel capacity.
Alternatively, channel capacity can be related to mutual information.

De�nition 4 The Mutual Information between two random variables X and Y
is de�ned as the average reduction in uncertainty of random variable X achieved upon
the knowledge of the random variable Y .

In formulae:
I (X;Y ) � H (X)� E (H (XjY )) ;

which says that the mutual information is the average reduction in uncertainty of X due
to the knowledge of Y or, symmetrically, it is the reduction of uncertainty of X due to
the knowledge of Y . Mutual information is invariant to transformation of X and Y ,
depending only on their copula.

Intuitively, I(X;Y ) measures the amount of information that two random variables
have in common. The capacity of the channel is then alternatively de�ned by

C = max
p(Y )

(I(X;Y ))

where the maximum is with respect to all possible information sources used as input to
the channel (i.e., the probability distribution of Y , p(Y )). If the channel is noiseless,
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E(Hy(x)) = E(H (X(jY ))) = 0. To get an intuition, think about a newspaper editor
who wants to maximize his sales. To do that, he has to choose the allocation of space
for his articles in such a way that it is attractive for the consumers. In this example,
Y is the random variable space, X the random variable sales, channel�s capacity is the
maximum number of pages in the newspaper and the channel itself is the best articles�
allocation of space that signals that the journal is worth buying.

54


