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Abstract

This paper introduces endogenous capital income tax rates as in Schmitt-Grohe and Uribe

(1997), into the overlapping generations model with endogenous labor and consumption in both

periods of life (e.g., Cazzavillan and Pintus, 2004). In contrast with the previous result that the

existence of endogenous labor income taxes raises the possibility of local indeterminacy (Chen

and Zhang 2009), it shows that increasing the size of capital income taxes can make shrink the

range of values of the consumption�to�wage ratio associated with local indeterminacy, because of

two con�icting e¤ects on savings that operate through wage and interest rate.
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1. Introduction

In a recent article, Chen and Zhang (2009a) investigates how government expenditure �nanced

by labor income taxes in�uences local dynamics near a normalized steady state in an overlapping

generations model with endogenous labor and consumption in both periods of life. They �nd that

local indeterminacy can easily arise with small distortionary labor income taxes, provided that the

elasticity of capital-labor substitution is less than the share of capital in total income and the wage

elasticity of the labor supply is large enough. Moreover, they show that increasing the size of labor

income taxes enlarges the range of values of the consumption-to-wage ratio associated with local

indeterminacy, because of two con�icting e¤ects on savings that operate through wage rate and

interest rate. Therefore, (endogenous) labor income taxes are favorable to local indeterminacy.

In this note, we extend their model and investigate how government expenditure �nanced by

capital income taxes in�uences local dynamics near the normalized steady state in the very same

OLG model. First, we show that for a reasonable share of total consumption over the output, local

indeterminacy can easily occur when there are small capital income taxes. Second, we �nd that

increasing the size of capital income taxes can make shrink the range of values of the consumption-

to-wage ratio associated with local indeterminacy, because of two con�icting e¤ects on savings that

operate through wage rate and interest rate. Lastly, we show that for a given technology (�), adding

capital income taxes can make decrease the critical value of the input substitution (�) associated

with multiple equilibria. Therefore, endogenous capital income taxes are not favorable to local

indeterminacy.

As in Cazzavillan and Pintus (2006), the existence of two con�icting e¤ects that operate through

wage and interest rate is essential for generating endogenous �uctuations. Chen and Zhang (2009a)

conclude that increasing labor income tax rates makes smaller the share of consumption out of wage
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income in the �rst period of life, thus making sunspots more likely to occur.1 In contrast with their

�ndings, the presence of capital income taxes will have di¤erent e¤ects on these con�icting e¤ects.

To be more precise, there is one force which tends to dampen the con�icting e¤ects of wage and

interest rate movements: increasing capital income tax rates can make larger the lower bound of

the ratio (between savings and wage income) for indeterminacy, thus making sunspots less likely to

occur. In addition, there is another force which tends to strengthen the con�icting e¤ects of wage

and interest rate movements: increasing capital income tax rates can make the after-tax interest rate

more and more negatively sensitive to variations in the capital stock, thus making sunspots more

likely to occur. When the former e¤ect is stronger than the latter e¤ect, increasing capital income

tax rates will make local indeterminacy hard to arise.

The paper is organized as follows. Section 2 sets up the model. Section 3 establishes the existence

of a normalized steady state. In section 4, we use the geometrical method to analyze the local

dynamics near the normalized steady state and then deliver the main results on local indeterminacy.

Section 5 concludes.

2. The model

This note introduces constant government expenditure �nanced by capital income taxes in the OLG

model studied in Cazzavillan and Pintus (2004). We consider a competitive, non-monetary model

with production and consumption in both periods. It involves a unique perishable good, which can

be either consumed or saved as investment. Identical competitive �rms all face the same technology.

Identical households live for two periods. The agent consumes in both periods, supplies labor and

saves when young. When old, her saved income is rented as physical capital to the �rm.

Assuming additively separable preferences, the household born at time t � 0 maximizes her

1 In fact, increasing labor income tax rates can make smaller the lower bound of the ratio (between savings and wage
income) for indeterminacy, thus making sunspots more likely to occur.
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lifetime utility

max
c1t, �t, c2t+1

[U1(c1t=B)� U3 (�t) + �U2 (c2t+1)]

subject to the constraints

c1t + zt = 
t�t, (1)

c2t+1 = eRt+1zt, (2)

c1t � 0, c2t+1 � 0, � � �t � 0, for all t � 0,

where �t, c1t and zt are labor, consumption and saving, respectively, of the individual of the young

generation, c2t+1 is the consumption of the same individual when old, and 
t > 0 and eRt+1 > 0 are
the real wage at time t and the after�tax gross interest rate at time t + 1. Moreover, � 2 (0; 1),

B > 0 and � are the discount factor, a scaling parameter and the maximum amount of labor supply,

respectively.

The preferences satisfy the following condition as in Cazzavillan and Pintus (2004).

Assumption 1. The functions U1(c=B), U3 (�) and U2 (c) are de�ned and continuous on the

set R+. Moreover, they are Cr, for r large enough, on the set R++, with U 01(c=B) > 0, U
0
2 (c) > 0,

U 03 (�) > 0, U 001 (c=B) < 0, U 002 (c) < 0, U 003 (�) > 0. lim�!�U
0
3 (�) = +1, where � > 1, and

lim�!0U 03 (�) = 0. In addition, 0 < R1(c=B) � �(c=B)U 001 (c=B)=U 01(c=B) < 1, 0 < R2(c) �

�cU 002 (c) =U 02 (c) < 1, and R3(�) � �U 003 (�) =U 03 (�) > 0.

The conditions 0 < R1(c=B) < 1 and 0 < R2(c) < 1 are used to ensure that consumption and

leisure are gross substitutes, and the saving function is increasing in R.

When the solution of the maximization problem is interior, the �rst order conditions are given

by

U 01(c1t=B)=B = � eRt+1U 02 (c2t+1) = U 03 (�t) =
t. (3)
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Using the �rst order conditions, the current consumption can be written as follows

c1t = B
�
U 01
��1�BU 03 (�t)


t

�
, (4)

and the savings of the young agent born at time t are2

zt = 
t�t �B
�
U 01
��1�BU 03 (�t)


t

�
. (5)

Multiplying both terms of the last equality in Eq. (3) by zt yields

�U 02 (c2t+1) c2t+1 =
ztU

0
3 (�t)


t
, or, eRt+1zt = u�12 (ztU 03 (�t)�
t

), (6)

where u2(c2t+1) = U 02 (c2t+1) c2t+1 is an increasing function of c2t+1.

The perishable output (y) is produced using capital (k) and labor (�),

y = AF (k; �) = A�f (a) ,

where a = k=� and A > 0 is a scaling factor. The competitive factor market implies that the real

wage rate and the real gross rate of return on capital stock are


 (a) � A
�
f (a)� af 0(a)

�
= A! (a) , R (a) � Af 0 (a) + 1� � = A� (a) + 1� �, (7)

where 0 � � � 1 is the constant depreciation rate of capital.3

2U 01(
c
B
) is decreasing and invertible in view of assumption 1.

3The reduced production function y=� = Af(a) is a continuous function of the capital-labor ratio a = k=� � 0
and has continuous derivatives of all required orders for a > 0, with f 0(a) > 0, f"(a) < 0. In particular, the
marginal productivity of capital A� (a) = Af 0(a) is a decreasing function of a, while the marginal productivity of labor
A! (a) = A[f (a)� af 0(a)] is increasing with a.
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As in Schmitt-Grohe and Uribe (1997), at each point in time, the government �nances its con-

stant expenditure through capital income taxes, i.e.,

g = �ktrtkt > 0, (8)

where rt and �kt are the marginal productivity of capital (rt = Af 0(at)) and the capital income tax

rate. It is easy to show that the after�tax gross interest rate at time t is

eRt = (1� �kt) rt + 1� �.
Using the fact that at the equilibrium kt+1 = zt holds, we can easily derive the dynamic system

characterizing equilibrium paths of (kt, at).

R(at+1)kt+1 = u
�1
2

�
kt+1U

0
3 (kt=at)

�
(at)

�
+ g, (9)

kt+1 = 
(at)
kt
at
�B(U 01)�1

�
BU 03(kt=at)


(at)

�
. (10)

3. Steady state existence

A steady state is a pair (k, a) such that.

A� (a) + 1� � = 1

k

"
u�12

 
kU 03

�
k=a
�

�A! (a)

!
+ g

#
, (11)

k = A! (a)
k

a
�B(U 01)�1(

BU 03(k=a)

A! (a)
). (12)

To simplify the algebra, we follow the procedure described in Cazzavillan and Pintus (2004) and

use the parameters A and B to normalize the steady state.
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Proposition 1. Under the assumptions on the utility and production functions, (k; a) = (1; 1) is a

normalized steady state (NSS) of the dynamic system (9) and (10) if and only if g is not too large,

A�! (1) > 1, �u2[
�(1)
!(1)+1���g] < U

0
3(1) and limc!0cU

0
1(c) <

A�!(1)�1
A�!(1) U

0
3(1), where A

� is the unique

solution of A� (1) + 1� � � g = u�12
�
U 03(1)
�A!(1)

�
.

Proof. See Appendix A.1.

Multiplicity of steady states can arise in our model. For brevity, we just analyze the local

dynamics around the NSS.4

4. Local dynamics analysis

Let us linearize the dynamic system (9) and (10) around the NSS (1,1). We shall de�ne "
 and "R

as the elasticities of the functions 
(a) and R(a) evaluated at the NSS. Moreover, let � � 
(a)=a =


(1) = A�! (1) > 1, R1 � R1(
�
c1
B� ), R2 � R2(

�
c2), and R3 � R3(1). Then, we have the following

proposition.

Proposition 2. The linearized dynamics generated by the two-dimensional system (9) and (10)

around the NSS are determined by the determinant D and the trace T of the Jacobian matrix

associated with Eqs. (9) and (10).

dkt+1 =

�
� +

� � 1
R1

R3

�
dkt +

�
� ("
 � 1)�

� � 1
R1

(R3 + "
)

�
dat, (13)

4Thanks to Yoichi Gokan for pointing this out to us. By selecting appropriately A and B and imposing some limiting
conditions, we can normalize one steady state at (1; 1).
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dat+1 (14)

= � 1

j"Rj
f1��

nss
k �

1�R2

h
� +

�
��1
R1

+ 1
�
R3

i
�
�
� + ��1

R1
R3

�
gdkt

�1
j"Rj

f1��
nss
k �

1�R2

h
� ("
 � 1)� (R3 + "
)

�
��1
R1

+ 1
�i
�
h
� ("
 � 1)� (��1)(R3+"
)

R1

i
gdat,

where � � A��(1)
A��(1)+1�� 2 (0; 1] and �

nss
k 2 (0; 1) is the steady state capital income tax rate around

the NSS. Moreover, the expressions of D and T are given by

T =
1

j"Rj

h
� ("
 � 1)� ��1

R1
(R3 + "
)

i
+ � + ��1

R1
R3 (15)

� (1��
nss
k �)

j"Rj(1�R2)

h
� ("
 � 1)� (R3 + "
)

�
��1
R1

+ 1
�i
,

D =
�"
 (1 +R3)

j"Rj (1�R2)
(1� �nssk �) > 0. (16)

Using the same geometrical method as in Cazzavillan and Pintus (2004), we shall analyze the

variations of T and D in the (T;D) plane when some parameters are made vary continuously. In

particular, we are interested in the two roots of the characteristic polynomial Q(�) = �2 � T� +D.

There is a local eigenvalue which is equal to +1 when 1 � T +D = 0. It is represented by the line

(AC) in Fig. 1. Moreover, one eigenvalue is �1 when 1 + T +D = 0. That is to say, in this case,

(T;D) lies on the line (AB). Finally, the two roots are complex conjugate of modulus 1, whenever

(T;D) belongs to the segment [BC] which is de�ned by D = 1, jT j � 2. Since both roots are zero

when both T and D are 0, then, by continuity, they have both a modulus less than one i¤ (T;D) lies

in the interior of the triangle ABC, which is de�ned by jT j < j1 +Dj, jDj < 1. The steady state is

then locally indeterminate given that there is a unique predeterminate variable k. If jT j > j1 +Dj,

the stationary state is a saddle-point. Finally, in the complementary region jT j < j1 +Dj; jDj > 1,

the steady state is a source.5

5For details, see Cazzavillan and Pintus (2004, pp. 462, 463).
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The diagram below can also be used to study local bifurcations. When the point (T;D) crosses

the interior of the segment [BC], a Hopf bifurcation is expected to occur. If, instead, the point crosses

the line (AB), one root goes through �1. In that case, a �ip bifurcation is expected to occur. Finally,

when the point crosses the line (AC), one root goes through +1, one expects an exchange of stability

between the NSS and another steady state through a transcritical bifurcation.

In our model, we focus on two parameters, the elasticity of capital�labor substitution (�) and

the relative curvature of the second-period utility function R2. To be more precise, we shall �x the

technology, i.e. �, the elasticities "
 and "R, as well as R1 and R3, and make R2 vary continuously in

the open interval (0; 1). This means that we shall consider the parametrized curve (T (R2), D(R2))

when R2 lies in the interval (0; 1). From the expressions of D and T given in proposition 2, one sees

that (T (R2), D(R2)) describes a half-line � which starts from the point (T0(�); D0(�)) for R2 = 0,

where T0(�) is the trace in (15) and D0(�) is the determinant in (16) evaluated at R2 = 0. In

addition, the slope of � is

D0(R2)

T 0(R2)
=

�"
 (1 +R3)

R3

�
��1
R1

+ 1
�
+ "
 (� � 1)

�
1
R1
� 1
�
+ �

> 0. (17)

and does not depend on R2.

It is easy to express the elasticities "
 and "R as functions of the depreciation rate �, the share

of capital in total income 0 < s(a) = a�(a)=f(a) < 1, and the elasticity of capital�labor substitution

�(a) � 0,

"
 =
s(a)

�(a)
and j"Rj = � (a)

1� s (a)
� (a)

, (18)
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where � (a) � s(a)�(a)
s(a)�(a)+(1�s(a))(1��) 2 (0; 1]. Moreover, the coordinates of the origin of the half-line

�(�) as functions of the elasticity parameter � are:

T0 (�) = �R3+s
�(1�s) + � +

(��1)R3
R1

� ��nssk
1�s

h
R3

�
��1
R1

+ 1
�
+ s(��1)(1�R1)

�R1
+ �
i
, (19)

D0 (�) = s�(1+R3)
�(1�s) (1� �

nss
k �) � 0, (20)

where s = s(a), � = �(a), � = �(a) = s(a)�(a)
s(a)�(a)+(1�s(a))(1��) , and � = �(a). In addition, the slope of

the half-line �(�) can be written as follows s�(1+R3)R1
s(��1)(1�R1)+�[R3(��1+R1)+�R1] .

Assumption 2. R3 >
�nssk

s
1�s �

( s
1�s �+1��)R1

[R3 (� � 1 +R1) + �R1]. It corresponds to the case of small

distortionary capital income tax rates, that is, �nssk not large. This condition can be met for a

su¢ ciently high R3 (if labor supply elasticity is �nite), so that T0 (�) is an increasing function of �.

In our case, T0 (�) increases from T0 (0) to +1 along the half line �1, as � increases from zero to

+1.

To understand the main results, it is useful to relate the parameters � and �nssk to the consumption�

to�wage ratio. It is easy to show that c1=(
�) = ��1
� . From this equation, one can recover the results

by Cazzavillan and Pintus (2004) by setting �nssk = 0.

If s and � are kept �xed and � is regarded as an independent parameter, we �nd that as �

increases from zero to +1, the point (T0 (�) ; D0 (�)) moves along a �at half-line �1. More precisely,

D0 (�) doesn�t change, but T0 (�) increases from a �nite number to +1 along the �at line (�1),

when �nssk is small. In addition, �(�) pivots rightward and it has a positive slope when � = 0, and

it is horizontal when � = +1, but the origin (T0 (�) ; D0 (�)) moves to the right along the line �1,

when � varies from zero to +1.

In order to get local indeterminacy, �rst, D0(�) should be less than 1, which requires that s and

� be small enough, i.e., a su¢ ciently low share of capital in total income and a su¢ ciently low ratio

10



of consumption while young to saving (
�
c1 = � � 1 in the NSS).6 As Cazzavillan and Pintus (2004)

point out, the latter requirement is crucial to local indeterminacy. Second, we should impose some

other restrictions as in Cazzavillan and Pintus (2004, the �rst and second paragraphs on p. 466).7

Following Cazzavillan and Pintus (2004), we consider the case (I) where D0(�) < 1, T0(0) <

1 +D0(�), slope�(�) > slope�(
�
�) and the latter slope (slope�(

�
�)) is bigger than 1. Here

�
� is the

value of � such that the line �1 intersects the line (AC). It is easy to know that the half-line �(�)

intersects the interior of the segment BC for � in (0; �H), where �H is the value of � such that �(�)

goes through C. Then we know that, for all � in (
�
�; �H), the half-line �(�) intersects not only the

line (AC) at R2 = R2T , but also the segment BC at R2 = R2H . When � moves beyond �H , �(�)

will not cross the interior of the segment BC, but it can cross the line AC up to � = �T , where �T

is the value of � such that the slope�(�) is one. When � > �T , the slope�(�) is less than one. We

6 In Cazzavillan and Pintus (2004), they show that the relative curvature of the disutility of labor (R3) has to be
small in order to make D0(�) less than 1. In Cazzavillan and Pintus (2006), R3 has to be su¢ ciently high in order to
make the slope of �1 positive and small enough. In our model, R3 has to be su¢ ciently high in order to ensure that
T0(�) is increasing with �.

7 In other words, local indeterminacy requires complementary inputs (� is not large) and R1 � 1 (the relative
curvature of the �rst period consumption is close to the logarithmic speci�cation). R2 is not too close to 1, since local
indeterminacy requires the generic point (T (R2); D(R2)) to lie in the interior of the stability triangle ABC, provided
that �(�) intersects the triangle ABC.
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provide these parameters here.8

R2H = 1� s� (1 +R3) (1� �
nss
k �)

� (1� s) ,

�H =
2� s(1��nssk �)

�(1�s)(1�R2H)

�
��1
R1

+ 1� �
�
� s

�(1�s)

�
� � ��1

R1

�
� � � ��1

R1
R3

1
�(1�s)

n
1��nssk �
1�R2H

h
R3

�
��1
R1

+ 1
�
+ �
i
�
�
� + ��1

R1
R3

�o ,

�T =
s [� (1 +R3)� (� � 1) (1=R1 � 1)]

� +R3

�
1 + ��1

R1

� ,

� =
�(�)� (1 +R3) (1� �nssk �) +

�nssk s(��1)
1�s

�
1
R1
� 1
�
� (� � 1)

�
1 + R3

R1

�
� �(�)

�(�)R3
s � �nssk

1�s

h
R3

�
��1
R1

+ 1
�
+ �
i ,

where �(�) = s�+(1�s)(1��)
(1�s)� .

R2T = 1�
(1� �nssk �) f�

h
R3

�
��1
R1

+ 1
�
+ �
i
+ s

�
��1
R1

+ 1� �
�
� s� (1 +R3)g

� (1� s) +
�
� + ��1

R1
R3

�
[� � � (1� s)]� s

�
� � ��1

R1

� .

It is easy to �nd that the introduction of capital income taxes can a¤ect the critical values of these

parameters. In contrast with the results of Chen and Zhang (2009a), endogenous capital income taxes

are less helpful to local indeterminacy than labor income taxes. We provide the following result.

Proposition 3. The introduction of endogenous capital income taxes does not a¤ect the critical

values �H and �T .

Proof. Since the slope of �(�) does not depend on �nssk and slope�(�T ) = 1, we know that �T does

not depend on �nssk . From the expression of R2H , we know that
1��nssk �
1�R2H = �(1�s)

s�(1+R3)
= 1

�(�)�(1+R3)
,

which does not depend on �nssk . Replacing 1��nssk �
1�R2H with 1

�(�)�(1+R3)
in the formula of �H , we know

that �H does not depend on �nssk .

Four possible dynamic regimes in the case (I) are the same as in Cazzavillan and Pintus (2004,

Fig. 1 on pp. 463, 466) except that the critical values of the independent parameter � and the

8For how to derive these parameters, see the appendix A.2. in Cazzavillan and Pintus (2004). It means that �H
is the solution of T (R2H) = 2; �T is the solution of slope�(�)= 1; R2H is the solution of D(R2) = 1; R2T solves
T (R2) = 1 +D(R2).
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bifurcation parameter R2 are di¤erent from those in their model. We summarize these results in the

following theorem.

Theorem 1. Let (k; a) = (1; 1) be a normalized steady state which is set according to the procedure

outlined in proposition 1. Then, under assumptions 1, 2, and those stated in the appendix A.2, the

following holds.

(i) 0 < � < �: the steady state (1; 1) is a sink for R2 < R2H , undergoes a Hopf bifurcation at R2

= R2H , and becomes a source for R2 > R2H ;

(ii) � < � < �H : the steady state (1; 1) is a saddle for R2 < R2T , undergoes a transcritical

bifurcation at R2 = R2T , becomes a sink for R2T < R2 < R2H , undergoes a Hopf bifurcation at

R2 = R2H , and becomes a source for R2 > R2H ;

(iii) �H < � < �T : the steady state (1; 1) is a saddle for R2 < R2T , undergoes a transcritical

bifurcation at R2 = R2T , and becomes a source for R2 > R2T ;

(iv) � > �T : the steady state (1; 1) is a saddle for all R2 in the open interval (0; 1).

Proof. See Appendix A.2.

Insert Figure 1 here.

For brevity, we will not turn to analyze the case (II) where the origin (T0(0); D0(0)) lies outside

the triangle ABC and the slope of the half-line �(�) is steeper than that of the line connecting

the origin with the point C. This means that T0(0) > 1 + D0(0), D0(0) < 1, 1 < T0(0) < 2 and

slope�(0) >
1�D0(0)
2�T0(0) . Similar to Cazzavillan and Pintus (2004), we may have the very same theorem

2 except that the critical values of the independent parameter � and the bifurcation parameter R2

are di¤erent from those in their original model.9

9Three cases in theorem 2 can appear.
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Perhaps the reader is interested in studying the impact of small capital income tax rates on the

conditions leading to local indeterminacy, as shown in Figure 1 (or Theorem 1). The lemma 1 in the

appendix shows that if 1 < � < �1 holds, indeterminacy can arise. Here �1 is a critical value above

which local indeterminacy can not arise. The interesting �nding is that �1 can be decreasing in the

level of capital income tax rates (�nssk ) provided that the rates (�nssk ) are not too large. Therefore,

increasing the size of distortionary capital income taxes from zero can not enlarge the range of the

values of � that are compatible with local indeterminacy.

Proposition 4. Under the assumptions of Theorem 1, the critical lower bound �1 above which local

indeterminacy can not arise is decreasing in the level of capital income tax rates provided that the

distortionary tax rates (�nssk ) are not too large. Moreover, R3 >
�nssk

s
1�s �

( s
1�s �+1��)R1

[R3 (� � 1 +R1) + �R1]

will be met if the utility function in the �rst period of life is close enough to logarithmic (R1 = 1)

and �nssk is not too large.

Insert Figure 2 here.

The following numerical example shows how the share of wage devoted to savings has to be large

for local indeterminacy to arise (� should be small) and how endogenous capital income tax rates

are not helpful to local indeterminacy: the latter conclusion is consistent with recent works, for

example, Schmitt-Grohe and Uribe (1997). Schmitt-Grohe and Uribe (1997) have shown that, in a

standard neoclassical growth model, endogenous labor income tax rates are essential for the existence

of stationary sunspot equilibria. Moreover, we illustrate, using numerical examples, our main results

Case 1: 0 < � < �H . The point (T0 (�) ; D0 (�)) lies outside the triangle ABC but the half line �(�) crosses both the
line (AC) and the interior of the segment BC. The NSS is a saddle-point for 0 < R2 < R2T , undergoes a transcritical
bifurcation and exchanges stability with another steady state at R2 = R2T , becomes a sink for R2T < R2 < R2H ,
undergoes a Hopf bifurcation at R2 = R2H , and becomes a source for R2 > R2H .
Case 2: �H < � < �T . The point (T0 (�) ; D0 (�)) lies outside the triangle ABC and the slope satis�es the condition

slope�(�) > 1, i.e. the half-line �(�) crosses the line (AC). The NSS is a saddle for 0 < R2 < R2T , undergoes a
transcritical bifurcation at R2 = R2T , and becomes a source for R2 > R2T .
Case 3: � > �T . The point (T0 (�) ; D0 (�)) lies outside the triangle ABC and the slope satis�es the condition

slope�(�) < 1. The NSS is a saddle for all R2 in the open interval (0; 1).
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that increasing steady state capital income tax rates may make shrink the range of parameter values

(�) associated with multiple equilibria.

To �x ideas and ease comparisons with Cazzavillan and Pintus (2004), we set s = 1=3 and � = 1,

where full capital depreciation is perfectly consistent with the time period implied by the OLG

setting, and the chosen value of the capital share in total income is close to the one that Cazzavillan

and Pintus (2004) use. We further assume that �nssk can take the values of 0:1, 0:12, 0:14, 0:16,

0:18 and 0:20. These values can imply the bound of � (i.e., �1). The values of R1 and R3 must

belong to the relevant intervals de�ned in lemma 1. And we assume that R1 = 0:95 and R3 = 0:82.10

Considering the elasticity of capital�labor substitution, we �nd that the condition � < �H , which is

necessary to get endogenous �uctuations, places a upper bound on �. It is easy to �nd that �H < �T .

Numerical examples show that �T < s and, therefore, that �H < �T < s. This suggests that �H may

be below the capital share. In fact, we illustrate that, irrespective of the values for R1 and R3, �H

and �T do not depend on �nssk , �H decreases when � increases for a given �nssk , and � is decreasing

with �nssk for a given �.11 This conclusion shows that endogenous capital income tax rates are not

helpful to local indeterminacy. Similar to Cazzavillan and Pintus (2004), we can show that total

consumption, including consumption by the old agents, has to be less than 45% of output in the case

of Fig. 1.

Insert Table 1 here.

We are now in a position to intuitively explain why endogenous capital income tax rates are

less helpful to local indeterminacy. Cazzavillan and Pintus (2004) have already shown that when

intertemporal substitution in consumption across periods is introduced, endogenous �uctuations

require very low values of the propensity to consume out of wage income of the young generation

10For how to select these proper values of R1 and R3, see the matlab programs which are available upon request.
11Again, R1 and R3 must belong to the relevant intervals de�ned in lemma 1.
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(in our model, 1 � 1
� ). In addition, endogenous �uctuations require elasticities of capital�labor

substitution that are well below the share of capital in total income. We �nd that (1) adding

capital income tax rates (�nssk ) will make larger the lower bound of the ratio (between savings and

wage income, 1
�1
) for indeterminacy, thus making sunspots less likely to occur and; (2) for a given

technology �, adding tax rates will make the bound on � associated with multiple equilibria (�)

smaller (this bound is less than the share of capital in total income). To be more precise, we provide

the following intuitive interpretation. Endogenous �uctuations arise due to the interaction of two

con�icting e¤ects: when the capital stock increases, it leads to an increase in wage rate and, therefore,

an increase in savings which leads the capital stock in the next period to be higher. However, capital

accumulation is followed by a decrease in the real interest rate that will depress savings and/or

capital accumulation. There is one force which tends to dampen the con�icting e¤ects of wage and

interest rate movements: increasing capital income tax rates can make larger the lower bound of

the ratio (between savings and wage income) for indeterminacy, thus making sunspots less likely to

occur. In addition, there is another force which tends to strengthen the con�icting e¤ects of wage

and interest rate movements: increasing capital income tax rates can make the after-tax interest rate

more and more negatively sensitive to variations in the capital stock (the elasticity of eR with respect
to k is " eR,k = [ 1

1��nssk �(a) ]
�(a)[s(a)�1]

�(a) < 0 and decreases with �nssk for small values of � when � < �H),

thus making sunspots more likely to occur. When the former e¤ect is stronger than the latter e¤ect,

increasing capital income tax rates will make local indeterminacy hard to arise.

5. Conclusion

In this note, we study the dynamic e¤ects of government expenditure �nanced by capital income

taxes in an aggregate OLG model with consumption in both periods of life. Using the same method

as in Cazzavillan and Pintus (2004), we investigate how government expenditure in�uences local
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indeterminacy around the normalized steady state. In contrast with the previous result that the

existence of endogenous labor income taxes raises the possibility of local indeterminacy (Chen and

Zhang 2009a), this note shows that increasing the size of capital income taxes can make shrink the

range of values of the consumption�to�wage ratio associated with local indeterminacy, thus making

local indeterminacy less likely to occur.
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Appendix

A.1. Proof of Proposition 1

If (k; a) = (1; 1) is a normalized steady state of the dynamic system (9) and (10), we have the

following: (
�
c1 is the steady state of the �rst period consumption.)

A� (1) + 1� � � g = u�12
�
U 03 (1)

�A! (1)

�
, (D-1)

A! (1)� 1 = B(U 01)�1
�
BU 03(1)

A! (1)

�
=
�
c1. (D-2)

If g = �nssk A� (1) is not too large (0 � �nssk < 1), A� (1)+1���g > 0 can hold. Since the LHS term

of (D�2) is positive, it implies that A > 1=! (1). We rewrite (D�1) as follows: �A! (1)u2[A� (1)+1�

��g] = U 03 (1) and we �nd that the LHS term is an increasing function of A. In order to have a unique

A� satisfying (D-1), we require that �A! (1)u2[A� (1) + 1� �� g]jA=1=!(1) < U 03 (1). It is equivalent

to �u2[
�(1)
!(1) + 1� � � g] < U

0
3(1). We can easily get B

� from (D-2) after we pin down the unique A�

from (D-1). In particular, we can rewrite (D-2) as follows: A!(1)�1B U 01(
A!(1)�1

B ) = A!(1)�1
A!(1) U

0
3(1). It is
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easy to see that A!(1)�1B U 01(
A!(1)�1

B ) is a decreasing function of B. In order to have the unique B�,

we should impose the restriction: limc!0cU 01(c) <
A�!(1)�1
A�!(1) U

0
3(1).

A.2. Proof of Theorem 1

Lemma 1. Let 1 < � < �1 =
�+[�2�4�(1��)2]1=2

2� , where � � 1�s+(1��)(1�2s)�s(1��)(1��nssk )
1�s and

� � (1�s)2�s(1�2s)(1��nssk )
(1�s)2 . Moreover, we assume that R1 > R1 and R3 < R3 < R3, where R3 =

�(�)+(��1)��(�)�(1��nssk �)
1+�(�)�(1��nssk �)��

, R3 =
1�(1��nssk �)�(�)�
(1��nssk �)�(�)�

andR1 =
(��1)[R3�s�nssk =(1�s)]

�(�)�(1+R3)(1��nssk �)��(�)�(��1)[1+s�nssk =(1�s)] ,

with s
�(1�s) = �(�). Then we have the following results: the origin (T0(0); D0(0)) lies inside the ABC

triangle and the half line �(�) intersects the interior of the segment BC at � = 0 (T0 (0) < 1+D0(0),

D0(0) < 1). Moreover, we have slope�(0) > slope�(�) > slope�(�H) > slope�(�T ) = 1.

Proof. Similar to Cazzavillan and Pintus (2004),D0(0) < 1 is satis�ed i¤0 < R3 <
1�(1��nssk �)�(�)�
(1��nssk �)�(�)�

�

R3, where � (�) =
s�+(1�s)(1��)

(1�s)� and � = s
(1�s)�(�) . This (R3 > 0) requires that � < � � (1�s)�

(1��nssk )s
.

Since � > 1, we know that s < �
1��nssk +� < 1.

1 +D0(0)� T0(0) > 0 is satis�ed i¤ R1 > R1 �
(��1)[R3�s�nssk =(1�s)]

�(�)�(1+R3)(1��nssk �)��(�)�(��1)[1+s�nssk =(1�s)] with

R3 > eR3 � �(�)+(��1)[1+s�nssk =(1�s)]
�(�)�(1��nssk �)

� 1. Since R1 < 1, we need that R1 < 1, which is equivalent to

R3 > R3 =
� (�) + (� � 1)� � (�) � (1� �nssk �)

1 + � (�) �
�
1� �nssk �

�
� �

,

where 1 + � (�) � (1� �nssk �)� � > 0. 1 + � (�) � (1� �nssk �)� � > 0 holds i¤ � < � � (2��)(1�s)
1�s�s(1��nssk )

.

It is easy to verify that if � >
2s(1��nssk )

1�s , the binding upper bound on � is �, as � < �. Otherwise, if

� <
2s(1��nssk )

1�s , the binding upper bound on � is �, as � > �. In addition, R3 > eR3 when D0(0) < 1
is satis�ed. Then we have that D0(0) < 1 and T0 (0) < 1 +D0(0) i¤ R1 > R1 and R3 < R3 < R3,

provided that either � < �, when � <
2s(1��nssk )

1�s , or � < �, when � >
2s(1��nssk )

1�s . The inequality
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R3 < R3 < R3 holds i¤ the polynomial holds.

P1(�) = ��
2 ��� + (1� �)2 < 0,

with � =
(1�s)2�s(1�2s)(1��nssk )

(1�s)2 and � =
1�s+(1��)(1�2s)�s(1��)(1��nssk )

1�s . In addition, P1(�) has a

root in (1; �), which is �1 =
�+[�2�4�(1��)2]1=2

2� . And P1(�) < 0 holds for all � 2 (1; �1). When

� >
2s(1��nssk )

1�s , 1 < �1 < � < � can hold for a set of properly chosen parameters. A numerical

example is �nssk = 0:2, � = 1 and s = 1=3.

Following Cazzavillan and Pintus (2004), it is easy to show that slope� (0) > slope� (�) >

slope� (�H) > slope� (�T ) = 1.
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Tables and Figures

Figure 1.
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Figure 2.

�n�nssk 0:10 0:12 0:14 0:16 0:18 0:20

1:05 0:2831 0:2798 0:2762 0:2720 0:2671 0:2614

1:10 0:2313 0:2243 0:2163 0:2070 0:1961 0:1831

1:15 0:1779 0:1666 0:1534 0:1380 0:1197 0:0975

1:20 0:1228 0:1065 0:0874 0:0646 0:0372 0:0035
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Table 1. Numerical exercise: � (s = 1=3, � = 1, R1 = 0:95, and R3 = 0:82).
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