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Abstract

Characteristics models have been found to be useful in many areas of
economics. However, their empirical implementation tends to rely heav-
ily on functional form assumptions. In this paper we develop a revealed
preference-based nonparametric approach to characteristics models. We
derive the minimal necessary and sufficient empirical conditions under
which data on the market behaviour of individual, heterogeneous, price-
taking consumers are nonparametrically consistent with the consumer
characteristics model. Where these conditions hold, we show how in-
formation may be recovered on individual consumer’s marginal valuations
of product attributes. In some cases marginal valuations are point identi-
fied and in other cases we can only recover bounds. Where the conditions
fail we highlight the role which the introduction of unobserved product
attributes can play in rationalising the data. We implement these ideas
using consumer panel data on the Danish milk market.
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1 Introduction
The idea that consumers have preferences over the characteristics of market
goods, as developed by Gorman (1956), Lancaster (1966), Muellbauer (1974)
and Rosen (1974), has turned out to be an extremely fruitful one. For ex-
ample, it is central to much applied microeconomic work on price indices1,
quality change2, location decisions3, labour market allocation4, finance5 and
the analysis of markets for differentiated products6. However, the empirical im-
plementation of characteristics models tends to rely heavily on functional form
assumptions. In this paper we develop a revealed preference7 (nonparametric)
approach to the empirical analysis of characteristics models. We derive the
necessary and sufficient conditions under which data on the market behaviour
of heterogeneous and price-taking consumers are nonparametrically consistent
with the consumer characteristics model. Where the conditions fail we high-
light the role which the introduction of unobserved product attributes can play
in rationalising the data. Where these conditions hold, we show how informa-
tion may be recovered on individual consumer’s marginal valuations of product
attributes. In some cases marginal valuations are point identified and in other
cases we can only recover bounds.
We apply the revealed preference techniques we develop to consumer panel

data on the Danish milk market. The two major characteristics that vary across
different types of milk are fat content and whether it is produced under ‘organic’
conditions. Both aspects are important for substantive issues. Given the con-
cern over increasing obesity in all high income countries there is interest in
identifying the marginal valuation of fat and how this is distributed across the
population. Our techniques allow us to identify the distribution of these valu-
ations. As regards the second characteristic, ‘organic’, interest here centres on
how much extra consumers are willing to pay for milk that is arguably more
healthy (for example, because cows that produce organic milk are never treated
with antibiotics) and increases animal welfare. Given that organic milk is more
expensive to produce it is important to establish the demand so that farmers or
milk marketing boards can gauge how much to organic milk to produce. In this
analysis we use data which allows us to follow individual households over very
long periods so that we can deal with heterogeneity in a fully nonparametric
way by treating each household as an individual time series.

1For example Stone, R. (1956).
2For example Griliches, Z. (1971).
3For example Tinbergen, J. (1959).
4For example Heckman, J., and J. Scheinkman, (1987).
5For example Markowitz H. (1959).
6For example Berry, S., J. Levinsohn, and A. Pakes, (1995).
7 See Samuelson (1948), Houthakker (1950), Afriat (1967), Hanoch and Rothschild (1972),

Diewert (1973), Diewert and Parkan (1978) and Varian (1982, 1983, 1984).

2



2 Revealed preference conditions for the char-
acteristics model

We first present the usual revealed preference conditions for the standard pref-
erences over goods model. Let qt be a (K × 1) vector of quantities of market
goods bought in period t at market prices pt. Given a dataset {pt,qt}t=1,...,T ,
we ask when these data be rationalised by a utility function, in the following
sense:

Definition 1. A utility function u (q) q-rationalises the data
{pt,qt}t=1,...,T if u (qt) ≥ u (q) for all q such that p0tqt ≥ p0tq.

The standard results (see Varian (1982) for the definition of GARP) are the
classic Afriat-Varian conditions:

Afriat’s Theorem8. The following statements are equivalent:
1. there exists a utility function v (z) which is continuous, non-
satiated and concave which q-rationalises the data {pt,qt}t=1,...,T .
2. there exist numbers {Vt, λt > 0}t=1,...,T such that

Vs ≤ Vt + λtp
0
t (qs − qt) ∀ s, t = 1, ..., T

3. the data {pt,qt}t=1,...,T satisfy the Generalised Axiom of Revealed
Preference (GARP).

The characteristics model supposes that preferences have the following struc-
ture:

u (q) = v (z)

z = F (q) =
£
F 1 (q) , ..., F J (q)

¤0
where z is a (J × 1) vector of the levels of various product characteristics (or
attributes) produced by those market goods by the technology F (.), and u (q)
and v (z) are utility functions defined over market goods and characteristics
respectively. The consumer choice model is:

max
q

v (z) subject to z = F (q) and p0tq ≤ xt

This model takes prices as given for individual agents and we follow this treat-
ment in this paper. The concept of endogeneity of prices in revealed preference
analysis is a slippery one since there are no explicit stochastic variables in the
analysis. If prices are measured with error then this can have an impact on the
outcome of revealed preference tests, but this is a more general issue then we
can address here.
The most widely analysed and applied version of the consumer characteristics

model is one in which characteristics are a linear function of the demands for
8Afriat, S. N. (1967), Diewert, W. E. (1973), Varian, H. (1982).
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market goods. That is z = A0q where A is (K × J) matrix of constants with
J ≤ K and A has full column rank. The technology matrix A records the
amounts of each of the characteristics present in one unit of each of the market
goods. In this paper we concentrate on this linear version of model but note
that most of what follows also applies to non-linear characteristics with non-
convex technologies. Our initial focus is on the circumstances under which data
can be nonparametrically rationalised by this model. In this context the term
rationalise is defined as follows:

Definition 2. A utility function v (z) z-rationalises the data
{pt,qt}t=1,...,T for the technology A if v (zt) ≥ v (z) for all z
such that zt= A

0qt, z = A
0q and p0tqt ≥ p0tq.

This states that a utility function rationalises observed choices if it assigns an
equal or higher value to those bundles of characteristics which the consumer
chooses than it does to those alternative bundles of characteristics which could
have feasibly been produced from affordable bundles of market goods. If a
utility function z-rationalises the data, this means that were it plugged into
the consumer’s maximisation problem set out above, then it would perfectly
generate the observed data {pt,qt}t=1,...,T for the posited technology A.
For a good, k, which is purchased, the first order condition from the linear

characteristics model gives the following decomposition of its price as a weighted
sum of the shadow prices of its characteristics

pkt = akπt (1)

where ak denotes the kth row of A and

πt =
1

λt
∇v (zt)

Thus the shadow price of a characteristic is defined as its marginal utility nor-
malised by the marginal utility of total expenditure (λt) (see Gorman (1956),
equation (5)). That the market price of a good that is bought can be viewed
as a linear combination of the underlying shadow prices is the most important
feature of a characteristics model.
The key to deriving necessary and sufficient conditions for the characteristics

model can be shown in a simple figure. In Figure 1 we present a graphical three
good, two attribute illustration of the revealed preference conditions. Initially
the agent faces the constraints given by the kite shape defined by solid lines and
chooses point A at which she is consuming goods 1 and 2. Suppose now that
the price of good 1 falls and the price of good 3 rises, so that she now faces the
dotted constraint set. If she now switches to buying some of good 3 and none
of good 1 then we cannot rationalise her choices with convex preferences. If, on
the other hand, she continues to buy both of goods 1 and 2, or even only one
of them, we can find indifference curves that rationalise the choices. Our task
in now to extend this insight into feasible testable conditions for several goods
and characteristics.
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Figure 1. Revealed preference for characteristics
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The next theorem gives the necessary and sufficient conditions for the charac-
teristics model.

Theorem 1. The following statements are equivalent.
(P ) there exists a utility function v (z) which is non-satiated, con-
tinuous and concave in characteristics which z-rationalises the data
{pt,qt}t=1,...,T for given A.
(A) there exist numbers {Vt, λt > 0}t=1,...,T and vectors {πt}t=1,..,T
such that

Vs ≤ Vt + λtπ
0
t (A

0qs −A0qt) , ∀ s, t (A1)

pt ≥ Aπt, ∀t (A2)

(pt −Aπt)¯ qt = 0, ∀t (A3)

(L) there exist numbers
nbVt, bλt ≥ 1,o

t=1,...,T
and vectors {bπt}t=1,..,T

such that bVs ≤ bVt + bπ0t (A0qs −A0qt) , ∀ s, t (L1)bλtpt ≥ Abπt, ∀t (L2)³bλtpt −Abπt

´
¯ qt = 0, ∀t (L3)

(G) the data {πt,A
0qt}t=1,...,T pass GARP for some choice of πt

such that (A2) and (A3) are satisfied.

Conditions A3 and L3 impose the linear pricing condition (1)9. Conditions (A)
and (G) are the characteristics model analogues of the conditions in Afriat’s
Theorem. However, both present practical difficulties for testing. Thus (A)
involves both non-linear functions of unknowns and strict inequality constraints
on unknowns, and (G) requires that we first find the shadow prices in order to

9The symbol ¯ denotes the Hardamard product (element-by-element multiplication) of
two vectors or matrices of the same dimension; that is (a, b)¯ (c, d) = (ac, bd).
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implement a GARP test and there is no known general algorithm to do this
in a finite number of steps10 . We have therefore included condition (L) since
this condition is in the form of the restrictions in a linear programming problem.
Consequently we can simply employ standard linear programming techniques to
find, in a finite number of steps, whether there exists a feasible set of unknowns
which satisfy these constraints (the first step of all linear programming algo-
rithms). Nevertheless, whilst this approach will always give a result in a finite
number of steps, for even moderate sized problems this quickly leads to a large
dimension problem since we have T (J + 2) unknowns, T (T − 1) + T (K + J)
inequality constraints and TK equality constraints. Given this, it is convenient
to derive a simple necessary condition for z -rationalisation; this will also be
useful in the next subsections.
Denote the sub-vector of period t prices for which demands are positive as

p+t , and let A
+
t be corresponding sub-matrix of A (with p0t and A

0
t denoting

the complementary sub-vectors and sub-matrices for goods for which demands
are zero)11. Any set of shadow price vectors that satisfy A2 and A3 must have:

p+t = A
+
t πt

A necessary condition12 for this system of equations to have a solution is that:

rank(A+
t |p+t ) = rank

¡
A+
t

¢
where the left hand matrix is the matrix A+

t with the extra column p
+
t concate-

nated horizontally. If this rank condition holds then a solution for the shadow
prices will be given by:

πt =
£
A+
t

¤−1
p+t

where the operator [X]−1 denotes the generalised (Moore-Penrose) inverse of
the not-necessarily-square matrix X. These rank conditions are very easy to
check and if they fail for some t then we know that the data can never satisfy
A2 and A3. Note, however, that these conditions are only necessary13 and even
if they hold we may not be able to find shadow prices that satisfy:

p0t ≥ A0
tπt

The rank conditions are particularly useful if rank
¡
A+
t

¢
= J since then we can

solve uniquely for the shadow price vectors. If this holds in every period, then
we can use GARP and condition (G) for testing which is computationally very

10The computational problem is akin to that encountered in revealed preference tests of
weak functional separability (see Varian (1983)). See below for a discussion of the particular
circumstances under which the πt vectors may be recovered uniquely.
11The t subscript on A+

t and A0
t reflects the fact the pattern of goods purchased can vary

from period to period.
12 See for example, Magnus and Neudecker, (1991), pp.36-37, Theorem 11.
13Another necessary, but not sufficient condition is that the data {pt,qt}t=1,...,T satisfies

GARP. The conditions in Theorem 1 imply this, but are not implied by it. See Corollary 1
below.
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rapid. Finally we note that since the characteristics model with J < K is just
a special case of the standard model z-rationalisation implies q-rationalisation.
Formally:

Corollary 1. If there exists a concave utility function v (z) with
z = A0q which z-rationalises the data then there exists a concave
utility function u (q) which q-rationalises the data.

To summarise, Theorem 1 provides necessary and sufficient conditions for z-
rationalisation which are computationally feasible and indeed straightforward to
check. If a given dataset and technology matrix satisifies these conditions then
there exists at least one utility function, defined over characteristics, which when
plugged into the consumer’s optimisation problem will generate the observed
data without error.
Thus far we have assumed that the researcher always observes the price of

all goods, even of those goods that the consumer does not buy in a particular
period. For some data structures this is not the case. One possible procedure
is to impute the missing prices, perhaps by taking the prices paid by other
consumers in the same region and period. Another is to use suitable published
price indices. The problem with any such imputation is that we can never know
how much the outcome of the test depends on the imputation. An alternative
procedure is to include the missing prices as unknowns and search for values so
that the constructed data satisfy the conditions. Since we can always implicitly
set the prices of the goods which are not bought very high, this obviously makes
it easier to satisfy the conditions and so the resulting test will be weaker in this
sense. Formally we have the following Afriat conditions for the characteristics
model with missing prices:

Theorem 2. The following statements are equivalent:

(P ) there exists a utility function v (z) which is non-satiated, contin-
uous and concave in characteristics and prices

©
p0t
ª
t=1,...,T

which
z-rationalise the data {pt,qt}t=1,...,T for given A.

(A) there exist numbers {Vt, λt > 0}t=1,...,T and vectors {πt}t=1,..,T
such that

Vs ≤ Vt + λtπ
0
t (A

0qs −A0qt) for all s, t = 1, ..., T

p+t = A+
t πt for all t = 1, ..., T

(L) there exist numbers
nbVt, bλt ≥ 1,o

t=1,...,T
and vectors {bπt}t=1,..,T

such that

bVs ≤ bVt + bπ0t (A0qs −A0qt) for all s, t = 1, ..., Tbλtp+t = A+
t bπt for all t = 1, ..., T
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These conditions are identical to, for example, those in conditions (A) and (L) in
Theorem 1, except that they do not involve the unobserved prices. Once again
we give the standard version of the condition and the linear programming form
which is relatively easy to check. The test given in this theorem is weaker than
the test in the previous subsection in the sense that passing the test on data
in which all prices are observed (even if some quantities are zero) implies the
conditions in this theorem, but not the other way around. If these conditions
hold then we can take any set of implied bπt’s and bλt’s and simply set:

p0t =
³bλt´−1A0

t bπt

(which satisfies (L3) in Theorem 1). In this case the resulting p0t vectors have the
interpretation of being virtual market prices; that is, at these prices consumers
are just on the verge of buying market goods that they did not buy in period t.
If the πt’s are not unique, these values will not be uniquely determined either.
Note that we also have the corollary (paralleling Corollary 1) that if there exists
a data consistent utility function defined over characteristics and virtual prices,
then there also exists a data consistent utility function over market goods.

Corollary 2. If there exists a concave utility function v (z) with
z = A0q and virtual prices

©
p0t
ª
t=1,...,T

which z-rationalise the

data
©
p+t ,qt

ª
t=1,...,T

then there also exists a concave utility function

u (q) and virtual prices
©
p0t
ª
t=1,...,T

which q-rationalise the data.

To conclude this section we note that in the presence of missing prices the
linear programming condition seems to have a clear advantage over the GARP
condition. Firstly they still require the necessary condition rank

¡
A+
t |p+t

¢
=

rank
¡
A+
t

¢
, so that we can reject z-rationalisation, even with missing prices

should we find that rank
¡
A+
t |p+t

¢
> rank

¡
A+
t

¢
. Furthermore (as pointed out

by Varian (1988)) GARP-type tests are generally ruled out by missing price data
because inner products such as p0tqs can involve missing prices; for example, if
the price of the kth good is not observed in period t because it wasn’t purchased,
but good k was purchased in period s. However, the framework described in
Theorem 2 can be easily adapted to testing for q-rationalisation when there are
missing prices by simply replacing A with the identity matrix IK . This then
provides a weaker test of GARP/q-rationalisation in the presence of missing
price data in the same sense that Theorem 2 provides a weaker test of the
characteristics model than is given in Theorem 1.
Suppose now that we have some data (where all prices are observed), which

satisfies the q-rationalisation conditions but not the z -rationalisation conditions
for a given matrix A. One possible reaction is to seek an alternative matrix A
which has rank less than K and does z -rationalise the data.14 If, however, we
really do believe that the characteristics given by A are objects of preferences

14The restriction rank (A) < K is because we can always find a ‘trivial’ characteristics
model with rank (A) = K by taking A = IK .
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(but not a full set) then a more natural procedure is to seek a supplemen-
tary set of unobserved characteristics that do z -rationalise the data in conjunc-
tion with the observed ones (denote this augmented technology matrix by eA).
One strategy in this case is to try to find additional characteristics such that
rank(eA|pt) = rank(eA). This is because the combination of this rank condi-
tion with the fact that the data {pt,qt}t=1,...,T are q-rationalisable gives the
following result.

Corollary 3. The following statements are equivalent
1) the data {pt,qt}t=1,...,T satisfy the conditions for q-rationalisation
and rank(eA|pt) = rank(eA) for all t
2) the data {pt,qt}t=1,...,T and the augmented matrix eA satisfy the
conditions for z-rationalisation.

This is just a special case of Theorem 1 in which (A2) holds with equality. Given
data which satisfies the q-rationalisation conditions the issue is then one of
finding suitable supplementary characteristics so that the rank condition holds.

Theorem 3. If the data {pt,qt}t=1,...,T satisfy the conditions for
q-rationalisation, but not the conditions for z-rationalisation given
A, then we can always find an augmented matrix eA = A|B so that
the data do z-rationalise given the augmented matrix eA. The ma-
trix B must be at least rank H where H is given by rank(A|P) =
rank(A)+H and P is the horizontally concatenated price data P =
[p1|...|pT ].

To see where this result comes from take the case in which we want to add the
minimum possible number of extra characteristics to satisfy the rank condition —
i.e. we want to add only H new characteristics. We require a (K ×H) matrix B
such that rank(eA|P) = rank(eA) for eA = A|B. Since rank(eA|P) = rank(eA),
there exists a eΠ such that P =eA eΠ. One way of finding B and eΠ is as follows.
We can write

P
(K×T )

= eA eΠ
(K×(J+H))((J+H)×T )

= AΠ
(K×J)(J×T )

+ BΠB
(K×H)(H×T )

≡ AΠ
(K×J)(J×T )

+ E
(K×T )

and estimate Π and E in the last equation using, for example, OLS, where E
will be the matrix of residuals. We then want to find a B so that E = BΠB,
i.e. we want to find a K ×H matrix that forms a column basis for E, which we
can do using, for example, principle components.
Two other special cases of an augmented characteristics matrix, where B

is not restricted to be K × H, have been used in the literature. The first
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option is to add a set of product-specific dummy characteristics to the existing
set of characteristics as discussed in Gorman (1956) and Pudney (1981). This
approach sets B ≡ IK and ΠB ≡ E. Thus

eA = [A|IK ]
(K×[J+K])

eΠ
([J+K]×T )

=

∙
Π
E

¸
and eπt =

∙
πt

et

¸
([J+K]×1)

where eπt and et represent column t of eΠ and E etc.). Obviously this augmented
model achieves the required rank condition by greatly expanding the number of
characteristics to J + K. Thus Gorman suggests that the new characteristics
should be made ‘small’.
The second representation of essentially the same model is to add a single

time-varying unobserved characteristic to the A matrix; this is widely used in
the empirical IO literature15. This approach sets B ≡ E and ΠB ≡ IT . Thus

eA = [A|E]
(K×[J+K])

eΠ
([J+K]×T )

=

∙
Π
IT

¸
Alternatively, we can think of this as a time varying technology where

pt = eAt eπt

and eAt = [A|et]
(K×[J+1])

and eπt =

∙
πt

1

¸
([J+1]×1)

Obviously the informational content of these three aproaches is identical,
and only differ in the way E is partitioned into additional characteristics and
their marginal valuations. Note that E itself is not identified by anything other
than the initial method of choosing Π. In the first we want to add as few extra
characteristics as possible so we makeB a column basis forE. ObviouslyB is not
unique. The second introduces K market-good-specific dummy characteristics
with corresponding marginal valuations given by E. The third introduces a
new time-varying characteristic which has a marginal valuations of one in every
period.
The last two suggestions discussed above yield essentially ‘trivial’ charac-

teristics models in the sense that they have at least as many characteristics as
market goods. Only in the first may we be able to find a non-trivial character-
istics model with fewer characteristics than goods would fit the data (i.e. where
J +H < K). So far we have assumed that all the prices are observed, and used
this to develop rank conditions which will give us z -rationalisability. We now
turn to the case in which only the prices of the purchased goods are observed.
The simplest extension is ask whether there is any vector b that we can

concatenate to A such that we can z-rationalise the data for eA = A|b. This is
15For example Berry, S., J. Levinsohn, and A. Pakes, (1995).
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equivalent to searching for one unobserved characterisitic. More generally, we
could search for a (K ×H) matrix B such that we can z-rationalise the data
for eA = A|B. As before, to give a non-trivial model we require J + H < K.
Conceptually this is straightforward: we simply replace A with eA = A|B in
Theorem 2 and add B to the list of unknowns. Unfortunately this is no longer a
set of constraints that is linear in the unknowns (because of the element eAbπt) so
we cannot use standard linear programming techniques to ensure the existence
or non-existence of such a set of paremeters. Instead we have to use a nonlinear
optimisation approach. To provide the constraint we use the maximum Afriat
Efficiency16 function, emax(.), which maps from the observed data to [0, 1].
This is the value such the revealed preference conditions, allowing for some
inefficiency in buying, satisfy GARP; a value of 1 means that the data passes
GARP and all data passes GARP for a value of zero. The following problem will
have a solution at zero if there exists a matrix B which satisfies z-rationalisation

Problem 1: minB f (B) = (1− emax (Π,Z)) where the tth column
of Π is πt =

£
A+
t |B+t

¤−1
p+t and Z = [A|B]

0
Q where the (K × T )

matrix Q = [q1|...|qT ].

This algorithm is straightforward to implement using standard nonlinear op-
timisation methods. It starts with an initial guess at B, computes (Π,Z) as
described and then computes the Afriat efficiency parameter at which the data
(Π,Z) pass GARP. If emax(Π,Z) < 1 then f (B) > 0 and B is then altered
on the basis of numerically computed gradients with respect to the objective
function in order to minimise f (B). We have the following result.

Theorem 4. If Problem 1 has a solution at f (B) = 0 then there ex-
ists at least one suitable B matrix such that the data {pt,qt} and the
augmented technology matrix eA = [A|B] satisfy z-rationalisation.

Finally we consider the case in which no characteristics are observed at all. This
is equivalent to having an unknown transformation matrix A. In such a case
we may wish to test whether there is any linear characteristics model with a
given rank J < K that could be z -rationalisable with some given data. The
approach laid out in Problem 1 and Theorem 4 still applies - suitably adapted
with eA = B for example.

3 Application

3.1 The data

In this section we apply some of the ideas outlined above to data on purchases
of (cow’s) milk in a commercial Danish consumer panel. The data cover 2, 500
households during 1999 and 2000; these households comprise all types rang-
ing from young singles to couples with children to elderly couples. Over the
16See Afriat. S. N. (1973) and the Appendix for a brief discussion.
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two years, each household keeps a strict record of everything they buy in each
shopping trip; this is done by the use of home scanners which record price,
quantity, the characteristics of the good, the store used etc.. We aggregate the
milk records to a monthly level, partly to minimise the computational burden
and partly to allow us to treat milk as a non-durable, non-storable good, so that
the intertemporally separable model implicitly assumed in the theory section is
appropriate. Thus for each month we have the quantity and expenditure for
each type of milk; from this we construct a unit price for any milk bought as
the monthly expenditure divided by the monthly quantity. Since we cannot
construct a unit price for a type that is not bought we are in the missing price
context discussed in subsection 2.2.
We concentrate on the 6 main types of milk which differ according to fat

content (0.1% (skimmed), 1.5% (semi-skimmed) and 3.5% (full-fat)) and conven-
tional/organic production methods17. Table 1 below shows the market shares
by value and volume of these six types in our data. Overall conventional milk
commanded the majority of the market with a share of about 75% on both
measures, and semi-skimmed milk is the most popular type by fat content with
nearly 60% of the market by both measures. This is mainly due to the pattern
of conventional milk sales; within the organic segment of the market, skimmed
and semi-skimmed have equal shares.

Table 1. Market shares

Market share (%) Conventional milk Organic milk
3.5% 1.5% 0.1% 3.5% 1.5% 0.1%

By value 14.68 45.79 14.16 4.00 10.72 10.64
By volume 13.65 49.26 15.54 3.03 9.16 9.36

Table 2 gives some descriptive statistics on the prices of the different types of
milk in Danish kroner (DKK) per litre (very approximately, 8 DKK equals one
Euro or $1.30 US). Organic milk is more expensive than conventionally produced
milk by roughly 1.20 DKK/litre, and within the organic/conventional split there
is a clear gradient with respect to fat content: the higher the fat content the
higher the price with a price difference of roughly 1 DKK/litre between full-fat
and skimmed milk.

Table 2. Prices

Prices (DKK/litre) Conventional milk Organic milk
3.5% 1.5% 0.1% 3.5% 1.5% 0.1%

Mean 6.11 5.34 5.09 7.34 6.51 6.30
Median 6.00 5.30 5.00 7.31 6.50 6.27
Std. Dev. 0.62 0.56 0.31 0.38 0.33 0.23
Coeff of variation 0.10 0.10 0.06 0.05 0.05 0.04

17We drop speciality milks such as buttermilk and chocolate milks. Note too that container
size may be a relevant priced characteristic. In what follows we do not consider container
size for simplicity, but we note that container size and bulk discounting could be incorporated
into our approach by defining milks sold in containers of different volumes as different market
goods and by including the container volume as a characteristic.

12



The corresponding characteristics model has K = 6 market goods, and J = 3
characteristics:

Table 3. Market goods and characteristics

Market goods Characteristics
Conventional milk, 3.5% fat “Milkiness”
Conventional milk, 1.5% fat Fat content
Conventional milk, 0.1% fat “Organic”
Organic milk, 3.5% fat
Organic milk, 1.5% fat
Organic milk, 0.1% fat

K = 6 J = 3

The transformation matrix is given by:

A =

⎡⎢⎢⎢⎢⎢⎢⎣
1 3.5 0
1 1.5 0
1 0.1 0
1 3.5 1
1 1.5 1
1 0.1 1

⎤⎥⎥⎥⎥⎥⎥⎦
The first characteristic is is the baseline characteristic common to all milk — we
have termed it "milkiness" — and it is measured in litres. If a consumer were to
buy one litre of completely fat free, conventionally produced milk (were such a
product available in this market) this is the characteristic they would consume.
Fat content is measured in cl’s per litre and is linear with respect to market goods
- if one buys two litres of full fat milk then it will contain 7 cl’s of fat by volume,
a litre of skimmed and a litre of semi-skimmed together produce 1.6 cl’s of fat by
volume18. The interpretation of the organic/conventional characteristic is less
straightforward. It is measured by an indicator taking the value 1 if the organic
characteristic is present, and 0 if it is not. Whenever the organic characteristic
represents (perhaps a warm glow, perhaps the absence of antibiotic residues in
the milk) this specification of the technology says that twice as much of it is
produced by buying 2 litres of milk, than is produced by 1 litre — which is not
to say, however, that the consumer then values it twice as much since the utility
function is assumed concave in attributes.
18A less restrictive characteristics model would allow for differences in the taste of milk

according to the fat content. In that case full fat is not simply a linear combination of skimmed
and semi-skimmed and we would have four characteristics (skimmed, semi-skimmed, full-fat
and organic) rather than the three we have taken. Other more exotic mappings from market
goods to characteristics are clearly conceivable but we are interested in seeing how well this
very simple approach does in explaining the data.
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3.2 Results

In these data we can only construct unit prices for the purchases which take
place. As already discussed, the two options to deal with this are either to
impute prices and apply the test described in Theorem 1 or to apply the weaker
test in Theorem 2 which only requires the observed prices. We present the results
for both tests beginning with the weaker test (since if a household fails this
then they obviously cannot satisfy Theorem 1 however we were to impute the
missing prices). For households satisfying the conditions we present the marginal
valuations of characteristics we are able to recover using our methods. We then
impute the missing prices using region/month cell medians from observed unit
prices and re-test applying the conditions in Theorem 1. Note that in carrying
out these test we are allowing for complete heterogeneity amongst households
firstly with respect to whether or not an individual household’s behaviour is z-
rationalisable at all, secondly with respect to the form of their preferences if they
indeed are rationalisable and thirdly with respect to their marginal valuations
of the characteristics.
To begin with we take the time series of price and quantity data for an

individual household and the 3-factor technology matrix and apply phase one
of the linear programme defined by condition (L) in Theorem 2. We record
whether a feasible solution exists. We then take the data for the next household
and repeat the exercise. We also apply the test of q-rationalisation in which we
replace A with an IK matrix. The results are given in Table 4.

Table 4. Test results, with missing prices

q-rationalisation z -rationalisation
Freq. Percent Freq. Percent

Pass 2341 94% 1891 76%
Fail 159 6% 609 24%
Total 2500 100% 2500 100%

We find that for the great majority of the sample households there exist suitable
virtual prices and utility functions which q-rationalise their observed behaviour.
We also find that for three-quarters of the sample (and 81% of those who are
q-rationalisable) behaviour is also z -rationalisable. We also investigate whether
we can explain the pattern of passing/failure using some of the observable char-
acteristics of the survey households. The controls were: dummy variables for
single person households, households composed of couples, the presence of chil-
dren, the presence of pre-school age children, the main shopper being male, the
presence of retired people and living in Copenhagen; continuous variables for the
total volume of milk purchased by the household and the mean age of the adults
in the household. We found that whilst some variables were statistically signif-
icant19 at 95% the overall ability of these control variables to fit the patterns

19 In a linear regression of a q-rationalisability indicator on these variables and a constant,
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of passes and failure in the data was very weak. The R2 of linear regressions
of q-rationalisability and z-rationalisability indicators on these controls were
0.0075 and 0.032 respectively. We conclude that the patterns of passes/failures
is essentially random with respect to observable household characteristics.

Figure 2. The densities of the distributions of marginal valuations of
characteristics

The linear programme test only indicates the existence of Afriat numbers
and vectors of marginal valuations of characteristics which satisfy the conditions
for the model; it does not recover them uniquely. However, for many households
which are rationalisable we are able to recover unique solutions for the π-vectors.
For these households (1385 in all) we solve for πt in each period where a solution
can be obtained20. Table 6 reports some descriptive statistics for the marginal
valuations of each characteristic, and Figure 2 illustrates their sample densities.

Table 6. Descriptive statistics of recovered marginal valuations, DKK
Percentile Points

Mean Std Dev. 10th 25th 50th 75th 90th n
Milkiness 5.10 1.24 3.53 4.80 5.07 5.56 6.27 6829
Fat 0.43 0.59 0.00 0.19 0.32 0.56 1.16 4965
Organic 0.99 1.26 -0.63 0.46 1.20 1.53 2.72 3121

On average, milkiness has a valuation of 5.10 DKK per litre with each additional
cl of fat content increasing the valuation by 0.43 DKK and organic attracting a
premium of about 1 DKK. The valuations of the milkiness and the organic char-
acteristic are evidently highly heterogeneous, whilst the valuations of fat are less
so. Milkiness always has a positive marginal valuation but there are some nega-
tive valuations for the other characteristics: just under 10% of valuations of fat

apart from the constant only the male shopper dummy was significant (positively) at 95%. For
the same regression for z-rationalisability the dummies for single person households, retired
household members and the purchase volume were all positively significant. The pre-school
children dummy was negatively significant.
20Note that we may not be able to solve for all of the elements of πt in every case as this

will depend on the standard rank/order requirements for the simultaneous equation systems
p+t = A

+
t πt.
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recovered are negative and nearly 17% of organic are negative. These negative
marginal valuations do not conflict with the theory and are not inconsistent with
the idea that the consumption of market goods has non-negative marginal util-
ity overall. For some households which buy a sufficiently wide range of goods we
are able simultaneously to recover their valuations of all of the characteristics.

Figure 3. The joint density of the distribution of
the marginal valuations of fat and organic

Two dimensions (fat,organic) are illustrated in Figure 3; note that once again
a household may appear several times in this distribution. There appear to be
three distinct modes: one small group (top left) shows a high fat valuation and
a low valuation for organic; a larger group (top right) has a high valuation of
organic and a moderate one for fat; a large middle group which values organic
but not fat. It seems that households are fairly stable with respect to which
of these groups they principally belong with 77% of households appearing in
only one of these groups, 20% appearing in two groups (most often the big low
fat-moderate organic and the top right moderate fat-moderate organic groups)
and only 3% of households having valuations which appear in all three.
We now impute the missing prices using the medians of region/time period

cells and test for q-rationalisation and z-rationalisation using Theorem 1. With
the missing data filled in in this manner, we first test (using Afriat’s Theorem)
for q-rationalisation for each individual household to see whether there exists
an admissible utility function u (q) defined over products which rationalises
their behaviour. For those that fail we know that z-rationalisation is out of the
question. For those where a suitable u (q) exists we apply the conditions in
Theorem 1.

Table 8. Test results, with imputed prices

q-rationalisation z -rationalisation
Freq. Percent Freq. Percent

Pass 1766 71% 1498 60%
Fail 734 29% 1002 40%
Total 2500 100% 2500 100%
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Using the imputed prices, 71% of the sample are q-rationalisable: the rest are
not and since (taking the imputed prices to be correct) q-rationalisation is a
necessary condition for z-rationalisation, these households cannot satisfy the
conditions in Theorem 1. Setting them aside we then test the remaining 1766
households. We find that, using the imputed prices, 60% of the sample are z-
rationalisable (this represents 84% of those who satisfy the prerequisite of being
q-rationalisable). As before, we examined the ability of observable household
characteristics to predict the pattern of passes/failures in the data. Once more,
though individual controls were statistically significant21 the overall R2 for q-
rationalisability and z-rationalisability were extremely low: 0.0402 and 0.0325
respectively. Once more we conclude that the pattern of passes/failures is es-
sentially random with respect to household observables.

4 Conclusions
We have extended the nonparametric methods developed in the literature to
consumer characteristics models. We have derived the minimal necessary and
sufficient empirical conditions under which data on the market behaviour of het-
erogeneous, price-taking, individual consumers are nonparametrically consistent
with the consumer characteristics model. Where these conditions hold, we have
show how information may be recovered on individual consumer’s marginal val-
uations of product attributes. Where the conditions fail we highlight the role
which the introduction of unobserved product attributes can play in rationalis-
ing the data. We have implemented these ideas using a consumer panel data on
the Danish milk market.
21 In the q-rationalisability regression the dummy variables for retired household members,

male shoppers and the purchase volume measure were all positively significant, whilst age
was negatively related. In the z-rationalisability regression the results were the same with the
addition of the living in Copenhagen dummy variable which was negatively significant.
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Appendix: Proofs
Proof of Theorem 1

(P ) ⇒ (A) : By concavity of v (z) we have v (zs) ≤ v (zt) +∇v (zt)0 (zs − zt)
and optimising behaviour implies p0t ≥ π0tA

0 with equality when qkt > 0 where
λtπt =∇v (zt) by definition22. Therefore we have numbers {Vt, λt > 0,πt}t=1,...,T
(where λt > 0 follows from non-satiation with respect to market goods) which
satisfy Vs ≤ Vt + λtπ

0
t (zs − zt) for all s, t.

(A) ⇒ (P ) : From condition (L2) we have p0tqt = π0tA
0qt = π0tzt, since the

locations in pt where the prices are greater than the corresponding locations
in π0tA

0 occur only where the corresponding locations in qt are zero23 . The
linear structure, however, ensures that p0tq ≥ π0tA

0q = π0tz. Hence (A2) gives
p0tqt ≥ p0tq ⇒ π0tzt ≥ π0tz. Condition (A1) is, by Afriat’s Theorem, equivalent
to the existence of a concave, continuous utility function v (z) such that for any
z with π0tzt ≥ π0tz it is the case that v (zt) ≥ v (z) (that is to say, condition (A1)
means that there exists some v (z) which q-rationalises the data {πt, zt}t=1,...,T ).
Combining these results we have that for any z = A0q such that p0tqt ≥ p0tq
then π0tzt ≥ π0tz and there exists a suitable utility function v (z) such that
v (zt) ≥ v (z). Hence there exists a concave, continuous utility function v (z)
with z = A0q which z-rationalises the data {pt,qt, zt}t=1,...,T .
(L)⇐⇒ (A). Given {Vt, λt > 0,πt}t=1,...,T which satisfy (A) we can then simply
normalise on λmin = mint {λt}t=1,...,T and define bVt = Vt/λ

min, bλt = λt/λ
min,bπj

t = λtπ
j
t/λ

min. We then have
nbVt, bλt ≥ 1, bπt

o
t=1,...,T

satisfying (L) as re-

quired. Conversely, given
nbVt, bλt ≥ 1, bπt

o
t=1,...,T

satisfying (L) we can divide

(L1) to (L3) by the positive constant bλt and defining Vt = bVt/bλt, λt = bλ−1t and
πj
t = bπj

t/
bλt we have condition (A) .

(A)⇐⇒ (G) : Given some πt satisfying condition (A), the equivalence between
condition (A) and GARP on the data {πt,A

0qt}t=1,...,T follows from, for ex-
ample, Theorem 1 in Varian (1983) by interpreting the πt vector as the price
vector for the characteristics.¥

Proof of Corollary 1

If there exists a function v (z) that z-rationalises {pt,qt}t=1,...,T , then v (A0qt) ≥
v (A0q) for all q such that p0tqt ≥ p0tq. Define u (q) by u (q) = v (A0q). Then
v (A0qt) ≥ v (A0q) for all q such that p0tqt ≥ p0tq =⇒u (qt) ≥ u (q) for all q
such that p0tqt ≥ p0tq. Therefore u (q) q-rationalises the data. If v (A0q) is

22Gorman (1956) p. 843.
23Linearity is over-sufficient in this sense as p0tqt = π0tzt would also result from z (q) being

a nonlinear homogenous of degree one function.
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concave then

µv (A0qt) + (1− µ)v (A0qs) = µu (qt) + (1− µ)u (qs)

µu (qt) + (1− µ)u (qs) ≤ v (µA0qt + (1− µ)vA0qs)

But

v (µA0qt + (1− µ)vA0qs) = v (A0 (µqt + (1− µ)qs))

= u (µqt + (1− µ)qs)

Hence µv (A0qt)+(1−µ)v (A0qs) ≤ u (µqt + (1− µ)qs) =⇒ u (q) is concave.¥

Proof of Theorem 2.

Obvious from comparison with Theorem 1 whilst noting that given πt such that
p+t = A

+
t πt for all t = 1, ..., T , then we can simply use them to construct the

unobserved prices from p0t = A
0
tπt. ¥

Proof of Corollary 2.

Analogous to Corollary 1.¥

Proof of Corollary 3.

By Afriat’s Theorem GARP for the data {pt,qt}t=1,...,T is equivalent to the
existence of numbers {Vt, λt > 0}t=1,...,T such that

Vs ≤ Vt + λtp
0
t (qs − qt) for all s, t = 1, ..., T

The rank condition implies the existence of vectors {πt}t=1,...,T such that

p0t = π0tA
0

for all t. Substituting in means that there exists numbers {Vt, λt > 0}t=1,...,T
such that

Vs ≤ Vt + λtπ
0
tA

0 (qs − qt) for all s, t = 1, ..., T

Vs ≤ Vt + λtπ
0
t (A

0qs −A0qt) for all s, t = 1, ..., T

The rest of the proof is analogous to that for Theorem 1.¥

Proof of Theorem 3.

Let Π = [π1, ...,πt] be a (J × T ) matrix. Let

E
(K×T )

= P
(K×T)

− AΠ
(K×J)(J×T )

Then rank {E} = rank(AΠ|P)−rank(AΠ) ≥ rank(A|P)−rank(A) = H. As-
sumeΠ is chosen so that rank {E} = H. Thus E can be written as BΠB where
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B is a K ×H matrix that forms a column basis for E and ΠB =
¡
BB0

¢−1
BE.

So

P = [A|B]
∙
Π
ΠB

¸
and rank

neA |P
o
= rank

neAo where eA is the augmented A matrix. Given

this rank condition and the fact that {pt,qt}t=1,...,T is q-rationalisable Corollary
1 then applies. Since rank {E} can never be less than H, B must always add
at least H characteristics to the model. ¥

Proof of Theorem 4

If f (B) = 0 then emax(Π,Z) = 1 since emax(Π,Z) ∈ [0, 1] and by definition
(see the discussion of this function in the Appendix) the data {πt, zt}t=1,...,T
satisfy condition (G) and therefore conditions (A) and (L) in Theorem 1 and
their equivalents in Theorem 2.¥

The Afriat efficiency function.
A GARP test can be interpreted as a test of two sub-hypotheses: (1) the con-
sumer has rational preferences, and (2) the consumer is an efficient programmer.
If the data violates GARP then Afriat (1973) suggests modifying (2) whilst
maintaining (1). He suggests a form of partial efficiency, and introduces the
efficiency parameter e where 0 ≤ e ≤ 1. The consumer is now allowed to waste
a fraction (1− e) of their budget through optimisation error. This is done by
modifying the preference relation R0 to:

qsR
0
eqt ⇔ ep0sqs ≥ p0sqt

This efficiency concept can be used to define a weaker consistency test:

GARP (e) : qsReqt ⇒ Not qtP 0e qs

where “Not qtP 0e qs” ≡ ep0tqt ≤ π0tqs and where Re denotes the transitive
closure of R0e. If e = 1 then GARP (e) is equivalent to GARP . If e = 0 then
there is no restriction on behaviour. The function e () is a simple numerical
search algorithm with finds the largest value of e such that a given dataset
satisfies GARP (e).
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