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[Abstract]

This paper presents new identi�cation results for the class of structural dy-
namic discrete choice models that are built upon the framework of the structural
discrete Markov decision processes proposed by Rust (1994). We demonstrate
how to semiparametrically identify the deep structural parameters of interest
in the case where utility function of one choice in the model is parametric but
the distribution of unobserved heterogeneities is nonparametric. The proposed
identi�cation method does not rely on the availability of terminal period data
and hence can be applied to in�nite horizon structural dynamic models. For
identi�cation we assume availability of a continuous observed state variable that
satis�es certain exclusion restrictions. If such excluded variable is accessible, we
show that the structural dynamic discrete choice model is semiparametrically
identi�ed using the control function approach.

KEYWORDS : structural dynamic discrete choice models, semiparametric
identi�cation, control function
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1 Introduction

Over the decades, structural estimation of dynamic discrete choice models has
been more and more employed in empirical economics and for the assessment of
various policies of interest. Well-known empirical applications include Wolpin
(1984) and Holz and Miller (1993) in fertility; Pakes (1986) in patent renewal;
Rust (1987), Das (1992), Cooper, Haltiwanger, and Power (1999), and Adda
and Cooper (2000) in capital retirement and replacement; Wolpin (1987) in job
search; Berkovec and Stern (1991), Daula and Mo¢ tt (1995), Rust and Phelan
(1997), and Karlstrom, Palm and Svensson in (2004) in retirement from labor
force; Erdem and Keane (1996) in brand choice; Keane and Wolpin (1997) in ca-
reer choice; Eckstein and Wolpin (1999) in education choice. See Aguirregabiria
and Mira (2007) for a survey of recent work on structural dynamic discrete
choice models3 and Wolpin (1996) for the use of such models in public policy
evaluation.
Structural estimation of dynamic discrete choice models is attractive to re-

searchers because it tightly links economic theories of rational decision making
under uncertainty in a dynamic setting to the interpretation and prediction of
the stochastic process that generates the economic data of interest. The pa-
rameters in the model and the estimation methods are structural in the sense
that they are derived from solutions of an explicitly postulated economic be-
havioral model. Hence structural estimation avoids Lucas critique about the
use of reduced form analysis and it can allow researchers to simulate the conse-
quences of vaious policy experiments after the underlying structural parameters
are estimated.
However, a common feature in the structural estimation literature is the

parametric speci�cation of the underlying structural objects such as utility func-
tions, transition probabilities of state variables and distributions of the unob-
servables. Estimated results from parametric models may be sensitive to changes
of speci�cation and hence su¤er from problems of misspeci�cation. Therefore,
later work in the literature tries to study the nonparametric identi�cation of the
dynamic discrete choice model. An in�uential work by Rust (1994) shows that
the dynamic discrete choice model is nonparametrically unidenti�ed. Magnac
and Thesmar (2002) extend Rust�s framework and show that if the history of
observed variables is discrete, the dynamic discrete choice model is nonidenti-
�ed. They then further characterize the degree of nonidenti�cation and show
that the model is identi�ed subject to ad hoc assumptions on distributions of
unobservables and functional forms of agents�preferences. In particular, their
identi�cation result indicates that parametric speci�cations on the distributions
of unobservables are indispensable for identifying the deep structural parameters
of interest, which consequently motivates the maximum likelihood estimation

3See Eckstein and Wolpin (1989) for a survey of earlier empirical work on structural dy-
namic discrete choice models.
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approach to most of the empirical work on structural estimation of the dynamic
discrete choice model.
This paper builds on the framework of Rust (1994) and Magnac and Thes-

mar (2002) and develops new identi�cation results for the case where the distri-
bution of unobservables is nonparametric. As in static discrete choice models,
the structural dynamic discrete choice model is not nonparametrically identi�ed
when all regressors (observed state variables) are discrete and the distribution of
unobservables is unknown and continuous. To allow for nonparametric distrib-
ution of the unobservables, we assume the availability of continuous observables
so that we can still gain identi�cation by exploiting continuous variation from
observed continuous state variables. However, as noted in Magnac and Thes-
mar (2002), the dynamic discrete choice model is still unidenti�ed even if the
distribution of unobservables is given a priori. To secure identi�cation, the re-
searcher needs to further assume the functional form of the per-period utility for
one of the choices. Therefore, throughout this paper the identi�cation analysis
is semiparametric in the sense that one of the per-period utility functions of
the choices is given a priori. Under this assumption, we show that the struc-
tural dynamic discrete choice model is semiparametrically identi�ed if there
is an exclusion restriction that provides identi�cation power when information
about distribution of unobservables is not available. Therefore, in this respect,
our analysis provides semiparametric identi�cation for the dynamic counterpart
of the already well developed semiparametric static discrete choice models in
which preference shock distributions are nonparametric but systematic utility
functions are restricted to certain function space4 .
In the identi�cation analysis of structural dynamic discrete choice models

with nonparametric unobservables, our work is related to the analysis of Heck-
man and Navarro (2007). In their paper, they consider semiparametric identi-
�cation of a variety of reduced form optimal stopping time models and a �nite
horizon structural optimal stopping model5 . Their structural model allows for
richer time series dependence between nonparametric unobservables than is as-
sumed in Rust�s (1994) framework. However, they assume future values of some
observed continuous state variables are in the agent�s current information set6

so that they can achieve identi�cation by varying these variables and using
identi�cation-at-in�nity strategy in a fashion similar to the one entertained by
Taber (2000). Their identi�cation-at-in�nity strategy requires large support

4See Manski (1975, 1985), Cosslett (1983), Stoker (1986), Klein and Spady (1988), and
Ichimura (1993) for studies of semiparametric identi�cation and estimation of static discrete
choice models in which the random shock distribution is nonparametric but systematic utility
is parametric. Matzkin (1992, 1993) and Lewbel and Linton (2007) consider nonparametric
discrete choice models by further relaxing parametric assumptions on the systematic utility
to a function space de�ned under certain shape restrictions such as linear homogeneity that
are usually motivated from economic theories.

5An optimal stopping time model is a dynamic discrete choice model in which one of the
choices is irreversible.

6 In their schooling decision example, the agent knows all current and future schooling cost
shifters and these variables are in the agent�s current information set.
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of the utility functions that may also be demanding for practical applications7 .
Furthermore, such large support assumption is not applicable to in�nite horizon
dynamic models where the solution of value functions is due to the application of
Blackwell su¢ cient conditions that require (sup-norm) bounded per-period util-
ity functions. In this paper, we consider identi�cation of the general structural
dynamic discrete choice model. We establish identi�cation of structural models
in which all choices can be recurrent. While the model admits an irreversible
choice, our identi�cation assumption can be further relaxed by exploiting such
extra behavioral restriction.
Regarding the dynamics of the model, we assume that future values of state

variables may be uncertain to the agent so that the agent�s current informa-
tion set contains only current and past realized state variables. We follow Rust
(1994)�s conditional independence framework to model the agent�s belief about
evolution of the state variables. We develop identi�cation strategy that is ap-
plicable to both �nite and in�nite horizon structural models. Note that there
is no terminal decision period for the class of in�nite horizon models. Admit-
ting the terminal period yields nonstationarity in the model so that one can
gain extra identi�cation power by discriminating the model structure that may
vary across periods. For instance, Taber (2000), Heckman and Navarro (2007),
and Aguirregabiria (2008) exploit the modeling assumption that the agent�s
choice problem is static in the terminal period and therefore one can identify
using data from terminal period the distribution of unobserved state variables
and other structural objects by applying standard arguments of identi�cation
of static discrete choice models and then solve the previous period problems us-
ing backward induction. Lacking the terminal period data poses a challenge in
identi�cation of structural dynamic models. In this paper, we discuss the use of
exclusion restrictions to circumvent identi�cation problems in these cases within
Rust (1994)�s structural Markov decision process framework. There is little lit-
erature that addresses identi�cation of Rust (1994)�s structural models with
nonparametric unobservables8 . This paper is the �rst work that does not rely
on the use of terminal period data but still provides positive result for semipara-
metrically identifying all deep structural parameters of dynamic discrete choice
models within Rust (1994)�s framework with nonparametric unobserved state
variables.
The rest of the paper is organized as follows. Section 2 presents the frame-

work and assumptions of the structural dynamic discrete choice model. Section
3 studies the semiparametric identi�cation of the basic model. Section 4 dis-
cusses identi�cation of the optimal stopping time model which is a variant of
the basic model that allows for the presence of an irreversible choice. Section
5 discusses an illustrating example to which the identi�cation analysis of this

7 In the empirical analysis of their paper (Heckman and Navarro 2007), they report that
they do not have the required limit sets in their data.

8Aguirregabiria (2005, 2008) also studies identi�cation of Rust (1994)�s dynamic discrete
choice model with nonparametric unobserved state variables. However, he is only interested
in identifying counterfactual choice probability when the counterfactual policy experiments
take some speci�c formats.
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paper can be applied. Section 6 proposes a estimation strategy based on the
identi�cation analysis. Section 7 concludes the paper.

2 The framework and assumptions

Time is discrete and indexed by t 2 f1; 2; :::g. Consider an economic agent
with intertemporal utility that is additive separable over time. At each period,
the agent makes a decision over two mutually exclusive choices9 , denoted as
Choice 0 and Choice 1. Denote as st the state variables at time t that the
agent considers in this structural dynamic discrete choice model. From the
econometrician�s point of view, some components of st are observables that
are denoted by xt. Others are unobserved random shocks "t � ("0;t; "1;t) for
each choice. Therefore, st = (xt; "t). At the beginning of each period t, st is
revealed to the agent who then chooses dt 2 f0; 1g and receives the instantaneous
return ut(dt; st). However, next period state variables st+1 are still uncertain
to the agent. Following Rust (1994)�s dynamic Markov discrete decision process
framework, we assume the transition of state variables follows controlled �rst-
order Markov property. In other words, the next period state variables st+1
are drawn from the Markov transition probability density fs( st+1jst; dt), which
represents the law of motion of the state variables in the model. The agent has
belief, �( st+1jst; dt) about the evolution of the state variables. We assume that
the agent�s belief is rational in the sense that it coincides with the true transition
probability fs( st+1jst; dt)10 . To proceed, as in Rust (1994) and Magnac and
Thesmar (2002, pp. 802-804), we make the following assumptions on the agent�s
preference and laws of motion of the state variables.

[M1] (Additive Separability) :
for k 2 f0; 1g and for all t,

ut(k; st) � uk;t(st) = u�k;t(xt) + "k;t:

[M2] (Conditional Independence) :
for all t,

fs(xt+1; "t+1jxt; "t; dt) = f"("t+1)fx(xt+1jxt; dt): (1)

The additive separability assumption allows us to decompose the utility into
a systematic part that depends only on observable state variables and a pref-
erence shock that is unobserved to the econometrician. This is a standard

9To present the main idea, we focus on binary choice models. The analysis in this chapter
can be generalized to the multinomial choice context, which is left for further research work.
10 In general, the agent�s belief �(st+1jst; dt) is subject to his degree of rationality and hence

may not necessarily represent the true law of motion of the states. However, identi�cation
of a general belief requires more structural assumptions about the agent�s belief formation
process.
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assumption in static discrete choice models11 . [M2] assumes that the unobserv-
ables "t are i.i.d. exogenous random shocks to the model and future values of the
observed states xt+1 can depend on the current control variable dt and values
of current observed states xt but they do not direct depend on current values
of the exogenous shocks "t. Since [M2] restricts the time series dependence
of unobserved state variables, it precludes unobserved persistent heterogeneity
and dynamic selection bias discussed in Cameron and Heckman (1998), Taber
(2000), and Heckman and Navarro (2007)12 . However, general time series de-
pendence between observables are allowed. Besides, preference shocks can also
be dependent across alternatives. [M2] allows rational expectation belief to be
derived from a learning process based on observations in the sense that the agent
can infer joint distribution of next period states based on observable informa-
tion from other agents and on the assumption that he knows distribution of his
private signal "t (Manski 1993, Magnac and Thesmar 2002).
Let � 2 [0; 1) be the discount factor. Assuming at each period choices are

made to maximize the agent�s expected life time utility, under [M1], [M2] and
rational expectation belief, by Bellman principle of optimality, �t;the policy
function (the optimal decision rule) can be characterized as the follows.

�t(st) = argmax
k2f0;1g

fvk;t(st)g:13

and the value function at each period t can be obtained via the following recur-
sive expressions.

vt(st) = �t(st)v1;t(st) + (1� �t(st))v0;t(st);

where vk;t(st) are choice-speci�c value functions represented by the following
Bellman equations

vk;t(st) � uk;t(st) + �E(vt+1(st+1; k)jst; dt = k) for k 2 f0; 1g:

Under rationality the observed time series of individual choice is the sequence
of optimal decisions f�t = �t(st)g that satisfy

�t = 1fv1;t(st) � v0;t(st)g: (2)

It is clear that under [M1] and [M2], for k 2 f0; 1g and for all t, there is v�k;t(xt)
, which is a function of xt only, such that the choice speci�c value functions,
vk;t(st) can be written as :

vk;t(st) = v�k;t(xt) + "k;t;

11See Vytlacil (2002, 2005) for discussions about the use of additively separable utility
functions in static discrete choice models.
12See Rust (1994) for a detailed and graphical explanation of controlled Markov process

under such conditional independence assumption.
13When distribution of "t is continous (see assumption [M4]), ties between the two choice

speci�c value functions do not occur almost surely so that there is a (almost surely) unique
solution to this optimization problem.
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where v�k;t(xt) are choice-speci�c systematic value functions that follow Bellman
equations

v�k;t(xt) = u�k;t(xt) + �E(vt+1(st+1; k)jxt; dt = k):

In this paper, we study stationary in�nite horizon models. In other words,
the time horizon of the decision problem is in�nite and the per-period utilities
and Markov transition probabilities are time-invariant. The stationary Markov-
ian structure of the dynamic model implies that the decision problem faced by
the agent is the same whether the agent is in state st at period t or in state st+j
at period t+ j provided that st = st+j (Rust 1994). Therefore, we can suppress
the time index and for the rest of this paper we denote variables y and y0 as
the current and next period objects, respectively. Under this notation, we can
formulate the model as follows. For k 2 f0; 1g,

v(s) = �(s)v1(s) + (1� �(s))v0(s) (3)

uk(s) = u�k(x) + "k (4)

vk(s) = v�k(x) + "k (5)

v�k(x) = u�k(x) + �E(v(s
0)jx; d = k) (6)

�(s) = 1fv1(s) � v0(s)g (7)

Let �v�(x) � v�1(x) � v�0(x) and �" � "1 � "0. Using the following lemma,
we can further rewrite (6) to get a more convenient representation of the choice
speci�c value functions.

Lemma 1

Under [M1] and [M2], the systematic Bellman equations (6) can be written
as the follows. For k 2 f0; 1g,

v�k(x) = u�k(x)+�E(v
�
0(x

0)+"00jx; d = k)+�[E(�v�(x0)�0jx; d = k)+E(�"0�0jx; d = k)]
(8)

Proof. Lemma 1 follows immediately by putting equations (3) and (7) into (6)
and noting that �0 = �(s0).

Equation (8) expresses the choicewise systematic value function as the sum
of three terms. The �rst term on the right hand side of (8) is the instantaneous
utility the agent receives when he makes choice k. The second term is the
discounted expected future value when at next period the agent makes choice
0 given that his current action is choice k. The third term is the discounted
expected gain when it is optimal for the agent to deviate from choice 0 at next
period given that his current action is choice k. This discounted expected gain
consists of two components: �E(�v�(x0)�0jx; d = k) represents the discounted
expected gain from the systematic component and �E(�"0�0jx; d = k) represents
that from the random unobserved preference shock.
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The reduced form equation of this model is the conditional choice probability,

P (� = 1jx) = P (�v�(x) + �" � 0jx): (9)

It is clear that the distribution of �" is more critical than the joint distribution
of " = ("i)i2f0;1g in characterizing the reduced form equation. Furthermore, if
E("0) is normalized to be zero, then the systematic Bellman equations (8), as
we will show later, will be completely characterized by the distribution of �".

[M3] : E("0) = 0.

[M3] provides location normalization for the random shock of one of the
choices1415 . By [M2], we have E("00jx; d = 0) = E("00) so that under [M3] we can
further simplify the systematic Bellman equations as follows16 . For k 2 f0; 1g,

v�k(x) = u�k(x)+�E(v
�
0(x

0)jx; d = k)+�[E(�v�(x0)�0jx; d = k)+E(�"0�0jx; d = k)]:
(11)

To proceed, we need further assumptions on the distribution of �".

[M4] : ��" has strictly increasing and absolutely continuous (with respect
to Lebesgue measure) distribution function G that induces a density function
g, whose support is �G.

Restricting G to be strictly increasing ensures that G is invertible, which
is a key condition for identi�cation of the model (Hotz and Miller 1993). The
absolute continuity property of G ensures that the dynamic programming model
has a unique optimal solution almost surely.

2.1 Parameters of interest

Let B be the set of all measurable, real-valued and bounded functions under sup
norm. Note that B is a Banach space. We assume that for k 2 f0; 1g, u�k(x) 2 B.
Then using Blackwell su¢ cient conditions (see Theorem 3.3 in Stokey and Lucas
1989), it can be shown that the value functions v�k(x); k 2 f0; 1g are also in
B and are the unique �xed point of the system of Bellman equations (11).

14As in the static discrete choice models, the locations of the distributions for "1 and "0
are not separately identi�ed since only the di¤erence �" matters in the conditional choice
probability.
15Magnac and Thesmar (2002, pp803) assume both E("1) and E("0) are zero. However,

their location normalization assumption is more than required.
16 If the assumption [M3] is not maintained, then (11) becomes

v�k(x) = u�k(x)+�0+�E(v
�
0(x

0)jx; d = k)+�[E(�v�(x0)�0jx; d = k)+E(�"0�0jx; d = k)]; (10)

where �0 � �E("00) is the location parameter. In counterfactual policy analysis, �0 is needed to
compute the counterfactual value function via Bellman equation (10). Note that the location
parameter �0 is not identi�ed since the choice behavior is driven by di¤erence of value functions
in which �0 is always di¤erenced out.
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The parameters of interest in this model are (u�k(x); v
�
k(x); �;G; fx(x

0jx; k)) for
k 2 f0; 1g. We refer to v�k(x) as the derived structural parameters as they
are derived from the primitive structural parameters (u�k(x); �;G; fx(x

0jx; k))
via the Bellman equations (11). Obtaining these structural parameters allows
researchers to answer a variety of policy questions17 . For example, in doing
welfare analysis, we may need @E(v(x; ")jx)=@xk, a measure to assess the impact
of changing a particular state variable xk on the average social surplus function.
Note that

@E(v(x; ")jx)
@xk

=
@v�1(x)

@xk
P (� = 1jx) + @v�0(x)

@xk
P (� = 0jx)18 : (12)

Therefore, the structural parameters v�k(x) allow us to do such comparative sta-
tics analysis. Furthermore, in some contexts, the researcher may want to study
a counterfactual policy experiment � such that under policy � , the agent�s behav-
ior is generated from the new structure characterized by (u��k (x); v

��
k (x); �

� ; G� ; f�x (x
0jx; k))19 .

Assuming the counterfactual structural parameters have a known mapping to
the set of (u�k(x); �;G; fx(x

0jx; k)), then we can simulate the agent�s behavior
under the counterfactual policy if the set of structural parameters can be iden-
ti�ed.

3 Semiparametric identi�cation of the structural
model

We have a sample of individuals indexed by i who follow the constituted struc-
tural dynamic discrete choice model. Data consist of the observed state variables
and optimal choices for all individuals and for two consecutive periods of the
decision horizon20 . Assume random sampling, we can suppress the individual
index i.
Under conditional independence assumption [M2], Magnac and Thesmar

(2002, pp. 803-804) observe that the agent�s belief fx(x0jx; d = k) for k 2 f0; 1g
can be identi�ed as fx(x0jx; � = k) using the data (�; x; x0). Thus we can replace
the control variable d with the observed choice � in Bellman equations (11). In
other words, We can then rewrite these Bellman equations as
17Of course, we assume that the policy does not change the nature of the decision problem

such that the agent still faces the same dynamic discrete choice problem with the same choice
set.
18Since the model implies that E(v(x; ")jx) =

R
max(v�1(x) + "1; v�0(x) + "0)dF ("); (12)

follows by interchanging the integral and di¤erentiation, which can be justi�ed under Lebesgue

Dominated Convergence Theorem when both @v�1 (x)
@xk

and @v�0 (x)
@xk

are bounded.
19All variables superscripted with � denote the same variables under the counterfactual

policy � .
20Since the model is assumed stationary, short panel data that consists of only two con-

secutive periods are su¢ cient for identi�cation (subject to other identi�cation conditions to
be discussed). The structural parameters will thus be over-identi�ed if panel data of more
than two periods are available. In this case, more e¢ cient estimators of the structural para-
meters can be constructed by combining those estimators obtained using data from di¤erent
consecutive periods.
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v�k(x) = u�k(x)+�E(v
�
0(x

0)jx; � = k)+�[E(�v�(x0)�0jx; � = k)+E(�"0�0jx; � = k)]
(13)

Therefore, for the rest of the paper, we will direct work on the Bellman equations
(13).

3.1 Identi�cation when the distribution G is known

We �rst characterize the degree of identi�cation for the dynamic structural
discrete choice model. The following lemma is an extension to stationary in�nite
horizon models based on Magnac and Thesmar (2002)�s identi�cation result
(Proposition 2 (i) pp. 806) that shows identi�cation of �nite horizon dynamic
discrete choice models when the distribution G is known.

Lemma 2

Under [M2], the transition probability fx(x0jx; k) is identi�ed and given �; G
and u�0(x); the remaining structural parameters (u

�
1(x); v

�
1(x); v

�
0(x)) are identi-

�ed.

Proof. Given G; under [M2] and [M4], using (9) we can identify �v�(x0) as

�v�(x0) = G�1(P (�0 = 1jx0)):

Furthermore, E(�"0�0jx; � = k) in (13) can be written as

E(�"0�0jx; � = k) = E(�"0j�0 = 1; x; � = k)P (�0 = 1jx; � = k); (14)

where the term E(�"0j�0 = 1; x; � = k) in (14) satis�es

E(�"0j�0 = 1; x; � = k) = E(E(�"0j�0 = 1; x0; x; � = k)j�0 = 1; x; � = k)

= E(E(�"0j�v�(x0) + �"0 � 0; x0; x; � = k)j�0 = 1; x; � = k):

Under [M2], for any point � in the support of x0,

E(�"0j�v�(x0) + �"0 � 0; x0 = � ; x; � = k) = E(�"0j�v�(�) + �"0 � 0)
= E(�"0jG�1(P (�0 = 1jx0 = �)) + �"0 � 0):

is identi�ed sinceG is given a priori. Thus for k 2 f0; 1g, the term E(�"0�0jx; � =
k) is identi�ed. Therefore, we can identify the expected gain

egk(x) � E(�v�(x0)�0jx; � = k) + E(�"0�0jx; � = k)

for k 2 f0; 1g in Bellman equation (13). We can then write (13) as

v�k(x) = u�k(x) + egk(x) + �E(v
�
0(x

0)jx; � = k): (15)

10



Given �; u�0(x) and the identi�cation of eg0(x), v
�
0(x) can then be identi�ed as

the unique �xed point to the (reduced form) Bellman equation of Choice 0 using
(15). Thus the identi�cation of v�1(x) follows by noting that

v�1(x) = G�1(P (� = 1jx)) + v�0(x): (16)

Using � and the identi�ed v�1 ; v
�
0 and eg1; the remaining structural parameter,

u�1(x) is then identi�ed as

u�1(x) = v�1(x)� eg1(x)� �E(v�0(x0)jx; � = 1):

We comment on the su¢ cient conditions for identi�cation given in Lemma 2.
First, the discount factor � is generally assumed rather than identi�ed since one
cannot distinguish between myopic (� = 0) and forward-looking (� > 0) agents
if information on agents�utility primitives is not available. To see this, consider a
myopic agent with � = 0. This agent chooses Choice 1 if eu�1(x)+"1 > eu�0(x)+"0,
where eu�k; k 2 f0; 1g are his per-period systematic utility functions. If eu�k (as
functions) coincide with v�k, then this agent�s choice behavior is exactly the same
as that of a forward-looking agent with non-zero discount factor and per-period
utilities u�k

21 .
Second, as in static discrete choice model, utility primitives are not sepa-

rately identi�ed since it is the di¤erence rather than the level that drives the
choice behavior. To separately identify the remaining structural parameters,
utility primitive of one reference alternative (Choice 0, for example) has to be
given a priori22 .
We observe that both � and u�0 are inevitable for nonparametric identi�-

cation of the structural model. However, the assumption of the distribution
G in Lemma 2 seems su¢ cient rather than necessary for identi�cation. Note
that the original analysis of Magnac and Thesmar (2002) is conducted based
on the discrete-support assumption in which all observed state variables x take
only �nite values. In that context, a continuous distribution G cannot be iden-
ti�ed with only discrete-valued regressors. There is scope of further relaxing
the assumption on G if the structural model admits continuous observed state
variables. Note that most empirical literature makes ad-hoc parametric assump-
tions on G: Though such practice facilitates the identi�cation task in view of
the results in Lemma 2, these assumptions of G are rarely justi�ed a priori and
hence su¤ers from misspeci�cation problems. Thus it is important to develop

21This argument assumes that the researcher does not know the primitive utilities u�k and
G. If the researcher is willing to assume parametric functional forms on (u�k,G), then �
may be identi�ed under certain parametric restrictions. However, in this paper we are also
interested in nonparametric identi�cation of (u�k; G) and thus we will assume � in line with the
literature (Magnac and Thesmar 2002, Aguirregabiria 2008) for nonparametric identi�cation
of the remaining structural parameters.
22Note that the assumption on utility of a reference alternative is not needed if one is

only interested in identifying counterfactual choice probability when counterfactual policy
experiments a¤ect the utility primitives in an additive way (Aguirregabiria 2005, 2008).
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positive identi�cation that allows for nonparametric G such that the result-
ing structural inference can be robust against mis-speci�cation of distribution
of unobservables. In the subsequent sections, we will discuss how to identify
the complete structure of the model using �; u�0(x) and observed continuous
state variables. Since we relax the distribution assumption of G, extra informa-
tion in terms of modeling assumptions should be supplied in lieu of G so that
identi�cation is still ensured. To do this, a natural approach parallel to semi-
parametric methods of the static discrete choice models is to further restrict the
systematic utilities that can be motivated from economic theory while keeping
nonparametric the distribution of unobservables about which economic theory
is usually silent. This paper aims to develop such semiparametric identi�ca-
tion results. In particular, we discuss the degree of identi�cation in the case
where only the utility u�0(x) is assumed and then provide su¢ cient conditions
that guarantee nonparametric identi�cation of G, from which we can proceed
to identify more structural parameters using the results in Lemma 2.

3.2 Identi�cation when the distribution G is unknown

Assuming continuous state variables x are available, can we identify G and other
structural parameters by exploiting the continuous variation of x ? In Lemma 2,
given �;G and u�0(x); we can �rst identify v

�
0 and then solve v

�
1 using (16). When

information of G is not available, since the term E(�"0�0jx; � = k) appears in
(13) and depends on the distribution G; v�0 is generally not identi�ed. It is
interesting to ask whether obtaining extra information of v�0 helps to identify G
and the remaining structural parameters when continuous state variables x are
available. The answer is yet negative. In contrast with the identi�cation result
in Lemma 2, the following lemma shows that assuming one value function alone
provides no identi�cation power.

Lemma 3

Assume [M4], given only �; u�0 and v
�
0 , then G, u

�
1 and v

�
1 are not identi�ed.

Proof. Let G, u�1 and v
�
1 be a set of admissible structure parameters that satisfy

Bellman equation (13) and

P (� = 1jx) = G(v�1(x)� v�0(x)): (17)

Consider another distribution eG 6= G. For example, one can take eG(y) = [G(y)]�
for some � > 1. Then the value function ev�1(x) � v�0(x)+

eG�1(G(v�1(x)�v�0(x)))
and eG generate the same conditional choice probability as that generated by v�1
and G. Using Bellman equation (13), ev�1(x) and eG then implicitly de�ne a
utility function fu�1. Therefore, the parameters (u�1; v�1 ; G) and (fu�1; ev�1 ; eG) are
observationally equivalent and they are not identi�ed.

12



It is clear that the result of Lemma 3 applies regardless of the continuity
property of x. This result arises from the fact that the index function in (17)
is the di¤erence, v�1 � v�0 which is still an unknown object even if v

�
0 is given a

priori. When G is nonparametric, non-identi�cation then follows from lack of
variation to distinguish between the unknown link function G and the unknown
index function �v� = v�1 � v�0 .
By (13),

�v�(x) = u�1(x) +m(x)� u�0(x)
= �(x)� u�0(x);

where �(x) = u�1(x) +m(x) and m(x) = m1(x) +m2(x) +m3(x) de�ned as

m1(x) = �[E(v�0(x
0)jx; � = 1)� E(v�0(x0)jx; � = 0)]; (18)

m2(x) = �[E(�v�(x0)�0jx; � = 1)� E(�v�(x0)�0jx; � = 0)]; (19)

m3(x) = �[E(�"0�0jx; � = 1)� E(�"0�0jx; � = 0)]: (20)

Note that m(x) represents the di¤erence between discounted expected future
values when current action is to choose Choice 1 and when Choice 0 is chosen
at current period. This di¤erence is zero if future state variables that determine
the continuation values are (conditionally) independent of the current action
and in this case the model becomes static since the choice behavior is driven
only by di¤erence of instantaneous utilities. Nevertheless, in general, m(x) is a
non-zero function of x and is an unknown object even if both � and u�0 are given.
To overcome the identi�cation problem, since u�0 is always assumed throughout
the analysis, e¤ects from �v� and G on the conditional choice probability can
be disentangled if we can �x �(x) but at the same time freely move u�0: In this
case, we can trace out the distribution G and thus G can be identi�ed. As
shown in Lemma 3, there is no such variation-free condition for identi�cation
when �(x) and u�0(x) share completely the same set of regressors. Therefore,
to achieve semiparametric identi�cation when G is nonparametric, we propose
to impose an exclusion restriction to provide such source of variation. In other
words, if there is one continuous variable that is in the arguments of u�0 but
is excluded from those of �(x), then we can separately identify �(x) and G
up to a location normalization. Theorem 4 demonstrates this semiparametric
identi�cation strategy.
Denote the support of x as �X = �W� �Z , where �W and �Z are the

supports of w and z, respectively. Let u�0(�X) and �v
�(�X) be the supports of

u�0 and �v
�; respectively. We assume that �v�(�X) � u�0(�X):

Theorem 4

Let x = (w; z) in which the subvectors w and z have no common component
and both of them are non-empty. Let u�0(x) = u�0(w; z) 2 B be a known function.
Assume also the following : (i) (excluded regressors): u�1(x) = u�1(w) (ii) (con-
ditional independence between observables): for k 2 f0; 1g, (w0; z0) ? zjw; � = k
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(iii) (continuous regressors): 9 at least one continuous variable zs in z such
that the distribution of zs conditional on w is non-degenerate and u0(x) is
di¤erentiable with respect to zs with

@u�0(x)
@zs

6= 0 almost surely over �X . (iv)
(location normalization): �(c) = 0 for some point c in the interior of �X and
the support of u�0 conditional on w = c is the same as u�0(�X). Then under
[M4], �(x) = �(w) is identi�ed on �W and the distribution G is identi�ed on
u�0(�X).

Proof. Under [M2] and assumption (ii), m(x) = m(w) does not depend on z.
This together with assumption (i) implies that �(x) = �(w) is a function of w
only. Hence the reduced form equation of this model is

P (� = 1jw; z) = G(�(w)� u�0(w; z)) = P (� = 1jw; u�0(w; z)):

Using assumption (iv), we have

G(t) = P (� = 1jw = c; u�0(w; z) = �t):

Assumptions (iii) and (iv) imply that u�0 is a continuous random variate and
the distribution of u�0 conditional on w = c is non-degenerate with support
u�0(�X). Therefore, by varying u�0, the distribution G is then identi�ed on
u�0(�X). Regarding identi�cation of �(w), note that

�(w) = G�1(P (� = 1jw; z)) + u�0(w; z): (21)

Since G is identi�ed on u�0(�X) and �v
�(�X) � u�0(�X); (21) implies that �(w)

is identi�ed on �W .

The assumptions of excluded regressors (i) and conditional independence
(ii) in Theorem 4 can produce the required exclusion restriction between the
two functions �(x) and u�0(x) so that we can distinguish the source of varia-
tion between the unknown �v� and G by moving only the excluded variables.
Assumption (i) may be justi�ed if there are choice speci�c attributes. Note
that assumptions (i) does not preclude common attributes since the vector of
attributes w is allowed to appear in u�0 and hence v

�
0 . Only the attributes z

are excluded. However, assumption (i) alone is not su¢ cient to generate the re-
quired exclusion restriction in the conditional choice probability equation since
the choice speci�c attributes may enter both value functions via the informa-
tion set that the agent uses to form their expected future value. Assumption
(ii) is su¢ cient to remove such e¤ect by regulating the predicability of these
attributes through conditional independence assumption. A su¢ cient condition
to validate assumption (ii) is the case in which the transition probability den-
sities f(w0; z0jw; z; � = k) for k 2 f0; 1g can be factored out as the product of
f(z0jw0; � = k)f(w0jw; � = k). Hence assumption (ii) essentially requires that
once conditional on the choice, w serves as a su¢ cient statistic for predicting all
observed state variables of next period. Note that assumption (i) in Theorem 4
is not testable and should be regarded as the researcher�s belief in modeling a
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particular application. However, assumption (ii) is in principle testable because
this restriction is imposed on observed state variables. For instance, as simple
diagnosis, one can plot the joint conditional densities f(w0; z0jw; z; � = k) and
f(w0; z0jw; � = k) to see whether these two density functions look similar. Note
that semiparametric identi�cation in Theorem 4 can be achieved by requiring
only one excluded variable z and over-identi�cation may arise if more than one
exclusion restrictions are available. Therefore, the identi�cation restrictions
stated in Theorem 4 may not be very demanding for practical applications.
Theorem 4 requires u�0 is speci�ed a priori. However, complete speci�cation

of the instantaneous utility function u�0 may not be necessary in the sense that
one can specify it up to �nite dimensional unknown parameters. Of course, if
u�0 depends on some unknown parameters, one also needs to guarantee these
parameters are identi�ed. Let u�0(x) = u�0(w; z; �) be known up to a �nite
J-dimensional vector of parameters, � 2 �, where � is a compact subset of
RJ . Instead of providing identi�cation of � in the general case, we give the
identi�cation result for some popular speci�cations of utility functions.

Theorem 5

Assume all conditions in Theorem 4 still hold except that u�0(x) = u�0(w; z; �) =
�0h(w; z) where h(w; z) is a J-dimensional vector of known functions hj(w; z) 2
B and each component �j in the vector � is not zero and each hj(w; z) function
has non-zero partial derivative with respect to z. Then � is identi�ed up to a
scale normalization.

Proof. Given u�0(x) = u�0(w; z; �) = �0h(w; z), the conditional choice probability
is

P (� = 1jw; z) = G(�(w)� �0h(w; z)) = P (� = 1jw; h(w; z)):

Taking partial derivative with respect to hj(w; z), we have

@P (� = 1jw; h(w; z))
@hj

= �g(�(w)� �0h(w; z))�j :

Using the average derivative arguments, we have

E(
@P (� = 1jw; h(w; z))

@hj
) = �E(g(�(w)� �0h(w; z)))�j

Therefore, �j is identi�ed up to a scale normalization.

Theorem 5 provides the identi�cation result when the instantaneous utility
u�0 is speci�ed as linear in parameters. Note that in order to provide the required
exclusion restriction, each hj(w; z) in Theorem 5 needs to be a non-trivial func-
tion in z. Therefore, it is now clear to note that the variable z essentially serves
as the "instrumental variable" in semiparametric identi�cation of this structural
model in the sense that it provides variation for the observed but endogenous
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object h(w; z) (the "rank condition") but cannot a¤ect the "unobserved" object
�(w) (the "exclusion" condition). Theorem 5 adopts the usual average deriv-
ative approach to identify the unknown parameters �. As in static discrete
choice models, the average derivative method can at best identify the unknown
parameters up to scale normalization. Once the scale of � is determined, using
Theorem 4 we can proceed to identify G. To identify the remaining structural
parameters, we assume �G; the support of G is a subset of u�0(�X) so that G is
completely identi�ed on its support23 . Then by Lemma 2, given �; u�0 and the
identi�ed G, the remaining structural parameters (u�1(x); v

�
1(x); v

�
0(x)) are also

identi�ed.

4 Identi�cation of the dynamic optimal stop-
ping model

In this section, we study identi�cation of a popular variant of the basic structural
dynamic discrete choice model that allows for one of the choices to be irreversible
(absorbing). Such model is called an optimal stopping time model because the
agent has to decide when it is optimal to stop (at the absorbing choice).

4.1 Semiparametric identi�cation via exclusion restriction

The structural dynamic optimal stopping time model has appeared as an im-
portant modeling framework in many empirical applications in which the agent
faces an irreversible choice. See for example Pakes (1986) in patent renewal,
Das (1992) in capital disposal, Daula and Mo¢ tt (1995) in military reenlist-
ment, Rothwell and Rust (1997) in nuclear plant operation, Karlstrom, Palm
and Svensson in (2004) and Heyma (2004) in retirement from labor force mod-
els. The distribution of unobservables in these models is often parametrically
speci�ed and estimated. In this section, we investigate the identi�cation for
such models when the researcher does not hold a priori information on the dis-
tribution of unobservables. Let Choice 0 be the irreversible (absorbing) choice.
Lemma 3 shows that the dynamic optimal stopping time model is not identi-
�ed. To remedy this problem, we can resort to the use of exclusion restriction
as proposed in Section 3.2. To see this, observe that the time series of observed
choice in this optimal stopping time model follows

�0 = 1f�v�(x0) + �"0 � 0g� (22)

and the associated Bellman equations are

v�1(x) = u�1(x)+�E(v
�
0(x

0)jx; � = 1)+�[E(�v�(x0)�0jx; � = 1)+E(�"0�0jx; � = 1)]
(23)

23Since utilities are assumed sup-norm bounded, this assumption essentially precludes those
distributions G with unbounded support. See Section 4.2 for identi�cation analysis when G
has large support and hence is not identi�ed over its entire support.
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and

v�0(x) = u�0(x) + �E(v
�
0(x

0)jx; � = 0): (24)

Note that the Bellman equation (24) can be interpreted in a similar fashion as
(23) except that the term of the expected gain vanishes due to the behavioral
restriction that choice 0 is irreversible and hence deviation is not allowed once
choice 0 is made at previous period. Clearly, in this model once � and u�0 are
given, v�0 can be identi�ed as the �xed point solution of the functional equation
(24) that does not depend on the distribution G. The reduced form equation of
this optimal stopping time model is the conditional choice probability

P (�0 = 1jx0; � = 1) = G(v�1(x
0)� v�0(x0)): (25)

Following the discussions in Section 3.2, we decompose the state variables x
into two mutually exclusive components, w and z. Since v�0 is identi�ed when �
and u�0 are given, identi�cation with exclusion restriction can be achieved based
on similar arguments as given in Theorem 4 if (25) can be rewritten as

P (�0 = 1jw0; z0; � = 1) = G(v�1(w
0)� v�0(w0; z0)): (26)

The next theorem presents su¢ cient conditions to validate (26) and thus
establish the identi�cation of G and v�1 in this optimal stopping time model.
Denote the support of x as �X = �W� �Z , where �W and �Z are the supports
of w and z, respectively. Let v�0(�X) and �v

�(�X) be the supports of v�0 and
�v�; respectively. We assume that �v�(�X) � v�0(�X):

Theorem 6

Let x = (w; z) in which the subvectors w and z have no common compo-
nent and both of them are non-empty. Let u�0(x) = u�0(w; z) 2 B be a known
function. Assume also the following : (i) (excluded regressors): u�1(x) = u�1(w)
(ii) (conditional independence between observables): (w0; z0) ? zjw; � = 1 (iii)
(continuous regressors): 9 at least one continuous variable zs in z such that the
distribution of zs conditional on w is non-degenerate and v0(x) is di¤erentiable
with respect to zs with

@v�0 (x)
@zs

6= 0 almost surely over �X . (iv) (location nor-
malization): v�1(c) = 0 for some point c in the interior of �X and the support
of v�0 conditional on w = c is the same as v�0(�X): Then under [M4], given �,
v�0(x) = v�0(w; z) is identi�ed on �X and v

�
1(x) = v�1(w) is identi�ed on �W and

the distribution G is identi�ed on v�0(�X).

Proof. Given � and u�0(x) = u�0(w; z) 2 B , we can identify v�0(x) = v�0(w; z)
by solving the �xed point of Bellman equation (24). Under [M2], assumptions
(i) and (ii), the Bellman equation (23) implies that v�1(x) = v�1(w). Hence the
reduced form equation of this optimal stopping time model is

P (�0 = 1jw0; z0; � = 1) = G(v�1(w
0)� v�0(w0; z0)):
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Using assumption (iv), we have

G(t) = P (�0 = 1jw0 = c; v�0(w
0; z0) = �t; � = 1):

Assumptions (iii) and (iv) imply that v�0 is a continuous random variate and the
distribution of v�0 conditional on w = c is non-degenerate with support v�0(�X).
Therefore, by varying v�0 , the distribution G is then identi�ed on v�0(�X). Re-
garding identi�cation of v�1(w

0), note that

v�1(w
0) = G�1(P (�0 = 1jw0; z0; � = 1)) + v�0(w0; z0): (27)

Since G is identi�ed on v�0(�X) and �v
�(�X) � v�0(�X); (27) implies that v

�
1(w

0)
is identi�ed on �W .

To produce the required exclusion restriction, we still need the assumption
(i) of excluded regressors (i) and (ii) of conditional independence between ob-
servables. However, unlike Theorem 4 that aims to identify the structural model
in which all choices are recurrent, the availability of an irreversible choice pro-
vides an extra behavioral restriction such that Bellman equation (24) for Choice
0 does not depend on the distribution of unobservables, thus assumption (ii) in
Theorem 6 requires conditional independence between the next period observed
state variables x0 = (w0; z0) and current period excluded variable z to hold only
for the subpopulation � = 1 who chooses the non-absorbing choice. Such weaker
version of conditional independence is important since in most dynamic optimal
stopping time models evolution of z is not serially conditionally independent
for those who chooses the absorbing choice (� = 0). For instance, consider a
structural dynamic retirement model24 in which the agent has to decide between
to continue working (� = 1) or to retire (� = 0). Suppose retirement decision
is irreversible. Note that this is an optimal stopping time model in which the
agent has to decide when it is optimal to stop working. A potential excluded
variable z in this example can be the individual pension allowance. Since the
agent does not receive any pension before he retires, assumption (i) in Theorem
6 holds. Note that assumption (ii) of Theorem 4 requires that the time series of
pension is serially conditionally independent for both working and retired sub-
populations. Such assumption is clearly violated for most pension schemes in
which the individual receives the same (yearly) pension allowance after retire-
ment. In contrast, assumption (ii) in Theorem 6 completely allows for any serial
dependence of the post-retirement pension series as long as the law of (poten-
tial) pension before retirement satis�es the required conditional independence
assumption (ii). A su¢ cient condition to validate this assumption is the case
in which the transition probability density f(w0; z0jw; z; � = 1) can be factored
out as the product of f(z0jw0; � = 1)f(w0jw; � = 1). In other words, assumption
(ii) of Theorem 6 essentially requires that once conditional on � = 1, w serves
as a su¢ cient statistic for predicting all observed state variables of next period.

24See Karlstrom, Palm and Svensson in (2004) for a more detailed description of such
retirement model in the parametric framework.
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Note that we can put any relevant observed explanatory variables in w so that
assumption (ii) can be ful�lled. In the retirement example, assumption (ii) is
likely to hold if the evolution of pension z before retirement is designed to de-
pend on other observed individual or job-speci�c characteristics such as marital
status, education, or rank of the job. Note that as in Theorem 4, assumption (i)
is not testable and should be regarded as the researcher�s belief in modeling a
particular application. But assumption (ii) is in principle testable because this
restriction is imposed on observed state variables. As simple diagnosis, one can
plot the joint conditional densities f(w0; z0jw; z; � = 1) and f(w0; z0jw; � = 1) to
see whether these two density functions look similar. Note that semiparametric
identi�cation in Theorem 6 can be achieved by requiring only one excluded vari-
able z and over-identi�cation may arise if more than one exclusion restrictions
are available. Therefore, the identi�cation restrictions stated in Theorem 6 may
not be very demanding for practical applications.
Theorem 6 identi�es v�1 and the distribution G up to a location normalization

(assumption iv). Since identi�cation of v�0 in an optimal stopping time model
does not require the information of G; unlike Theorem 4, we can identify of the
partial derivatives of the value functions without location normalizaton. These
marginal values may already be the structural objects of interest and are free
from arbitrariness of the location normalization assumption. For example, in
doing welfare analysis, we may need @E(v(x0; "0)jx0; � = 1)=@xk, a measure to
assess the impact of changing a particular state variable xk on the average social
surplus function for the � = 1 subpopulation. Note that

@E(v(x0; "0)jx0; � = 1)
@xk

=
@v�1(x

0)

@xk
P (�0 = 1jx0; � = 1)+@v

�
0(x

0)

@xk
P (�0 = 0jx0; � = 1)

is identi�ed since the conditional choice probability is identi�ed from the data
and all the partial derivatives are identi�ed without the need of location nor-
malization. To see this, using the control function approach, we can obtain
direct identi�cation of these derivatives. Assume v�1(w) and v

�
0(w; z) are di¤er-

entiable with respect to some continuous component wr. The conditional choice
probability equation is

P (�0 = 1jw0; z0; � = 1) = G(v�1(w
0)� v�0(w0; z0)) = P (�0 = 1jw0; v�0(w0; z0); � = 1)

Take partial derivative with respect to wr and get

@P (�0 = 1jw0; z0; � = 1)
@wr

= g(v�1(w
0)� v�0(w0; z0))

�
@v�1(w

0)

@wr
� @v�0(w

0; z0)

@wr

�
25

(28)
On the other hand, we can identify g(v�1(w

0) � v�0(w
0; z0)) by taking derivative

with respect to v�0 as follows.

@P (�0 = 1jw0; v�0(w0; z0); � = 1)
@v�0

= �g(v�1(w0)� v�0(w0; z0)) (29)

25Recall that g is the density of ��"
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So putting (28) and (29) together, we have

@v�1(w
0)

@wr
= �

�
@P (�0 = 1jw0; z0; � = 1)

@wr

�
=

�
@P (�0 = 1jw0; v�0(w0; z0); � = 1)

@v�0

�
+
@v�0(w

0; z0)

@wr
(30)

Therefore, identi�cation of @v
�
1 (w

0)
@wr

immediately follows since given � and u�0 the
right hand side objects of (30) are identi�ed.
As given in Theorem 5, for identi�cation of this dynamic optimal stopping

time model, complete speci�cation of the instantaneous utility function u�0 is
not necessary and one can specify it up to �nite dimensional unknown para-
meters. Let u�0(x) = u�0(w; z; �) be known up to a �nite J-dimensional vector
of parameters, � 2 �, where � is a compact subset of RJ . We also give the
identi�cation result for the dynamic optimal stopping time model when u�0 is
speci�ed as linear in parameters.

Theorem 7

Assume all conditions in Theorem 6 still hold except that u�0(x) = u�0(w; z; �) =
�0h(w; z) where h(w; z) is a J-dimensional vector of known functions hj(w; z) 2
B and each component �j in the vector � is not zero and each hj(w; z) function
has non-zero partial derivative with respect to z. Then v�0(x) = �0r(w; z), where
r(w; z) is a J-dimensional vector of functions rj(w; z) with each rj(w; z) 2 B
satisfying the Bellman equation rj(w; z) = hj(w; z) + �E(rj(w

0; z0)jw; z; � = 0).
Hence, given �, � is identi�ed up to a scale normalization.

Proof. Given u�0(x) = u�0(w; z; �) = �0h(w; z), we shall �rst verify the conjecture
that v�0(x) = �0r(w; z) does satisfy Bellman equation (23). Plugging v�0(x) =
�0r(w; z) into equation (23), we have

�0r(x) = �0h(x) + �E(�0r(x0)jx; � = 0) = �0(h(x) + �E(r(x0)jx; � = 0))

Therefore,
r(x) = h(x) + �E(r(x0)jx; � = 0) (31)

Since h(x) 2 B, r(x) is the unique �xed point of Bellman equation (31). So
v�0(x) = �0r(x) is the unique �xed point of Bellman equation (23). Since h(x) is
known, given �, r(x) is then identi�ed using equation (31) and hence v�0(x) is
identi�ed up to �. The conditional choice probability in this case is

P (�0 = 1jw0; z0; � = 1) = G(v�1(w
0)� v�0(w0; z0)) = G(v�1(w

0)� �0r(w0; z0)):

Hence, we have

P (�0 = 1jw0; r(w0; z0); � = 1) = G(v�1(w
0)� �0r(w0; z0)):

Taking partial derivative with respect to rj(w0; z0), we have

@P (�0 = 1jw0; r(w0; z0); � = 1)
@rj

= �g(v�1(w0)� �0r(w0; z0))�j
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Using the average derivative arguments, we have

E(
@P (�0 = 1jw0; r(w0; z0); � = 1)

@rj
) = �E(g(v�1(w0)� �0r(w0; z0)))�j

Therefore, �j is identi�ed up to a scale normalization.

4.2 Partial identi�cation when the distribution G has large
support

To identify the remaining structural parameters (u�1(x); v
�
1(x)), if �G; the sup-

port of G is a subset of v�0(�X) so that G is completely identi�ed on its support,
by Lemma 2, given �; u�0 and the identi�ed G, (u

�
1(x); v

�
1(x)) are also identi�ed.

However, such support assumption essentially precludes those popular speci�-
cations G of unbounded support. In identifying the basic model as discussed in
Section 3.2, complete identi�cation of G is essential to compute the discounted
expected gain E(�"0�0jx; � = 0) in Bellman equation (13) for Choice 0 so that
v�0 can be solved and hence identi�ed. Obtaining v

�
0 is a key step to the iden-

ti�cation of v�1 because v
�
1 can be solved from (??) using information of G and

v�0 . When �G is unbounded, G is then only partially identi�ed over the relevant
subset of its support. In this case, there is lack of identi�cation of the basic
model since E(�"0�0jx; � = 0) is not identi�ed and v�0 in this case cannot be
uniquely determined. Therefore, we cannot yet separately identify v�1 and v

�
0

though the di¤erence �v� is identi�able over the relevant support where G is
identi�ed.
However, in contrast with the basic model, the extra behavioral restriction

from the presence of an irreversible choice allows us to characterize the degree
of under-identi�cation when G has large support. To see this, note that given �
and u�0, we can always identify v

�
0 as the �xed point solution of Bellman equation

(24). Theorem 6 identi�es G on the support of v�0(�X). This information allows
us to identify the di¤erence �v� and thus v�1 can be separately identi�ed since
v�0 is already known. With information of v

�
1 , we can proceed to discuss the

identi�cation of u�1(x): From Bellman equation (23), we have

u�1(x) = v�1(x)��E(v�0(x0)jx; � = 1)��[E(�v�(x0)�0jx; � = 1)+E(�"0�0jx; � = 1)]
(32)

Given �, after applying Theorem 6, all righthand side objects except the last
term of equation (32) can be identi�ed. The term E(�"0�0jx; � = 1) may not
be identi�ed because the support of the distribution G may not be completely
contained in the support of v�0 . By further investigating the unidenti�ed term
E(�"0�0jx; � = 1), although not point identi�ed, we can show that the upper
bound of u�1(x) can be identi�ed. To see this, let the support of v

�
0 be [Lv; Uv]
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and assume the support of �v� is contained in [Lv; Uv]. Note that

E(�"0�0jx; � = 1) = E(�"0j�0 = 1; x; � = 1)P (�0 = 1jx; � = 1)
= E(E(�"0j�0 = 1; x0; x; � = 1)j�0 = 1; x; � = 1)P (�0 = 1jx; � = 1)
= E(E(�"0j�v�(x0) + �"0 � 0; x0; x; � = 1)j�0 = 1; x; � = 1)P (�0 = 1jx; � = 1)

= �

24Z
�x

R�v�(�)
�1 (��"0)g(��"0)d(��"0)

P (�0 = 1jx0 = � ; � = 1)
f(� j�0 = 1; x; � = 1)d�

35P (�0 = 1jx; � = 1)
(33)

We can further analyze the term
R�v�(�)
�1 (��"0)g(��"0)d(��"0) in (33) as fol-

lows. Let � = ��"0 and W �
R Lv
�1G(�)d�. ThenZ �v�(�)

�1
(��"0)g(��"0)d(��"0) =

Z �v�(�)

�1
�g(�)d� =

Z Lv

�1
�g(�)d� +

Z �v�(�)

Lv

�g(�)d�

= LvG(Lv) +

Z �v�(�)

Lv

�g(�)d� �W (34)

Note that the value ofW is not identi�ed since the distributionG is not identi�ed
for � =2 [Lv; Uv]. However, the "bias" term W is non-negative and shrinks to
zero when the lower bound of the support of v�0 approach the lower bound of
the support of G. Plugging (34) into (33), we have

E(�"0�0jx; � = 1) = (W�LvG(Lv))E(
�0

P (�0 = 1jx0; � = 1)
jx; � = 1))�AP (�0 = 1jx; � = 1);

(35)
where A is de�ned as

A =

Z
�x

R�v�(�)
Lv

�g(�)d�

P (�0 = 1jx0 = � ; � = 1)
f(� j�0 = 1; x; � = 1)d�

SinceW is non-negative, settingW = 0 will give a lower bound of E(�"0�0jx; � =
1) and hence the upper bound of u�1(x) is identi�ed. Therefore, treating the tail
area of G as zero (settingW = 0) gives a nonparametric approximation of u�1(x)
and this approximation gets more precise when G is less heavy-tailed. In prac-
tice, one would expect that the bias W does not matter if the support of v�0 is
wide enough.
It is clear that given the discount factor �, W can be identi�ed if one is

willing to parameterize u�1(x). For example, if u
�
1(x) = u�1(x; �) for some �nite

dimensional vector of parameters �, then W and � can be (over-) identi�ed by
plugging (35) into (32) and then solving for W and �26 .

26Of course, the usual rank condition should be satis�ed to guarantee a unique solution of
W and �.
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5 An illustrating example : optimal replacement
of production capital

We present in this section a simple motivating example in which the analysis of
this paper may be useful.
Consider Rust (1987)�s classic model of optimal replacement of bus engines.

A bus operation company at every period has to decide for each bus whether
the engine of the bus should be replaced with a new one. Let Choice 1 be
the decision of continuing bus operation with its current engine and Choice 0
be that of replacing with a completely new engine. Following Rust (1987), we
assume that the bus maintenance manager behaves as a cost minimizer with
instantaneous choicewise utilities

u1(x; "1) = �c(w) + "1;
u0(x; "1) = z � p+ "0;

where w is the cumulative mileage of the bus, z is the manager�s booked (esti-
mated) remaining value of the bus engine that may be observed in the company�s
�nancial statements, p is the price of the new engine, "1 can be interpreted as
unobserved cost of operating the bus with an old engine and "0 can account for
any discrepancy between z and actual scrapping value of the old engine. Note
that in this model u�1(x) = �c(w) and u�0(x) = z � p. The parameters of inter-
est are the nonparametric cost function c(w) and the value functions v�0 and v

�
1 .

Clearly, the price process of p is generally serially correlated27 and hence it does
not satisfy the conditional independence assumption (ii) in Theorem 4 though
it does ful�l the excluded regressor assumption (i). Therefore, in this model
only z is the potential candidate for a valid excluded variable that satis�es both
assumptions (i) and (ii). Assumption (i) is trivially satis�ed for z. The condi-
tional independence assumption may be satis�ed when the company estimates
the remaining value of the engine based on its used mileage w; which does serve
as a key factor of its reselling value, plus some independent random noise that
re�ects the company�s assessment of the current status of the engine28 .
It is worth to investigate using this example the support condition and

location normalization assumed in Theorem 4. The observed state variable
x = (w; z; p). Let �X be the support of x. Note that we require that both
u�1(x) and u�0(x) are sup-norm bounded to ensure unique �xed point to the
Bellman equations (13). This condition generally requires that the support of
x be bounded29 . Let u�0(�X) and �v

�(�X) be the supports of u�0 and �v
�;

respectively. Since G is identi�ed only on u�0(�X) and identi�cation of �v
�

27Note the (equilibrium) price of the engine is a macro-level variable to be determined in
the market. If the market of bus engines is e¢ cient, the price p is generally a random walk
process.
28As discussed before, this conditional independence restriction is indeed testable because

it is imposed on observed state variables.
29Rust (1987) discretizes w into �nite number of grids and thus the support of w in his

model is essentially bounded.
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follows from identi�cation of G, for complete identi�cation we requires that
�v�(�X) � u�0(�X) and �G,the support of G be a subset of u�0(�X): Since
u�0(�X) is bounded, these support conditions precludes those unobservables
whose distributions have unbounded support: If the support conditions do not
hold, then complete identi�cation is not available and Theorem 4 should be
regarded as a result of partial identi�cation in which the distribution G is only
identi�ed on u�0(�X)

30 : The location normalization assumption (iv) of Theorem
4 essentially requires that there be a known point c in the interior of �X and a
known constant b such that31

�(c) = u�1(c) +m(c) = b;

where m(c) = m1(c) + m2(c) + m3(c) and mk; k 2 f1; 2; 3g is given in (18),
(19) and (20). Since each mk depends on dynamic value functions which are
not primitive structural objects, such location normalization is not innocuous
and should be interpreted with caution. Consider a researcher who estimates a
parametric speci�cation of the bus engine replace model. The structural model
can then be computed using the consistent estimates and predicted conditional
choice probabilities can be plotted. The researcher may �nd that the plot of
conditional choice probabilities at a point c in the interior of �X matches the
data very well. The researcher can then compute �(c) using the estimated
model parameters. Note that �(c) depends on the postulated parameterization
of the model and we denote such dependence by �(c) = �M;c, where M is the
vector of parameters that characterizes the model. Therefore, the researcher
may be willing to keep the �t of the originally parametric model at the point
c but allow for more �exible speci�cation of structural functions evaluated at
other points. In this case, the researcher may choose to achieve the location
normalization required in Theorem 4 by setting b = �M;c. In other words,
the location normalization assumption can be interpreted as an assumption
that the postulated model in terms of M is correctly speci�ed at the point c
and thus nonparametric identi�cation using Theorem 4 can remedy potential
misspeci�cation of the structural model M at other points in �X .
When all conditions in Theorem 4 are ful�lled, we can nonparametrically

identify the cost function and thus our inference of this model of optimal re-
placement policy of capital can be more robust against misspeci�cation of dis-
tribution of the unobserved modeling components.

6 A sketched estimation strategy

In this section we sketch a preliminary estimation strategy based on the identi-
�cation analysis that has been presented so far.
30 If Choice 0 is absorbing, then the upper bound of u�1(x) is also identi�ed (See Section

4.2). We leave for further research the characterization of the partially identi�ed set of u�1(x)
of a general recurrent model.
31 In Theorem 4, the constant b is assumed to be zero for convenience. However, we can

easily modify the theorem to accommodate location normalization to other non-zero value of
b.

24



6.1 Estimating the basic model

The estimation procedure of the basic model proceeds as follows. Assume data
consists a random sample of n individual observations (�i; wi; w0i; zi; z

0
i): For

simplicity, we assume both w and z are scalar continuous random variates. Let
K(:) be the usual symmetric univariate kernel function and h be the bandwidth
parameter. Theorem 4 implies that

G(t) = P (� = 1jw = c; u�0(w; z) = �t):

Thus, we can estimate the distribution G using sample analog estimator as

bG(t) �
nX
i=1

�iK(
wi�c
h )K(

u�0(wi;zi)+t
h )

nX
i=1

K(wi�ch )K(
u�0(wi;zi)+t

h )

:

Using bG, we can estimate �v� as follows.
d�v�(w; z) � bG�1( bP (� = 1jw; z));

where bP (� = 1jw; z) is the kernel estimator of the conditional choice probability
bP (� = 1jw; z) �

nX
i=1

�iK(
wi�w
h )K( zi�zh )

nX
i=1

K(wi�wh )K( zi�zh )

:

Estimation of v�0 is more involved. We shall estimate the terms of discounted
expected gain,  0(w) � E(�v�(w0; z0)�0jw; � = 0) and e0(w) � E(�"0�0jw; � =
0)32 : The �rst term can be estimated as

b 0(w) �
nX
i=1

d�v�(w0i; z0i)�0iK(wi�wh )(1� �i)

nX
i=1

K(wi�wh )(1� �i)
: (36)

The estimation of e0(w) can be based on a simulation procedure. Note that

E(�"0�0jw; � = 0) = E(�"01f�v�(w0; z0) + �"0 � 0gjw; � = 0):

We can �rst simulate d�"0i by drawing from bG. For each individual i, we can
compute the simulated choice b�0i � 1fd�v�(w0i; z0i)+d�"0i � 0g and then form the

32Note that the assumptions in Theorem 4 imply that both  0 and e0 are functions of w
only.
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estimator

be0(w) �
nX
i=1

d�"0i b�0iK(wi�wh )(1� �i)

nX
i=1

K(wi�wh )(1� �i)
: (37)

Therefore, we can construct the following empirical Bellman equation of Choice
033 . bv�0(w; z) = u�0(w; z) + �(

b 0(w) + be0(w)) + � bEw0;z0jw;0( bv�0(w0; z0)); (38)

where for any function �(:), bEw0;z0jw;d(�(w0; z0)) is an empirical conditional ex-
pectation operator of � that is constructed as follows

bEw0;z0jw;d(�(w0; z0)) �
nX
i=1

�(w0i; z
0
i)K(

wi�w
h )1f�i = dg

nX
i=1

K(wi�wh )1f�i = dg
:

Given � and u�0, the estimator bv�0 of v�0 is then solved as the unique �xed point
of the empirical Bellman equation (38). The following proposition establishes
the existence of the �xed point estimator, bv�0 :
Proposition 8

Given � 2 [0; 1) and u�0 2 B, the space of all sup-normed bounded functions,
then for any sample size n, we have bv�0 2 B as the unique �xed point solution
of Bellman equation (38).

Proof. De�ne the operator bT asbT ( bv�0)(w; z) = u�0(w; z) + �(
b 0(w) + be0(w)) + � bEw0;z0jw;0( bv�0(w0; z0))

Because u�0 2 B and in any �nite sample both b 0 and be0 are bounded, if bv�0 2 B,
then bT ( bv�0) 2 B and thus the operator bT is a mapping from B to B. To show that
this operator induces a contraction mapping, we can check Blackwell su¢ cient
conditions (see Theorem 3.3 in Stockey and Lucas 1989) of monotonicity and
discounting. For monotonicity, due to the monotone property of the operatorbEw0;z0jw;0, it is clear that bT (v2) � bT (v1) if v2 � v1 and both v1 and v2 are in B.
The discounting condition is also satis�ed since for any a 2 R;bT ( bv�0 + a)(w; z) = u�0(w; z) + �(

b 0(w) + be0(w)) + � bEw0;z0jw;0( bv�0(w0; z0) + a)
= bT ( bv�0)(w; z) + �a

33The assumptions in Theorem 4 imply that E(v�0(w
0; z0)jw; z; � = 0) is also a function of

w only.
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due to the linear property of the operator bEw0;z0jw;0. Therefore, Proposition 8
follows by noting that Blackwell su¢ cient conditions hold for the operator bT
and hence bT is a contraction mapping.
By using bv�0 and d�v�; the estimator bv�1 for v�1 can be immediately obtained

as34 bv�1(w) = d�v�(w; z) + bv�0(w; z):
The remaining parameter to be estimated is u�1(w), which can be obtained viacu�1(w) � bv�1(w)� � bEw0;z0jw;1( bv�0(w0; z0))� �[b 1(w) + be1(w)]; (39)

where b 1(w) and be1(w) are estimators of  1(w) � E(�v�(w0; z0)�0jw; � = 1)
and e1(w) � E(�"0�0jw; � = 1); respectively and they can be obtained as

b 1(w) �

nX
i=1

d�v�(w0i; z0i)�0i�iK(wi�wh )

nX
i=1

�iK(
wi�w
h )

; (40)

be0(w) �

nX
i=1

d�"0i b�0i�iK(wi�wh )

nX
i=1

�iK(
wi�w
h )

: (41)

6.2 Estimating the dynamic optimal stopping time model

The estimation strategy of the dynamic optimal stopping time model can be
done in a similar way as discussed in previous section. However, for the optimal
stopping time model the identi�cation power comes from the control function
v�0(w; z) and hence the �rst step is to get the estimator bv�0 ; which can be solved
as the �xed point of its empirical Bellman equation

bv�0(w; z) = u�0(w; z) + � bEw0;z0jw;0( bv�0(w0; z0)): (42)

Note that existence of bv�0 follows from Proposition 8 by setting both b 0(w) andbe0(w) to be zero. The next step is to estimate G using bv�0 and the implication
of Theorem 6 as

bG(t) �
nX
i=1

�0i�iK(
w0i�c
h )K(

v�0 (w
0
i;z

0
i)+t

h )

nX
i=1

�iK(
w0i�c
h )K(

u�0(w
0
i;z

0
i)+t

h )

:

34Note that the assumptions in Theorem 4 imply that v�1 is also a function of w only.
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Using bG, we can estimate �v� as follows.d�v�(w0; z0) � bG�1( bP (�0 = 1jw0; z0; � = 1));
where bP (�0 = 1jw; z; � = 1) is the kernel estimator of the conditional choice
probability

bP (�0 = 1jw0; z0; � = 1) �
nX
i=1

�0i�iK(
w0i�w

0

h )K(
z0i�z

0

h )

nX
i=1

�iK(
w0i�w0
h )K(

z0i�z0
h )

:

By using bv�0 and d�v�; the estimator bv�1 for v�1 can be immediately obtained asbv�1(w) = d�v�(w; z) + bv�0(w; z):
We assume that G is identi�ed over its entire support. Then the estimatorcu�1(w) of u�1(w) is the same as the expression given in (39).
7 Conclusions

This paper develops semiparametric identi�cation results for structural dynamic
discrete choice models. The main parametric assumption for this semipara-
metric identi�cation method is the (parametric) speci�cation of the per-period
return function of one of the choices. The distribution of unobserved state
variables and per-period return function for the other choice are both nonpara-
metric. Thus the semiparametric approach adopted in this paper can serve
as a diagnostic device to check for parametric assumptions of distribution of
unobservables. Our identi�cation strategy does not rely on the availability of
terminal period data and hence can be applied to in�nite horizon structural
dynamic models. The identi�cation crucially depends on the availability of at
least one excluded continuous variable that is excluded from the unknown func-
tion but enters the known object that serves as control function to identify the
model. Primitive conditions to validate such exclusion restriction can be relaxed
when there is extra behavioral restriction from the presence of an irreversible
choice. We illustrate the use of identi�cation strategy for the classic model of op-
timal replacement of production capital. We also discuss a potential estimation
strategy. The proposed implementation method results in mutli-stage estima-
tion procedure which requires the task of solving a contraction mapping for the
empirical counterpart of Bellman equations (13). The asymptotic properties of
the estimation procedure proposed in Section 6 are a topic for further research
beyond the present paper. Note that bv�0 as a solution of (38) or (42) generally
has no closed form representation and can only be obtained iteratively as a
numerical �xed point of the corresponding empirical Bellman equation. Hence
delta method or asymptotic expansions of bv�0 cannot be direct applicable. Such
non-standard problem poses a challenge and an investigation of its potential
solutions is the next work on our research agenda.
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