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Abstract

This paper develops methodology for nonparametric estimation of a polarization measure due

to Anderson (2004) and Anderson, Ge, and Leo (2006) based on kernel estimation techniques.

We give the asymptotic distribution theory of our estimator, which in some cases is nonstandard

due to a boundary value problem. We also propose a method for conducting inference based on

estimation of unknown quantities in the limiting distribution and show that our method yields

consistent inference in all cases we consider. We investigate the �nite sample properties of our

methods by simulation methods. We give an application to the study of polarization within

China in recent years.
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1 Introduction

Polarization is the process whereby a social or political group is divided into two opposing sub-

groups with fewer and fewer members of the group remaining neutral or holding an intermediate

position. It is the subject of some interest in economics as it is both cause and consequence of much

economic behavior. There have been several proposed univariate polarization indices which focus on

an arbitrary number of groups (Esteban and Ray (1994), Esteban, Gradin and Ray (1998), Zhang

and Kanbur (2001) and Duclos, Esteban and Ray (2004)) and a similar number of bi-polarization

measures that focus on just two groups (Alesina and Spolaore (1997), Foster and Wolfson (1992),

Wolfson (1994) and Wang and Tsui (2000)).1 All consider polarization within a distribution to be

a tendency toward multiple separating modes, in essence addressing the potential for an observed

distribution to be a mixture of several (or just two) unobserved sub-distributions. Gigliarano and

Mosler (2008) develop a family of multivariate bi-polarization measures based upon estimates of

between and within group multivariate variation and relative group size which require observations

on the two sub-distributions. It is worth noting that, within applications in economics, the measure

is readily adapted to general tests of distributional di¤erences in examining issues of convergence,

independence and mobility for example. The measure presented here falls into this category (though

it can be readily extended to many groups) in that it re�ects the polarization of the distributions of

two or more identi�able groups.

Duclos, Esteban and Ray (2004) evaluate polarization measures on the basis of the extent to which

they satisfy axioms formed around a notional univariate density f(x) that is a mixture of kernels

f(x; ai) that are symmetric uni-modal on a compact support of [ai; ai+2] with E(x) = �i = ai+1.

The kernels are subject to slides (location shifts) that preserve the shape of the kernels and squeezes

that are location preserving shrinkages of the kernel to their respective locations. Potential indices

are evaluated in the context of such changes in terms of whether they satisfy axioms that require

symmetric squeezes and outward slides to increase the polarization measure. To the extent that

the kernels remain overlapped this will be the case for the index proposed here. It is also required

that common population scaling of the kernels will preserve the ordering which will also be the case

here. They argue that valid measures lie in the class P�(f) =
R R

f(x)1+�f(y)jy � xjdydx; where
� 2 [0:25; 1]: They propose an estimator of P�(f) and is establish its asymptotic properties.
We will focus on measurement of polarization between two well-de�ned groups. One technique for

assessing polarization between two groups is to evaluate how much they have in common according

to some objective outcome variable, such a measure corresponds to non-alienation and its negative

corresponds to a degree of alienation. Anderson (2004) and Anderson, Ge, and Leo (2006) proposes an

overlap measure as an index of convergence and a function of its negative as a measure of alienation.

1An excellent summary of the properties of the univariate indices is to be found in Esteban and Ray (2007).
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The extent to which two densities f; g overlap is given by

� =

Z 1

�1
minff(x); g(x)gdx: (1)

It is a number between zero and one with zero corresponding to no overlap and one to the perfect

matching of the two distributions. It follows that 1 � � is a measure of the extent to which the
distributions do not match or are alienated. This quantity was �rst introduced by Weitzman (1970)

in a comparison of income distributions by race. Note that � is a unit free measure, invariant to a

common smooth monotonic transformation. The de�nition can easily be extended to the multivariate

x case, and indeed we treat this case below. This quantity has received a lot of attention in medical

statistics, Mizuno, Yamaguchi, Fukushima, Matsuyama, and Ohashi (2005), and Ecology, where it

is known as the overlap coe¢ cient or the coe¢ cient of community, see for example Ricklefs and Lau

(1980). To provide a sense of the magnitude of � we looked at the male-female height distributions

from the National Health and Nutrition Survey of 1999 for the US age group 20-29. For these data,

� is approximately 0.40.

Previous work, Anderson, Ge and Leo (2006), has shown how to estimate � and conduct inference

about it when f; g are parametric, albeit in the very special setting where e¤ectively there are a

�nite number of cells and the frequency of each cell can be estimated at square root of sample

size accuracy. The discretized setting can be expected to lose information in general. Also, there

is no consensus on appropriate parametric models for income distributions for example, and the

issue of misspeci�cation bias suggests a nonparametric approach where this can be done e¤ectively.

We propose a nonparametric estimator of � using kernel density estimates of f; g plugged into the

population functional: Although these estimates and regular functionals of them are well understood,

the population parameter � is a nonsmooth functional of f; g and so standard methods based on

Taylor series expansion cannot be applied to treat the estimator. The properties of the estimated �

can be nonstandard depending on the contact set fx : f(x) = g(x) > 0g : This set can be empty, it
can contain a countable number of isolated points, or it can be a union of intervals. In the �rst case,

the asymptotics are trivial because this implies that one density always lies strictly below the other,

and is not very interesting. The second case yields standard normal type asymptotics as in between

the contact points one density estimate always prevails. The third case is a sort of �boundary value�

case. It is of interest because it corresponds to the case where the distributions overlap perfectly over

some range. This is an important case because one hypothesis of interest is that the two distributions

are identical (or identical over a range) as one might believe in some applications. In that case there

are binding inequality restrictions, which may be expected to induce non-normal asymptotics. We

show the distribution theory for this latter case using some Poissonization techniques due to Giné et

al. (2003). It turns out that the limiting distribution is normal after a bias correction. In practice,

we do not know which of these three cases arises and so our inference method should be robust to

these di¤erent possibilities. In addition, it can be that the two densities while not identical are close

to each other over a range of values, and this would induce a distortion in the usual asymptotic
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approximation. We develop an analytical approach to inference and show that it yields consistent

inference whatever the nature of the contact set.

2 Estimation

We assume that there are population random variables X;Y; where X has density f and Y has

density g: Note that � is invariant to monotonic transformations of X; Y; that is, if �X = �(X) and

�Y = �(Y ) for a strictly increasing di¤erentiable transformation � ; and �X and �Y have densities f�
and g� ; then � =

R1
�1minff� (t); g� (t)gdt by standard application of the law of transformation. Note

also that � = 1� 1
2

R1
�1 jf(x)� g(x)j dx; which shows that 1� � de�nes a pseudometric on the space

of densities. An alternative representation of � is as an expectation

� = E [min f1; `g;f (X)g] = E [min f1; `f;g(Y )g] ; (2)

where `g;f (x) = g(x)=f(x) is the likelihood ratio, which can be convenient for computing estimators,

see below.

We will assume a multivariate setting where X; Y are d-dimensional vectors. In this case we

shall assume that the integral is over all of the variables. In this case it is also possible to consider

integrating with respect to a subset of variables or to consider conditional densities, but we shall

leave that for future work.

We suppose that there is a sample f(X1; Y1); : : : ; (Xn; Yn)g of size n on the population. In some
cases one might have di¤erent sizes n;m for the two samples, but we shall leave this discussion till

later. We propose to estimate � by

b� = Z
C

minffn(x); gn(x)gdx; (3)

fn(x) =
1

n

nX
i=1

Kb (x�Xi) ; gn(x) =
1

n

nX
i=1

Kb (x� Yi) ;

where C � Rd is the union of the supports or some subset of interest, while K is a multivariate

kernel and Kb(:) = K(:=b)=bd and b is a bandwidth sequence. For simplicity we suppose that the

same bandwidth is used in both estimations and at each point x: When K � 0; fn(x); gn(x) � 0:

When X; Y have unbounded support,
R
fn(x)dx =

R
gn(x)dx = 1: There is an issue about boundary

e¤ects in the case where the support is compact and the densities are positive on the boundary.

In that case one might use some boundary correction method. In practice one has to compute a

multivariate integral in (3) and a simple approach is to just replace b� by a sample average over a set
of grid points on the support. Alternatively, one can take the sample average over the observations

of the empirical version on (2).2

2An alternative estimator here, based on the transformation idea, is

b� = Z 1

0

minf1; gXn (u)gdu;
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3 Asymptotic Properties

We next discuss the asymptotic behavior of b� as n ! 1: We treat the case where X; Y have

unbounded support Rd as this is more challenging and perhaps of more interest for applications.3

Schmid and Schmidt (2006) have recently established consistency of b� in the univariate compactly
supported special case.

We use the following notation. De�ne the contact set and its complements:

Cf;g =
�
x 2 Rd : f(x) = g(x) > 0

	
; (4)

Cf = fx : f(x) < g(x)g ; (5)

Cg = fx : f(x) > g(x)g : (6)

Let � = (�1; : : : ; �d)> denote a vector of nonnegative integer constants. For such vector, we de�ne

j�j =
Pd

i=1 �i and, for any function h(x) : Rd ! R; D�h(x) = @j�j=(@x�11 � � � @x
�d
d )(h(x)); where

x = (x1; : : : ; xd)
> and x� =

dQ
j=1

x
�j
j : For a Borel measurable set A � Rd; we de�ne �(A) to be the

Lebesgue measure of A and

�f (A) =

Z
A

f 1=2(x)dx:

Let

jjKjj22 =
Z
Rd
K2(u)du and �(t) =

Z
Rd
K(u)K(u+ t)du=jjKjj22:

Assumptions.

(A1) (i) K is a s -th order kernel function having support in the closed ball of radius 1=2 centered

at zero, symmetric around zero, integrates to 1, and s -times continuously di¤erentiable, where s is

an integer that satis�es s > d: (ii) The kernel satis�es �(t) = 1 � c ktk� + o(ktk�) as ktk ! 0 for

some positive constants c and �:

(A2) The densities f and g are strictly positive on Rd; bounded and absolutely continuous with
respect to Lebesgue measure and s - times continuously di¤erentiable with uniformly bounded deriv-

atives.

(A3) The bandwidth satis�es: (i) nb2s ! 0; (ii) nb2d ! 1; (iii) nbd= (log n) ! 1; (iv)
nbd(1+
)=
= (log n)(1+2
)=
 ! 1; where 
 is a positive constant that satis�es A5 when �(Cf;g) > 0

and 
 =1 otherwise.

(A4) fXi : i � 1g and fYi : i � 1g are i.i.d. and independent from each other with support Rd:

where gXn (x) is the density estimate based on transformed data F
X
n (Yi); i = 1; : : : ; n; where F

X
n (�) = n�1

Pn
i=1 1(Xi �

�) is the empirical process of X: It turns out this has identical asymptotic distribution to our estimator. Schmid and
Schmidt (2006) �nd not much di¤erence between the estimators in simulation experiments.

3This implicitly rules out the case � = 0:
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(A5) (i) Whenever �(Cf;g) > 0; the densities f and g satisfy h�(") := �f (fx : 0 < jf(x)� g(x)j �
"g) = O("
) as "! 0 for some positive constant 
: (ii)

R
Cf;g

f 1=2(x)dx <1:
Remarks. By the triangle inequality we have

2
���b� � ���� � Z jfn(x)� f(x)j dx+

Z
jgn(x)� g(x)j dx; (7)

so that under weaker conditions than A3, speci�cally just b ! 0 and nbd ! 1; we have b� � � =
Op(b

s) +Op(n
�1=2b�d=2): The assumption A3 is needed for the asymptotic normality. To ful�l A3 we

require that s > d and s > d(1 + 
)=2
; in the univariate case with 
 > 1 it su¢ ces to have twice

di¤erentiable densities and bandwidth in the range n�1=4 to n�1=2; i.e., undersmoothing relative to

what would be the optimal bandwidth for estimation of the densities themselves but not too much

undersmoothing. If s � d; the smoothing bias term dominates and prevents the distribution theory

below applying. In A4 we assume that the variables are mutually independent and the sample is

i.i.d. This can be relaxed under further conditions. Assumption A5 controls the behavior of the

density functions near the boundary of the contact set Cf;g: It has to do with the sharpness in the

decrease of h = f � g to zero, see Härdle, Park and Tsybakov (1995), Hall (1982), and Cuevas
and Fraiman (1997) for related concepts. It is like a tail thickness condition except that it only

applies in the vicinity of Cf;g: If h is bounded away from zero outside of Cf;g, then 
 can be set

to be 1: Assumption A5 is used to derive the asymptotic distribution of
p
n(b� � �) and to get a

consistent estimator of the centering term an in Theorem 2 below. The requirement in A5(ii) thatR
Cf;g

f 1=2(x)dx = E
�
f(X)�1=21(f(X) = g(X))

�
<1 rules out the case where both f; g are the same

Cauchy density since
R
Cf;g

f 1=2(x)dx = 1 in this case; condition A5(ii) is implied by the condition

that E [jjXjj1+�1(f(X) = g(X))] <1 for some � > 0:

De�ne:

p0 = Pr(X 2 Cf;g) = E [1 (f(X) = g(X))] = Pr(Y 2 Cf;g) = E [1 (f(Y ) = g(Y ))]
pf = Pr(X 2 Cf ) = E [1 (f(X) < g(X))] ; pg = Pr(Y 2 Cg) = E [1 (f(Y ) > g(Y ))]
�21 = pf (1� pf ) + pg(1� pg); v = p0�

2
0 + �

2
1:

Theorem 1. Suppose that Assumptions A1-A5 hold. Then, we have:

p
n
�b� � ��� an =) N(0; v);

an = b�d=2jjKjj2
Z
Cf;g

f 1=2(x)dx � Emin fZ1; Z2g ;

�20 = jjKjj22
Z
T0

cov
�
min fZ1; Z2g ;min

n
�(t)Z1 +

p
1� �(t)2Z3; �(t)Z2 +

p
1� �(t)2Z4

o�
dt;

where Z1; Z2; Z3; and Z4 are independent standard normal random variables and T0 = ft 2 Rd :
ktk � 1g:
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Remarks.
1. The statistic b� is consistent provided only b ! 0 and nbd ! 1 as follows from the above

discussion. Our result shows under stronger conditions that the statistic is asymptotically normal

after subtracting a bias term that is of order n�1=2b�d=2: The bias term depends on the integral of

the square root of either density over the contact set, and this is non zero whenever this set has some

measure. In fact, Emin fZ1; Z2g = �0:56 and so an � 0; so that the estimator is downward biased.
The bias can be arbitrarily large depending on the magnitude of

R
Cf;g

f 1=2(x)dx:We show below how

to compute a feasible bias corrected estimator that achieves root-n consistency, but to do that we

will require additional conditions.

2. The limiting variance depends on the magnitudes of the sets Cf;g; Cf ; and Cg under the

relevant probability measures along with constants that just depend on the kernel chosen. We have

v � jjKjj22�(T0) + 1=2 in general, and in the scalar case with the uniform kernel we have v � 5=2: It
is not known what is the optimal kernel here, but we suspect that the uniform kernel is optimal due

to its minimum variance property. We have calculated �20 for various kernels in the univariate case

and present the results below:

Kernel K(u) �20 jjKjj22
Uniform 1 [juj � 0:5] 0:6135 1:000

Triangular (2 + 4u)1 [�0:5 � u � 0] + (2� 4u)1 [0 < u � 0:5] 0:6248 1:3334

Normal �(u)
1�2�(�0:5)1 [juj � 0:5] 0:6167 1:0014

Epanechnikov 6
�
1
4
� u2

�
1 [juj � 0:5] 0:6175 1:1999

Biweight 30
�
1
4
� u2

�2
1 [juj � 0:5] 0:6169 1:4275

In the special case that the contact set is of zero measure, � = pf + pg; and we see that p0 = 0

and an = 0 so that
p
n(b� � �)) N(0; �21): This asymptotic variance is actually the semiparametric

e¢ ciency bound for the case where the sets Cf and Cg are known, so that b� is fully e¢ cient in this
case.

3. The proof of Theorem 1 uses the decomposition of the estimation error into three stochastic

terms plus a remainder term:

p
n(b� � �) =

p
n

Z
Cf

ffn(x)� Efn(x)gdx+
p
n

Z
Cg

fgn(x)� Egn(x)gdx

+
p
n

Z
Cf;g

minffn(x)� Efn(x); gn(x)� Egn(x)gdx+Rn;

where Rn = Op(
p
nbs) = op(1): The �rst two terms are more or less standard in the semiparametric

literature as integrals of semiparametric estimators over some domain. The �nal term is what causes

the main issue, at least when Cf;g has positive measure. This term is similar in spirit to what is

obtained in other boundary estimation problems, Andrews (1999). For example, consider the problem

of estimating � = minf�X ; �Y g; where �X = EX and �Y = EY:When �X = �Y ; the usual estimator
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b� = minfX; Y g satis�es
p
n(b� � �) = minf

p
n(X � �X);

p
n(Y � �Y )g =) minfZX ; ZY g; where

[
p
n(X � �X);

p
n(Y � �Y )] =) [ZX ; ZY ] = Z and Z is bivariate normal with zero mean. In this

case, the limiting distribution of b� has a negative mean and is non-normal. In the case of b� there
is a negative bias term but after subtracting that o¤ one has asymptotic normality. The intuitive

reason is that our estimator involves averages of approximately independent random variables. The

formal justi�cation though is more complex because the behavior of the stochastic process �n(x) =

(fn(x)�Efn(x); gn(x)�Egn(x)); x 2 Cf;g is not standard. If fn(x); gn(x) were c.d.f.�s we could apply
the functional central limit and continuous mapping theorems to obtain the limiting distribution,

but this is not available here even at the slower rate of the pointwise convergence of �n(x) because

of a lack of tightness. If �n(x) and �n(x0) for x 6= x0 were independent we could instead argue thatR
Cf;g

minffn(x)�Efn(x); gn(x)�Egn(x)gdx is like a sum of independent random variables and apply
a central limit theorem after recentering. Although �n(x) and �n(x0) are asymptotically independent

for x 6= x0 they are not exactly so and in any case the integral requires we treat also the case where
x�x0 = tb for jjtjj � 1; and for such sequences �n(x) and �n(x0) can be highly dependent. In Appendix
B we give a further discussion about this. The argument to exploit asymptotic independence and

establish normality is based on the so-called Poissonization, which was originally used by Kac (1949).

The idea behind Poissonization is that the behavior of a �xed population problem should be close

to that of the same problem under a Poisson model having the �xed population problem size as its

mean. The additional randomness introduced by Poissonization allows for application of techniques

that exploit the independence of the increments and the behavior of moments. This technique has

been used in a number of places including combinatorical mathematics and analysis of algorithms.

We next discuss how to conduct consistent inference on the parameter � using the theory presented

in Theorem 1. For inference we must estimate consistently the quantities p0; pf ; and pg; and estimateR
Cf;g

f 1=2(x)dx consistently at a better rate than bd=2: We require some additional conditions:

Assumptions

(A6) E [kXkp 1(f(X) = g(X))] < 1 for some p > 2 such that n(p�2)=2pbd ! 1: For all � with
0 � j�j � s;

R
Cf;g

jD�f(x)j=f1=2(x)dx <1.
(A7) The tuning parameter satis�es cn ! 0; nb2dcn !1 and nbdc2+2
n ! 0; where 
 is a positive

constant that satis�es A5 when �(Cf;g) > 0 and 
 =1 otherwise.

The condition A6 is needed in the case where Cf;g = Rd as it is used to bound the estimation
error of

R
Cf;g

f 1=2(x)dx = E[f�1=2(X)1 (f(X) = g(X))]; which can be badly a¤ected by heavy tails.

It imposes a further restriction on the bandwidth, and so for small values of p one needs a lot

of smoothness in f; g to compensate. If X;Y are Gaussian then only an additional logarithmic

constraint is imposed on the bandwidth. Condition A7 implicitly imposes a stronger restriction on

the bandwidth than A3. Generally there is both an upper and lower bound on the tuning parameter;

in the case that 
 =1 there is only a lower bound on the tuning parameter.
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De�ne the bias corrected estimator and asymptotic variance estimator:

b�bc = b� � ân=n1=2; bv = p̂0�20 + �̂21
ân = �0:56 jjKjj2

2bd=2

 Z
Ĉf;g

f 1=2n (x)dx+

Z
Ĉf;g

g1=2n (x)dx

!
Ĉf =

�
x 2 Rd : fn(x)� gn(x) < �cn; fn(x) > 0; gn(x) > 0

	
Ĉg =

�
x 2 Rd : fn(x)� gn(x) > cn; fn(x) > 0; gn(x) > 0

	
Ĉf;g =

�
x 2 Rd : jfn(x)� gn(x)j � cn; fn(x) > 0; gn(x) > 0

	
p̂0 =

1

2

 Z
Ĉf;g

fn(x)dx+

Z
Ĉf;g

gn(x)dx

!
p̂f =

Z
Ĉf

fn(x)dx; p̂g =

Z
Ĉg

gn(x)dx

�̂21 = p̂f (1� p̂f ) + p̂g(1� p̂g):

Then, we have the following result:

Theorem 2. Suppose that Assumptions A1-A7 hold. Then, we have:

p
n
�b�bc � ��) N(0; v) (8)

bv p�! v: (9)

Remarks.
1. Note that the bias corrected estimator falls outside of [0; 1] with positive probability, which

motivates the construction of a winsorized version b�bcw = b�bc1(b�bc 2 [0; 1]) + 1(b�bc > 1): When � 2
[0; 1);

p
n(b�bc � b�bcw ) = op(1): However, if � = 1; the limiting distribution is not normal, speci�callyp

n(b�bcw � �)=pbv ) minfZ; 0g; where Z � N(0; 1):
2. This theorem can be used to construct consistent con�dence intervals for �: In order to make the

interval respect the fact that the parameter space here is [0; 1] one can make the interval for H(b�bcw )
and back transform, where H : [0; 1] ! R is strictly increasing and continuously di¤erentiable,

for example the logit transform. Speci�cally, let z� be the �th quantile from a standard normal

distribution, then the two-sided interval

C� = H�1[H(b�bcw )� z�=2qh2(b�)bv=n;H(b�bcw ) + z�=2qh2(b�)bv=n]
has asymptotic coverage 1� � and lies inside [0; 1] with probability one. Here, h(�) = @H(�)=@�:
3. Note that the bandwidth parameter b and the tuning parameter cn are asymptotically negligi-

ble, and only a¤ect higher order properties, which are hard to analyze theoretically. We investigate

the choice of these parameters in the simulation study below.
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4. If one strongly believes that Cf;g is of measure zero, then one can conduct inference using the

uncorrected estimator b� and the variance estimator ev = epf (1� epf ) + epg(1� epg); where
epf =

Z
fn(x)1(fn(x) < gn(x))dx

egf =

Z
gn(x)1(fn(x) � gn(x))dx;

that is, the tuning parameter cn = 0. In this case, ev p�! v = �21: However, if it turned out that Cf;g
has positive measure then b� is biased and the standard errors are inconsistent. Speci�cally, it can be
shown that epf p�! pf + p0=2 and epg p�! pg + p0=2 using a similar argument to that used in Theorem

2.

5. If one strongly believes that Cf;g is of measure zero and that there is a single crossing point

x0 such that f(x) < g(x) for all x < x0 and f(x) > g(x) for all x > x0 (scalar case); then one can

estimate the crossing point by �nding the minimum of jfn(x)� gn(x)j over x: Under some conditions
such an estimator bx is consistent and even asymptotically normal, and satis�espnb(bx�x0)) N(0; !)

with ! = 2jjKjj22f(x0)=(f 0(x0)� g0(x0))2; see Eddy (1980):
6. The bootstrap is an alternative method for providing con�dence intervals. In the special case

where the contact set has zero measure, standard bootstrap resampling algorithms can be applied

to conduct inference. However, as reported in Clemons and Bradley (2000) the standard bootstrap

con�dence intervals start performing badly when � ! 1; i.e., when the contact set has positive

measure.

4 A Simulation Study

Here we look at the small-sample performance of b� and b�bc. Anderson and Ge (2004) have investigated
the performance of an estimator of � in the case where there are either one or two crossings.

We consider the more interesting case where the contact set has positive measure. The design is

Xi � U [�0:5; 0:5] ; and Yi � U [0; 1] ; where fXig and fYig are independent, so that � = 0:5 and

Cf;g = [0; 0:5]. We consider samples sizes n = 100; 200; 400; 800; and 1600 and take a thousand

replications of each experiment. The estimator is computed using the uniform kernel, i.e., K (u) =

1(juj � 0:5) for which jjKjj22 = 1 and �(t) = (1 + t)1(�1 � t � 0) + (1 � t)1(0 � t � 1): In this

case pf = pg = 0 and p0 = 0:5: It follows that an = �0:28b�1=2; while v = p0�20 + �21 = 0:3067: The
bandwidth takes two values, either the Silverman�s rule of thumb value, in this case bs = 1:84sn�1=5;

where s is the sample standard deviation, or the smaller value b3=2s : In construction of the bias

corrected estimator b� we choose the tuning parameter cn to be either the bandwidth b; the smaller
value b3=2 or the larger value b2=3s :

The supports of interested are estimated from the sample, speci�cally the common support set in

this case is estimated by the interval [maxfmin1�i�nXi;min1�i�n Yig;minfmax1�i�nXi;max1�i�n Yig]:
The integrals are computed based on a grid of �ve hundred equally spaced points in [�0:5; 1]:
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In Figure 1 we show the result of a typical sample. Although in the population the two densities

are equal throughout the interval [0; 0:5]; this happens with probability zero in sample. In this

example there are seven crossings of the two density estimates.

Figure 1. Shows two estimates of f; g reported over the intersection of their supports for case

n = 100:

We report our results in Table 1. We give the bias, the median bias (mbias), the standard

deviation (std), and the interquartile range divided by 1.349 (iqr) for the two estimators for the

various combinations of samples sizes, bandwidths, and tuning parameters. The results can be

summarized as follows:

1. The bias is quite large compared to the standard deviation

2. The performance measures improve with sample size at a rate roughly predicted by the theory

(as can be con�rmed by least squares regression of ln(-bias) on a constant and lnn)

3. The bias corrected estimator has a smaller bias and larger standard deviation

4. The best performance for b� is when bandwidth is bs although there is not a lot of di¤erence for
the larger sample sizes

5. The best performance in terms of standard deviation for b�bc is when bandwidth is b3=2s ; although

for the smaller samples sizes bias is best at bs: The best value of the tuning parameter for bias

is the larger one b2=3; whereas for variance b3=2 is better.

Finally, we look at the quality of the distributional approximation. In Figure 2 we show the qq

plot for standardized b� in the case n = 800 and bandwidth is bs: The approximation seems quite

good, with most discrepancy in the left tail.

10



Figure 2. QQ-plot of sample data versus standard normal

In Table 2 we report the results of a multivariate simulation. The design was standard normal

densities in dimensions 1,2,3,4 and 5. In this case � = 1 and Cf;g = Rd: We implemented as above
with the best combinations of bandwidth/tuning parameter uncovered in Table 1. The results are

even more dramatic in this case. The bias correction method seems to produce much better bias

with a small cost in terms of increased variability.

5 Application

Much ink has been spilled on how the economic reforms in China bene�ted cities on the eastern

seaboard relative to those in the interior. Evidence on per capita urban incomes suggests greater

advances for seaboard provinces than for inland provinces. Partly the result of regional comparative

advantage, it also re�ected weak government regional equalization policy, imperfect capital markets,

and initial preferential policies on FDI and exports and from the growth of tax revenues as their

development proceeded for the seaboard provinces (Anderson and Ge (2004), Gustafsson, Li, and

Sicular (2007)). Urbanization also took place di¤erentially on the seaboard and inland with cities

growing more rapidly both in size and number in the seaboard provinces than in the interior (An-

derson and Ge (2006, 2008)). The question arises as to whether the consequences of the reforms

have translated into an improvement in the relative wellbeing of individuals in seaboard as compared

to interior provinces. To investigate this, samples of urban households in two Chinese provinces,

Guangdong - an eastern seaboard province and Shaanxi - a province in the interior (see the map of

China below), taken in 1987 and 2001 are employed.4

4These data were obtained from the National Bureau of Statistics as part of the project on Income Inequality

during China�s Transition organized by Dwayne Benjamin, Loren Brandt, John Giles and Sangui Wang.
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One approach to the relative wellbeing issue is to examine whether or not household wellbeing in

central and seaboard provinces has polarized. Esteban and Ray (1994) and Duclos, Esteban and Ray

(2004) (see also Wang and Tsui (2000)) posited a collection of axioms whose consequences should

be re�ected in a Polarization measure. The axioms are founded upon a so-called Identi�cation-

Alienation nexus wherein notions of polarization are fostered jointly by an agent�s sense of increasing

within-group identity and between-group distance or alienation. When one distribution stochastically

dominates the other it can be argued that such measures also re�ect a sense of relative ill-being of

the impoverished group and when there is a multiplicity of indicators measures of "Distributional

overlap" appear to perform quite well Anderson (2008).5

Indicators employed to re�ect household wellbeing are total expenditures per household member

and household living area per household member. Table 3 presents summary statistics for the sam-

ples, some observations are appropriate. Both provinces have advanced in terms of their consumption

expenditures and living space per person so that overall wellbeing may be considered to have ad-

vanced in both provinces. The gap between expenditures, which re�ects the alienation component

of polarization and favors Guangdong, widened and the gap between living space (again favoring

Guangdong) remained unchanged so that polarization may well have increased in terms of the alien-

ation component. Movements in the dispersion of these components have less clear implications for

the identi�cation part of polarization. In Guangdong dispersion of living space per person diminished

whereas in Shaanxi it increased, with respect to dispersion of expenditures they increased in both

provinces but much more so in Shaanxi than in Guangdong to the extent that Shaanxi overtook

Guangdong in its expenditure per person dispersion over the period. This suggests that little can be

said about polarization by piecemeal analysis of its components.

We �rst show the univariate density plots, which were calculated with Gaussian kernel and Silver-

man�s rule of thumb bandwidth. These con�rm the general trends identi�ed in the sample statistics

Note that empirically there is only one crossing for the expenditure data but the housing variable

has several crossing points.

5Using a multivariate Kolmogorov-Smirnov criterion the hypothesis that the Guangdong joint distribution �rst order

stochastically dominates the Shaanxi joint distribution could not be rejected in both years whereas the hypothesis

that Shaanxi dominates Guangdong could (details from the authors on request)
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Figure 3

We next compute the univariate and multivariate polarization measures: Let b�e;b�h; and b�eh denote
respectively the measure computed on the univariate expenditure data series, the univariate housing

series, and the bivariate data. We computed these quantities with a uniform kernel and bandwidth

either equal to the Silverman�s rule of thumb bandwidth bs or b
3=2
s : We also computed the bias

corrected estimators denoted with superscript bc using tuning parameter b2=3:We compute both our

standard errors and the standard errors that assume that the contact set is of zero measure, these are

denoted by sc: In this dataset there are di¤erent sample sizes n and m that apply to the estimation

of f and g: The distribution theory for this case is only a trivial modi�cation of the theory presented

above. In particular, suppose that m=n ! � 2 (0;1); then the asymptotic distribution is as in
Theorem 1 with

an = b�d=2jjKjj2
Z
Cf;g

f 1=2(x)dx � Emin fZ1; Z2=�g

�21 = pf (1� pf ) + pg(1� pg)=�

�20(�) = jjKjj22
Z
T0

cov
�
min fZ1; Z2=�g ;min

n
�(t)Z1 +

p
1� �(t)2Z3; �(t)Z2=� +

p
1� �(t)2Z4=�

o�
dt;
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where Emin fZ1; Z2=�g =
p
1+1=�

2
Emin fZ1; Z2g = �

p
1+1=�

2

q
2
�
and �20(�) = �

2
0(1)(1 + 1=�)=2: For

the bivariate product uniform kernel �20(1) = 0:5835:We computed the bias correction and standard

errors using these modi�cations. The results are shown in Table 4. The results show a substantial

reduction in the value of the overlap measure for the joint distribution and also the univariate measure

for expenditure. There is a slight decrease also in the overlap of the housing variable, but this is

not statistical signi�cant. The level of the overlap is quite high in general and the bias correction

increases it quite substantially. The estimators are relatively insensitive to the choice of bandwidth.

The standard errors are quite small and there is not much di¤erence between the full standard

errors and the standard errors that impose zero measure on the contact set. Evidently there has

been a signi�cant polarization (reduction in overlap) between the provincial joint distributions of

consumption expenditures and living space re�ecting deterioration in the wellbeing of households in

Shaanxi relative to those in Guangdong

Note that an alternative to the overlap measure could be obtained by computing the Duclos

Esteban and Ray (2004) polarization measure generalized to the multivariate case and based on the

pooled distribution. This is a somewhat more general index of the multiplicity and diversity of modes

and requires specifying a polarization sensitivity parameter � which should lay between 0.25 and 1.

We computed this measure for the two years and record the results below.

� = 0:25 � = 0:5 � = 0:75 � = 1:0

1987 0.27170 0.348900 0.459800 0.625500

se 0.00031 0.000410 0.000562 0.000784

2001 0.24020 0.331100 0.469700 0.680100

se 0.00024 0.000354 0.00052 0.000784

Note the index is sensitive to the choice of their polarization sensitivity parameter �: at low levels

of sensitivity the index actually diminishes over time whereas at high levels it increases.

6 Extensions

There are some applications where the data come from a time series and one would like to allow for

dependence in the observations. For example, we might like to compare two or more forecast densities.

In this case the theory becomes more complicated and it is not clear that the Poissonization method

can be applied. However, in the special case that the contact set has zero measure, one can derive

the limiting distribution for b� based on the asymptotic representation pn(b���) = n�1=2Pn
i=1 1(Xi 2

Cf ) + n
�1=2Pn

i=1 1(Yi 2 Cg) + op(1); assuming some restriction on the strength of the dependence.
Our theory extends to the case of k densities f1; : : : ; fk in an obvious way. In that case, one

might also be interested in measuring quantities related to a partial overlap. Speci�cally, suppose
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that fi1(x) � : : : � fik(x); then minff1(x); : : : ; fk(x)g = fi1(x) and maxff1(x); : : : ; fk(x)g = fik(x):
Then, fir(x); for 1 < r < k represents a situation where r of the densities overlap.

6

We remark that the functional � is related to some recent work of Kitagawa (2009) who has

discussed the density envelope �(f; g) =
R
maxff(x); g(x)gdx, which arises as a quantity of interest

from consideration of a partially identi�ed model. Related to this quantity is an alternative overlap

measure given by

# =

R1
�1minff(x); g(x)gdxR1
�1maxff(x); g(x)gdx

; (10)

which has similar properties to �. This quantity has the advantage of being sensible for cases where

f; g are hazard functions or spectral densities that do not themselves integrate to one; in that case

� can take any non-negative value, whereas # lies between zero and one. The distribution theory for

the analogue estimator of # follows by similar arguments to ones we have given above.

A Appendix

A.1 Informal Discussion of the Proof Technique

Although the estimators and con�dence intervals are easy to use in practice, the asymptotic theory

to prove Theorem 1 involves several lengthy steps. Since establishing these steps require techniques

that are not commonly used in econometrics, we now give a brief informal description of our proof

techniques. Speci�cally, our proof of Theorem 1 consists of the following three steps:

1. The asymptotic approximation of
p
n(b� � �) by An, given by (12) below, which decomposes

the estimation error into three di¤erent terms, de�ned over the disjoint sets Cf ; Cg and Cfg;

respectively.

2. Get the asymptotic distribution of APn (B); a Poissonized version An; where the sample size n

is replaced by a Poisson random variable N with mean n that is independent of the original

sequence f(Xi; Yi) : i � 1g and the integral is taken over a subset B of the union of the supports
of X and Y:

3. De-Poissonize APn (B) to derive the asymptotic distribution of An and hence
p
n(b� � �):

In step 1, we make the bias of kernel densities asymptotically negligible by using the smoothness

assumptions on true densities and properties of kernel functions, which allows us to write An as a

functional of the centered statistics fn(x)�Efn(x) and gn(x)�Egn(x): Also, the decomposition into
three terms is related to the recent result in the moment inequality literature that, under inequality

6This is of interest in a number of biomedical applications. See for example

http://collateral.knowitall.com/collateral/95391-OverlapDensityHeatMap.pdf
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restrictions, the asymptotic behavior of statistics of interest often depend only on binding restrictions,

see, e.g. Chernozhukov, Hong, and Tamer (2007), Andrews and Guggenberger (2007) and Linton,

Maasoumi and Whang (2005).

In step 2, Poissonization of the statistic An gives a lot of convenience in our asymptotic analysis.

In particular, it is well known that if N is a Poisson random variable independent of the i.i.d sequence

fXi : i � 1g and fAk : k � 1g are disjoint measurable sets, then the processes
PN

i=0 1(Xi 2 Ak)�Xi,
k = 1; 2; :::, are independent. This implies, for example, that, since the kernel function K is assumed

to have a compact support, the Poissonized kernel densities fN(x) and fN(y) are independent if

the distance between x and y is greater than a certain threshold. This facilitates computation

of asymptotic variance of APn (B): Also, since a Poisson process is in�nite divisible, we can writePN
i=0Xi

d
=
Pn

i=0 Zi; where fZi : i � 1g are i.i.d with Z d
=
P�1

i=0Xi and �1 is a Poisson random

variable with mean 1 and independent of fXi : i � 1g: The fact is used repeatedly in our proofs to
derive the asymptotic distribution of APn (B); using standard machineries including CLT and Berry

Esseen theorem for i.i.d. random variables.

In step 3, we need to de-Poissonize the result because the asymptotic behavior of the Pois-

sonized variable APn (B) is generally di¤erent from An: For this purpose, we use the de-Poissonization

lemma of Beirlant and Mason (1995, Theorem 2.1, see also Lemma A.2 below). To illustrate the

Lemma in a simple context, consider a statistic �n = n�1=2
Pn

i=1 f1(Xi 2 B)� Pr(X 2 B))g, where
B � R is a Borel set. By a CLT, we know that �n ) N(0; pB(1 � pB)); where pB = Pr(X 2 B):
Now, consider a Poissonized statistic Sn = n�1=2

PN
i=1 f1(Xi 2 B)� Pr(X 2 B))g : The asymp-

totic distribution of Sn is given by N(0; pB); which is di¤erent from that of �n: However, letting

Un = n
�1=2PN

i=1 f1(Xi 2 C)� Pr(X 2 C))g and Vn = n�1=2
PN

i=1 f1(Xi 2 RnC)� Pr(X 2 RnC))g ;
where B � C � R is a Borel set, and applying the Poissonization lemma, we get that the conditional
distribution of Sn given N = n has the same asymptotic distribution as �n:

Although the above steps closely follow those of Giné et. al. (2003), we need to extend their

results to the general multi-dimensional variates d � 1; multiple kernel densities, and norms di¤erent
from the L1- norm. Such extensions, to our best knowledge, are not available in the literature and

are not trivial.

A.2 Proof of the Main Theorems

Under our conditions, we have

sup
x2Rd

jfn(x)� f(x)j = O(bs) +O
 r

log n

nbd

!
a:s:; (11)

by Giné and Guillou (2002, Theorem 1) and standard treatment of the bias term, and likewise for

gn(x)� g(x): We use this result below.
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Let

An =
p
n

Z
Cf;g

min ffn(x)� Efn(x); gn(x)� Egn(x)g dx

+
p
n

Z
Cf

[fn(x)� Efn(x)] dx+
p
n

Z
Cg

[gn(x)� Egn(x)] dx

= : A1n + A2n + A3n (12)

We will show that the asymptotic distribution of of An is normal when suitably standardized.

Theorem A1. Under Assumptions (A1)-(A5), we have

An � anp
p0�20 + �

2
1

) N(0; 1):

The proof of Theorem A1 will be given later. Given Theorem A1, we can establish Theorem 1.

Proof of Theorem 1. We will show below that

p
n
�b� � �� = An + op(1): (13)

Then, this result and Theorem A1 yield the desired result of Theorem 1. To show (13), write

p
n
�b� � �� =

Z
Rd

p
n [minffn(x); gn(x)g �minff(x); g(x)g] dx

=

Z
Cf;g

p
nminffn(x)� f(x); gn(x)� g(x)gdx

+

Z
Cf

p
nminffn(x)� f(x); gn(x)� f(x)gdx

+

Z
Cg

p
nminffn(x)� g(x); gn(x)� g(x)gdx

= : �1n + �2n + �3n: (14)

Consider �1n �rst. Write

�1n =
p
n

Z
Cf;g

min ffn(x)� Efn(x); gn(x)� Egn(x)g dx

+

Z
Cf;g

p
n [minffn(x)� f(x); gn(x)� g(x)g �min ffn(x)� Efn(x); gn(x)� Egn(x)g] dx

= : A1n + �12n: (15)
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We have

j�12nj � 2
p
n

 Z
Cf;g

fjEfn(x)� f(x)j dx+ jEgn(x)� g(x)jg dx
!

= 4
p
n

 Z
Cf;g

jEfn(x)� f(x)j dx
!

� 4
p
nbs

0@Z
Cf;g

Z
Rd

X
j�j=s

1

s!

���D�f(x�ebu)��� ��u�K(u)�� dudx
1A

= O(n1=2bs)! 0; (16)

where the �rst inequality uses the elementary result jminfa+ c; b+ dg �minfa; bgj � 2 (jcj+ jdj) ;
the �rst equality follows from the de�nition of Cf;g; the second inequality holds by a two term Taylor

expansion with 0 < eb < b and Assumption A1, the last equality holds by Assumptions A1 and A2,
and the convergence to zero follows from Assumption A3.

We next consider �2n. We have

�2n =

Z
Cf

p
nminf[fn(x)� Efn(x)] ; [gn(x)� Egn(x)] + [g(x)� f(x)]gdx+O(n1=2bs)

=

Z
Cf

p
n [fn(x)� Efn(x)] dx+O(n1=2b2s) + op(1)

= A2n + op(1); (17)

where the �rst equality follows from an argument similar to the one to establish (16) and second

equality holds by the following argument: Let " > 0 be a constant and write

�2n = :

�����
Z
Cf

p
nminf[fn(x)� Efn(x)] ; [gn(x)� Egn(x)] + [g(x)� f(x)]gdx

�
Z
Cf

p
n [fn(x)� Efn(x)] dx

�����
=

Z
Cf

p
nmaxf[fn(x)� Efn(x)]� [gn(x)� Egn(x)]� [g(x)� f(x)] ; 0gdx

=

Z
Cf;1(")

p
nmaxf[fn(x)� Efn(x)]� [gn(x)� Egn(x)]� [g(x)� f(x)] ; 0gdx

+

Z
Cf;2(")

p
nmaxf[fn(x)� Efn(x)]� [gn(x)� Egn(x)]� [g(x)� f(x)] ; 0gdx

= : �21n +�22n;

where

Cf;1(") = fx 2 Rd : 0 < g(x)� f(x) � "g;
Cf;2(") = fx 2 Rd : g(x)� f(x) > "g:
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Take " = �(nbd)�1=2 (log n) for � > 0: Then, we have

j�21nj �
Z
Cf;1(")

p
nmaxf[fn(x)� Efn(x)]� [gn(x)� Egn(x)] ; 0gdx

�
p
n

�
sup
x2Rd

jfn(x)� Efn(x)j+ sup
x2Rd

jgn(x)� Egn(x)j
�
� (Cf;1("))

� Op

�
b�d=2 (log n)1=2

�
O
��
nbd
��
=2

(log n)

�
= op(1); (18)

where the last inequality holds by the uniform consistency result (11) and Assumption A5, and the

convergence to zero holds by Assumption A3. Also, for each � > 0; we have

Pr (j�22nj > �) � Pr

�
sup
x2Rd

jfn(x)� Efn(x)j+ sup
x2Rd

jgn(x)� Egn(x)j > "
�

= Pr

 �
nbd

log n

�1=2�
sup
x2Rd

jfn(x)� Efn(x)j+ sup
x2Rd

jgn(x)� Egn(x)j
�
> � (log n)1=2

!
! 0: (19)

Therefore, (17) follows from (18) and (19). Also, similarly to (17), we have

�3n = A3n + op(1): (20)

Now, (15), (16), (17) and (20) establish (13), as desired. �

We prove Theorem A1 using the Poissonization argument of Giné et. al. (2003). To do this,

we need to extend some of the results of Giné et. al. (2003) to the general multi-dimensional case

d � 1 with multiple kernel densities. Also, we need to consider norms di¤erent from L1- norm. We

�rst introduce some concepts used throughout the proofs. Let N be a Poisson random variable with

mean n; de�ned on the same probability space as the sequence f(Xi; Yi) : i � 1g, and independent
of this sequence: De�ne

fN(x) =
1

n

NX
i=1

Kb (x�Xi) ; gN(x) =
1

n

NX
i=1

Kb (x� Yi)

where b = b(n) and where the empty sum is de�ned to be zero. Notice that

EfN(x) = Efn(x) = EKb (x�X) (21)

kf;n(x) = nvar (fN(x)) = EK
2
b (x�X) (22)

nvar (fn(x)) = EK2
b (x�X)�

�
EK2

b (x�X)
	2
: (23)

Similar results hold for gN(x) and gn(x):

Let Cf;g; Cf and Cg denote the sets de�ned in (4)-(6). Suppose p0; pf and pg are strictly positive.

(When any of p0; pf or pg is zero, we can trivially take B(M); B(M�); B(M; v);B(M�; v�); B0 or B�0
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for � = f; g de�ned below to be an empty set in our subsequent discussion.) For a constant M > 0;

let B(M) � Rd denote a Borel set with nonempty interior with Lebesgue measure �(B(M)) =
Md: For vj > 0; de�ne B(M; v) to be the v-contraction of B(M); i.e., B(M; v) = fx 2 B(M) :
�(x;RdnB(M)) � vg; where �(x;B) = inffkx� yk : y 2 Bg: Let � denote f or g: Take " 2 (0; p0) and
"� 2 (0; p�) to be arbitrary constants. Choose M;M�; v; v� > 0 and Borel sets B0; B� such that

B(M) � Cf;g; B(M�) � C�; (24)

B0 � B(M; v); B� � B(M�; v�) (25)Z Z
R2dnT (M)

f(x)g(y)dxdy = : � > 0 (26)Z
B0

f(x)dx =

Z
B0

g(x)dx > p0 � ";
Z
B�

�(x)dx > p� � "�; (27)

and f and � are bounded away from 0 on B0 and B�; respectively, where

T (M) =
�
B(Mf )� Rd

�
[ (B(M)� B(M)) [

�
Rd � B(Mg)

�
� R2d: (28)

Such M;M�; v; v�; B�; and B�0 exist by continuity of f and g:

Let B = B0 [ Bf [ Bg: De�ne a Poissonization version of An (minus its expectation, restricted
to the Borel set B) to be

APn (B) = A
P
1n(B0) + A

P
2n(Bf ) + A

P
3n(Bg); (29)

where

AP1n(B0) =

Z
B0

p
nmin ffN(x)� Efn(x); gN(x)� Egn(x)g dx (30)

�
Z
B0

p
nEmin ffN(x)� Efn(x); gN(x)� Egn(x)g dx

AP2n(Bf ) =
p
n

Z
Bf

[fN(x)� Efn(x)] dx (31)

AP3n(Bg) =
p
n

Z
Bg

[gN(x)� Egn(x)] dx: (32)

Also, de�ne the variance of the poissonization version APn (B) to be

�2n(B) = var
�
APn (B)

�
: (33)

To investigate the asymptotic distribution of APn (B); we will need the following lemma, which is

related to the classical Berry-Esseen theorem.

Lemma A1. (a) Let fWi = (W1i; : : : ;W4i)
> : i � 1g be a sequence of i.i.d. random vectors in

R4 such that each component has mean 0, variance 1; and �nite absolute moments of third order.
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Let Z = (Z1; : : : ; Z4)> be multivariate normal with mean vector 0 and variance-covariance matrix

� = EZZ> = EWW> =

0BBB@
1 0 �1 0

0 1 0 �2
�1 0 1 0

0 �2 0 1

1CCCA :
Then, there exist universal positive constants A1 and A2 such that�����Emin

(
1p
n

nX
i=1

W1i;
1p
n

nX
i=1

W2i

)
� Emin fZ1; Z2g

����� � A1p
n

�
E jW1j3 + E jW2j3

�
and, whenever �21 < 1 and �

2
2 < 1;�����E

"
1

n
min

(
nX
i=1

W1i;

nX
i=1

W2i

)
min

(
nX
i=1

W3i;

nX
i=1

W4i

)#
� E [min fZ1; Z2gmin fZ3; Z4g]

�����
� 1

(1� �21)
3=2

1

(1� �22)
3=2

A2p
n

�
E jW1j3 + E jW2j3 + E jW3j3 + E jW4j3

�
:

(b) Let fWi = (W1i; : : : ;W3i)
> : i � 1g be a sequence of i.i.d. random vectors in R3 such that each

component has mean 0, variance 1; and �nite absolute moments of third order. Let Z = (Z1; Z2; Z3)>

be multivariate normal with mean vector 0 and variance-covariance matrix

� = EZZ> = EWW> =

0B@ 1 0 �1
0 1 �2
�1 �2 1

1CA :
Then, whenever �21 + �

2
2 < 1 ;�����E

"
min

(
1p
n

nX
i=1

W1i;
1p
n

nX
i=1

W2i

)
1p
n

nX
i=1

W3i

#
� E [min fZ1; Z2gZ3]

�����
� 1

(1� �21 � �22)
3=2

A3p
n

�
E jW1j3 + E jW2j3 + E jW3j3

�
:

We also need the following basic result of Beirlant and Mason (1995, Theorem 2.1), which is

needed to "de-Poissonize" our asymptotic results on the Poissonized random variables.

Lemma A2. Let N1;n and N2;n be independent Poisson random variables with N1;n being Pois-

son(n(1� �)) and N2;n being Poisson(n�) ; where � 2 (0; 1=2): Denote Nn = N1;n +N2;n and set

Un =
N1;n � n(1� �)p

n
and Vn =

N2n � n�p
n

:

Let fSNn : n � 1g be a sequence of random variables such that (i) for each n � 1; the random vector

(SNn ; Un) is independent of Vn; (ii) for some �
2 > 0 and 
 such that (1� �)�2 � �2 > 0;

(SNn ; Un)
> ) N (0;�) ;
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where

� =

 
�2 �

� 1� �

!
:

Then, for all x; we have

Pr (SNn � x j Nn = n)! Pr

�q
�2 � �2Z1 � x

�
;

where Z1 denotes the standard normal random variable.

The following lemma derives the asymptotic variance of APn (B):

Lemma A3. Whenever Assumptions (A1)-(A4) hold and B0; Bf ; and Bg satisfy (24)-(27), we
have

lim
n!1

�2n(B) = p0;B�
2
0 + ��

2
1;B; (34)

where p0;B = Pr(X 2 B0) = Pr(Y 2 B0); ��21;B = pf;B + pg;B + 2pf;Bpg;B; pf;B = Pr(X 2 Bf ); pg;B =
Pr(Y 2 Bg) and �20 is de�ned in Theorem 1.

De�ne

Un =
1p
n

(
NX
j=1

1 ((Xj; Yj) 2 T (M))� nPr ((X; Y ) 2 T (M))
)

Vn =
1p
n

(
NX
j=1

1
�
(Xj; Yj) 2

�
R2dnT (M)

��
� nPr

�
(X; Y ) 2

�
R2dnT (M)

��)
;

where T (M) is de�ned in (28). We next establish the following convergence in distribution result.
Lemma A4. Under Assumptions (A1)-(A4), we have

(APn (B); Un)
> ) N (0;�) ;

where

� =

 
p0;B�

2
0 + ��

2
1;B pf;B + pg;B

pf;B + pg;B 1� �

!
and � is de�ned in (26).

The following theorem gives the asymptotic bias formula.

Lemma A5. Under Assumptions (A1)-(A4), we have

(a) lim
n!1

Z
B0

hp
nEmin ffN(x)� Efn(x); gN(x)� Egn(x)g dx� Emin fZ1; Z2g k1=2f;n (x)

i
dx = 0

(b) lim
n!1

Z
B0

hp
nEmin ffn(x)� Efn(x); gn(x)� Egn(x)g dx� Emin fZ1; Z2g k1=2f;n (x)

i
dx = 0;

where Z1 and Z2 are standard normal random variables.
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De�ne

An(B) =
p
n

Z
B0

[min ffn(x)� Efn(x); gn(x)� Egn(x)g (35)

�Emin ffn(x)� Efn(x); gn(x)� Egn(x)g] dx

+
p
n

Z
Bf

[fn(x)� Efn(x)] dx+
p
n

Z
Bg

[gn(x)� Egn(x)] dx:

Using the de-Poissonization lemma (Lemma A2), we can show that the asymptotic distribution of

An(B) is normal.

Lemma A6. Under Assumptions (A1)-(A4), we have

An(B))
q
p0;B�20 + �

2
1;BZ1;

where �21;B = pf;B(1� pf;B) + pg;B(1� pg;B) and Z1 stands for the standard normal random variable.

The following two lemmas are useful to investigate the behavior of the di¤erence between the

statistics An(B) and An:

Lemma A7. Let fXi = (X>
1i; X

>
2i)

> 2 Rd � Rd : i = 1; : : : ; ng be i.i.d random vectors with

E kXk < 1: Let hj : Rd � Rd ! R be a real function such that Ehj(Xj; x) = 0 for all x 2 Rd for
j = 1; 2: Let

Tn =

Z
B
min

(
nX
k=1

h1(X1k; x);
nX
k=1

h2(X2k; x)

)
dx;

where B � Rd is a Borel set. Then, for any convex function g : R! R; we have

Eg(Tn � ETn) � Eg
 
4

2X
j=1

nX
k=1

"k

Z
B
jhj(Xjk; x)j dx

!
;

where f"i : i = 1; : : : ; ng are i.i.d random variables with Pr(" = 1) = Pr(" = �1) = 1=2; independent
of fXi : i = 1; : : : ; ng:
Lemma A8. Suppose that Assumptions (A1)-(A4) hold. Then, for any Borel subset B of Rd,

we have

lim
n!1

E

0@pn Z
B

fhn(x)� Ehn(x)g dx

1A2

� D
�
sup
u
jK(u)j

�2 Z
B

[f(x) + g(x)] dx;

for some generic constant D > 0; where

hn(x) = minffn(x)� Efn(x); gn(x)� Egn(x)g:

Now, we are now ready to prove Theorem A.
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Proof of Theorem A. By Lemma 6.1 of Giné et. al.(2003), there exists increasing sequences
of Borel sets fB0k � Cfg : k � 1g, fBfk � Cf : k � 1g; and fBgk � Cg : k � 1g; each with �nite
Lebesgue measure, such that

lim
k!1

Z
Cf;gnB0k

f(x)dx = lim
k!1

Z
Cf;gnB0k

g(x)dx = 0 (36)

lim
k!1

Z
CfnBfk

f(x)dx = 0; lim
k!1

Z
CgnBgk

g(x)dx = 0: (37)

Let Bk = B0k [Bfk [Bgk for k � 1: Notice that for each k � 1; by Lemma A6, we have

An(Bk))
q
p0;Bk�

2
0 + �

2
1;Bk

Z1 as n!1: (38)

By (36) and (37), q
p0;Bk�

2
0 + �

2
1;Bk

Z1 )
q
p0�20 + �

2
1Z1 as k !1: (39)

Also, by Lemma A8, we have

lim
n!1

E

 
p
n

R
Cf;gnB0k

fhn(x)� Ehn(x)g dx
!2
� D

�
sup
u
jK(u)j

�2 R
Cf;gnB0k

[f(x) + g(x)] dx; (40)

where

hn(x) = minffn(x)� Efn(x); gn(x)� Egn(x)g:

Similarly, we have

lim
n!1

E

 
p
n
R

CfnBfk
ffn(x)� Efn(x)g dx

!2
� D

�
sup
u
jK(u)j

�2 R
CfnBfk

f(x)dx (41)

lim
n!1

E

 
p
n
R

CgnBgk
fgn(x)� Egn(x)g dx

!2
� D

�
sup
u
jK(u)j

�2 R
CgnBgk

g(x)dx: (42)

Therefore, (40), (41), and (42) imply

lim
k!1

lim
n!1

Pr
���An(Bk)� (An � EAn)�� > "� = 0 8" > 0: (43)

Now, by (38), (39) and (43) and Theorem 4.2 of Billingsley (1968), we have, as n!1;

An � EAn
=

p
n

Z
Cf;g

[min ffn(x)� Efn(x); gn(x)� Egn(x)g

�Emin ffn(x)� Efn(x); gn(x)� Egn(x)g] dx

+
p
n

Z
Cf

[fn(x)� Efn(x)] dx+
p
n

Z
Cg

[gn(x)� Egn(x)] dx

)
q
p0�20 + �

2
1Z1: (44)
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Now, the proof of Theorem A is complete since, similarly to Lemma A5, we have

lim
n!1

jEAn � anj = 0:

�
Proof of Theorem 2. To establish (8) we must show consistency of the bias correction. By the

triangle inequality, we have�����
Z
Ĉf;g

f 1=2n (x)dx�
Z
Cf;g

f 1=2(x)dx

����� �
Z
Ĉf;g�Cf;g

f 1=2(x)dx+

Z
Ĉf;g

��f 1=2n (x)� f 1=2(x)
�� dx

= : D1n +D2n ;

where � denotes the symmetric di¤erence. For notational simplicity, let

hn(x) = fn(x)� gn(x) and h(x) = f(x)� g(x):

De�ne

~Cf;g = fx : jh(x)j � 2cng
En = fx : jhn(x)� h(x)j � cng :

We �rst establish D1n = op(b
d=2) using an argument similar to Cuevas and Fraiman (1997, The-

orem 1). Using Cf;g � ~Cf;g; �f (Ĉf;g \ ~Ccf;g \ Ecn) = 0 and �f (Ĉcf;g \ Cf;g \ Ecn) = 0; we have

D1n = �f (Ĉf;g�Cf;g) = �f (Ĉf;g \ Ccf;g) + �f (Ĉcf;g \ Cf;g)
� �f (Ĉf;g \ ~Ccf;g) + �f ( ~Cf;g \ Ccf;g) + �f (Ĉcf;g \ Cf;g)
= �f (Ĉf;g \ ~Ccf;g \ En) + �f ( ~Cf;g \ Ccf;g) + �f (Ĉcf;g \ Cf;g \ En)
� 2�f (En) + &n; (45)

where &n = 2h(2cn): Also, by the rates of convergence result of the L1-errors of kernel densities (see,

e.g., Holmström and Klemelä (1992)), we have thatZ
jhn(x)� h(x)j f 1=2(x)dx � Op

�
bs + (nbd)�1=2

�
: (46)

Let �n = minfb�s; (nbd)1=2g: Then, for any " > 0,

Pr
�
b�d=2D1n > "

�
� Pr

�
2�f (En) + &n > "b

d=2
�

� Pr

�
1

cn

Z
jhn(x)� h(x)j f 1=2(x)dx >

"bd=2 � &n
2

�
� Pr

�
�n

Z
jhn(x)� h(x)j f 1=2(x)dx >

"�ncnb
d=2

2

�
+ o(1)

! 0; (47)
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where the �rst inequality holds by (45), the second inequality holds by the inequality 1(En) �
jhn(x)� h(x)j =cn; the third inequality follows from Assumptions A3 and A5 which implies �ncn&n !
0; and the last convergence to zero holds by (46) and �ncnb

d=2 !1 using Assumption A3. This now

establishes that D1n = op(b
d=2):

We next consider D2n: First note that with probability one

b� = Z minffn(x); gn(x)gdx =
Z
Cn

minffn(x); gn(x)gdx;

where Cn = [l1n; u1n]� � � � � [ldn; udn] with

ljn = maxf min
1�i�n

Xji; min
1�i�n

Yjig � b=2

ujn = minfmax
1�i�n

Xji; max
1�i�n

Yjig] + b=2:

This holds since the kernel has compact support with radius 1=2. It follows that we can restrict any

integration to sets intersected with Cn.

Using the identity x� y = (x1=2 � y1=2)(y1=2 + x1=2); we haveZ
Ĉf;g\Cn

��f 1=2n (x)� f 1=2(x)
�� dx = Z

Ĉf;g\Cn

jfn(x)� f(x)j
f 1=2(x) + f

1=2
n (x)

dx �
Z
Ĉf;g\Cn

jfn(x)� f(x)j
f 1=2(x)

dx

because f 1=2n (x) � 0 for x 2 Ĉf;g\Cn: Then note that by the Cauchy-Schwarz and triangle inequalities�
nbd

jjKjj22

�1=2
E

�
jfn(x)� f(x)j
f 1=2(x)

�
�

�
nbd

jjKjj22

�1=2
E1=2

�
jfn(x)� f(x)j2

� 1

f 1=2(x)

�
"�

nbd

jjKjj22

�
jEfn(x)� f(x)j2

f(x)
+

�
nbd

jjKjj22

�
var(fn(x))

f(x)

#1=2
:

Then, we use the inequality (a+ b)1=2 � 1 + a1=2 + b1=2 for all positive a; b; to obtain that�
nbd

jjKjj22

�1=2
E

�
jfn(x)� f(x)j
f 1=2(x)

�
� 1 +

"�
nbd

jjKjj22

�1=2 jEfn(x)� f(x)j
f 1=2(x)

#
+

��
nbd

jjKjj22

�
var(fn(x))

f(x)

�1=2

� 2 +

24� nbd

jjKjj22

�1=2
bs
X
j�j=s

1

s!

��D�f(x)
��

f 1=2(x)

Z
u�K(u)du

35+ o(1);
where the second inequality follows by standard kernel arguments and is uniform in x 2 Rd. The
bias term is of smaller order under our conditions given the absolute integrability of D�f(x)=f1=2(x).

Therefore, Z
Ĉf;g\Cn

��f 1=2n (x)� f 1=2(x)
�� dx � 2�(Cn)� jjKjj22

nbd

�1=2
(1 + o(1));

b�d=2D2n = Op(n
�1=2b�drn);
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where rn =
dY
j=1

(ujn � ljn). For Gaussian X; Y; rn = Op((log n)d=2) so that this term is small under

our conditions. More generally we can bound rn under our moment condition. Speci�cally, by the

Bonferroni and Markov inequalities

Pr

�
max
1�i�n

jXjij > �n
�
�

nX
i=1

Pr [jXjij > �n] � n
EjXjijp
�pn

;

provided EjXjijp < 1: Therefore, we take �n = n1=pL(n); where L(n) ! 1 is a slowly varying

function. We then show that we can condition on the event that frn � n1=pL(n)g; which has
probability tending to one.

This completes the proof of (8). The consistency of the standard error follows by similar argu-

ments. �

A.3 Proofs of Lemmas

Proof of Lemma A1. The results of Lemma A1 follow directly from Bhattacharya (1975,

Theorem). �
Proof of Lemma A2. See Beirlant and Mason (1995, Proof of Theorem 2.1, pp.5-6). �
Proof of Lemma A3. To establish (34), we �rst notice that, for kx� yk > b; the random

variables (fN(x)� Efn(x); gN(x)� Egn(x)) and (fN(y)� Efn(y); gN(y)� Egn(y)) are independent
because they are functions of independent increments of Poisson processes and the kernel K vanishes

outside of the closed ball of radius 1/2. This implies that

cov
�
AP1n(B0); A

P
2n(Bf )

�
= cov

�
AP1n(B0); A

P
3n(Bg)

�
= 0: (48)

On the other hand, by standard arguments for kernel densities, we have as n!1

var
�
AP2n(Bf )

�
= E

 Z
Bf

Kb (x�X) dx
!2
! pf;B

var
�
AP3n(Bg)

�
= E

�Z
Bg

Kb (x� Y ) dx
�2
! pg;B (49)

cov
�
AP2n(Bf ); A

P
3n(Bg)

�
= E

 Z
Bf

Kb (x�X) dx
!�Z

Bg

Kb (x� Y ) dx
�
! pf;Bpg;B :

Therefore, by (48) and (49), the proof of Lemma A3 is complete if we show

lim
n!1

var
�
AP1n(B0)

�
= p0;B�

2
0: (50)
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To show (50), note that

var
�
AP1n(B0)

�
= n

Z
B0

Z
B0

cov (min ffN(x)� Efn(x); gN(x)� Egn(x)g ;min ffN(y)� Efn(y); gN(y)� Egn(y)g) dxdy

= n

Z
B0

Z
B0

1 (kx� yk � b)

�cov (min ffN(x)� Efn(x); gN(x)� Egn(x)g ;min ffN(y)� Efn(y); gN(y)� Egn(y)g) dxdy:

Let

Tf;N(x) =

p
n ffN(x)� Efn(x)gp

kf;n(x)
; (51)

Tg;N(x) =

p
n fgN(x)� Egn(x)gp

kg;n(x)
; (52)

where kf;n(x) = nvar (fN(x)) and kg;n(x) = nvar (gN(x)) : By standard arguments, we have that,

with �(B0) <1;

sup
x2B0

����qkf;n(x)� b�d=2jjKjj2pf(x)���� = O(bd=2) (53)

sup
x2B0

����qkg;n(x)� b�d=2jjKjj2pg(x)���� = O(bd=2) (54)Z
B0

Z
B0

1 (kx� yk � b) dxdy = O(bd) (55)

sup
x;y2Rd

jcov (minfTf;N(x); Tg;N(x)g;min fTf;N(y); Tg;N(y)g)j = O(1); (56)

where (53) and (54) holds by two term Taylor expansions and (56) follows from Cauchy-Schwarz

inequality and the elementary result jminfa; bgj � jaj+ jbj : Therefore, from (53) - (56), we have that

var
�
AP1n(B0)

�
= �2n;0 + o(1);

where

�2n;0 =

Z
B0

Z
B0

1 (kx� yk � b) cov (minfTf;N(x); Tg;N(x)g;min fTf;N(y); Tg;N(y)g)

�b�djjKjj22
p
f(x)f(y)dxdy: (57)

Now, let (Z1n(x); Z2n(x); Z3n(y); Z4n(y)) for x; y 2 Rd; be a mean zero multivariate Gaussian process
such that for each x; y 2 Rd; (Z1n(x); Z2n(x); Z3n(y); Z4n(y)) and (Tf;N(x); Tg;N(x); Tf;N(y); Tg;N(y))
have the same covariance structure. That is,

(Z1n(x); Z2n(x); Z3n(y); Z4n(y))

d
=

�
Z1; Z2; �

�
f;n(x; y)Z1 +

q
1�

�
��f;n(x; y)

�2
Z3; �

�
g;n(x; y)Z2 +

q
1�

�
��g;n(x; y)

�2
Z4

�
;
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where Z1; Z2; Z3; and Z4 are independent standard normal random variables and

��f;n(x; y) = E [Tf;N(x)Tf;N(y)]

��g;n(x; y) = E [Tg;N(x)Tg;N(y)] :

Let

� 2n;0 =

Z
B0

Z
B0

1 (kx� yk � b) cov (minfZ1n(x); Z2n(x)g;min fZ3n(y); Z4n(y)g)

�b�djjKjj22
p
f(x)f(y)dxdy: (58)

By a change of variables y = x+ tb; we can write

� 2n;0 =

Z
B0

Z
T0

1(x 2 B0)1 (x+ tb 2 B0) cov (minfZ1n(x); Z2n(x)g;min fZ3n(x+ tb); Z4n(x+ tb)g)

�jjKjj22
p
f(x)f(x+ tb)dxdt; (59)

where T0 = ft 2 Rd : ktk � 1g: Observe that, for almost every x 2 B0; we have

��f;n(x; x+ tb) =
b�dE [K ((x�X)=b)K ((x�X)=b+ t)]p
b�2dEK2 ((x�X)=b)EK2 ((x�X)=b+ t)

!
R
Rd K(u)K(u+ t)du

jjKjj22
= �(t): (60)

Similarly, we have ��g;n(x; x + tb) ! �(t) as n ! 1 for almost all x 2 B0: (In fact, under our

assumptions, the convergence (60) holds uniformly over (x; t) 2 B0�T0:) Therefore, by the bounded
convergence theorem, we have

lim
n!1

� 2n;0 = p0;B�
2
0:

Now, the desired result (34) holds if we establish

� 2n;0 � �2n;0 ! 0: (61)

Set

Gn(x; t) = jjKjj221(x 2 B0)1 (x+ tb 2 B0)
p
f(x)f(x+ tb):

Notice that Z
B0

Z
T0

Gn(x; t)dxdt � jjKjj22�(T0 �B0) sup
x2B0

jf(x)j =: � <1: (62)

Let "n 2 (0; b] be a sequence such that "n=b! 0. Letting T0;n = ft 2 Rd : "n=b � ktk � 1g; de�ne

�2n;0("n) =

Z
B0

Z
T0;n;

1(x 2 B0)1 (x+ tb 2 B0) cov (minfTf;N(x); Tg;N(x)g;min fTf;N(x+ tb); Tg;N(x+ tb)g)

�jjKjj22
p
f(x)f(x+ tb)dxdt;
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� 2n;0("n) =

Z
B0

Z
T0;n;

1(x 2 B0)1 (x+ tb 2 B0) cov (minfZ1n(x); Z2n(x)g;min fZ3n(x+ tb); Z4n(x+ tb)g)

�jjKjj22
p
f(x)f(x+ tb)dxdt:

To show (61), we �rst establish

� 2n;0("n)� �2n;0("n)! 0: (63)

We have

� 2n;0("n)� �2n;0("n) =

�����
Z
B0

Z
T0;n

[cov (minfZ1n(x); Z2n(x)g;min fZ3n(x+ tb); Z4n(x+ tb)g)

�cov (minfTf;N(x); Tg;N(x)g;min fTf;N(x+ tb); Tg;N(x+ tb)g)]Gn(x; t)dxdtj

�
Z
B0

Z
T0;n

jEminfZ1n(x); Z2n(x)gEmin fZ3n(x+ tb); Z4n(x+ tb)g

�EminfTf;N(x); Tg;N(x)gEmin fTf;N(x+ tb); Tg;N(x+ tb)gjGn(x; t)dxdt

+

Z
B0

Z
T0;n

jEminfZ1n(x); Z2n(x)gmin fZ3n(x+ tb); Z4n(x+ tb)g

�EminfTf;N(x); Tg;N(x)gmin fTf;N(x+ tb); Tg;N(x+ tb)gjGn(x; t)dxdt
= : �1n +�2n: (64)

First, consider �1n: Let �1 denote a Poisson random variable with mean 1 that are independent of

f(Xi; Yi) : i � 1g and set

Qf;n(x) =

24X
j��1

K

�
x�Xj

b

�
� EK

�
x�X
b

�35 =sEK2

�
x�X
b

�
(65)

Qg;n(x) =

24X
j��1

K

�
x� Yj
b

�
� EK

�
x� Y
b

�35 =sEK2

�
x� Y
b

�
: (66)

Notice that, with f(x) = g(x) � � > 0 for all x 2 B0; we have

sup
x2B0

E jQ�;n(x)j3 = O(b�d=2) for � = f and g: (67)

Let Q(1)�;n(x); : : : ; Q
(n)
�;n(x) be i.i.d Q�;n(x) for � = f and g: Clearly, we have

Tf;N(x) =

p
n ffN(x)� Efn(x)gp
b�2dEK2 ((x�X)=b)

d
=

Pn
i=1Q

(i)
f;n(x)p
n

(68)

Tg;N(x) =

p
n fgN(x)� Egn(x)gp
b�2dEK2 ((x� Y )=b)

d
=

Pn
i=1Q

(i)
g;n(x)p
n

: (69)

Therefore, by Lemma A1(a), (67), (68), and (69), we have

sup
x2B0

jEminfTf;N(x); Tg;N(x)g � Emin fZ1n(x); Z2n(x)gj � O
�

1p
nbd

�
: (70)
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The results (70) and (62) imply that �1n = o(1). We next consider �2n: We have

�2n � sup
(x;t)2B0�T0;n

jEminfZ1n(x); Z2n(x)gmin fZ3n(x+ tb); Z4n(x+ tb)g

�EminfTf;N(x); Tg;N(x)gmin fTf;N(x+ tb); Tg;N(x+ tb)gj � �

� O

��"n
b

��3��
�O
�

1p
nbd

�
; (71)

where the �rst inequality uses (62) and the second inequality holds by Lemma A1(a), (67), Assump-

tion A1(ii), and the fact that limn!1 �
�
f;n(x; x + tb) = limn!1 �

�
g;n(x; x + tb) = �(t) a.s. uniformly

over (x; t) 2 B0 � T0. Since "n is arbitrary, we can choose "n = c0 � b (log n)�1=(6�) for some constant
c0, where � > 0 satis�es Assumption A1(ii). This choice of "n makes the right hand side of (71) o(1),

using Assumption A3. Therefore, we have �2n = o(1), and hence (63).

On the other hand, using (56) and argument similar to (70), we have����2n;0 � � 2n;0�� ��2n;0("n)� � 2n;0("n)���
� O

�
1p
nbd

�
+O

��"n
b

�d�
= o(1):

This and (63) establish (61), and hence (50), as desired. �

Proof of Lemma A4. Let

�n(x) =
p
n [min ffN(x)� Efn(x); gN(x)� Egn(x)g
�nEmin ffN(x)� Efn(x); gN(x)� Egn(x)g] ;

�f;n(x) =
p
n ffN(x)� Efn(x)g ; �g;n(x) =

p
n fgN(x)� Egn(x)g

We �rst construct partitions of B(M); B(Mf ) and B(Mg). Consider the regular grid

Gi = (xi1 ; xi1+1]� � � � � (xid ; xid+1];

where i = (i1; : : : ; id); i1; : : : ; id 2 Z and xi = ib for i 2 Z: De�ne

R0;i = Gi \ B(M); Rf;i = Gi \ B(Mf ); Rg;i = Gi \ B(Mg);

In = fi : R0;i [Rf;i [Rg;i 6= ;g:

Then, we see that fR0;i : i 2 In � Zdg; fRf;i : i 2 In � Zdg and fRg;i : i 2 In � Zdg are partitions
of B(M); B(Mf ) and B(Mg); respectively, with

�(R0;i) � d0b
d; �(Rf;i) � d1bd; �(Rg;i) � d2bd (72)

mn = : �(In) � d3b�d
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for some positive constants d0; ::; d3; see, e.g., Mason and Polonik (2008) for a similar construction

of partitions in a di¤erent context. Set

�i;n =

Z
R0;i

1(x 2 B0)�n(x)dx+

Z
Rf;i

1(x 2 Bf )�f;n(x)dx

Z
Rg;i

1(x 2 Bg)�g;n(x)dx;

ui;n =
1p
n

NX
j=1

[1 f(Xj 2 Rf;i) [ (Xj 2 R0;i; Yj 2 R0;i) [ (Yj 2 Rg;i)g

�nPr f(X 2 Rf;i) [ (X 2 R0;i; Y 2 R0;i) [ (Y 2 Rg;i)g] :

Then, we have

APn (B) =
X
i2In

�i;n and Un =
X
i2In

ui;n:

Notice that

var(APn (B)) = �
2
n(B) and var(Un) = 1� �:

For arbitrary �1; �2 and �3 2 R; let

yi;n = �1�i;n + �1ui;n:

Notice that fyi;n : i 2 Ing is an array of mean zero one-dependent random �elds. Below we will

establish that

var

 X
i2In

yi;n

!
= var(�1A

P
n (B) + �2Un) (73)

! �21
�
p0;B�

2
0 + ��

2
1;B

�
+ �22(1� �) + 2�1�2 (pf;B + pg;B) ;

and X
i2In

E jyi;njr = o(1) for some 2 < r < 3: (74)

Then, the result of Lemma A4 follows from the CLT of Shergin (1990) and Cramér-Wold device.

We �rst establish (73). By Lemma A3, (73) holds if we have

cov
�
APn (B); Un

�
! pf;B + pg;B: (75)

Recall that

APn (B) = A
P
1n(B0) + A

P
2n(Bf ) + A

P
3n(Bg):

Therefore, (75) holds if we have

cov
�
AP2n(Bf ); Un

�
! pf;B; cov

�
AP3n(Bf ); Un

�
! pf;B; (76)

cov
�
AP1n(B); Un

�
= cov

�p
n

Z
B0

min ffN(x)� Efn(x); gN(x)� Egn(x)g dx; Un
�

(77)

= O

�
1p
nb2d

�
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(76) holds by a standard argument. We show below (77). For any x 2 B0; we have 
Tf;N(x); Tg;N(x);

Unp
Pr ((X; Y ) 2 T (M))

!
d
=

1p
n

nX
i=1

�
Q
(i)
f;n(x); Q

(i)
g;n(x); U

(i)
�
; (78)

where
�
Q
(i)
f;n(x); Q

(i)
g;n(x); U (i)

�
for i = 1; : : : ; n are i.i.d (Qf;n(x); Qg;n(x); U), with (Qf;n(x); Qg;n(x))

de�ned as in (65) and (66) and

U =

24X
j��1

1 ((Xj; Yj) 2 T (M))� Pr ((X; Y ) 2 T (M))

35 =pPr ((X; Y ) 2 T (M)):
Notice that, for � = f and g; we have

sup
x2B0

jcov (Q�;n(x); U)j = O(bd=2); (79)

which in turn is less than or equal to " for all su¢ ciently large n and any 0 < " < 1=2: This result

and Lemma A1(b) imply that

sup
x2B0

��cov �pnmin ffN(x)� Efn(x); gN(x)� Egn(x)g ; Un��� � O� 1p
nb2d

�
;

which, when combined with �(B0) <1; yields (77) and hence (73), as desired.
We next establish (74). Notice that, with 2 < r < 3; using Liapunov inequality and cr-inequality,

we have

�i;n =

Z
R0;i

1(x 2 B0)�n(x)dx+

Z
Rf;i

1(x 2 Bf )�f;n(x)dx

Z
Rg;i

1(x 2 Bg)�g;n(x)dx;

(E j�i;njr)3=r

� 9

 Z
R0;i

Z
R0;i

Z
R0;i

1B0(x)1B0(y)1B0(z)E j�n(x)�n(y)�n(z)j dxdydz (80)

+

Z
Rf;i

Z
Rf;i

Z
Rf;i

1Bf (x)1Bf (y)1Bf (z)E j�f;n(x)�f;n(y)�f;n(z)j dxdydz

+

Z
Rg;i

Z
Rg;i

Z
Rg;i

1Bg(x)1Bg(y)1Bg(z)E j�g;n(x)�g;n(y)�g;n(z)j dxdydz
!
;

where 1B(x) = 1(x 2 B): Also, by cr-inequality again and the elementary result jminfX; Y gj �
jXj+ jY j ; we have: for some constant D > 0;

E j�n(x)j3 � Dn3=2
�
E jfN(x)� Efn(x)j3 + E jgN(x)� Egn(x)j3

	
: (81)

By the Rosenthal�s inequality (see, e.g., Lemma 2.3 of Giné et al. (2003)), we have:

sup
x2B0

n3=2E jfN(x)� Efn(x)j3 � O
�

1

b3d=2
+

1

n1=2b2d

�
: (82)
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A similar result holds for gN : Now, Assumption A3, (80), (81), (82), the elementary result EjXY Zj �
E (jXj+ jY j+ jZj)3 and the fact that �(R0;i) � d1b

d imply that the �rst term on the right hand

side of (80) is bounded by a O(brd=2) term uniformly in i 2 In: Similar results hold for the other
terms on the right hand side of (80). Therefore, we have

E j�i;njr � O(brd=2) uniformly in i 2 In: (83)

This implies that X
i2In

E j�i;njr � O(mnb
rd=2) = O(b(r�2)=d) = o(1): (84)

On the other hand, set

pi;n = Pr f(X 2 Rf;i) [ (X 2 R0;i; Y 2 R0;i) [ (Y 2 Rg;i)g :

Then, by the Rosenthal�s inequality, there exists a constant D1 > 0 such thatX
i2In

E jui;njr � D1n
�r=2

X
i2In

�
(npi;n)

r=2 + npi;n
�

(85)

� D1max
i2In

�
(pi;n)

(r�2)=2 + n�1=2
�
! 0:

Therefore, combining (84) and (85), we have (74). This completes the proof of Lemma A4. �
Proof of Lemma A5. Consider part (a) �rst. Let Tf;N(x) and Tg;N(x) be de�ned as in (51)

and (52), respectively. We have����Z
B0

hp
nEmin ffN(x)� Efn(x); gN(x)� Egn(x)g dx� Emin fZ1; Z2g k1=2f;n (x)

i
dx

����
� sup

x2B0
jEminfTf;N(x); Tg;N(x)g � Emin fZ1; Z2gj � sup

x2B0
k
1=2
f;n (x) � �(B0)

= O
�
n�1=2b�d=2

�
O(b�d=2) = O(n�1=2b�d) = o(1);

by Lemma A1(a), (53), Assumption A3, and the fact �(B0) <1. Similarly, we have����Z
B0

hp
nEmin ffn(x)� Efn(x); gn(x)� Egn(x)g dx� Emin fZ1; Z2g

p
nvar (fn(x))

i
dx

���� = O(n�1=2b�d):
Therefore, part (b) also holds since, using (22) and (23),

sup
x2B0

���k1=2f;n (x)�pnvar (fn(x))��� = O(bd=2) = o(1):
�

Proof of Lemma A6. Consider APn (B) de�ned in (29). Conditional on N = n; we have

An(B)
d
=
p
n

Z
B0

[min ffn(x)� Efn(x); gn(x)� Egn(x)g (86)

�Emin ffN(x)� Efn(x); gN(x)� Egn(x)g] dx

+
p
n

Z
Bf

[fn(x)� Efn(x)] dx+
p
n

Z
Bg

[gn(x)� Egn(x)] dx

= : ACn (B):

34



By Lemmas A2 and A4, we have

ACn (B) )
�
p0;B�

2
0 + ��

2
1;B � (pf;B + pg;B)

2�1=2 Z1
=

q
p0;B�20 + �

2
1;BZ1:

Now, the result of Lemma A6 holds since, as n!1

ACn (B)� An(B)

=

Z
B0

�p
nEmin ffN(x)� Efn(x); gN(x)� Egn(x)g

�
p
nEmin ffn(x)� Efn(x); gn(x)� Egn(x)g

�
dx! 0:

�
Proof of Lemma A7. We can establish Lemma A7 by modifying the majorization inequality

results of Pinelis (1994). Let (X�
1 ; : : : ; X

�
n) be an independent copy of (X1; : : : ; Xn): For i = 1; : : : ; n;

let Ei and E�i denote the conditional expectations given (X1; : : : ; Xi) and (X1; : : : ; Xi�1; X
�
i ): Let

�i = EiTn � Ei�1Tn; (87)

�i = Ei (Tn � Tn;�i) ; (88)

where

Tn;�i =

Z
B
min

(
nX
k 6=i

h1(X1k; x);
nX
k 6=i

h2(X2k; x)

)
dx:

Then, we have

Tn � ETn = �1 + � � � �n; (89)

�i = �i � Ei�1�i; (90)

j�ij � 2
2X
j=1

Z
B
jhj(Xji; x)j dx; (91)

where (89) follows from (87), (90) holds by independence ofXi �s, and (91) follows from the elementary

inequality jminfa+ b; c+ dg �minfa; cgj � 2 (jbj+ jdj) : Let

��i = E
�
i

�
T �n;i � Tn;�i

�
;

where

T �n;i =

Z
B
min

(
nX
k 6=i

h1(X1k; x) + h1(X
�
1i; x);

nX
k 6=i

h2(X2k; x) + h2(X
�
2i; x)

)
dx:

Notice that the random variables �i and �
�
i are conditionally independent given (X1; : : : ; Xi�1); and

the conditional distributions of �i and �
�
i given (X1; : : : ; Xi�1) are equivalent. Therefore, for any
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convex function q : R! R; we have

Ei�1q(�i) = Ei�1q(�i � Ei�1�i)
� Ei�1q(�i � Ei�1�i � ��i � Ei�1��i )

� 1

2
Ei�1 [q(2�i) + q(�2��i )]

� 1

2
Ei�1

"
q

 
4

2X
j=1

Z
B
jhj(Xji; x)j dx

!
+ q

 
�4

2X
j=1

Z
B
jhj(Xji; x)j dx

!#

= Eq

 
4"i

2X
j=1

Z
B
jhj(Xji; x)j dx

!
;

where the �rst inequality follows from Berger (1991, Lemma 2.2), the second inequality holds by the

convexity of q and the last inequality follows from the convexity of q and (91). Now, the result of

Lemma A7 holds by (89) and Lemma 2.6 of Berger (1991). �

Proof of Lemma A8. Let R(x; r) =
dY
i=1

[xi� r; xi+ r] denote a closed rectangle in Rd:We have

E

0@pn Z
B

fhn(x)� Ehn(x)g dx

1A2

� D

8<:E
0@ 1

bd

Z
B

����K �x�Xb
����� dx

1A2

+ E

0@ 1

bd

Z
B

����K �x� Yb
����� dx

1A29=;
� D

�
sup
u
jK(u)j

�2 Z
B

[f(x) + g(x)] dx

+D

�
sup
u
jK(u)j

�2 1Z
�1

��b�d Pr (X 2 R(x; b=2))� f(x)
�� dx+ 1Z

�1

��b�d Pr (Y 2 R(x; b=2))� g(x)�� dx
= D

�
sup
u
jK(u)j

�2 Z
B

[f(x) + g(x)] dx+ o(1)

as n ! 1; where the �rst inequality follows from Lemma A7. This results completes the proof of

Lemma A8. �

B Further Material

B.1 Some Intuition

We give below an alternative estimator/intuition about our estimator. Suppose that the common

support is [0; 1] and let x1 = b=2; x2 = 3b=2; : : : ; xT = 1 � b=2; where T = 1=b; and suppose the
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kernel is supported on [�0:5; 0:5]: Then let

b� = 1

T

TX
t=1

minf bf(xt); bg(xt)g:
Note that although bf(xt) and bf(xs) are not strictly independent for s 6= t; they are approximately
so: Speci�cally, cov( bf(xt); bf(xs)) = O(n�2); since
E
h bf(xt) bf(xs)i =

1

n2

nX
i=1

E
�
Kb

�
xt �Xi

�
Kb (x

s �Xi)
�
+
n(n� 1)
n2

E
�
Kb

�
xt �X

��
E [Kb (x

s �X)]

=

�
1� 1

n2

�
E
h bf(xt)iE h bf(xs)i :

We shall suppose for heuristic reasons thatminf bf(xt); bg(xt)g is strictly independent ofminf bf(xs); bg(xs)g;
although technically we should still apply the Poissonization technique used in this paper to pro-

ceed. Suppose we can dispose of the smoothing bias terms as before and suppose for simplicity that

Cf;g = [0; 1], then

p
n(b� � �) =

p
n
1

T

TX
t=1

minf bf(xt)� E bf(xt); bg(xt)� Ebg(xt)g+ op(1)
=

TX
t=1

�nt + op(1);

where �nt = T
�1n1=2minf bf(xt)�E bf(xt); bg(xt)�Ebg(xt)g:We can apply a triangular array CLT here

after subtracting o¤ the mean of �nt; but to make things simple lets make the further step of the

normal approximation: Then

p
n(b� � �) =

1p
nb

p
n
1

T

TX
t=1

minff(xt)1=2jjKjj2Zft; g(xt)1=2jjKjj2Zgtg+ op(1);

= jjKjj2
p
b

1=bX
t=1

f(xt)1=2minfZft; Zgtg+ op(1);

where Zft; Zgt are standard normal random variables mutually independent when X; Y are but oth-

erwise correlated. We then have the following result

p
n(b� � �)� jjKjj2b�1=2 Z f(x)1=2dxEminfZft; Zgtg

= jjKjj2
p
b

1=bX
t=1

f(xt)1=2 [minfZft; Zgtg � EminfZft; Zgtg] + op(1);
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which is asymptotically normal with mean zero and variance

jjKjj22
Z
f(x)dxvar [minfZft; Zgtg] :

This should be compared with our �20: One can show that E [minfZ1; Z2g2] = 1; so that

var [minfZft; Zgtg] = 1� 0:562 = 0:6874;

which is bigger than �20 = 0:61 for the uniform kernel: This says that our more complicated estimator

that averages also over non-independent points delivers about 10% improvement in variance in this

case. Note that the bias is the same for both estimators.

You can apply the same type of method in other semiparametric problems and our sense is

that the optimal kernel is the uniform if you only take account of the �rst order e¤ect on variance.

Example is suppose

Y = �+ "i;

then the sample mean is BLUE. We can compute the kernel estimator against some covariates X

and average, thus b� = 1

T

TX
t=1

bm(xt);
where bm(xt) is a kernel estimator. Then when "i is independent of Xi and Xi is uniform on [0; 1]; the

asymptotic variance of b� is �2jjKjj22=n; which is minimized by taking K to be uniform on [�0:5; 0:5]:
In general the asymptotic variance of this method is worse than averaging over the sample points

(which is equivalent to the sample mean when K is uniform), but always asymptotic variance is

minimized by taking uniform kernel. In our case, even averaging over the sample points gives this

nasty looking asymptotic variance but it still makes sense that the variance minimizing kernel is the

uniform.

Finally, we compare the asymptotics of the nonparametric estimator with those of a natural

parametric alternative. The parametric problem generally has di¤erent asymptotics. In particular,

suppose that f; g are parametrically speci�ed so that f�; � 2 �; and g�; � 2 �: Let b� and b� denote
root-n consistent estimators of � and �; such that [

p
n(b� � �);pn(b� � �)]> =) U � N(0;
); and

let b� = R
C
minffb�(x); gb�(x)gdx: Then we have

p
n(b� � �) = �1

2

Z
C

���( �s�(x)f�(x);� �
s�(x)g�(x))U

��� dx+ op(1);
where

�
s�(x) = @ log f�(x)=@� and

�
s�(x) = @ log g�(x)=@� are the score functions. When the contact

set has positive measure, the asymptotic distribution is non-normal with a negative mean.
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B.2 Computation of kernel constants

This note is regarding computation of �20 in cases where sample sizes are not equal. We have to

calculate

R(�) = cov
�
min fZ1; Z2g ;min

n
�Z1 +

p
1� �2Z3; �Z2 +

p
1� �2Z4

o�
for given �; where Zi � N(0; vi) with v1 = v3 = 1 and v2 = v4 = !:
We have

2min fZ1; Z2g = U � jV j
2min

n
�Z1 +

p
1� �(t)2Z3; �Z2 +

p
1� �2Z4

o
= W � jY j

where

U = Z1 + Z2

V = Z1 � Z2
W = �Z1 +

p
1� �2Z3 + �Z2 +

p
1� �2Z4

Y = �Z1 +
p
1� �2Z3 � �Z2 �

p
1� �2Z4;

and 0BBB@
U

V

W

Y

1CCCA =
p
1 + !

0BBB@
U 0

V 0

W 0

Y 0

1CCCA
0BBB@
U 0

V 0

W 0

Y 0

1CCCA � N

0BBB@0;
26664
1 0 � 0

0 1 0 �

� 0 1 0

0 � 0 1

37775
1CCCA :

Therefore,

Emin fZ1; Z2g = �
1

2
EjV j = �

p
1 + !

2
EjV 0j = �

p
1 + !

2

r
2

�
= �

r
1 + !

2�
:

We have

R(�) =
1

4
cov (U � jV j;W � jY j)

=
1 + !

4
cov (U 0 � jV 0j;W 0 � jY 0j)

=
1 + !

4
cov (U 0;W 0)� 1 + !

4
cov (jV 0j;W 0)� 1 + !

4
cov (U 0; jY 0j) + 1 + !

4
cov (jV 0j; jY 0j)

=
1 + !

4
[�+ cov (jV 0j; jY 0j)] ;
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because for zero mean normals cov (jV 0j;W 0) = cov (U 0; jY 0j) = 0: Write jV 0j = V 01(V 0 > 0) �
V 01(V 0 � 0) and jY 0j = Y 01(Y 0 > 0)� Y 01(Y 0 � 0); so that

cov (jV 0j; jY 0j) = E[jV 0jjY 0j]� E[jV 0j]E[jY 0j]
= E [V 0Y 01(V 0 > 0)1(Y 0 > 0)] + E [V 0Y 01(V 0 � 0)1(Y 0 � 0)]

�E [V 0Y 01(V 0 > 0)1(Y 0 � 0)]� E [V 0Y 01(V 0 � 0)1(Y 0 > 0)]� 2

�

= 2E [V 0Y 01(V 0 > 0)1(Y 0 > 0)]� 2E [V 0Y 01(V 0 � 0)1(Y 0 > 0)]� 2

�

by symmetry. From Rosenbaum (1961, JRSS B) we have

E [V 0Y 01(V 0 > 0)1(Y 0 > 0)] = F (�)�+
1p
2�

r
1� �2
2�

E [V 0Y 01(V 0 � 0)1(Y 0 > 0)] = E [V 0Y 01(V 0 > �1)1(Y 0 > 0)]� E [V 0Y 01(V 0 > 0)1(Y 0 > 0)]

=
1

2
�� F (�)�� 1p

2�

r
1� �2
2�

= �

�
1

2
� F (�)

�
� 1p

2�

r
1� �2
2�

;

where F (�) = Pr [V 0 > 0; Y 0 > 0] : Therefore,

cov (jV 0j; jY 0j) = 2�
�
2F (�)� 1

2

�
+

4p
2�

r
1� �2
2�

� 2

�
:

In the special case that � = 1 we have F (�) = 1=2 so that

cov (jV 0j; jY 0j) = E(jV 0j2)� 2

�
= 1� 2

�
:

In the special case that � = 0;

cov (jV 0j; jY 0j) = 4p
2�

r
1

2�
� 2

�
= 0

as expected.

In conclusion,

R(�) =
1 + !

4
[�+ cov (jV 0j; jY 0j)]

=
1 + !

4

"
4�F (�) +

4p
2�

r
1� �2
2�

� 2

�

#

= (1 + !)

"
�F (�) +

p
1� �2 � 1
2�

#
:
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The main thing is that this shows that

R(�;!) =
1 + !

2
R(�; 1)

so that we can calculate this quantity once and for all and apply it in situations where sample sizes

m and n are di¤erent.
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C Tables
b� b�bc

n b c bias mbias std iqr bias mbias std iqr

100 bs b -0.09244 -0.09037 0.03757 0.03793 -0.06353 -0.06129 0.04442 0.06358

b3=2 -0.09244 -0.09037 0.03757 0.03793 -0.07839 -0.07568 0.04138 0.04959

b2=3 -0.09244 -0.09037 0.03757 0.03793 -0.04953 -0.04739 0.04462 0.07284

b3=2s b -0.10204 -0.10212 0.03922 0.03938 -0.08702 -0.08765 0.04263 0.05168

b3=2 -0.10204 -0.10212 0.03922 0.03938 -0.09724 -0.09751 0.04032 0.04345

b2=3 -0.10204 -0.10212 0.03922 0.03938 -0.07043 -0.07082 0.04569 0.06578

200 bs b -0.07618 -0.07574 0.02686 0.02591 -0.05260 -0.05216 0.03146 0.04526

b3=2 -0.07618 -0.07574 0.02686 0.02591 -0.06518 -0.06495 0.02959 0.03516

b2=3 -0.07618 -0.07574 0.02686 0.02591 -0.04116 -0.04005 0.03090 0.05381

b3=2s b -0.08067 -0.08110 0.02711 0.02669 -0.06856 -0.06882 0.02930 0.03651

b3=2 -0.08067 -0.08110 0.02711 0.02669 -0.07722 -0.07766 0.02773 0.02935

b2=3 -0.08067 -0.08110 0.02711 0.02669 -0.05325 -0.05279 0.03149 0.04830

400 bs b -0.06512 -0.06472 0.01951 0.01935 -0.04582 -0.04496 0.02278 0.03510

b3=2 -0.06512 -0.06472 0.01951 0.01935 -0.05649 -0.05643 0.02149 0.02639

b2=3 -0.06512 -0.06472 0.01951 0.01935 -0.03701 -0.03605 0.02176 0.04148

b3=2s b -0.06614 -0.06508 0.02010 0.02144 -0.05632 -0.05548 0.02168 0.02926

b3=2 -0.06614 -0.06508 0.02010 0.02144 -0.06362 -0.06305 0.02051 0.02337

b2=3 -0.06614 -0.06508 0.02010 0.02144 -0.04267 -0.04219 0.02337 0.04041

800 bs b -0.05417 -0.05449 0.01383 0.01395 -0.03821 -0.03821 0.01585 0.02683

b3=2 -0.05417 -0.05449 0.01383 0.01395 -0.04730 -0.04724 0.01517 0.01954

b2=3 -0.05417 -0.05449 0.01383 0.01395 -0.03194 -0.03194 0.01486 0.03097

b3=2s b -0.05260 -0.05247 0.01407 0.01393 -0.04474 -0.04480 0.01515 0.01999

b3=2 -0.05260 -0.05247 0.01407 0.01393 -0.05078 -0.05055 0.01429 0.01522

b2=3 -0.05260 -0.05247 0.01407 0.01393 -0.03275 -0.03249 0.01648 0.02940

1600 bs b -0.04594 -0.04558 0.01022 0.01032 -0.03266 -0.03188 0.01165 0.02083

b3=2 -0.04594 -0.04558 0.01022 0.01032 -0.04031 -0.03951 0.01134 0.01485

b2=3 -0.04594 -0.04558 0.01022 0.01032 -0.02871 -0.02837 0.01069 0.02338

b3=2s b -0.04272 -0.04246 0.01050 0.01040 -0.03639 -0.03627 0.01129 0.01540

b3=2 -0.04272 -0.04246 0.01050 0.01040 -0.04137 -0.04108 0.01067 0.01147

b2=3 -0.04272 -0.04246 0.01050 0.01040 -0.02577 -0.02590 0.01233 0.02362

Table 1. bs is ROT bandwidth for density estimation 1:84sn�1=5
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b� b�bc
d n bias mbias std iqr bias mbias std iqr

100 -0.18417 -0.18217 0.03551 0.03707 0.00020 0.00274 0.03675 0.03764

200 -0.14226 -0.14069 0.02442 0.02569 0.00043 0.00210 0.02496 0.02609

1 400 -0.10921 -0.10820 0.01757 0.01742 0.00056 0.00154 0.01780 0.01756

800 -0.08346 -0.08307 0.01282 0.01288 0.00065 0.00115 0.01285 0.01303

1600 -0.06300 -0.06262 0.00840 0.00863 0.00123 0.00163 0.00842 0.00856

100 -0.48052 -0.47917 0.04104 0.04008 -0.08851 -0.08728 0.04618 0.04543

200 -0.40087 -0.39981 0.02927 0.02890 -0.05859 -0.05755 0.03273 0.03221

2 400 -0.32999 -0.32966 0.01796 0.01820 -0.03750 -0.03711 0.01991 0.02000

800 -0.27177 -0.27166 0.01293 0.01308 -0.02623 -0.02600 0.01396 0.01426

1600 -0.21953 -0.21956 0.00880 0.00878 -0.01563 -0.01593 0.00928 0.00943

100 -0.80170 -0.80233 0.03372 0.03302 -0.28484 -0.28504 0.03684 0.03630

200 -0.73569 -0.73673 0.02678 0.02638 -0.23728 -0.23776 0.02956 0.02879

3 400 -0.66785 -0.66731 0.02031 0.02012 -0.19374 -0.19286 0.02277 0.02246

800 -0.59575 -0.59547 0.01434 0.01416 -0.15148 -0.15177 0.01603 0.01564

1600 -0.52451 -0.52463 0.01007 0.00996 -0.11515 -0.11554 0.01144 0.01163

100 -0.94858 -0.95000 0.02033 0.02004 -0.39799 -0.39857 0.02090 0.02046

200 -0.92844 -0.92957 0.01757 0.01695 -0.38182 -0.38278 0.01823 0.01868

4 400 -0.90074 -0.90068 0.01377 0.01366 -0.35991 -0.36023 0.01450 0.01377

800 -0.86798 -0.86761 0.01165 0.01191 -0.33469 -0.33433 0.01238 0.01266

1600 -0.82744 -0.82727 0.00859 0.00858 -0.30376 -0.30374 0.00932 0.00954

100 -0.98818 -0.99000 0.00997 0.01451 -0.43027 -0.43088 0.01038 0.01239

200 -0.98413 -0.98500 0.00858 0.00741 -0.42703 -0.42799 0.00882 0.00851

5 400 -0.97766 -0.97779 0.00713 0.00741 -0.42160 -0.42198 0.00737 0.00749

800 -0.96921 -0.96910 0.00599 0.00613 -0.41462 -0.41453 0.00621 0.00634

1600 -0.95828 -0.95827 0.00482 0.00497 -0.40574 -0.40571 0.00502 0.00502

Table 2.
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Mean Std Deviation Median Maximum Minimum

Guangdong Ln(Exp p.c.) 8.0137 0.6277 8.0338 10.7260 6.2687

(n=600) Ln(Area p.c.) 2.6685 0.4726 2.6968 4.7361 1.0986

2001 Family size 3.3233 0.7723 3.0000 7.0000 1.0000

Expend p.c. 11431 7866.2 9638.5 105886 2329.0

Sq Meters p.c. 52.5800 29.7991 48.000 342.00 9.0000

Shaanxi Ln(Exp p.c.) 7.2324 0.6728 7.2092 9.7712 5.5977

(n=500) Ln(Area p.c.) 2.5336 0.4902 2.5328 4.1997 1.3863

2001 Family size 3.1020 0.7725 3.0000 6.0000 1.0000

Expend p.c. 4918.4 3407.9 3942.0 30806.0 1094.0

Sq Meters p.c. 42.0840 21.0892 38.000 200.00 12.000

Guangdong Ln(Exp p.c.) 5.8395 0.6147 5.8452 8.7497 4.1015

(n=595) Ln(Area p.c.) 2.1868 0.5702 2.2246 4.1352 0.4055

1987 Family size 3.8958 1.0836 4.0000 8.0000 2.0000

Expend p.c. 1447.1 898.79 1243.7 12617.0 411.60

Sq Meters p.c. 38.8588 21.6403 36.000 156.00 6.0000

Shaanxi Ln(Exp p.c.) 5.4156 0.5866 5.3898 7.3705 3.5231

(n=546) Ln(Area p.c.) 2.0575 0.4346 2.0369 3.8067 0.4055

1987 Family size 3.7216 1.0507 4.0000 8.0000 2.0000

Expend p.c. 883.15 434.22 779.16 4524.3 241.00

Sq Meters p.c. 30.4469 13.0470 28.000 100.00 6.0000
Table 3
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b�e sesce b�bce see b�h sesch b�bch seh b�eh sesceh b�bceh seeh

1987 bs 0.70201 0.02803 0.77217 0.03282 0.78201 0.02948 0.85663 0.03282 0.63403 0.02782 0.79142 0.03214

2001 bs 0.52999 0.02694 0.59666 0.03366 0.76591 0.02833 0.83333 0.03323 0.50644 0.02665 0.65010 0.03289

1987 b3=2s 0.69455 0.02861 0.77096 0.03432 0.77748 0.02947 0.84607 0.03456 0.59050 0.02771 0.81563 0.03279

2001 b3=2s 0.52244 0.02752 0.58314 0.03487 0.82130 0.02709 0.90226 0.03518 0.47045 0.02571 0.65866 0.03434

Table 4

1



Figure 1:

6


	Chinamap.pdf
	The Application




