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Abstract
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parametric efficiency bound formula of Ai and Chen (2003) remains valid for conditional models
with nonsmooth residuals, and the optimally weighted PSMD estimator achieves the bound; (4)
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1 Introduction

Many semi/nonparametric models are special cases of the following conditional moment models

containing unknown functions:

E[ρ(Y,Xz ; θ0, h01(·), ..., h0q(·))|X] = 0, (1.1)

in which Z ≡ (Y ′,X ′)′, Y is a vector of endogenous variables, Xz is a subset of the conditioning

variables X, and the conditional distribution, FY |X , of Y given X is not specified beyond that

FY |X satisfies (1.1). ρ() is a vector of generalized residual functions whose functional forms are

known up to a vector of unknown finite dimensional parameters (θ0) and a vector of unknown

real-valued functions (h0 ≡ (h01(·), ..., h0q(·))), where the arguments of each function h0ℓ(·) may

differ across ℓ = 1, ..., q, and, in particular, may depend on Y . For example, a partially linear

quantile Instrumental Variables (IV) regression (E[1{Y3 ≤ Y ′
1θ0 + h0(Y2)}|X] = γ), a single index

IV model (E[Y1 − h0(Y
′
2θ0)|X] = 0), and a partially additive IV regression with a known link (g)

model (E[Y3 − g(Y ′
1θ0 + h01(X1) + h02(Y2))|X] = 0) belong to the general framework (1.1).

Newey and Powell (2003) and Ai and Chen (2003) propose Sieve Minimum Distance (SMD)

estimation of α0 ≡ (θ0, h0) for the models (1.1). Under the assumptions that the residual function

ρ(Z; θ, h(·)) is pointwise Hölder continuous in the parameters α ≡ (θ, h) ∈ Θ × H, the parameter

space Θ × H is compact in a Banach space norm || · ||s, Newey and Powell (2003) establish the

consistency (with no rate) of the SMD estimator of (θ0, h0) in || · ||s. Under the same set of

assumptions, Ai and Chen (2003) first derive a faster than n−1/4 convergence rate of their SMD

estimator ĥ to h0() in a pseudo metric || · ||, which is weaker than the consistency norm || · ||s
when h() depends on Y . They then establish root-n asymptotic normality and semiparametric

efficiency of the SMD estimator of θ0. As an illustration, Ai and Chen (2003) present the root-n

normality and efficiency of their SMD estimator θ̂ for a partially linear mean IV regression example

E[Y1 − X ′
1θ0 − h0(Y2)|X] = 0, after showing that their SMD estimator ĥ is consistent for h0

in a strong norm ||h||s =
√

E([h(Y2)]2), with a rate faster than n−1/4 in a weaker pseudo metric

||h|| =
√

E([E{h(Y2)|X}]2). Unfortunately, when h0() depends on Y and enters the semiparametric

model (1.1) nonlinearly, in order to estimate θ0 at a root-n rate, one also needs some convergence

rate of ĥ to h0 in a strong norm || · ||s.
For the purely nonparametric conditional moment models E[ρ(Y,Xz;h0(·))|X] = 0 in which

h0(·) may depend on the endogenous variables Y , Chen and Pouzo (2008a) propose a Penalized

SMD (PSMD) estimator. They establish the consistency and the convergence rates of the PSMD

estimator ĥ in a strong metric || · ||s without assuming compactness of H, allowing for nonsmooth

residual function ρ(Z;h(·)) in h. They do not, however, consider the root-n efficient estimation

of θ0 for the more general semiparametric models (1.1), nor any methods of computing tests and
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confidence intervals. Finally, none of the existing work investigates whether one can simultaneously

estimate θ0 and h0 for the general semiparametric models (1.1) at their respectively optimal rates.

In this paper, we contribute in several major ways to the existing semiparametric literature

allowing for nonparametric endogeneity. First, we show that, for the general semiparametric models

(1.1), the PSMD estimator α̂ ≡ (θ̂, ĥ) can simultaneously achieve root-n asymptotic normality of

θ̂ and the optimal convergence rate of ĥ (in the metric || · ||s), allowing for possibly nonsmooth

residuals, and possibly noncompact (in || · ||s) function space (H) and the sieve spaces (Hn). It

is previously known that for semiparametric models without nonparametric endogeneity (i.e., the

unknown h() does not depend on Y ), the sieve estimators of (θ0, h0) can simultaneously achieve

root-n normality of θ̂ and the optimal convergence rate of ĥ (in || · ||s).4 From the point of view

of empirical estimation of models (1.1) with nonparametric endogeneity (see, e.g., estimation of

a system of shape-invariant Engel curves with endogenous total expenditure in Blundell et al.

(2007)), it is nice to know that the PSMD estimators still possess such an attractive property.

Second, under the same sets of sufficient conditions for the root-n normality of the PSMD θ̂, we

show that a simple weighted bootstrap procedure consistently estimates the limiting distribution

of the PSMD θ̂. Previously, Ai and Chen (2003) propose a consistent sieve estimator of the

asymptotic variance of θ̂, which hinges on the pointwise differentiability of the residual functions

ρ(Z; θ, h(·)) in α = (θ, h). In our paper ρ(Z; θ, h(·)) could be pointwise non-smooth with respect

to α = (θ, h), such as in the partially linear quantile IV regression example; therefore we provide a

justification of using a weighted bootstrap to construct a confidence region. Third, we show that the

semiparametric efficiency bound formula of Ai and Chen (2003) remains valid for the conditional

models (1.1) with nonsmooth residuals.5 When the model (1.1) contains several unknown functions

h0 ≡ (h01(·), ..., h0q(·)) and when some of the h0j depend on Y , although the efficiency bound is

well-defined and unique, it may not have a closed-form expression and its “least favorable curve”

solutions may not be unique. Nevertheless, our optimally weighted PSMD estimator always achieves

the efficiency bound for θ0. Fourth, we show that the centered, profiled optimally weighted PSMD

criterion is asymptotically chi-square distributed. This leads to an alternative confidence region

construction by inverting the centered, profiled optimally weighted criterion. It also avoids the

nonparametric estimation of the asymptomatic variance of θ̂, and is computationally less time-

consuming than the weighted bootstrap.

Technically, we are able to achieve the above listed results by first showing that our computable

PSMD criterion function with nonsmooth residuals can be approximated well by an infeasible

SMD criterion with smooth moments in a shrinking neighborhood of α0 = (θ0, h0), where the

4It is known that the original kernel estimators can not; see e.g., Robinson (1988) and Newey et al. (2004).
5We note that the semiparametric efficiency bound theorem of Ai and Chen (2003) (theorem 6.1) and its proof

do not rely on the || · ||s−compactness of the space H. In fact, the working paper version of Ai and Chen (2003)
presents such results without assuming compact parameter space.
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neighborhood is defined using the optimal convergence rates in both the strong norm || · ||s and

the weaker pseudo metric || · ||. We then slightly modify the proof strategy in Ai and Chen (2003)

(and the references therein) by performing a second order Taylor expansion to the difference of the

smoothed infeasible SMD criterion evaluated at two points: the PSMD estimator α̂ = (θ̂, ĥ) and a

deviation from α̂ along an approximately least favorable direction.

In section 2, we present the PSMD estimator α̂ = (θ̂, ĥ) and its convergence rates in both the

strong norm || · ||s and the weaker pseudo metric || · || under the same set of smoothing parameters.

In section 3, we establish the root-n asymptotic normality of θ̂ and the validity of a weighted boot-

strap procedure. In section 4, we derive the semiparametric efficiency bound for θ, and show the

efficiency of the optimally weighted PSMD of θ. In addition, we show that the profile optimally

weighted PSMD criterion is asymptotically chi-squared distributed. Our PSMD estimator and its

large sample properties are applicable to all specific models that satisfy the semiparametric condi-

tional models (1.1). Due to the lack of space, we only discuss a partially linear mean IV regression

example in section 4, and a partially linear quantile IV regression example in section 5, where the

latter example is used to highlight the technical difficulty of estimating θ0 semiparametrically effi-

ciently when the unknown h0(Y ) enters the generalized residual function ρ(Z; θ, h(·)) nonsmoothly.

Although the asymptotic properties of the PSMD estimator are difficult to derive, the estimator is

easy to compute and performs well in finite samples. See section 6 for a Monte Carlo study of a

partially linear quantile IV example, and a real data study of a system of shape-invariant quantile

IV Engel curves. All the proofs are gathered in the appendix.

Notation. We assume that all random variables (Y ′,X ′,W ) are defined on a complete prob-

ability space, and for simplicity that Y,X are continuous random variables. Let fX (FX ) be the

marginal density (cdf) of X, and fY |X (FY |X) be the conditional density (cdf) of Y given X. We

often implicitly define a term (such as a notation or an order of convergence rate) using “≡”. For

any vector-valued x, we denote ||x||E as its Euclidean norm (i.e., ||x||E ≡
√

x′x, although some-

times we use |x| = ||x||E for simplicity). Denote Lp(Ω, dµ), 1 ≤ p < ∞, as a space of measurable

functions with ||g||Lp(Ω,dµ) ≡ {
∫
Ω |g(t)|pdµ(t)}1/p < ∞, where Ω is the support of the sigma-finite

positive measure dµ (sometimes Lp(dµ) and ||g||Lp(dµ) are used for simplicity). For any positive

possibly random sequences {an} and {bn}, an = OP (bn) means that Pr (an/bn ≥ M) → 0 as n and

M go to infinity; and an = oP (bn) means that for all ε > 0, Pr (an/bn ≥ ε) → 0 as n goes to infinity.

2 The Penalized SMD estimator

The semiparametric conditional moment models (1.1) can be equivalently expressed as m(X,α0) =

0 a.s. − X, where m(X,α) ≡ E [ρ(Y,Xz ;α)|X] =
∫

ρ(Y,Xz ;α)dFY |X(y) and α0 ≡ (θ0, h0) ∈ A ≡
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Θ ×H. Following Chen and Pouzo (2008a), we define the Penalized SMD (PSMD) estimator as

α̂n ≡ (θ̂n, ĥn) = arg inf
α∈Ak(n)

{
1

n

n∑

i=1

m̂(Xi, α)′[Σ̂(Xi)]
−1m̂(Xi, α) + λnP̂n(h)

}
, (2.1)

where Ak(n) ≡ Θ×Hk(n) is a sieve for A ≡ Θ×H, m̂(X,α) and Σ̂(X) are nonparametric estimators

of m(X,α) and Σ(X) (a positive definite weighting matrix) respectively, λn ≥ 0 is a penalization

tuning parameter such that λn = o(1), and P̂n(h) ≥ 0 is a possibly random penalty function. Let

k(n) denote the dimension of the sieve Hk(n) for the function space H. In this paper we focus on the

PSMD procedure using a finite dimensional sieve (i.e., k(n) < ∞). See Chen and Pouzo (2008a)

for a more detailed presentation of the PSMD procedures with possibly infinite dimensional sieves.

In the working paper version (Chen and Pouzo (2008b)), we establish the asymptotic normality,

weighted bootstrap, semiparametric efficiency and chi-square approximation of the PSMD estimator

using any nonparametric estimators m̂(X,α) of m(X,α). In this published version, due to the lack

of space, we only present the large sample properties of the PSMD estimator when m̂(X,α) is a

series least squares (LS) estimator, as defined in (2.2):

m̂(X,α) = pJn(X)′(P ′P )−
n∑

i=1

pJn(Xi)ρ(Zi, α), (2.2)

where {pj()}∞j=1 is a sequence of known basis functions that can approximate any square inte-

grable functions of X well, Jn → ∞ slowly as n → ∞, pJn(X) = (p1(X), ..., pJn (X))′, P =

(pJn(X1), ..., p
Jn(Xn))′, and (P ′P )− is the generalized inverse of the matrix P ′P . To simplify pre-

sentation, we let Jn be the dimension of pJn(X), and pJn(X) be a tensor-product linear sieve basis,

which is the product of univariate linear sieves such as B-splines, polynomial splines (P-splines),

wavelets and Fourier series. See Newey (1997), Huang (1998) and Chen (2007) for more details

about tensor-product linear sieves.

2.1 Review of consistency without compactness

For the purely nonparametric conditional moment models E [ρ(Y,Xz;h0(·))|X] = 0, Chen and Pouzo

(2008a) present several consistency results ||ĥn − h0||s = oP (1) for their PSMD estimator ĥ =

arg infh∈Hk(n)
{ 1

n

∑n
i=1 m̂(Xi, h)′m̂(Xi, h) + λnP̂n(h)}, depending on whether or not the penalty

function P̂n(h) is lower semicompact (under the metric ‖·‖s). All of their consistency theorems

can be trivially adapted to establish consistency of our PSMD estimator α̂n ≡ (θ̂n, ĥn) defined in

(2.1). For the sake of easy reference, here we provide one consistency result with lower semicompact

penalty. In the following we denote ‖α‖s ≡ ‖θ‖E + ‖h‖s on A ≡ Θ ×H.

Assumption 2.1. (i) {(Y ′
i ,X ′

i)}n
i=1 is an i.i.d. sample; (ii) A ≡ Θ ×H, Θ is a compact subset of

Rdθ , and H ⊆ H, H is a separable Banach space under a metric ‖·‖s; (iii) E[ρ(Z,α0)|X] = 0, and

‖θ0 − θ‖E + ‖h0 − h‖s = 0 for any α = (θ, h) ∈ A with E[ρ(Z,α)|X] = 0.
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Assumption 2.2. (i) Ak ≡ Θ ×Hk, k ≥ 1, are the sieve spaces satisfying Hk ⊆ Hk+1 ⊆ H, and

there exists a function Πk(n)h0 ∈ Hk(n) such that ||Πk(n)h0−h0||s = o(1); (ii) E[m(X,α)′Σ(X)−1m(X,α)]

is continuous at α0 under ‖·‖s.

Assumption 2.3. (i) E[m(X,α)′Σ(X)−1m(X,α)] is lower semicontinuous (in || · ||s) on A; (ii)

for each k ≥ 1, Ak is closed subspace of (A, || · ||s);

Assumption 2.4. (i) λn suph∈Hk(n)
|P̂n(h)−P (h)| = OP (λn), with P (·) a non-negative real-valued

measurable function of h ∈ H, P (h0) < ∞ and λn|P (Πnh0) − P (h0)| = O(λn); (ii) the set {h ∈
H : P (h) ≤ M} is compact under || · ||s for all M ∈ [0,∞).

Let {δΣ,n}n and {δm,n}n be real-valued positive sequences decreasing to zero (as n → ∞),

denoting the convergence rates of Σ̂ − Σ and m̂ − m respectively.

Assumption 2.5. (i) supx∈X |Σ̂(x)−Σ(x)| ≡ OP (δΣ,n); (ii) with probability approaching one, Σ̂(x)

is positive definite, and its smallest and largest eigenvalues are finite positive uniformly in x ∈ X ;

(iii) Σ(x) is positive definite, and its smallest and largest eigenvalues are finite positive uniformly

in x ∈ X .

Assumption 2.6. (i) supα∈Ak(n)
E
[
||m̂(X,α) − m(X,α)||2E

]
≡ OP (δ2

m,n); (ii) there are finite

constants c, c′ > 0 such that, except on an event whose probability goes to zero as n → ∞,

cE[||m̂(X,α)||2E ] ≤ n−1
∑n

i=1 ||m̂(Xi, α)||2E ≤ c′E[||m̂(X,α)||2E ] uniformly over α ∈ Ak(n).

Assumption 2.6 is a high level condition, and is satisfied when m̂(X,α) is the series LS estimator

(2.2) (see Remark 2.1). Denote ξ0n ≡ supx ||pJn(x)||E .

Assumption 2.7. (i) X is a compact connected subset of Rdx with Lipschitz continuous boundary,

and fX is bounded and bounded away from zero over X ; (ii) The smallest and largest eigenvalues

of E[pJn(X)pJn(X)′] are bounded and bounded away from zero for all Jn; (iii) either Jnξ2
0n = o(n)

or Jn log(Jn) = o(n) for P-spline sieve pJn(X).

Let {bm,Jn}n be a real-valued positive sequence decreasing to zero (as Jn → ∞), denoting the

bias of approximating m(·, α) by the series basis pJn(·).

Assumption 2.8. (i) supα∈An
supx V ar[ρ(Z,α)|X = x] ≤ K < ∞; (ii) for any g ∈ {m(·, α) : α ∈

An}, there is pJn(X)′π such that, uniformly over α ∈ An, either (a) or (b) holds: (a) supx |g(x) −
pJn(x)′π| = O(bm,Jn); (b) E{[g(X)−pJn (X)′π]2} = O(b2

m,Jn
) for pJn(X) sieve with ξ0n = O(J

1/2
n ).

Assumption 2.8(ii) is satisfied by typical smooth function classes of {m(·, α) : α ∈ An}. For ex-

ample, if {m(·, α) : α ∈ An} is a subset of Λ
γm
c (X ), γm > dx/2, (or W

γm
2,c (X , leb.)), then assumption

2.8(ii) (a) (or (b)) holds with bm,Jn = J−rm
n and rm ≡ γm/dx.
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Remark 2.1. (Lemma B.3 of Chen and Pouzo (2008a)) Let m̂ be the series LS estimator given

in (2.2) with B-splines, P-splines, cosine/sine or wavelets as the basis pJn(X). Suppose that as-

sumptions 2.7 and 2.8 hold. Then: assumption 2.6 is satisfied with δm,n = max{
√

Jn
n , bm,Jn}.

Denote Πk(n)α0 ≡ (θ0,Πk(n)h0) ∈ Ak(n) ≡ Θ × Hk(n). The following lemma is a minor modifi-

cation of Theorem 3.3 of Chen and Pouzo (2008a) hence we omit its proof.

Lemma 2.1. Let α̂n be the PSMD estimator (2.1) with λn > 0, λn = o(1). Let assumptions 2.1 -

2.6 hold. If max{δ2
m,n, E[m(X,Πk(n)α0)

′m(X,Πk(n)α0)]} = O(λn), then: ||α̂n − α0||s = oP (1) and

P (ĥn) = OP (1).

2.2 Convergence Rates

Denote Aos ≡ {α ∈ A : ||α − α0||s = o(1), P (h) ≤ c} and Aosn ≡ Aos ∩ Ak(n). For any α ∈ Aos we

define the first pathwise derivative of m(X,α) at the direction [α − α0] evaluated at α0 as

dm(X,α0)

dα
[α − α0] ≡ dE[ρ(Z, (1 − τ)α0 + τα)|X]

dτ

∣∣∣∣
τ=0

a.s. X . (2.3)

=
dm(X,α0)

dθ
(θ − θ0) +

dm(X,α0)

dh
[h − h0].

Following Ai and Chen (2003), we define the pseudo-metric ||α1 − α2|| for any α1, α2 ∈ Aos as

||α1 − α2||2 ≡ E

[(
dm(X,α0)

dα
[α1 − α2]

)′

Σ(X)−1

(
dm(X,α0)

dα
[α1 − α2]

)]
. (2.4)

The next assumption 2.9(i) ensures that the pseudo-metric ||α1 − α2|| is well-defined for any

α1, α2 ∈ Aos.

Assumption 2.9. (i) Aos and Aosn are convex, m(X,α) is continuously pathwise differentiable with

respect to α ∈ Aos; (ii) there are finite constants c, c′ > 0 such that c||α−α0||2 ≤ E
[
||m(X,α)||2E

]
≤

c′||α−α0||2 for all α ∈ Aos; (iii) there is a finite constant K > 0 such that K×||α−α0|| ≤ ||α−α0||s
for all α ∈ Aos.

Define V as the closure of the linear span of Aos−{α0} under the metric ||·||. For any v1, v2 ∈ V,

we define an inner product corresponding to the metric || · ||:

〈v1, v2〉 = E

[(
dm(X,α0)

dα
[v1]

)′

Σ(X)−1

(
dm(X,α0)

dα
[v2]

)]
,

and for any v ∈ V we call v = 0 if and only if ||v|| = 0 (i.e., functions in V are defined in an equiva-

lent class sense according to the metric ||·||). Thus (V, 〈·〉) is a Hilbert space. Any v ≡ (vθ, vh) ∈ V if

and only if v′θE
[
{dm(X,α0)

dθ }′Σ(X)−1 dm(X,α0)
dθ

]
vθ < ∞ and E

[
{dm(X,α0)

dh [vh]}′Σ(X)−1{dm(X,α0)
dh [vh]}

]
<

∞. We can express V as Rdθ ×W with W ≡
{

w : E

[∥∥∥Σ(X)−
1
2 {dm(X,α0)

dh [w]}
∥∥∥

2

E

]
< ∞

}
. For each
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component θj (of θ), j = 1, ..., dθ , denote Dwj(X) ≡ dm(X,α0)
dθj

− dm(X,α0)
dh [wj ]. Let w∗

j ∈ W be a

solution to

inf
wj∈W

E
[
Dwj(X)′Σ(X)−1Dwj(X)

]
, (2.5)

which solves

E

[(
dm(X,α0)

dh
[wj ]

)′

Σ(X)−1

(
dm(X,α0)

dθj
− dm(X,α0)

dh
[w∗

j ]

)]
= 0 for all wj ∈ W . (2.6)

Denote w∗ ≡ (w∗
1 , ..., w

∗
dθ

) ∈ W × · · · ×W, and

Dw
∗(X) ≡

(
Dw∗

1
(X), ...,Dw∗

dθ
(X)

)
=

dm(X,α0)

dθ
− dm(X,α0)

dh
[w∗].

Although the solution w∗
j ∈ W, j = 1, ..., dθ to (2.5) (or (2.6)) may not be unique, the minimized

value, E[Dw∗

j
(X)′Σ(X)−1Dw∗

j
(X)], is unique; hence E[Dw

∗(X)′Σ(X)−1Dw
∗(X)] is uniquely de-

fined. If Σ(X) = V ar{ρ(Z,α0)|X}, then E[Dw
∗(X)′Σ(X)−1Dw

∗(X)] becomes the semiparametric

efficiency information bound for θ0. See Section 4 for further details.

If h0 were a parametric function say h0(·, β0) up to an unknown finite dimensional parameter

β0 ∈ Rdβ , then wj becomes a vector in Rdβ (instead of a function), and (2.5) (or (2.6)) can be

solved in a closed form:

E

(
dm(X,α0)

dβ

′

Σ(X)−1 dm(X,α0)

dβ

)
× w∗

j = E

(
dm(X,α0)

dβ

′

Σ(X)−1 dm(X,α0)

dθj

)

for w∗
j ∈ Rdβ , j = 1, ..., dθ ; hence Dw

∗(X) = dm(X,α0)
dθ − dm(X,α0)

dβ ×w∗ is simply the weighted least

squares regression residual of regressing dm(X,α0)
dθ on dm(X,α0)

dβ using the weight Σ(X)−1. (Even for

the parametric case, (2.5) (or (2.6)) has a unique solution w∗
j if and only if E

(
dm(X,α0)

dβ

′
Σ(X)−1 dm(X,α0)

dβ

)

is invertible.) We impose the following assumption.

Assumption 2.10. (i) E
[
{dm(X,α0)

dθ }′Σ(X)−1{dm(X,α0)
dθ }

]
is finite; (ii) E[Dw

∗(X)′[Σ(X)]−1Dw
∗(X)]

is finite, positive-definite.

Let Hos ≡ {h ∈ H : ||h− h0||s = o(1), P (h) ≤ c} and Hosn ≡ Hos ∩Hk(n). For any h1, h2 ∈ Hos

we define:

||h1 − h2||2 ≡ E

[(
dm(X,α0)

dh
[h1 − h2]

)′

Σ(X)−1

(
dm(X,α0)

dh
[h1 − h2]

)]
.

Lemma 2.2. Let assumptions 2.9 and 2.10 hold. Then: there are finite positive constants c, c′

such that for all α ∈ Aos, we have: c||θ − θ0||E ≤ ||α − α0|| and c′||h − h0|| ≤ ||α − α0||.

Let {δn}n and {δs,n}n be real-valued positive sequences decreasing to zero (as n → ∞), denoting

the convergence rates of ||α̂n − α0|| and ||α̂n − α0||s respectively, i.e., ||α̂n − α0|| ≡ OP (δn) and

||α̂n − α0||s ≡ OP (δs,n). Then Lemma 2.2 implies that ||θ̂n − θ0||E = OP (δn) and ||ĥn − h0|| =

OP (δn). By definition of the norm || · ||s we also have ||ĥn − h0||s = OP (δs,n).
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Assumption 2.11. (i) H ⊆ H, (H, || · ||s) is a Hilbert space with 〈·, ·〉s the inner product and

{qj}∞j=1 a Riesz basis; (ii) Hn = clsp{q1, ..., qk(n)}.

Assumption 2.11(i) suggests that Hn = clsp{q1, ..., qk(n)} is a natural sieve for H. For example,

if H ⊆ W ς
2 ([0, 1]d, leb) (a Sobolev space), then assumption 2.11 is satisfied with (H, || · ||s) =

(L2([0, 1]d, leb), || · ||L2(leb)), and spline or wavelet or power series or Fourier series bases as {qj}∞j=1.

Assumption 2.12. There are finite constants c, C > 0 and a non-increasing positive sequence

{bj}∞j=1 such that: (i) ||h||2 ≥ c
∑∞

j=1 bj |〈h, qj〉s|2 for all h ∈ Hosn; (ii) C
∑

j bj|〈h0−Πk(n)h0, qj〉s|2 ≥
||h0 − Πk(n)h0||2.

See Chen and Pouzo (2008a) for interpretation and sufficient conditions for assumption 2.12.

Lemma 2.3. Let α̂n be the PSMD estimator (2.1) with λn > 0, λn = o(1). Let assumptions of

Lemmas 2.1 and 2.2 hold, and suph∈Hosn
|P̂n(h)−P (h)| = oP (1). If max

{
δm,n,

√
λn

}
= δm,n, then:

(1) ||ĥn − h0|| = OP (δn) = OP

(
max{δm,n, ||h0 − Πk(n)h0||}

)
.

(2) Further, let assumptions 2.11 and 2.12 hold. Then:

δn = O (δm,n) and ||ĥn − h0||s = OP (δs,n) = OP

(
||h0 − Πk(n)h0||s +

δm,n√
bk(n)

)
.

Remark 2.2. Let α̂n be the PSMD estimator (2.1) with λn ≥ 0, λn = o(1). Suppose that all the

assumptions of Lemma 2.3 hold. Let h0 : Rd → R and ||h0 − Πk(n)h0||s = O({k(n)}−ς/d) for a

finite ς > 0, and δm,n = O

(√
k(n)

n

)
= oP (1).

(i) Mildly ill-posed case: let bk = O(k−2a/d) for some a ≥ 0. Then: δs,n = O
(
n
− ς

2(ς+a)+d

)
and

δn = O
(
n
− ς+a

2(ς+a)+d

)
provided k(n) = O

(
n

d
2(ς+a)+d

)
; hence δn = o(n−1/4) if ς + a > d/2.

(ii) Severely ill-posed case: let bk = O(exp{−ka/d}) for some a > 0. Then: δs,n = O
(
[ln(n)]−ς/a

)

and δn = O

(√
[ln(n)]d/a

n

)
provided k(n) = O

(
[ln(n)]d/a

)
; hence δn = o(n−1/4).

For a nonparametric mean IV regression model E[Y1 − h0(Y2)|X] = 0, Chen and Reiss (2007)

show that the above convergence rate ||ĥn − h0||s = OP (δs,n) in the norm ||h||s =
√

E([h(Y2)]2)

achieves the minimax optimal rate. The optimal rate δs,n is determined by choosing the smoothing

parameters to balance the sieve approximation error rate O({k(n)}−ς/d) and the standard deriva-

tion part O
(√

k(n)
n×bk(n)

)
, where the term {bk(n)}−1/2 is called “sieve measure of ill-posedness” (see

Blundell et al. (2007) and Chen and Pouzo (2008a)). When bk = const for all k (or when a = 0 in

Remark 2.2(i)), the convergence rate δs,n becomes the known optimal rate for sieve M-estimation

without nonparametric endogeneity; see, e.g., Chen and Shen (1998).

According to Lemma 2.3 and Remark 2.2, the same set of smoothing parameters that achieves

the optimal rate for ||ĥn − h0||s = OP (δs,n) can also lead to the rate ||α̂n − α0|| = OP (δn) =

OP (δm,n) = oP (n−1/4), which is what we need for root-n asymptotic normality of θ̂; see Theorem

3.1 in Section 3.
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3 Asymptotic Normality and Weighted Bootstrap

3.1 Root-n normality of θ̂

In this subsection we establish root-n asymptotic normality of the PSMD estimator θ̂, which extends

the normality result of Ai and Chen (2003) to allow for nonsmooth residuals ρ(Z;α) and any lower

semicompact penalty functions. Denote N0 ≡ {α ∈ Aos : ||α − α0|| = O(δn), ||α − α0||s = O(δs,n)}
and N0n ≡ N0 ∩ Ak(n).

Assumption 3.1. (i) There exist a measurable function b(X) with E[|b(X)|] < ∞ and constants

κ ∈ (0, 1], r ≥ 1 such that for all δ > 0 and α,α′ ∈ N0n

sup
||α−α′||s≤δ

∫
|ρ(z, α) − ρ(z, α′)|rdFY |X=x(y) ≤ b(x)rδrκ;

(ii) supα∈N0
|ρ(Z,α)| ≤ C(Z) and E[C(Z)2|X] ≤ const. < ∞; (iii) δ2

n × (δs,n)κ = o(n−1).

By Remark 2.2, for both the “mildly ill-posed” case and the “severely ill-posed” case, assumption

3.1(iii) δ2
n (δs,n)κ = o(n−1) is satisfied if ς > d/κ.

For any non-zero λ ∈ Rdθ , assumption 2.10 implies that there is a v∗ ∈ V such that λ′(θ̂n −
θ0) = 〈v∗, α̂n − α0〉, that is, v∗ ≡ (v∗θ , v

∗
h) is the Riesz representer of λ′(θ̂n − θ0), with v∗θ ≡

(E[Dw
∗(X)′[Σ(X)]−1Dw

∗(X)])−1λ and v∗h ≡ −w∗ × v∗θ .

Assumption 3.2. (i) θ0 ∈ int(Θ); (ii) Σ0(X) ≡ V ar[ρ(Z,α0)|X] is positive definite for all X ∈ X ;

(iii) there is a v∗n ≡ (v∗θ ,−w∗
n × v∗θ) ∈ Ak(n) \ {α0} such that ||v∗n − v∗|| × δn = o(n−1/2).

Assumption 3.3. (i) δn = o(n−1/4); (ii) δΣ,n × δn = o(n−1/2);

(iii) λn supα∈N0n
|P̂n(h ± ǫnw

∗
nv∗θ) − P̂n(h)| = oP ( 1

n) with 0 < ǫn = o(n−1/2).

Let m̃(X,α) ≡ pJn(X)′(P ′P )−
∑n

i=1 pJn(Xi)m(Xi, α) be the LS projection of m(X,α) onto

pJn(X). Define g(X, v∗) ≡ {dm(X,α0)
dα [v∗]}′Σ(X)−1 and g̃(X, v∗) as its LS projection onto pJn(X).

Assumption 3.4. (i) E

[∥∥∥dm̃(X,α0)
dα [v∗] − dm(X,α0)

dα [v∗]
∥∥∥

2

E

]
(δn)2 = oP ( 1

n);

(ii) E
[
‖g̃(X, v∗) − g(X, v∗)‖2

E

]
(δn)2 = oP ( 1

n).

Assumption 3.5. either (a) or (b) holds: (a)
{
(dm(X,α0)

dα [v∗])′Σ(X)−1m(X,α) : α ∈ N0n

}
is a

Donsker class; (b) {m(·, α) : α ∈ N0n} ⊆ Λ
γm
c (X ) with rm ≡ γm/dx > 1/2.

In the proof of Theorem 3.1 we establish that, under assumption 2.10(ii), assumption 3.5(b)

implies assumption 3.5(a).
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Assumption 3.6. (i) m(X,α) is twice pathwise differentiable in α ∈ N0n, E

(
supα∈N0n

∣∣∣d
2m(X,α)
dαdα [v∗n, v∗n]

∣∣∣
2
)

<

∞; (ii) E

[
supα∈N0n

∥∥∥dm(X,α)
dα [v∗n] − dm(X,α0)

dα [v∗n]
∥∥∥

2

E

]
= o(n−1/2); (iii) for all α ∈ N0n, α ∈ N0,

E

[(
dm(X,α0)

dα
[v∗]

)′

Σ(X)−1

(
dm(X,α)

dα
[α − α0] −

dm(X,α0)

dα
[α − α0]

)]
= o(n−1/2).

Assumption 3.6(ii) can be replaced by Assumption 3.6(ii)’:
{

dm(X,α)
dα [v∗n] : α ∈ N0n

}
is a Donsker

class, supx∈X ,α∈N0n

∣∣∣dm(x,α)
dα [v∗n]

∣∣∣ ≤ const. < ∞ and E

[∥∥∥dm(X,α)
dα [v∗n] − dm(X,α0)

dα [v∗n]
∥∥∥

2

E

]
= o(n−1/2)

for all α ∈ N0n (see the working paper version Chen and Pouzo (2008b) or Ai and Chen (2003)).

Assumption 3.6 is imposed to control the second order remainder term of m(X,α) in a shrinking

neighborhood of α0. It is automatically satisfied when m(X,α) is linear in α. When h(Y ) enters

m(X,α) = E[ρ(Y,X, θ, h(Y ))|X] highly nonlinearly, we need some rate of convergence in strong

norm (δs,n) to verify assumption 3.6(ii)(iii); see, e.g., the partially linear quantile IV regression

example in Section 5.

Theorem 3.1. Let α̂n be the PSMD estimator (2.1) with λn ≥ 0, λn = o(1) and m̂ the series LS

estimator. Suppose that all the assumptions of Lemma 2.3 and Remark 2.1 hold. Let assumptions

3.1, and 3.2 - 3.6 hold. Then:
√

n(θ̂n − θ0) ⇒ N(0, V −1), where

V −1 ≡




(
E
[
Dw

∗(X)′ [Σ(X)]−1 Dw
∗(X)

])−1
×(

E
[
Dw

∗(X)′ [Σ(X)]−1 Σ0(X) [Σ(X)]−1 Dw
∗(X)

])

×
(
E
[
Dw

∗(X)′ [Σ(X)]−1 Dw
∗(X)

])−1


 . (3.1)

3.2 Weighted Bootstrap

In this subsection we propose a weighted bootstrap procedure, and establish its validity by showing

that the asymptotic distribution of the weighted bootstrap estimator (centered at θ̂n) coincides

with the asymptotic distribution of our PSMD estimator (centered at θ0). In a recent paper

Ma and Kosorok (2005) establish a similar result for a semiparametric M-estimation without non-

parametric endogeneity; we extend their results to the PSMD estimation of the conditional moment

models (1.1) with nonparametric endogeneity.

Assumption 3.7. {Wi}n
i=1 is an i.i.d. sample of positive weights satisfying E[Wi] = 1 and

V ar(Wi) = ω0 ∈ (0,∞), and is independent of {(Y ′
i ,X ′

i)}n
i=1.

Theorem 3.2. Let all the assumptions of Theorem 3.1 and assumption 3.7 hold. Let6

α̂∗
n ≡ (θ̂

∗

n, ĥ∗
n) ≡ arg inf

α∈Ak(n)

[
1

n

n∑

i=1

{m̂W (Xi, α)′Σ̂(Xi)
−1m̂W (Xi, α)} + λnP̂n(h)],

6We are indebted to Andres Santos for suggesting this weighted bootstrap procedure.
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where m̂W (X,α) = pJn(X)′(P ′P )−
∑n

i=1 pJn(Xj)ρ(Zj , α)Wj Then: Conditional on the data {(Y ′
i ,X ′

i)}n
i=1,√

n
ω0

(θ̂
∗
n − θ̂n) has the same limiting distribution as that of

√
n(θ̂n − θ0).

Chen et al. (2003) establish the validity of a nonparametric bootstrap for a two-step semipara-

metric GMM estimator of θ0 under high-level conditions. As Theorem 3.2 indicates, we obtain the

validity of the weighted bootstrap under basically the same sets of low-level conditions as those for

the root-n asymptotic normality of the original PSMD estimator θ̂.

4 Semiparametric Efficiency and Chi-square Approximation

4.1 Semiparametric efficiency bounds and efficient estimation

Recall that Σ0(X) ≡ V ar(ρ(Z,α0)|X). We define V0 and W0 in the same way as V and W defined

in subsection 2.2, except using the optimal weighting matrix Σ0(X) instead of Σ(X). For example,

W0 ≡
{

w : E

[∥∥∥Σ0(X)−
1
2{dm(X,α0)

dh [w]}
∥∥∥

2

E

]
< ∞

}
. For any w ≡ (w1, ..., wdθ

) with wj ∈ W0, let

Dw(X) ≡ dm(X,α0)
dθ − dm(X,α0)

dh [w], and define

V0 ≡ inf
w

E
{
Dw(X)′[Σ0(X)]−1Dw(X)

}
= E

{
Dw0(X)′[Σ0(X)]−1Dw0(X)

}
, (4.1)

where w0 ≡ (w01, ..., w0dθ
), and for j = 1, ..., dθ , each w0j ∈ W0 solves:

E

[(
dm(X,α0)

dh
[wj ]

)′

Σ0(X)−1

(
dm(X,α0)

dθj
− dm(X,α0)

dh
[w0j ]

)]
= 0 for all wj ∈ W0.

When the residual function ρ(Z,α) is pointwise smooth in α, Ai and Chen (2003) establish

that V0 is the semiparametric efficiency (information) bound for θ0 identified by the model (1.1).

The following theorem shows that their result remains valid when ρ(Z,α) is not pointwise smooth

in α. We denote q0(y, x, α0) as the true joint probability density of (Y,X). Since Aos is convex at

α0 by assumption, h0 + ξ(h − h0) ∈ {h ∈ H : ||h − h0||s = o(1)} for any h ∈ {h ∈ H : ||h − h0||s =

o(1)} and any small scalar ξ ≥ 0. Let {q(y, x, θ, h0 + ξ(h − h0); ζ) : θ ∈ int(Θ), ξ ≥ 0, ζ ≥ 0}
denote a family of all parametric density submodels that satisfies the conditional moment restriction
∫

ρ(y,Xz, θ, h0 +ξ(h−h0))q(y,X, θ, h0 +ξ(h−h0); ζ)dy = 0 a.s.−X, and passes through q0(y, x, α0)

at the true values θ = θ0, ξ = 0 and ζ = 0.

Assumption 4.1. (i) E
[
{dm(X,α0)

dθ }′Σ0(X)−1{dm(X,α0)
dθ }

]
< ∞; (ii) for any h ∈ Hos, {q(y, x, θ, h0+

ξ(h − h0); ζ) : θ ∈ int(Θ), ξ ≥ 0, ζ ≥ 0} is smooth in the sense of Van der Vaart (1991).

Denote v0 ≡ (v0
θ ,−w0 × v0

θ) with v0
θ ≡ (V0)

−1λ for non-zero λ ∈ Rdθ .

Theorem 4.1. Let assumptions 2.1, 2.2(ii), 2.9(i), 3.2(i)(ii) and 4.1 hold. Then: (1) V0 given

in (4.1) is the semiparametric efficiency (information) bound for θ0 in the model (1.1). (2) The
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positive definiteness of V0 is the necessary condition for θ0 to be estimable at
√

n−rate. (3) Sup-

pose that all the assumptions of Theorem 3.1 hold with Σ(X) = Σ0(X) and v∗ = v0, then the

corresponding PSMD estimator of θ0 is efficient with asymptotic variance V −1
0 .

Under assumption 4.1, the semiparametric information bound V0 given in (4.1) is always well-

defined and unique, albeit the solutions w0 (the “least favorable directions”) may not be unique,

and may not be solvable in closed-forms. Luckily, our optimally weighted PSMD estimator of θ0 is

automatically efficient, regardless whether there is a closed-form solution w0.

4.2 Chi-square approximation

Previously Murphy and Van der Vaart (2000) show that the profiled likelihood ratio statistics is

asymptotically chi-square distributed, and Shen and Shi (2005) establish that the profiled sieve

likelihood ratio statistic is asymptotically chi-square distributed. In this subsection we show that

the profiled optimally weighted SMD criterion (Q̂n(θ)) also possess such a nice property.

In the following we denote Σ̂ (X,α) as any nonparametric estimator of Σ (X,α) ≡ V ar[ρ(Z,α)|X],

and α̂n as any initial consistent estimator such that α̂n ∈ N0n with probability approaching one

(e.g., the PSMD estimator with Σ̂(Xi) = I). The profiled optimally weighted PSMD estimator

α̃n ≡ (θ̃n, h̃n) is defined as:

h̃θ ≡ arg inf
h∈Hk(n)

{ 1

n

n∑

i=1

m̂(Xi, θ, h)′[Σ̂(Xi, α̂n)]−1m̂(Xi, θ, h) + λnP̂n(h)} for any fixed θ,

θ̃n ≡ arg min
Θ

{ 1

n

n∑

i=1

m̂(Xi, θ, h̃θ)
′[Σ̂(Xi, α̂n)]−1m̂(Xi, θ, h̃θ) + λnP̂n(h)}, and h̃n ≡ h̃θ̃n

.

Define the profiled optimally weighted SMD criterion function as:

Q̂n(θ) ≡ 1

2n

n∑

i=1

m̂(Xi; θ, h̃θ)
′[Σ̂(Xi, α̂n)]−1m̂(Xi; θ, h̃θ).

In the following we define v0
n ≡ (v0

θ ,−w0
nv0

θ) ∈ Ak(n) \ {α0} the same way as v∗n ≡ (v∗θ ,−w∗
nv∗θ)

defined in section 3 except using Σ0(X) instead of Σ(X).

Assumption 4.2. (i) supx∈X ,α∈N0n
|Σ̂(x, α)−Σ0(x)| = OP (δΣ,n); (ii) Σ̂(X,α) is finite and positive

definite with eigenvalues bounded away from zero uniformly for all X ∈ X and α ∈ N0n; (iii)

λn supα∈N0n
|P̂n(h ± εnw

0
nv0

θ) − P̂n(h)| = oP ( 1
n ) with 0 < εn = O(n−1/2).

Lemma A.1 of the working paper version (Chen and Pouzo (2008b)) provides sufficient condi-

tions for assumption 4.2(i) when Σ̂(x, α) is a series LS estimator. For alternative nonparametric

variance estimators and their properties, see Robinson (1995b), Andrews (1995) and references

therein.
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Theorem 4.2. Suppose that all the assumptions of Theorem 3.1 hold with Σ(X) = Σ0(X). Let

assumptions 4.2 hold. Then:
√

n(θ̃n − θ0) ⇒ N(0, V −1
0 ) and 2n

(
Q̂n(θ0) − Q̂n(θ̃n)

)
⇒ χ2

dθ
.

See the working paper version (Chen and Pouzo (2008b)) for an analogous result for the profiled

continuously updated PSMD criterion.

Remark 4.1. For the partially linear IV mean regression model: Y3 = Y ′
1θ0 + h0(Y2) + U with

E[U |X] = 0, Florens et al. (2007) provide identification of (θ0, h0), propose a kernel-based Tikhonov

regularized estimator for θ0, and obtain its root-n asymptotic normality without assuming compact-

ness of space H. For this model, we can compute our optimally weighted PSMD estimator θ̃n, and

Theorem 4.2 immediately implies that:
√

n(θ̃n−θ0) ⇒ N(0, V −1
0 ) and 2n{Q̂n(θ0)−Q̂n(θ̃n)} ⇒ χ2

dθ
,

where Σ0(X) = V ar{U2|X} and

V0 ≡ inf
w

E
{
E[Y ′

1 − w(Y2)|X]′Σ0(X)−1E[Y ′
1 − w(Y2)|X]

}
.

Moreover, since m(X,α) = E[Y3−Y ′
1θ−h(Y2)|X] is linear in α = (θ, h), assumption 3.6 is trivially

satisfied; hence θ̃n is root-n asymptotically normal even if h̃n converges to h0 very slowly in a strong

norm, such as ||ĥn − h0||L2(fY2
) = OP

(
[ln(n)]−ς/a

)
in Remark 2.2.

5 A Partially Linear Quantile IV Example

In this section we apply the above general theories to study the following partially linear quantile

IV regression model:

Y3 = θ0Y1 + h0(Y2) + U, Pr(U ≤ 0|X) = γ ∈ (0, 1), (5.1)

where θ0 is a scalar unknown parameter, h0() is a real-valued unknown function, and the conditional

distribution of the error term U given X = (X1,X
′
2)

′ is unspecified, except that FU |X(0) = γ for a

known fixed γ. The support of X is X = [0, 1]dx with dx = 1+d, and the support of Y = (Y3, Y1, Y
′
2)

′

is Y ⊆ R2+d. To map into the general model (1.1), we let Z = (Y ′,X ′)′, α = (θ, h) and ρ(Z,α) =

1{Y3 ≤ θY1 + h(Y2)} − γ. Recently Chernozhukov et al. (2007) and Horowitz and Lee (2007)

study the nonparametric quantile IV regression model E[1{Y3 ≤ h0(Y2)}|X] = γ. Chen and Pouzo

(2008a) illustrate their general convergence rate results using a nonparametric additive quantile IV

regression example E[1{Y3 ≤ h01(Y1) + h02(Y2)}|X] = γ. Chen et al. (2003) consider an example

of partially linear quantile IV regression with an exogenous Y2 (i.e., Y2 = X2), and Lee (2003)

studies the partially linear quantile regression with exogenous Y1 and Y2 (i.e., Y1 = X1, Y2 = X2).

See Koenker (2005) for excellent review on quantile models.

We estimate α0 using the PSMD estimator α̂n, with m̂(X,α) being a series LS estimator of

m(X,α) = E[FY3|Y1,Y2,X(θY1 + h(Y2))|X]− γ, where pJn(X) is either B-splines, P-splines, wavelets

or cosine series. Σ̂(X) = Σ(X) = Σ0(X) = γ(1 − γ), P̂n(h) = P (h), and An = [b, b] ×Hk(n) being
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a finite dimensional (dim(Hk(n)) ≡ k(n) < ∞) linear sieve. We impose some low level sufficient

conditions:

Condition 5.1. (i) fY3|Y1,Y2,X(y3|y1, y2, x) is continuous in (y3, y1, y2, x), and supy3
fY3|Y1,Y2,X(y3) ≤

const. < ∞ for almost all Y1, Y2,X; (ii) fY1,Y2|X=x(y1, y2) is continuous in (y1, y2, x);

(iii) E[FY3|Y1,Y2,X(θY1 +h(Y2))|X = ·] ∈ Λ
γm
1 (X ), rm ≡ γm/dx > 1/2, for all (θ, h) ∈ Θ×Hk(n).

Let fU |Y1,Y2,X(0) = fY3|Y1,Y2,X(θ0Y1 + h0(Y2)). Denote ̟ (y2) ≡
(
1 + |y2|2

)−ϑ′/2
for some ϑ′ ≥ 0.

Condition 5.2. (i) 0 < E{
(
E[fU |Y1,Y2,X(0)Y1|X]

)2} < ∞; (ii) E[(1 + |Y2|)2ϑ] < ∞ for some

ϑ > ϑ′ ≥ 0; (iii) Θ = [b, b] ⊂ R, H ⊆ {h ∈ L2(Rd, fY2) : ||̟h||W ς
2 (leb) < ∞} with ς > 0; (iv) Hk(n) =

span{q1, . . . , qk(n)} with (qk)k being wavelet basis for W ς
2 (Rd,̟); (v) P (h) = ||∇ς′(̟h)||2L2(leb) with

0 < ς ′ ≤ ς.

Condition 5.3. (i) (θ0, h0) ∈ int(Θ)×H satisfies the model (5.1); (ii) for all α ∈ Θ×H and all τ ∈
[0, 1] with ατ ≡ τα0 + (1− τ)α, E

{
fY3|Y1,Y2,X(θτY1 + hτ (Y2))[Y1(θ − θ0) + h(Y2) − h0(Y2)]|X

}
= 0

implies that [Y1(θ − θ0) + h(Y2) − h0(Y2)] ≡ 0 almost surely; (iii) E{|Y1 − E(Y1|Y2)|} > 0.

Condition 5.3 is a sufficient condition to ensure that the model (5.1) has a unique solution

α0 = (θ0, h0) ∈ Θ ×H.

Let ||h||2s = E{[h(Y2)]
2} and Aos = {α ∈ Θ×H : |θ− θ0|+ ||h− h0||s = o(1), P (h) ≤ c}. Define

linear operators Tα[g] ≡ E{fY3|Y1,Y2,X(θY1+h(Y2))[g(Y2)]|X = ·} and Tα0 [g] ≡ E{fY3|Y1,Y2,X(θ0Y1+

h0(Y2))[g(Y2)]|X = ·} that map from Dom(Tα) ⊂ L2(fY2) → L2(X , fX). Condition 5.3(ii) also

implies that Tα0 is invertible (i.e., injective, i.e., {g : Tα0[g] = 0} = {0}). We assume

Condition 5.4. For all g ∈ Dom(Tα), (i) there are finite constants c, C > 0 such that c||Tα0 [g]||2L2(fX) ≤
||Tα[g]||2L2(fX ) ≤ C||Tα0 [g]||2L2(fX) for all α ∈ Aos; (ii) there are finite positive constants a, c, c′ > 0

such that c||Tα0 [g]||2L2(fX) ≤
∑∞

j=1 j−2a/d|〈g, q〉s|2 ≤ c′||Tα0 [g]||2L2(fX).

Condition 5.5. max{
√

Jn
n , J−2rm

n , λn} =
√

Jn
n = o(1), Jn > k(n), Jn = O(k(n)).

Note that W0 =
{
w : E

[
{E[fU |Y1,Y2,X(0)w(Y2)|X]}2

]
< ∞

}
. Denote w0 ∈ W0 as the solution to:

V0 = inf
w∈W0

E
[(

E
{
fU |Y1,Y2,X(0)[Y1 − w(Y2)]|X

})2]

γ (1 − γ)
=

E
[(

E
{
fU |Y1,Y2,X(0)[Y1 − w0(Y2)]|X

})2]

γ (1 − γ)
.

(5.2)

Conditions 5.2(i) and 5.3 imply that V0 ∈ (0,∞).

Condition 5.6. (i) there is an w0
n ∈ Hk(n) such that E[

(
E
{
fU |Y1,Y2,X(0)[w0

n(Y2) − w0(Y2)]|X
})2

] =

o({k(n)}−1); (ii) assumption 4.2(iii) holds with P̂n(h) = P (h).

Condition 5.7. (i) ς > max{a + d
2 , 2d}; (ii) for almost all Y1, Y2,X, the partial derivative of

fY3|Y1,Y2,X(y3) with respect to y3 exists, is continuous and bounded uniformly in y3.
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In the following, ĥθ denotes the profile PSMD estimator, obtained by fixing θ and minimizing

the PSMD criterion with respect to h ∈ Hn. By definition ĥn = ĥ
θ̂n

.

Proposition 5.1. For the model (5.1), suppose that {(Y ′
i ,X ′

i)}n
i=1 is i.i.d., assumption 2.7, and

conditions 5.1 - 5.5 hold. Let k(n) = O
(
n

d
2(ς+a)+d

)
. Then:

(1) ||ĥn − h0||L2(fY2
) = OP

(
n
− ς

2(ς+a)+d

)
and ||α̂n − α0|| = OP

(
n
− ς+a

2(ς+a)+d

)
.

(2) If assumptions 5.6 and 5.7 hold, then:
√

n(θ̂n − θ0) ⇒ N
(
0, V −1

0

)
, where V0 given in

equation (5.2) is the semiparametric efficiency bound, and

[γ(1 − γ)]−1
n∑

i=1

(
{m̂(Xi, θ0, ĥθ0)}2 − {m̂(Xi, θ̂n, ĥn)}2

)
⇒ χ2

1.

Remark 5.1. (1) Proposition 5.1 is directly applicable to the model E[1{Y3 ≤ θX1+h02(X2)}|X] =

γ (i.e., Yj = Xj for j = 1, 2, no endogeneity) studied in Lee (2003)), and to the model E[1{Y3 ≤
θY1 + h02(X2)}|X] = γ (i.e., Y2 = X2, Y1 6= X1, endogeneity only in parametric part) considered

in Chen et al. (2003)). For both models we have: a = 0, and Proposition 5.1 leads to the optimal

convergence rate OP

(
n− ς

2ς+d

)
of ĥn to h0 in norm || · ||L2(fY2

), the root-n semiparametric efficient

estimation of θ0, and the chi-square approximation of the PSMD criterion based test statistics of

the null hypothesis: θ = θ0.

(2) One can characterize the semiparametric efficiency bound V0 using the operator formulation.

In particular, any solution w0 ∈ W0 to the optimization problem (5.2) must satisfy:

〈
Tα0 [w], E

{
fU |Y1,Y2,X(0)Y1|X

}
− Tα0 [w0]

〉
L2(fX )

= 0 for all w ∈ W0. (5.3)

Let T0,θ(·) ≡ E
{
fU |Y1,Y2,X(0)Y1|X = ·

}
. Define T ∗

α0
[r] ≡ E

{
fU |Y1,Y2,X(0)r(X)|Y2 = ·

}
as the ad-

joint operator of Tα0 (i.e., 〈Tα0 [g], r〉L2(fX) =
〈
g, T ∗

α0
[r]
〉
L2(fY2

)
). Then Condition 5.3 implies that

T ∗
α0

Tα0 is invertible, and if ||
(
T ∗

α0
Tα0

)−1
T ∗

α0
[T0,θ]||L2(fY2

) < ∞ then

V0 =
E
[
(T0,θ(X) − Tα0 [w0])

2
]

γ (1 − γ)
, w0 =

(
T ∗

α0
Tα0

)−1
T ∗

α0
[T0,θ].

However, this does not imply any explicit expressions for w0() when h0() depends on the en-

dogenous variable Y2. When there is no nonparametric endogeneity, then one can solve the ef-

ficiency bound in closed-forms. For example, for the partially linear quantile model with para-

metric endogeneity (i.e., Y2 = X2, but Y1 6= X1) of Chen et al. (2003), we have: V0 = [γ(1 −
γ)]−1E[

(
E
{
fU |Y1,X(0)[Y1 − w0(X2)]|X

})2
] and

w0 (X2) =
E
(
E
[
fU |Y1,X (0) Y1|X

]
E
[
fU |Y1,X (0) |X

]
|X2

)

E[
(
E{fU |Y1,X (0) |X}

)2 |X2]
.
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Proposition 5.1 only establishes the root-n asymptotic normality and efficiency for the partially

linear quantile IV model (5.1) under the mildly ill-posed case (||ĥn−h0||L2(Rd,fY2
) = OP

(
n
− ς

2(ς+a)+d

)
).

This is because the model is nonlinear in h0(Y2), our sufficient conditions (assumption 3.6(ii)(iii))

for root-n normality rules out the severely ill-posed case (||ĥn − h0||L2(fY2
) = OP

(
[ln(n)]−ς/a

)
).

6 Simulation and Empirical Illustration

6.1 A Monte Carlo Study

We assess the finite sample performance of the PSMD estimator in a simulation study. We simulate

the data from the following partially linear quantile IV model:

Y1 = X1θ0 + h0 (Y2) + U,

U =
√

0.075

(
−Φ−1

(
E [h0 (Y2) |X2] − h0 (Y2)

10
+ γ

)
+ ε

)
, ε ∼ N (0, 1) ,

where θ0 = 1, h0 (y2) = Φ
(

y2−µy2
σy2

)
, X1 ∼ U [0, 1] independent of ε, and both are independent of

(Y2,X2). Following the way Blundell et al. (2007) conduct their Monte Carlo study, we generate

our Monte Carlo experiment from the 1995 British Family Expenditure Survey (FES) data set

with subsample of families with no kids. In particular, Y2 is the endogenous regressor (log-total

expenditure), Φ(X2) is its instrument (log-gross earnings), and the joint density of (Y2,X2) is a

bivariate Gaussian density with first and second moments estimated from the FES data set. We

draw an i.i.d. sample from the joint density of (Y2,X2,X1, ε) with sample size n = 1000.

We estimate m (X,α) by the series LS estimator m̂ (X,α) given in (2.2), where pJn(X) consists

of P-Spline(3,3), P-Cos(9) and 4 cross-products terms (the second term of P-Spline(3,3) times the

first four terms of P-Cos(9)) with Jn = 20.7 We use a linear spline sieve P-Spline(2,6) as Hn. We

add a penalization term P̂n(h) = ||∇h||2L2(leb) with λn ∈ [0.001, 0.01].8 In all the cases we performed

500 Monte Carlo repetitions. Table 1 and Figure 1 summarize the simulation results for different

quantiles γ = 0.125, 0.25, 0.5, 0.75, 0.875. One can see that for all the cases our estimator performs

well.

6.2 An Empirical Illustration

We apply the PSMD to estimate a shape-invariant system of quantile IV Engel curves (or consumer

demand functions) using the UK Family Expenditure Survey data. The model is

E[1{Y1il ≤ h0l(Y2i − θ1X1i) + θ2,lX1i}|Xi] = γ ∈ (0, 1), l = 1, ..., 7,

7P-Spline(p,q) denotes a polynomial spline of order p with q number of knots, and P-Cos(p) a cosine series with
p number of terms. We have tried other combinations as sieve bases for m̂ and all yield very similar results.

8The actual λn is chosen to minimize the integrated MSE of ĥ for a small number of Monte Carlo repetitions.
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where Y1il is the budget share of household i on good l (in this application, 1 : food-out, 2 :

food-in, 3 : alcohol, 4 : fares, 5 : fuel, 6 : leisure goods, and 7 : travel). Y2i is the log-total

expenditure of household i that is endogenous, and Xi ≡ (X1i,X2i)
′, where X1i is 0 for without

kids sample and 1 for with kids sample and X2i is the gross earnings of the head of household,

which is the instrumental variable. We work with the whole sample (with and without kids) that

consists of 1655 observations. Blundell et al. (2007) have used the same data set in their study of

a shape-invariant system of mean IV Engel curves.

As illustration, we apply the PSMD using a finite-dimensional polynomial spline sieve to

construct the sieve space Hn for h, with different types of penalty functions. We have tried

P̂n(h) = ||∇kh||j
Lj (dµ̂)

≡ n−1
∑n

i=1 |∇kh(Y2i)|j for k = 1, 2 and j = 1, 2, and Hermite polynomial

sieves, cosine sieves and polynomial spline sieves for the series LS estimator m̂. All combinations

yield very similar results. Due to the lack of space, in Figure 2 we report the PSMD estimated En-

gel curves only for three different quantiles γ = {0.25, 0.5, 0.75} and for four selected goods, using

P-Spline(2,5) as Hn, and pJn(X) for m̂ consisting of P-Spline(2,5), P-Spline(5,10) and 4 cross-

product terms (the second term of P-Spline(2,5) times the first four terms of P-Spline(5,10)), with

Jn = 27. Table 2 presents the corresponding PSMD estimates of θ1 and (θ2,l)
7
l=1 for the median

(γ = 0.5) case under different combinations of P̂n(h) and λn. Figure 2 presents the corresponding

estimated curves, and its last two rows include the Engel curve estimates of Blundell et al. (2007)

for comparison. Both our θ estimates and our Engel curve estimates for the γ = 0.5 quantile are

very similar to the estimates reported in Blundell et al. (2007) for the mean IV Engel curve model.

7 Conclusion

In this paper, we study asymptotic properties of the penalized SMD estimator for the conditional

moment models containing unknown functions that could depend on endogenous variables. For

such models with possibly non-smooth generalized residual functions, and possibly non-compact

infinite dimensional parameter spaces, we show that the PSMD estimator of the parametric part

is root-n asymptotically normal, and the optimally weighted PSMD reaches the semiparametric

efficiency bounds. In addition, we establish the validity of a weighted bootstrap procedure for

confidence region construction of possibly inefficient but root-n consistent PSMD estimator. For

the optimally weighted efficient PSMD estimator, we show the validity of an alternative confidence

region construction method by inverting an optimally weighted profiled criterion function. We

illustrate the general theoretic results by a partially linear quantile IV regression example, a simu-

lation study, and an empirical estimation of a shape invariant system of quantile Engel curves with

endogenous total expenditure. The weighted bootstrap method could be easily extended to allow

for misspecified semiparametric conditional moment models of Ai and Chen (2007).

All the large sample theories obtained in this paper are first-order asymptotics. There are no
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results on higher order refinement for semiparametric models (1.1) containing unknown functions of

endogenous variables yet. There are some second order theories for semiparametric models without

nonparametric endogeneity, such as Robinson (1995a), Linton (1995) and Nishiyama and Robinson

(2005), to name a few. We hope to study the higher order refinement of the weighted bootstrap

procedure in another paper.
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A Mathematical Appendix

Proof of Lemma 2.2: Assumption 2.9 implies that for any α = (θ, h) ∈ Aos with θ 6= θ0, we can

always rewrite h− h0 = −w(θ− θ0) with w = (w1, ..., wdθ
) ∈ W × · · · ×W. By definition of w∗ we

have for all w = (w1, ..., wdθ
) and for each j = 1, ..., dθ ,

E
[
Dw∗

j
(X)′Σ(X)−1

{
Dwj (X) − Dw∗

j
(X)

}]
= E

[
Dw∗

j
(X)′Σ(X)−1 dm(X,α0)

dh
[wj − w∗

j ]

]
= 0.

Thus

||α − α0||2 = (θ − θ0)
′E
[
Dw(X)′Σ(X)−1Dw(X)

]
(θ − θ0)

= (θ − θ0)
′




E
[
Dw

∗(X)′Σ(X)−1Dw
∗(X)

]

+E

[{
dm(X,α0)

dh [w∗ − w]
}′

Σ(X)−1
{

dm(X,α0)
dh [w∗ − w]

}]

 (θ − θ0).

By assumption 2.10(i) we have:

||α − α0||2 ≥ (θ − θ0)
′E
[
Dw

∗(X)′Σ(X)−1Dw
∗(X)

]
(θ − θ0) ≥ const.||θ − θ0||2E .

Next,

||α − α0||2 ≥ E

[∥∥∥∥Σ(X)−
1
2

{
dm(X,α0)

dh
[h − h0 + w∗(θ − θ0)]

}∥∥∥∥
2

E

]
= ||h − h0 + w∗(θ − θ0)||2.
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Note that ||h − h0||2 ≤ 2
{
||h − h0 + w∗(θ − θ0)||2 + ||w∗(θ − θ0)||2

}
, and

||w∗(θ − θ0)||2 = (θ − θ0)
′E

[
{dm(X,α0)

dh
[w∗]}′Σ(X)−1{dm(X,α0)

dh
[w∗]}

]
(θ − θ0).

Assumption 2.10(i)(ii) and

E

[∥∥∥∥Σ(X)−
1
2
dm(X,α0)

dθ

∥∥∥∥
2

E

]
= E

[
Dw

∗(X)′Σ(X)−1Dw
∗(X)

]
+ E

[∥∥∥∥Σ(X)−
1
2
dm(X,α0)

dh
[w∗]

∥∥∥∥
2

E

]

imply that ||w∗(θ − θ0)||2 ≤ const.||θ − θ0||2E . Thus ||h − h0||2 ≤ const.||α − α0||2. Q.E.D.

Proof of Lemma 2.3: For Result (1), assumption 2.5(ii) implies that there are two finite positive

constants c, c′ such that

c
1

n

n∑

i=1

‖m̂ (Xi, α)‖2
E ≤ 1

n

n∑

i=1

∥∥∥Σ̂(Xi)
− 1

2 m̂ (Xi, α)
∥∥∥

2

E
≤ c′

1

n

n∑

i=1

‖m̂ (Xi, α)‖2
E

uniformly over α ∈ Ak(n). Let r2
n = max{δ2

m,n, ||α0 −Πk(n)α0||2, λn|P (Πk(n)h0)− P (ĥn)|} = oP (1).

Since α̂n ∈ Aosn with probability approaching one, we have: for all M > 1,

Pr

( ||α̂n − α0||
rn

≥ M

)
≤ Pr




inf{α∈Aosn:||α−α0||≥Mrn}

[
1
n

∑n
i=1

∥∥∥Σ̂(Xi)
− 1

2 m̂ (Xi, α)
∥∥∥

2

E
+ λnP̂n(h)

]

≤ 1
n

∑n
i=1

∥∥∥Σ̂(Xi)
− 1

2 m̂
(
Xi,Πk(n)α0

)∥∥∥
2

E
+ λnP̂n(Πk(n)h0)




≤ Pr

(
inf{α∈Aosn:||α−α0||≥Mrn}

[
c 1

n

∑n
i=1 ‖m̂ (Xi, α)‖2

E + λnP̂n(h)
]

≤ c′ 1n
∑n

i=1

∥∥m̂
(
Xi,Πk(n)α0

)∥∥2

E
+ λnP̂n(Πk(n)h0)

)

≤ Pr

(
inf{α∈Aosn:||α−α0||≥Mrn}

[
c 1

n

∑n
i=1 ‖m̂ (Xi, α)‖2

E + λnP (h)
]

≤ c′ 1n
∑n

i=1

∥∥m̂
(
Xi,Πk(n)α0

)∥∥2

E
+ λnP (Πk(n)h0) + oP (λn)

)

where the last inequality is due to the assumption that suph∈Hosn
|P̂n(h)− P (h)| = oP (1). We can

now follow the proof of Theorem 4.1(1) of Chen and Pouzo (2008a) (using our α̂n instead of their

ĥn), and obtain: ||α̂n − α0|| ≡ OP (δn) = OP (rn) = OP

(
max{δm,n,

√
λn, ||α0 − Πk(n)α0||}

)
. Result

(1) now follows from our Lemma 2.2 and the fact that ||α0 − Πk(n)α0|| = ||h0 − Πk(n)h0||. Result

(2) follows from Result (1), Theorem 4.2 and Lemma 5.1 of Chen and Pouzo (2008a). Q.E.D.

Lemma A.1. Let m̂ be the series LS estimator given in (2.2) with P-splines, cosine/sine or wavelets

as the basis pJn(X). Suppose i.i.d. data, assumptions 2.7, 2.8(i) and 3.1(i)(ii) hold. Then:

(1) sup
α∈N0n

1

n

n∑

i=1

‖m̂ (Xi, α) − m̂ (Xi, α0) − m̃ (Xi, α)‖2
E = OP

(
Jn

n
(δs,n)2κ

)
.

(2) sup
α∈N0n

1

n

n∑

i=1

‖m̂ (Xi, α0) + m̃ (Xi, α)‖2
E = OP

(
Jn

n
+ δ2

n

)
.

(3) Let assumptions 2.5(ii) and 3.1(iii) hold, and Jn
n = O(δ2

n). Then: Uniformly over α ∈ N0n,

1

n

n∑

i=1

∥∥∥Σ̂ (Xi)
− 1

2 m̂ (Xi, α)
∥∥∥

2

E
=

1

n

n∑

i=1

∥∥∥Σ̂ (Xi)
− 1

2 {m̂ (Xi, α0) + m̃ (Xi, α)}
∥∥∥

2

E
± oP

(
1

n

)
.
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Proof of Lemma A.1: For Result (1), let ε(Z,α) ≡ ρ(Z,α)−m(X,α), ∆ε(α) ≡ ε(Z,α)−ε(Z,α0),

Λn ≡ E[‖ρ (Z,α) − ρ (Z,α0)‖2
E |X]. Recall that m̃(X,α) = pJn(X)′(P ′P )−

∑n
i=1 pJn(Xi)m(Xi, α)

is the LS projection of m(X,α) onto pJn(X). Then

sup
α∈N0n

1

n

n∑

i=1

‖m̂ (Xi, α) − m̂ (Xi, α0) − m̃ (Xi, α)‖2
E

≤ sup
α∈N0n

E
[
pJn(Xi)(P

′P )−1P ′(∆ε(α))(∆ε(α))′P (P ′P )−1pJn(Xi)
′
]

≤ sup
α∈N0n

E
[
pJn(Xi)(P

′P )−1P ′E
[
(∆ε(α))(∆ε(α))′|X1, . . . ,Xn

]
P (P ′P )−1pJn(Xi)

′
]

≤ sup
α∈N0n

E
[
Λn × Tr

{
n−1pJn(Xi)

′pJn(Xi)(P
′P/n)−1

}]

≤ K sup
α∈N0n

E
[
E(‖ρ (Z,α) − ρ (Z,α0)‖2

E |X)
] Jn

n
≤ K sup

α∈N0n

Jn

n
‖α − α0‖2κ

s ≤ O

(
Jn

n
δ2κ
s,n

)
,

where the first inequality is due to Markov inequality, i.i.d. data, and the subsequent inequal-

ities are due to assumptions 3.1(i)(ii), 2.7, 2.8(i), i.i.d. data and the definition of N0n. Thus

Result (1) follows. For Result (2), by triangular inequality, we have: ‖m̂(Xi, α0) + m̃(Xi, α)‖E ≤
‖m̂(Xi, α0)‖E+‖m̃(Xi, α)‖E . Following the proof of Lemma B.2 of Chen and Pouzo (2008a) (using

our α instead of their h), under the i.i.d. data, assumptions 2.7 and 2.8(i) (for α ∈ Ak(n)) and 3.1(ii)

(for α0), we obtain: there are finite constants c, c′ > 0 such that, except on an event whose probabil-

ity goes to zero as n → ∞, cE[||m̂(X,α0)||2E ] ≤ n−1
∑n

i=1 ||m̂(Xi, α0)||2E ≤ c′E[||m̂(X,α0)||2E ], and

cE
(
‖m̃(Xi, α)‖2

E

)
≤ 1

n

∑n
i=1 ‖m̃(Xi, α)‖2

E ≤ c′E
(
‖m̃(Xi, α)‖2

E

)
uniformly over α ∈ Ak(n). By the

definition of m̂, the i.i.d. data, and assumption 3.1(ii), we have: E
(
‖m̂ (Xi, α0)‖2

E

)
= OP

(
Jn
n

)
.

Assumption 2.9(ii) and m̃(X,α0) = 0 imply that E
(
‖m̃(Xi, α)‖2

E

)
≤ const. ‖α0 − α‖2 = OP (δ2

n)

uniformly over α ∈ N0n. Thus Result (2) follows.

For Result (3), denote |||A(·)|||2
Σ̂
≡ n−1

∑n
i=1 A (Xi)

′ Σ̂ (Xi)
−1 A (Xi) and

ℓ(X,α) ≡ m̂(X,α0) + m̃(X,α), B2
n ≡ sup

α∈N0n

1

n

n∑

i=1

∥∥∥Σ̂ (Xi)
− 1

2 {m̂ (Xi, α) − ℓ(Xi, α)}
∥∥∥

2

E
.

By triangle inequality we obtain that uniformly over α ∈ N0n,

|||ℓ(·, α)|||Σ̂ − Bn ≤ |||m̂(·, α)|||Σ̂ ≤ |||ℓ(·, α)|||Σ̂ + Bn. (A.1)

Results (1) and (2), assumptions 2.5(ii) and 3.1(iii), and Jn
n = O(δ2

n) imply that: uniformly over

α ∈ N0n,

B2
n = OP

(
Jn

n
(δs,n)2κ

)
= OP

(
δ2
n (δs,n)2κ

)
= oP

(
1

n

)
,

|||ℓ(·, α)|||Σ̂ × Bn = OP

({√
Jn

n
+ δn

}
×
√

Jn

n
(δs,n)κ

)
= OP

(
δ2
n (δs,n)κ) = oP

(
1

n

)
.

These and equation (A.1) now imply that: |||m̂(·, α)|||2
Σ̂

= |||ℓ(·, α)|||2
Σ̂
± oP

(
1
n

)
uniformly over

α ∈ N0n. Q.E.D
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Denote |||A(·)|||2
Σ̂
≡ n−1

∑n
i=1 A (Xi)

′ Σ̂ (Xi)
−1 A (Xi), and ℓ(X,α) ≡ m̂(X,α0) + m̃(X,α).

Proof of Theorem 3.1: Let 0 < ǫn = o(n−1/2) and u∗
n = ±v∗n. By the definition of α̂n and

assumption 3.3(iii), we have: |||m̂(·, α̂n)|||2
Σ̂
−|||m̂(·, α̂n + ǫnu∗

n)|||2
Σ̂

+oP (n−1) ≤ 0. This and Lemma

A.1(3) imply that

|||ℓ(·, α̂n)|||2
Σ̂
− |||ℓ(·, α̂n + ǫnu∗

n)|||2
Σ̂

+ oP (n−1) ≤ 0. (A.2)

Under assumption 3.6(i), we can perform second order Taylor expansion to equation (A.2), and

obtain:

0 ≤ 2ǫn

n

n∑

i=1

(
dm̃(Xi, α̂n)

dα
[u∗

n]

)′

Σ̂(Xi)
−1 (m̂(Xi, α0) + m̃(Xi, α̂n))+In(α(s))+IIn(α(s))+oP (n−1),

with α(s) = α̂n + sǫnu∗
n ∈ N0n for some s ∈ (0, 1), and

In(α(s)) ≡ ǫ2
n

n

n∑

i=1

(
d2m̃(Xi, α(s))

dαdα
[u∗

n, u∗
n]

)′

Σ̂(Xi)
−1 (m̂(Xi, α0) + m̃(Xi, α(s))) ,

IIn(α(s)) ≡ ǫ2
n

n

n∑

i=1

(
dm̃(Xi, α(s))

dα
[u∗

n]

)′

Σ̂(Xi)
−1

(
dm̃(Xi, α(s))

dα
[u∗

n]

)
.

Applying Cauchy-Schwarz, the i.i.d. data, assumptions 2.5(ii) and 3.6(i), and Lemma A.1(2), we

have:

sup
α∈N0n

|In(α)| ≤ const.ǫ2n

√√√√ sup
α∈N0n

1

n

n∑

i=1

‖m̂(Xi, α0) + m̃(Xi, α)‖2
E = ǫ2

n × OP (

√
Jn

n
+ δn),

thus supα∈N0n
|In(α)| ≤ ǫ2

n×oP (n−1/4) by assumption 3.3(i). Next, by assumption 2.5(ii), we have:

uniformly over α ∈ N0n,

|IIn(α)| ≤ const.ǫ2nn−1
n∑

i=1

∥∥∥∥
dm̃(Xi, α(s))

dα
[u∗

n] − dm̃(Xi, α0)

dα
[u∗

n]

∥∥∥∥
2

E

+const.ǫ2nn−1
n∑

i=1

∥∥∥∥
dm̃(Xi, α0)

dα
[u∗

n]

∥∥∥∥
2

E

= oP (n−1) + OP (ǫ2
n),

where the second inequality follows from the definition of m̃, the i.i.d. data and assumptions 3.6(ii)

and 2.10(ii). Therefore, we have

0 ≤ 2ǫn

n

n∑

i=1

(
dm̃(Xi, α̂n)

dα
[u∗

n]

)′

Σ̂(Xi)
−1 (m̂(Xi, α0) + m̃(Xi, α̂n)) + OP (ǫ2

n).

Since ǫn = o(n−1/2) and u∗
n = ±v∗n we obtain

1√
n

n∑

i=1

(
dm̃(Xi, α̂n)

dα
[v∗n]

)′

Σ̂(Xi)
−1 (m̂(Xi, α0) + m̃(Xi, α̂n)) = oP (1). (A.3)
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Note that, by Cauchy-Schwarz, the i.i.d. data, assumption 2.5(ii) and the definition of m̃, we have:
∣∣∣∣∣
1

n

n∑

i=1

(
dm̃(Xi, α̂n)

dα
[v∗n] − dm̃(Xi, α0)

dα
[v∗n]

)′

Σ̂(Xi)
−1 (m̂(Xi, α0) + m̃(Xi, α̂n))

∣∣∣∣∣

≤ const.

√√√√ 1

n

n∑

i=1

∥∥∥∥
dm(Xi, α̂n)

dα
[v∗n] − dm(Xi, α0)

dα
[v∗n]

∥∥∥∥
2

E

×

√√√√ 1

n

n∑

i=1

‖m̂(Xi, α0) + m̃(Xi, α̂n)‖2
E

= oP (n−1/4) × OP (

√
Jn

n
+ δn) = oP (n−1/2),

where the first term is of order oP (n−1/4) by assumptions 3.6(ii) and 2.10(ii) and i.i.d. data, and

the second term is oP (n−1/4) by Lemma A.1(2) and assumption 3.3(i). Thus, we obtain:

1√
n

n∑

i=1

(
dm̃(Xi, α0)

dα
[v∗n]

)′

Σ̂(Xi)
−1 (m̂(Xi, α0) + m̃(Xi, α̂n)) = oP (1).

Note that

1

n

n∑

i=1

∣∣∣∣
(

dm̃(Xi, α0)

dα
[v∗n]

)′ (
Σ̂(Xi)

−1 − Σ(Xi)
−1
)

(m̂(Xi, α0) + m̃(Xi, α̂n))

∣∣∣∣

≤ OP (δΣ,n) ×

√√√√ 1

n

n∑

i=1

∥∥∥∥
dm̃(Xi, α0)

dα
[v∗n]

∥∥∥∥
2

E

×

√√√√ 1

n

n∑

i=1

‖m̂(Xi, α0) + m̃(Xi, α̂n)‖2
E

≤ OP (δΣ,n × (δn +

√
Jn

n
)) = oP (n−1/2),

where the first inequality is obtained by assumption 2.5, and the second inequality follows from

i.i.d. data, Lemma A.1(2), assumptions 2.10(ii) and 3.3(ii). Thus

1√
n

n∑

i=1

(
dm̃(Xi, α0)

dα
[v∗n]

)′

Σ(Xi)
−1 (m̂(Xi, α0) + m̃(Xi, α̂n)) = oP (1).

Notice that
∣∣∣∣∣
1

n

n∑

i=1

(
dm̃(Xi, α0)

dα
[v∗n − v∗]

)′

Σ(Xi)
−1 (m̂(Xi, α0) + m̃(Xi, α̂n))

∣∣∣∣∣

≤ OP (||v∗n − v∗||) × OP (

√
Jn

n
+ δn) = oP (n−1/2),

where the last inequality is due to Cauchy-Schwarz, the i.i.d. data, Lemma A.1(2), Markov in-

equality, and assumption 3.2(iii). Thus,

1√
n

n∑

i=1

(
dm̃(Xi, α0)

dα
[v∗]

)′

Σ(Xi)
−1 (m̂(Xi, α0) + m̃(Xi, α̂n)) = oP (1).

This, Cauchy-Schwarz, the i.i.d. data, Lemma A.1(2), assumptions 2.5(iii) and 3.4(i) imply that

1

n

n∑

i=1

(
dm(Xi, α0)

dα
[v∗]

)′

Σ(Xi)
−1 (m̂(Xi, α0) + m̃(Xi, α̂n)) = oP (

1√
n

).
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Recall that g(X, v∗) ≡ {dm(X,α0)
dα [v∗]}′Σ(X)−1 and g̃(X, v∗) is the LS projection of g(X, v∗) onto

pJn(X). Then by the property of LS projection, we have:

1

n

n∑

i=1

g(Xi, v
∗){m̂(Xi, α0) + m̃(Xi, α̂n)} =

1

n

n∑

i=1

g̃(Xi, v
∗){ρ(Zi, α0) + m(Xi, α̂n)}

=
1

n

n∑

i=1

g(Xi, v
∗){ρ(Zi, α0) + m(Xi, α̂n)} + oP (

1√
n

),

where the second equality is due to the i.i.d. data, assumptions 2.5(iii), 3.6(i), 3.2(ii), 2.9(ii), 3.4(ii),

E[ρ(Zi, α0)|X1, ...,Xn] = 0 and the Markov inequality. Thus we obtain:

1

n

n∑

i=1

g(Xi, v
∗){ρ(Zi, α0) + m(Xi, α̂n)} = oP (

1√
n

).

Notice that |g(X, v∗)m(X,α) − g(X, v∗)m(X,α0)| ≤ |g(X, v∗)| × |m(X,α) − m(X,α0)|. Given

that E[|g(X, v∗)|2] < M by assumptions 2.10(ii) and 2.5(iii), it follows that the entropy under the

L2(X ) norm of {g(X, v∗)m(X,α) : α ∈ N0n} is bounded by the entropy under the L∞(X ) norm

of {m(X,α) : α ∈ N0n}, which is ǫdx/γm hence a Donsker class by assumption 3.5(b). Therefore,

either by assumption 3.5(a) or by assumption 3.5(b), we have: uniformly over α ∈ N0n,

n−1
n∑

i=1

g(Xi, v
∗)m(Xi, α) = E [g(X, v∗)(m(X,α) − m(X,α0))] + oP (n−1/2).

By applying the mean value theorem to (m(X,α) − m(X,α0)) and assumption 3.6(iii), we obtain:

n−1
n∑

i=1

g(Xi, v
∗)m(Xi, α̂n) = 〈v∗, α̂n − α0〉 + oP (n−1/2),

Thus, we finally obtain

√
n〈v∗, α̂n − α0〉 = − 1√

n

n∑

i=1

(
dm(Xi, α0)

dα
[v∗]

)′

Σ(Xi)
−1ρ(Zi, α0) + oP (1) (A.4)

and the result follows by applying a standard central limit theorem argument. Q.E.D

Proof of Theorem 3.2: We repeat the proofs of the consistency and the convergence rates of

Lemma 2.3, except using Wρ(Z,α) instead of ρ(Z,α). Under assumption 3.7, we can show that

the weighted bootstrap estimator, α̂∗
n = (θ̂

∗

n, ĥ∗
n), is in N0n with probability approaching one. We

shall establish the limiting distribution in two steps.

Step 1: We first derive the asymptotic normality of
√

n(θ̂
∗

n − θ0) by mimicking the proof of

Theorem 3.1. Under assumption 3.7, we can repeat the proof of Lemma A.1, and obtain: uniformly

over α ∈ N0n,

1

n

n∑

i=1

∥∥∥Σ̂ (Xi)
− 1

2 m̂W (Xi, α)
∥∥∥

2

E
=

1

n

n∑

i=1

∥∥∥Σ̂ (Xi)
− 1

2 ℓW (Xi, α)
∥∥∥

2

E
± oP (n−1),

where ℓW (Xi, α) ≡ m̃W (Xi, α)+m̂W (Xi, α0). Moreover, by assumption 3.7, it follows mW (X,α) ≡
E[Wρ(Z,α)|X] = E[W ]E[ρ(Z,α)|X] = E[ρ(Z,α)|X]; this property also holds for the projection,

m̃W (X,α) = m̃(X,α).
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Recall that α̂∗
n solves minα∈N0n{|||m̂W (·, α)|||2

Σ̂
+ λnP̂n(h)}. Under assumption 3.3(iii), we can

establish that α̂∗
n is an “approximate minimizer” of a smooth criterion function: |||ℓW (·, α)|||2

Σ̂
≡

n−1
∑n

i=1 ℓW (Xi, α)′[Σ̂(Xi)
−1]ℓW (Xi, α) for all α ∈ {α ∈ N0n : ||α − α̂∗

n|| = OP (n−1/2)}. Now we

can essentially repeat the proof of Theorem 3.1. Let 0 < ǫn = o(n−1/2) and u∗
n = ±v∗n. We have:

|||ℓW (·, α̂∗
n)|||2

Σ̂
− |||ℓW (·, α̂∗

n + ǫnu∗
n)|||2

Σ̂
+ oP (n−1) ≤ 0. (A.5)

By second order Taylor expansion to equation (A.5), following the steps in the proof of Theorem

3.1 and using assumption 3.7, we obtain:

1√
n

n∑

i=1

(
dm̃(Xi, α̂

∗
n)

dα
[v∗n]

)′

Σ̂(Xi)
−1(m̂W (Xi, α0) + m̃(Xi, α̂

∗
n)) = oP (1).

By assumption 3.6(ii), we have:

n−1
n∑

i=1

∥∥∥∥
dm̃(Xi, α̂

∗
n)

dα
[v∗n] − dm̃(Xi, α0)

dα
[v∗n]

∥∥∥∥
2

E

= oP (n−1/2).

This and assumption 2.5(ii) imply that

1√
n

n∑

i=1

(
dm̃(Xi, α0)

dα
[v∗n]

)′

Σ(Xi)
−1(m̂W (Xi, α0) + m̃(Xi, α̂

∗
n)) = oP (1).

By Markov inequality and i.i.d. data, we have:

n−1
n∑

i=1

(
dm̃(Xi, α0)

dα
[v∗n − v∗]

)′

Σ(Xi)
−1

(
dm̃(Xi, α0)

dα
[v∗n − v∗]

)
= OP

(
||v∗n − v∗||2

)
.

Therefore, following the steps in the proof of Theorem 3.1, we obtain

1√
n

n∑

i=1

(
dm̃(Xi, α0)

dα
[v∗]

)′

Σ(Xi)
−1(m̂W (Xi, α0) + m̃(Xi, α̂

∗
n)) = op(1).

This, Cauchy-Schwarz, the i.i.d. data, Lemma A.1(2), assumptions 2.5(iii), 3.4(i) and 3.7 imply

that
1

n

n∑

i=1

(
dm(Xi, α0)

dα
[v∗]

)′

Σ(Xi)
−1 (m̂W (Xi, α0) + m̃(Xi, α̂

∗
n)) = oP (

1√
n

).

Recall that g(X, v∗) ≡ {dm(X,α0)
dα [v∗]}′Σ(X)−1 and g̃(X, v∗) is its LS projection onto pJn(X). Then

we have:

1

n

n∑

i=1

g(Xi, v
∗) (m̂W (Xi, α0) + m̃(Xi, α̂

∗
n)) =

1

n

n∑

i=1

g̃(Xi, v
∗){Wiρ(Zi, α0) + m(Xi, α̂

∗
n)}.

Following the steps in the proof of Theorem 3.1 and using assumption 3.7, we obtain:

1

n

n∑

i=1

{g̃(Xi, v
∗) − g(Xi, v

∗)}Wiρ(Zi, α0) = oP (
1√
n

).
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1

n

n∑

i=1

{g̃(Xi, v
∗) − g(Xi, v

∗)}{m(Xi, α̂
∗
n) − m(Xi, α0)} = oP (

1√
n

).

Thus we obtain:
1

n

n∑

i=1

g(Xi, v
∗){Wiρ(Zi, α0) + m(Xi, α̂

∗
n)} = oP (

1√
n

).

Recall that {g(X, v∗)m(X,α) : α ∈ N0n} is a Donsker Class. Thus, we have uniformly over α ∈ N0n,

n−1
n∑

i=1

g(Xi, v
∗)m(Xi, α) = E [g(X, v∗)m(X,α)] + op(n

−1/2) = 〈v∗, α − α0〉 + oP (n−1/2).

Hence

√
n〈v∗, α̂∗

n − α0〉 = − 1√
n

n∑

i=1

(
dm(Xi, α0)

dα
[v∗]

)′

Σ(Xi)
−1ρ(Zi, α0)Wi + oP (1). (A.6)

This and assumption 3.7 implies that
√

n(θ̂
∗

n − θ0) is asymptotically normal with zero mean and

variance V −1
∗ ≡ ω0V

−1.

Step 2: Subtracting equation (A.4) from (A.6), we obtain:

√
n〈v∗, α̂∗

n − α̂n〉 = − 1√
n

n∑

i=1

(Wi − 1)

(
dm(Xi, α0)

dα
[v∗]

)′

Σ(Xi)
−1ρ(Zi, α0) + oP (1).

Given that V ar(W − 1) = V ar(W ) = ω0 and that {Wi}n
i=1 is independent of {(Yi,Xi)}n

i=1, it

follows that, conditional on the data {(Yi,Xi)}n
i=1,

√
n
ω0

(
θ̂
∗

n − θ̂n

)
is asymptotically normal with

zero mean and variance V −1, the same limiting distribution as that of
√

n(θ̂n − θ0). Q.E.D

Proof of Theorem 4.1: The proof essentially replicates that of theorem 6.1 in Ai and Chen

(2003), except that we replace their use of the pathwise derivative of the generalized residual

function ρ(Z,α) with respect to α by the pathwise derivative of the conditional mean func-

tion E[ρ(Z,α)|X] wrt α in a shrinking neighborhood of α0. See the working paper version

(Chen and Pouzo (2008b)) for the detailed proof; also see the working paper version of Ai and Chen

(2003) for an alternative proof via the empirical likelihood. Q.E.D

Proof of Theorem 4.2: With the danger of slightly abusing notation, we denote Σ̂0(Xi) ≡
Σ̂(Xi, α̂n). Then we have:

α̃n ≡ (θ̃n, h̃n) = arg min
θ∈Θ,h∈Hk(n)

{|||m̂(·, θ, h)|||2
Σ̂0

+ λnP̂n(h)}, Q̂n(θ̃n) ≡ 1

2
|||m̂(·, α̃n)|||2

Σ̂0
,

α̃0
n ≡ (θ0, h̃

0
n) ≡ arg min

h∈Hk(n)

{|||m̂(·, θ0, h)|||2
Σ̂0

+ λnP̂n(h)}, Q̂n(θ0) ≡
1

2
|||m̂(·, α̃0

n)|||2
Σ̂0

.

We shall establish 2n[Q̂n(θ0)−Q̂n(θ̃n)] ⇒ χ2
dθ

by first showing n
(
|||ℓ(·, α̃0

n)|||2
Σ̂0

− |||ℓ(·, α̃n)|||2
Σ̂0

)
⇒

χ2
dθ

in several steps.

Step 1: Recall that α̃n ≡ (θ̃n, h̃n) is the unconstrained PSMD estimator. Let α∗
n ≡ α̃n −

〈α̃n − α0, v0〉v0
n/||v0||2, where the inner product 〈·, ·〉 is defined using the Σ0(X) instead of Σ(X)

and ||v0||2 = λ′V −1
0 λ. Then α̃n − α∗

n = 〈α̃n − α0, v0〉v0
n/||v0||2. Recall that for any λ 6= 0,
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λ′(θ̃n − θ0) = 〈α̃n −α0, v0〉. Applying Theorem 3.1 we have:
√

n〈α̃n −α0, v0〉 ⇒ N(0, ||v0||2). Thus

we have ||α̃n − α∗
n||2 = OP (n−1/2). Applying Taylor expansion up to second order, we have:

|||ℓ(·, α̃n)|||2
Σ̂0

− |||ℓ(·, α∗
n)|||2

Σ̂0

=
2

n

n∑

i=1

(
dm̃(Xi, α

∗
n)

dα
[α̃n − α∗

n]

)′

Σ̂0(Xi)
−1 (m̂(Xi, α0) + m̃(Xi, α

∗
n)) + In(αn) + IIn(αn)

with αn ∈ N0n a point in between α̃n and α∗
n, and

In(αn) = n−1
n∑

i=1

(
d2m̃(Xi, αn)

dαdα
[α̃n − α∗

n, α̃n − α∗
n]

)′

Σ̂0(Xi)
−1 (m̂(Xi, α0) + m̃(Xi, αn)) ,

IIn(αn) = n−1
n∑

i=1

(
dm̃(Xi, αn)

dα
[α̃n − α∗

n]

)′

Σ̂0(Xi)
−1

(
dm̃(Xi, αn)

dα
[α̃n − α∗

n]

)
.

Following the same calculations as those in the proof of Theorem 3.1 and by assumption 4.2(ii), we

have: supαn∈N0n
|In(αn)| = oP (n−1). Similarly under assumption 4.2(i)(ii), we have:

IIn(αn) =

(〈α̃n − α0, v0〉
||v0||2

)2

E

[
{dm(X,α0)

dα
[v0]}′Σ0(X)−1{dm(X,α0)

dα
[v0]}

]
+ oP (n−1).

By Cauchy-Schwarz inequality, 〈v0, α̃n − α0〉 = OP (n−1/2), assumption 4.2, and using the same

arguments as the ones in the proof of Theorem 3.1, we obtain:

1

n

n∑

i=1

(
dm̃(Xi, α

∗
n)

dα
[α̃n − α∗

n]

)′

Σ̂0(Xi)
−1 (m̂(Xi, α0) + m̃(Xi, α

∗
n))

= n−1
n∑

i=1

(
dm(Xi, α0)

dα
[α̃n − α∗

n]

)′

Σ0(Xi)
−1 (m̂(Xi, α0) + m(Xi, α

∗
n)) + oP (n−1).

Since α∗
n − α0 = α̃n − α0 − 〈α̃n − α0, v0〉v0

n/||v0||2, applying second order Taylor expansion to

m(Xi, α
∗
n) − m(Xi, α0), we obtain:

n−1
n∑

i=1

(
dm(Xi, α0)

dα
[α̃n − α∗

n]

)′

Σ0(Xi)
−1m(Xi, α

∗
n)

= OP (n−1/2) ×
(
〈α̃n − α0, v0〉 −

〈α̃n − α0, v0〉〈v0
n, v0〉

||v0||2
+ oP (n−1/2)

)

= OP (n−1/2) ×
(
〈α̃n − α0, v0〉 − 〈α̃n − α0, v0〉 + oP (n−1/2)

)
= oP (n−1),

where the last equality uses the fact that 〈v0
n − v0, v0〉 ≤ ||v0

n − v0||2 = oP (1) by assumption 3.2(i).

Therefore

|||ℓ(·, α̃n)|||2
Σ̂0

− |||ℓ(·, α∗
n)|||2

Σ̂0

=
2

n

n∑

i=1

(
dm(Xi, α0)

dα
[α̃n − α∗

n]

)′

Σ0(Xi)
−1m̂(Xi, α0) +

(〈α̃n − α0, v0〉
||v0||2

)2

||v0||2 + oP (
1

n
)

= −〈α̃n − α0, v0〉2
||v0||2

+ oP (n−1).
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Step 2: Recall that α̃0
n ≡ (θ0, h̃

0
n) is the constrained PSMD estimator. Define α∗0

n ≡ α̃0
n +〈α̃n−

α0, v0〉v0
n/||v0||2. Note that α̃0

n −α∗0
n = −(α̃n −α∗

n) = −〈α̃n −α0, v0〉v0
n/||v0||2. Following the same

calculations as those in Step 1, we obtain:

|||ℓ(·, α̃0
n)|||2

Σ̂0
− |||ℓ(·, α∗0

n )|||2
Σ̂0

= 〈α̃n − α0, v0〉2
1

||v0||2
+ oP (n−1).

Step 3: Applying Lemma A.1(3), we obtain:

|||ℓ(·, α̃n)|||2
Σ̂0

= |||m̂(·, α̃n)|||2
Σ̂0

+ oP (
1

n
), |||ℓ(·, α∗0

n )|||2
Σ̂0

= |||m̂(·, α∗0
n )|||2

Σ̂0
+ oP (

1

n
). (A.7)

By the definitions of α̃n, α∗0
n , and assumption 4.2(iii), we have: |||m̂(·, α̃n)|||2

Σ̂0
≤ |||m̂(·, α∗0

n )|||2
Σ̂0

+

oP (n−1). This, equation (A.7), and Step 2 imply that

|||ℓ(·,α̃0
n)|||2

Σ̂0
−|||ℓ(·,α̃n)|||2

Σ̂0
≥ |||ℓ(·,α̃0

n)|||2
Σ̂0
−|||ℓ(·, α∗0

n )|||2
Σ̂0

=
〈α̃n − α0, v0〉2

||v0||2
+oP (

1

n
) (A.8)

Step 4: Denote α∗
n(t) ≡ α∗

n + tv0
n/||v0||2 for a scalar t ≥ 0. We need to find a point, de-

noted as α∗
n(t∗) ≡ α∗

n + t∗v0
n/||v0||2, that satisfies (a) 〈α∗

n(t∗), v0〉 = θ0 (the constraint), and (b)

|||ℓ(·, α∗
n(t∗))|||2

Σ̂0
− |||ℓ(·, α∗

n)|||2
Σ̂0

= o(n−1). Suppose such an α∗
n(t∗) exists, then by the definition

of α̃0
n ≡ (θ0, h̃

0
n), and by Step 1, we obtain:

|||ℓ(·, α̃n)|||2
Σ̂0

− |||ℓ(·, α̃0
n)|||2

Σ̂0

≥ |||ℓ(·, α̃n)|||2
Σ̂0

− |||ℓ(·, α∗
n(t∗))|||2

Σ̂0
= |||ℓ(·, α̃n)|||2

Σ̂0
− |||ℓ(·, α∗

n)|||2
Σ̂0

− oP (
1

n
)

= −〈α̃n − α0, v0〉2
||v0||2

+ oP (n−1). (A.9)

We now show such an α∗
n(t∗) exists. For (a), we want to find a t∗ that solves the following

equation:

0 = 〈α∗
n(t) − α0, v0〉 = 〈α∗

n − α0, v0〉 + t
〈v0

n, v0〉
〈v0, v0〉

= 〈α∗
n − α0, v0〉 + t + t

〈v0
n − v0, v0〉
〈v0, v0〉

.

Notice that 〈α∗
n − α0, v0〉 = 〈α̃n − α0, v0〉 ×

(
− 〈v0

n−v0,v0〉
〈v0,v0〉

)
= 〈α∗

n − α∗, v0〉, since the second term

in the middle is op(n
−1/2), it is easy to see that there is a t∗ that solves the above equation

and such a t∗ is of order o(n−1/2). For (b), notice that we can approximate |||ℓ(·, α∗
n(t∗))|||2

Σ̂0
by

|||ℓ(·, α∗
n(0))|||2

Σ̂0
+

d|||ℓ(·,α∗

n(0))|||2
Σ̂0

dα [t∗v0
n/||v0||2]+o(n−1) (where the last term depends on t∗ = o(n−1/2)

and the second term is also of order o(n−1) by following similar calculations as those in Step 1).

Thus, (b) holds

Step 5: Invoking the inequalities (A.8) and (A.9), we obtain

n
(
|||ℓ(·, α̃0

n)|||2
Σ̂0

− |||ℓ(·, α̃n)|||2
Σ̂0

)
=

(√
n〈α̃n − α0, v0〉

||v0||

)2

+ oP (1) ⇒ χ2
dθ

where the right hand side chi-square limiting distribution follows from
√

n〈α̃n−α0, v0〉 ⇒ N(0, ||v0||2).
Applying Lemma A.1(3), we obtain:

2n[Q̂n(θ0) − Q̂n(θ̃n)] = n{|||m̂(·, α̃0
n)|||2

Σ̂0
− |||m̂(·, α̃n)|||2

Σ̂0
}

= n{|||ℓ(·, α̃0
n)|||2

Σ̂0
− |||ℓ(·, α̃n)|||2

Σ̂0
± oP (

1

n
)} ⇒ χ2

dθ
,
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and the conclusion follows. Q.E.D

Proof of Proposition 5.1: For this model, we have: ρ(Z,α) = 1{Y3 ≤ θY1 + h(Y2)} − γ,

m(X,α) = E[FY3|Y1,Y2,X(θY1 + h(Y2))|X] − γ and Σ̂ = Σ = γ(1 − γ). For Result (1), it is easy to

show that the i.i.d. data, assumption 2.7, and conditions 5.1 - 5.5 imply that all the assumptions

of Lemma 2.3 hold. In particular, for assumption 2.1(iii) (identification), suppose that there is

α ≡ (θ, h) satisfying |θ − θ0| + ||h − h0||L2(fY2
) > 0 and E[FY3|Y1Y2X(α)|X] = γ, then by the mean

value theorem, there exists α = (θ, h) such that E[fY3|Y1Y2X(θY1+h(Y2)){Y1(θ−θ0)+h−h0}|X] = 0,

this and condition 5.3 then imply that |θ − θ0| + ||h − h0||L2(fY2
) = 0; hence a contradiction and

assumption 2.1(iii) holds. Condition 5.2(i) implies assumption 2.10(i); and conditions 5.3(ii)(iii)

and 5.2(i) imply assumption 2.10(ii). The verifications of the rest of the assumptions of Lemma

2.3 are essentially the same as those in the proof of Proposition 6.4 in Chen and Pouzo (2008a);

hence we omit them.

For Result (2), we shall verify that all the assumptions of Theorem 3.1 hold with Σ̂ = Σ = γ(1−
γ). Condition 5.1(i)(ii) implies that assumption 3.1(i) holds with κ = 1/2. Since ρ(Z,α) ∈ [0, 1]

assumption 3.1(ii) trivially holds. Assumption 3.1(iii) follows from Result (1) and condition 5.7(i).

Assumption 3.2(ii) follows from the fact that Σ̂ = Σ0 = γ(1 − γ). Regarding assumption 3.2(iii),

since v∗ = v0 ≡ (v0
θ ,−w0v

0
θ), with v0

θ = V −1
0 and v∗n = v0

n ≡ (v0
θ ,−w0

nv0
θ), by condition 5.1(i), we

have:

||v∗n − v∗||2 = ||w0
n − w0||2 =

E
[(

E
{
fY3|Y1,Y2,X(θ0Y1 + h0(Y2))[w

0
n(Y2) − w0(Y2)]|X

})2]

γ(1 − γ)
;

thus assumption 3.2(iii) follows from condition 5.6(i) and Result (1). Assumption 3.3(i) follows

from Result (1) and ς + a > d/2 (which is implied by condition 5.7(i)). Assumption 3.3(iii) is

implied by condition 5.6(ii). Since Σ = γ(1 − γ), and

dm(X,α0)

dα
[v∗] = E

(
fU |Y1,Y2,X(0)[v0]|X

)
,

dm̃(X,α0)

dα
[v∗] = pJn(X)′(P ′P )−

n∑

i=1

pJn(Xi)
dm(Xi, α0)

dα
[v0],

assumption 3.4 follows from Result (1), assumption 2.7 and conditions 5.1 and 5.7(i). Assumption

3.5(b) follows directly from condition 5.1(iii). Assumption 3.6(i) directly follows from condition

5.7(ii). Also, under condition 5.7(ii), with v∗n = v0
n ≡ (v0

θ ,−w0
n × v0

θ), we have:

dm(X,α)

dα
[v∗n] − dm(X,α0)

dα
[v∗n]

= E
{(

fY3|Y1,Y2,X(θY1 + h(Y2)) − fY3|Y1,Y2,X(θ0Y1 + h0(Y2))
)
[Y1 − w∗

n(Y2)]|X
}

v∗θ

= E

{
dfY3|Y1,Y2,X(θY1 + h(Y2))

dy3
[(θ − θ0)Y1 + h(Y2) − h0(Y2)][Y1 − w∗

n(Y2)]|X
}

v∗θ

where θY1 + h(Y2) is in between θY1 + h(Y2) and θ0Y1 + h0(Y2). By condition 5.7(ii),

E

[
sup

α∈N0n

∥∥∥∥
dm(X,α)

dα
[v∗n] − dm(X,α0)

dα
[v∗n]

∥∥∥∥
2

E

]
≤ const. × ||α − α0||2s = O

(
n
− 2ς

2(ς+a)+d

)
,

thus assumption 3.6(ii) is satisfied given condition 5.7(i). Similarly, assumption 3.6(iii) follows from

condition 5.7(i)(ii). Thus all the assumptions of theorem 3.1 hold, and we obtain:
√

n(θ̂n − θ0) ⇒
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N
(
0, V −1

0

)
. Since Σ̂ = Σ = Σ0 = γ(1 − γ), the chi-square limiting distribution follows directly

from theorem 4.2. Q.E.D
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B Tables and Figures

γ 0.125 0.250 0.500 0.750 0.875

EMC

[
θ̂n

]
1.0009 0.9981 1.0009 1.0008 0.9991

V arMC

[
θ̂n

]
0.0023 0.0018 0.0011 0.0017 0.0028

BIAS2
MC

[
θ̂n

]
× 104 0.0083 0.0347 0.0084 0.0067 0.0078

(θ2.5, θ97.5)MC (0.90, 1.10) (0.91, 1.07) (0.93, 1.07) (0.91, 1.08) (0.89, 1.09)
(θ2.5, θ97.5)χ2 (0.89, 1.09) (0.91, 1.06) (0.93, 1.05) (0.91, 1.07) (0.88, 1.08)

I − BIAS2
MC

[
ĥn

]
0.0022 0.0015 0.0030 0.0030 0.0044

I − V arMC

[
ĥn

]
0.0221 0.0287 0.0056 0.0147 0.0173

I − MSE2
MC

[
ĥn

]
0.0244 0.0302 0.0087 0.0177 0.0217

Table 1: Monte Carlo study of a partially linear quantile IV example.
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Figure 1: Monte Carlo study: Estimate of h.
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Figure 2: Estimated Engel curves for quantiles γ = 0.25 (dash), 0.5 (solid), 0.75 (dot-dash). 1st row: P̂n(h) =

||∇2h||2L2(dµ̂), λn = 0.001; 2nd row: P̂n(h) = ||∇2h||L1(dµ̂), λn = 0.001; 3rd row: P̂n(h) = ||∇h||2L2(dµ̂), λn = 0.003;

4th and 5th rows: P̂n(h) = ||∇2h||2L2(dµ̂) (4th), ||∇h||2L2(dµ̂) (5th), λn = 0.0003, γ = 0.5 (solid) and BCK (dash).

P̂n(h) ||∇2h||2L2(dµ̂) ||∇2h||L1(dµ̂) ||∇h||2L2(dµ̂) ||∇2h||2L2(dµ̂) ||∇h||2L2(dµ̂)

λn 0.001 0.001 0.001 0.0003 0.0003 (BCK)

θ̂1 0.4133 0.3895 0.5479 0.43136 0.36348 (0.3698)
food-in 0.0200 0.0267 -0.0056 0.00989 0.01949 (0.0213)
food-out 0.0010 0.0006 0.0019 0.00033 0.00055 (0.0006)
alcohol -0.0195 -0.0123 -0.0171 -0.02002 -0.01241 (-0.0216)
fares 0.0106 -0.0031 -0.0001 -0.00009 -0.00173 (-0.0023)
fuel -0.0027 0.0027 0.0004 -0.00198 -0.00370 (-0.0035)
leisure 0.0208 0.0214 0.0380 0.02582 0.01897 (0.0388)
travel -0.0207 -0.0218 -0.0084 -0.00622 -0.01536 (-0.0384)

Table 2: Shape-invariant Engel curve quantile IV model with γ = 0.5: θ estimates under different
penalization. The values in parenthesis are the mean IV estimates of Blundell et al. (2007).
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