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1 Introduction 

In discrete data modelling there is an important distinction to be made between 

inherent and observational discreteness. Inherent discreteness refers to a case where 

the variables of interest are naturally discrete. For example, an individual is either 

employed or not employed; she has a university degree or not; she is married or not.  

Observational discreteness arises when the variables of interest are naturally 

continuous, but the survey instrument used to observe them imposes discreteness via a 

pre-specified ordinal scale of allowable responses. This applies to a wide range of 

attitudinal questions, which ask respondents to record their perceptions or beliefs on a 

Likert scale. Examples of econometric analysis of attitudinal variables have 

proliferated in recent years, with the development of the economic literature on 

happiness and satisfaction (see Van Praag and Ferrer-i-Carbonell, 2004, for a recent 

survey). There has been important work on econometric methodology in this area, 

particularly the choice between random and fixed effects modelling in panels (Ferrer-

i-Carbonell and Frijters, 2004), but there has so far been little discussion of the 

dynamics of perceptions or of the most appropriate type of dynamic model to use. 

Observational discreteness does not only arise with attitudinal data. It may 

also occur in survey questions about more ‘objective’ entities like income, when 

respondents are required to place themselves within one of a number of given income 

ranges. The discreteness here is an essentially artificial consequence of questionnaire 

design. For example, business surveys often ask about expectations of future sales or 

investment intentions. The respondent’s expected value for sales or investment 

conditional on his information set is a continuous variable but the survey questions 

typically ask for a response graded as “up”, “down” or “no change”. 

 Most of the econometric literature dealing with discrete models for 

longitudinal data assumes inherent discreteness. The pioneering work of Heckman 

(1978, 1981a,b) centred on binary response models of the form: 
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where 1(.) is the indicator function, xit is a vector of strictly exogenous covariates, ui 

is an unobserved individual effect uncorrelated with xit and εit is a random residual 

uncorrelated across individuals and time. We refer to (1) as the state dependence (SD) 

model. It was developed primarily for applications in labour economics, where 
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discreteness is inherent in the problem and where past outcomes of yit represent state 

dependence. In these applications, the latent variable *
ity  is essentially an artificial 

construct and there is no reason why *
1−ity  should appear in the model (1).  

 However, attitudes, expectations and incomes are not inherently discrete and 

the use of models like (1), although common in the applied literature, is questionable.1 

If the discrete nature of yit is only an artificial construct imposed by the questionnaire 

designer, then behaviour centres on the continuous variable *
ity , rather than the 

observed indicator yit. In these cases, *
1−ity  rather than yit-1, should carry the dynamic 

feedback if the dynamic equation is to be a description of behaviour. 

 The paper has four main objectives. Firstly, (above and in section 2) we make 

the case for using dynamics in *
1−ity , rather than yit-1, in applications where the 

discreteness is observational rather than inherent; and then explore the interpretation 

of the model and its dynamic implications. The second objective, which is the subject 

of sections 3-4, is to consider identification and propose a practical method of 

estimation. The third aim is to set up a procedure for dealing with the initial 

conditions problem, using new specification tests which are proposed in section 5. 

Fourthly, we propose a new simulation method of estimating the cross-derivative 

matrices required for these tests; this is described in the appendix. Section 6 of the 

paper presents an illustrative application to a panel data model of individuals’ 

financial expectations and section 7 concludes. 

 

2 The model 

2.1 The statistical structure 

 We work with a behavioural model specified in terms of the ‘natural’ 

continuous variables as follows: 

itiititit u'yy εα +++= − xβ*
1

*     (2) 

We refer to this as the Latent Autoregression (LAR) model. The vector xit is assumed 

strictly exogenous and individuals are sampled independently from the underlying 

population. We make the standard assumption of Gaussian random effects so that the 

unobservables ui and εit  satisfy the following assumptions: 
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(ui , εit) ⊥ Xi      (3) 

ui ⊥ εit           (4) 

εit ⊥ εis    for every s ≠ t   (5) 
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where Xi = (xi0, ..., xiT). We only observe *
ity  according to a grading scale and thus: 

Rryry rritit ...1,),[iff 1
* =ΓΓ∈= −   (7) 

where Γ0 = -∞ and ∞=ΓR . Note that the thresholds Γr will be observable in the case 

of interval censoring (such as earnings models for grouped data) or specified as 

unknown parameters in the ordered probit case (such as Likert responses). In the latter 

case, the model is normalised by omitting the intercept from xit and setting var(εit) = 

1, which is equivalent to dividing *
ity , *

1−ity , β, ui and εi through by σε in (2). Note that 

α is not affected by this normalisation. 

2.2 Interpretation of parameters 

There are two cases to consider. In models where the discreteness arises through 

interval censoring of a dynamic regression (such as an earnings model applied to 

grouped earnings data), the grading thresholds Γr are observed and thus the scale of 
*
ity  is determined by the model. Consequently, the coefficients β have the usual 

regression interpretation as the instantaneous response itiititit uyyE xx ∂∂ − /),,|( *
1

*  and 

the long-run response is given by )1/(/),|( * α−=∂∂ βxx iiii uyE  as usual, where ix  is 

the long-run static value of xit for individual i. Both of these responses are 

independent of the values taken by x and u. 

 The case of unobserved grading thresholds is less simple. Here we are dealing 

with variables like the expected inflation rate or the strength of a subjective response 

such as job satisfaction or happiness. In all such cases the scale of *
ity  is unobserved 

and we estimate β/σε rather than β. Consequently, the estimated coefficients are 

interpretable as ( ) itiititit uyyE xx ∂∂ − /,,|]/[ *
1

*
εσ . In many applications (‘happiness’, for 

example) this problem is more fundamental than a lack of identification induced by 

                                                                                                                                            
1 Exceptions to this general neglect of models involving latent dynamics are papers by Arellano et. al. 
(1997) and Bover and Arellano (1997). However, the context and models considered in those studies is 
quite different from the case considered here, as is the approach to estimation. 
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imperfect observation: there is a lack of natural units for ‘happiness’ or ‘utility’ which 

renders the scale of β inherently ambiguous.  In some cases, where there are natural 

units of measurement for y*, we can fix σε at a reasonable hypothetical value. For 

example, for an analysis of survey responses to a question about expected inflation we 

might reasonably set σε at (say) half a percentage point to allow a rough but direct 

interpretation of the model in terms of the natural units. Note that α is identifiable 

independently of σε . As a consequence, we can estimate unambiguously the speed of 

adjustment. For example, following a shock, the proportion of disequilibrium which is 

eliminated within s periods is 1-αs and this is unaffected by normalisation. 

2.3 Dynamics 

The SD and LAR processes (1) and (2) imply different patterns of dynamic behaviour. 

Consider the following artificial example: 

SD model: ttt xyy ε++= −1
* 8.0      (8) 

LAR model: ttt xyy ε+++= − 770.0355.0422.0 *
1

*    (9) 

where x = 0.5, εt ~ N(0,1) and )0( * >= tt yy 1 . The parameters of the LAR process (9) 

have been chosen to reproduce exactly three properties of the SD process (8): 2 

(i) Pr(y = 1) = 0.877;  

(ii) ∂Pr(y = 1 | x)/∂x = 0.246;  

(iii) Pr(yt ≠ yt-1) = 0.170.  

With the LAR parameters chosen in this way, the distributions of run lengths in states 

0 and 1 are identical for the two processes. However, the relationship between 

successive run lengths is not. This is reflected in the autocorrelation functions (Figure 

1). As we would expect, the LAR model has much higher autocorrelations than the 

SD model for *
ty . For the observed yt, the ACF decays faster for the SD than the LAR 

process, despite the fact that they have the same 1st-order autocorrelation by 

construction. Thus, an LAR model will display greater persistence than an 

observationally similar SD model, in this quite subtle sense.  

 

                                                 
2 Conditions (i) and (ii) are imposed analytically to determine β0 and β1 for given α; Monte Carlo 
simulation was then used to find the value of α to equalise the 1st order autocorrelations. 
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 Figure 1 ACFs for the SD and LAR models 

 

The two models also differ in terms of the implied dynamic multiplier effects 

of x on y. To illustrate this, consider again the binary case and focus on two important 

features: the impact on Pr(yit=1 | yit-1, Xi, ui) of switching the conditioning event from 

yit-1 = 0 to yit-1 = 1; and the impact of the history of {xit} on the probability of a 

positive response, without conditioning on yit-1. 

 For the former, the SD model is relatively simple: 
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where Φ(.) is the cdf of the N(0,1) distribution. For the LAR model, we have instead: 
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Assume the process (2) is stable and long-established. Then: 
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and therefore Pr(yit=1, yit-1=1 | Xi, ui) = Φ*(µit, µit-1; α) and Pr(yit=1 | Xi, ui) = Φ(µit), 

where Φ*(.,.;α) is the bivariate standard normal cdf with correlation α and µit is the 

scaled conditional mean (1-α2)1/2[∑sαsβ′xit-s+ui/(1-α)]. Thus: 
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The important difference between (10) and (13) is that the former depends only on the 

current vector xit, whereas the latter depends on the entire history of xit .  

 Consider now the alternative summary measure, Pr(yit=1 | Xi, ui). The LAR 

process gives a relatively simple form: 

)(),|1Pr( itiiit uy µΦ== X     (14) 

implying that the lagged marginal response decays geometrically: 

β
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where φ(.) is the standard normal pdf.  

For the state-dependence model, we can write: 
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Rearrange and write this as a recursion: 

itititit PP ρδ += −1      (17) 

where:  

Pit = Pr(yit=1 | Xi, ui) 

δit = Φ(α+β′xit+ui) - Φ(β′xit+ui) 

ρit = Φ(β′xit+ui).  

Solving back to an arbitrary period 0: 
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where we use the convention 11

0
≡∏ −=

= −
j

j jitδ . On reasonable assumptions about the x-

process, solving back indefinitely leads to the following representation: 
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(20) 

The profile of  ∂ Pr(yit=1 | Xi, ui)/ ∂xit-s is thus considerably more complicated than the 

geometric decay implied by the SD model (1). 

 

3 Estimation 

3.1 Initial conditions 

In the SD model, there are two alternative approaches for dealing with the random 

effects u. Heckman (1981b) specifies an approximation to the distribution of yi0 | Xi, 

ui, and then derives the distribution of yi1 ... yiT | yi0, Xi, ui using sequential 

conditioning. The random effects are then integrated out by numerical quadrature. 

The alternative approach, used by Wooldridge (2000) is to specify instead the 

distribution of ui | yi0, Xi. A semi-parametric variant due to Arellano and Carrasco 

(2003) involves the sequence of conditional means ( )itiitiiit yyuE xx ...,...| 00=λ , 

which are estimated as nuisance parameters. The latter approach has many advantages 

in models like (1) but is problematic in LAR models, where the lagged dependent 

variable is not observable and cannot be conditioned on. Conditioning on its 

observable counterpart complicates matters enormously. For this reason, we use the 

Heckman treatment of initial conditions, together with an explicit hypothesis testing 

procedure to control the bias induced by approximation error in the assumed 

distribution of yi0 | Xi, ui. 

 Assume that we observe y and x over a period t = 0 … T. The LAR process (2) 

implies the following distributed lag representation:3 

                                                 
3 In the case where the Γr are not observable, we impose the normalisation σε = 1 and henceforth *

ity , β 
and σu are re-interpreted accordingly. 
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This is a useful basis for estimation if either t is sufficiently large and α t decays 

sufficiently rapidly with t or if we can find a good empirical approximation for *
0iy .  

Write this approximation to *
0iy  | Xi, ui as: 

iiii ηuy ++= γwδ'*
0      (22) 

Rryry rrii ...1,),[iff 00
1

*
00 =ΓΓ∈= −   (23) 

where wi is a vector constructed from Xi ; δ and γ are parameters and, in the ordered 

probit case, 0
rΓ  may differ from Γr. The random term ηi satisfies the following 

assumptions: 

ηi ⊥ ui ⏐ Xi        (24) 

ηi ⊥ εit  ⏐ Xi    for every t > 0   (25) 

ui ⏐ Xi  ∼ N(0, ση
2)     (26) 

Note that, even in the ordered probit case, η is not normalised to have unit variance.  

 In principle, the vector wi may contain all distinct elements of {xi0, Xi}. 

However, in practice it may be found that wi = xi0 is adequate, or that limited 

summaries, such as },{
1

1
0 ∑−=

T
itii T xxw , work well. This is essentially an empirical 

issue. 

With approximation (22)-(23), equation (21) becomes: 
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where ct = (1 - αt)/ (1 - α) + αt γ. 

 The model now consists of equation (22) and a set of equations (27) for any 

collection of periods t > 0. In practice, the initial conditions model (22) is only an 

approximation and is a potential source of specification error. However, if |α | < 1 so 

that α t → 0 as t → ∞, then the influence of the initial conditions declines as we 

consider later periods. There is, therefore, a case for leaving a gap (of S periods) 

between the initial period 0 and the subsequent periods used to estimate the LAR 

model. Consequently, we work with a system of (T-S+1) equations consisting of (22) 

and (27) for t = S+1…T. Data on {yi1…yiS} are not used. The choice of S involves a 

trade-off between possible misspecification bias and efficiency, since increasing S 
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reduces both the influence of initial conditions and the amount of data used for 

estimation. Increasing S also reduces the scale of the computational problem. This 

system is nonlinear in its parameters θ = {α, β, δ, γ, σu, σε, ση}, where σε = 1 in the 

case of observable interval boundaries. 

3.2 Identification 

 Consider the model with unobserved grading thresholds. Partition the 

covariates into a common set of time-invariant variables ζi and a sequence of time-

varying covariates ξit, so that xit = (ζi, ξit). Assume a full specification of the initial 

condition (9), so that wi = (ζi, ξi1... ξiT). Make the further assumption that the matrix 

plim(n-1∑wiwi′) is positive definite. An ordered probit model for yi0 on wi will 

consistently estimate the normed coefficient vector δ/v0, where v0
2 = ση

2 + γ2σu
2.  

Consider equation (27), for any period, t > 0. Rewrite it in standardised form: 
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(28) 

where β ′ = (βζ′ , βξ′ ), vt
2 = ct

2σu
2 + (1-α2t )/(1-α2) + α2tση

2  and ωi is the variable 

δ′wi/v0 which can be constructed from the coefficients of the initial conditions model 

(22). Rewrite (28) in simplified notation as: 

itittittittititt
*
it avy υω ++++++= −− 1,1110 '...'''/ ξdξdξdζb   (29) 

Note that the covariates (ωi, ζi, ξi1... ξit) are (asymptotically) non-collinear. Thus, 

ordered probit estimation of (29) will generate consistent estimates of the scaled 

coefficients (at, bt, d0t, ..., dt-1,t). Identification then proceeds as follows. First, the 

value of α can be constructed as any element of any of the vectors of ratios dst/ds-1,t. If 

α is zero, the model becomes a static random effects ordered probit, so there is no 

new identification issue; we consider the case α ≠ 0 henceforth. With α known, β can 

be inferred up to scale as gg /  where g = [bt(1-α)/(1-αt),  d0t]. Thus, the key 

behavioural parameters α and the direction of the vector β are essentially identifiable 

from only two waves of the panel. 

The ratio, Rt, of  at to α t gives the value v0/vt, thus: 
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Rt vt  = v0     (30) 

The correlation between the random errors in equations (22) and (27), which can be 

estimated consistently by joint estimation or from the generalised residuals, is ρ0t 

satisfying the following: 
22

00 ησασγρ t
uttt cvv +=              (31) 

Equations (30) and (31) are clearly insufficient to determine the three remaining 

unknowns, γ, σu
2 and ση

2, so full identification requires at least two waves of data, in 

addition to wave 0.  

 Consider the 3-wave case, where we have data for t = 0, 1, 2. Calculate each of 

the ratios (vt/v0)2 as α2t/at
2. Using the definition (31), after some manipulation the 

quantity γ σu
2 / v0

2 can be expressed as: 

⎥
⎦

⎤
⎢
⎣

⎡
−=

1

01

2

022
2
0

2

aav
u ρρ

α
σγ

    (32) 

Note that at ≠ 0 for α ≠ 0, so (32) is well-defined. Now express vt
2 as (At + αtγ)2σu

2 + 

Bt + α2tση
2, where At = (1-αt)/(1-α) and Bt = (1-α2t)/(1-α 2). Thus: 
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We know the value of γ σu
2 / v0

2 from (32) and we know a priori that (γ2σu
2 + ση

2)/v0
2 

is equal to 1. This gives the following pair of equations with known right-hand sides: 
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,   t = 1, 2 (34) 

Note that the matrix ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
)1()1(

11
22

2
2
2

1
2

1

ααBA
BA

 is non-singular for all α ≠ 0, 

so there is a unique solution for (σu
2/v0

2) and (1/v0
2). From these, σu

2 and v0
2 are 

determined. The value of γ is then given by (32) and ση
2 by v0

2 - γ2σu
2, so all 

parameters are identified. 

3.3 SML estimation 

 This identification argument does not lead to an efficient estimator, since it 

does not impose all the restrictions on the coefficients (at, bt, d0t, ..., dt-1,t) in (29), nor 

does it exploit the relationship between the residual correlation ρ12 and the model 
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parameters. Instead we use a simulated ML procedure. Let the observed outcome for 

yit be rit , implying ),[ 1
*

itit rrity ΓΓ∈ − . The likelihood for this set of events is: 

( ) ( )iTiTiSiSiiiiTiTiSiSii AAAryryry ∈∈∈==== ++++ υυυ ,...,,Pr|,...,,Pr 11001100 X  

(35) 

where i
tt

sit
s

itit ηuc αεαυ ++= ∑ −
−

1

0
 , ∑ −

−+=
1

0
'' t

sit
s

i
t

itµ xβwδ αα and Ait is the 

interval ),[ 1 itritr itit
µµ −Γ−Γ + . The residual vector υi = (υi0, υiS+1 … υiT) has a 

covariance matrix with elements: 
222

00 ησσγω += u      (36) 

t
utt c ασσγω η

22
0 += ,  S < t ≤ T  (37) 

2
1min

0

222
ηε σασασω ts

(s,t)

p

pts
utsst cc +

−

=

−+∑ ++= ,        S < (s, t) ≤ T  (38) 

 

The probability (35) is a (T-S+1)-dimensional rectangle probability. Under normality, 

probabilities of this kind can be calculated using the GHK simulator (Hajivassiliou 

and Ruud, 1994), with antithetic acceleration used to improve simulation precision. 

We construct the following simulated log-likelihood function: 

∑
=

=
n

i
iPL

1

)(ˆln)(ˆln θθ      (39) 

where )(ˆ θiP  is the predicted probability (35) for individual i, estimated using the 

GHK algorithm. The simulated likelihood is maximised numerically with respect to θ.  

 

4 The extension to higher-order and multi-equation models 

Most applications of the method proposed here will be to single-equation models. 

However, there is no difficulty in the generalisation to a general J-dimensional system 

of the reduced-form equations4: 

Jjuyy jitjiitj

J

k
kitjkjit ...1,'

1

*
1

* =+++= ∑
=

− εα xβ    (40) 

One important way in which multi-equation systems may arise is through higher-

order lags. Consider the model: 

                                                 
4 Note that the case of a structural form with contemporaneous feedback can be put in the reduced form 
(38) in the usual way and then estimated subject to the nonlinear structural restrictions on the reduced 
form coefficients αjk  and βj. 
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itiitititit uyyy εαα ++++= −− xβ'*
22

*
11

*    (41) 

This is equivalent to the 2-equation system: 

*
11

*
2

*
122

*
111

*
1 '

−

−−

=

++++=

itit

itiitititit

yy

uyyy εαα xβ
   (42) 

System (42) is a special case of (40), with one nonstochastic equation and therefore a 

singular error covariance matrix. We return to this example below. 

In matrix notation, the general system (40) becomes: 

itiititit εuBxAyy +++= −
*

1
*     (43) 

where *
ity = ( *

1ity … *
Jity )′. The coefficient matrices are A = {αjk} and B = (β1…βJ)′. 

The approximation to the initial values distribution is generalised to: 

iiii ηGuDwy ++=*
0      (44) 

where D and G are coefficient matrices. The corresponding grading thresholds are 
0 and jrjr ΓΓ , j = 1 ... J, r = 0 ... Rj. 

The independence assumptions (3), (4), (24) and (25) are extended to the 

vector case and we assume: 

ui ⏐ Xi  ∼ N(0, Σu)     (45) 

εit ⏐ Xi  ∼ N(0, Σε) for every t   (46) 

ηi ⏐ Xi  ∼ N(0, Ση)     (47) 

The jth diagonal element of Σε is normalised to unity if yjit has unobservable 

thresholds. 

The analogue of (27) is: 

i
t

t

s
sit

s
it

t

s
sit

s
i

t
it ηAAuCBxADwAy ++++= ∑∑

−

=
−

−

=
−

1

0

1

0

* ε   (48) 

where Ct = (I - A)-1(I - At) + AtG. Let the observed outcome for yjit be rjit , implying 

),[ ,1,
*

jitjit rjrjjity ΓΓ∈ − . The likelihood for this set of events is: 

( )
( )Τ∈=−Γ−Γ∈

=Τ∈==

− tJjµµv

tJjry

jitrjjitrjjit

iTiijitjit

jitjit
,...1for  ),[Pr

,...,,|,...1for  Pr

,1,

1 xxw
 

(49) 

where Τ is the index set {0, S+1 … T}, vjit and µjit are the jth elements of the vectors 

i
t

sit
s

itit ηAAuCv ++= ∑ −ε  and ∑ −+= sit
s

i
t

it BxADwAµ  respectively. The 
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covariance matrix of the residual vector vi = (vi0, viS+1 … viT) has a block structure, 

where blocks (0, 0), (0, t) and (s, t) are respectively: 

ηΣGGΣΩ += '00 u      (50) 

)'('0
t

tut AΣCGΣΩ η+=     (51) 

)'()'('
1),min(

0

ts
ts

p

ptps
tusst AΣAAΣACΣCΩ ηε∑

−

=

−− ++= ,    S < (s, t) ≤ T (52) 

The probability (49) is a J(T-S+1)-dimensional rectangle probability, that can again be 

approximated by the GHK simulator in moderately-sized systems. 

 In the special case where multiple equations have arisen from an original 

model with dynamics of order higher than 1 there are redundancies among the set of 

inequalities defining the probability (49). For example, in the model (40), the event 

y1it = r1it implies the event y2it = r1it-1 ≡ r2it with probability one. The T-S+1 

redundancies of this kind halves the dimensionality of the probability (49). 

 

5 Specification tests 

How do we choose the number of panel waves, S, to skip? Considerations of 

estimation efficiency suggest a small value for S, while worries about misspecification 

bias introduced by the initial condition approximation suggests a large value. To 

resolve this issue, I suggest use of a test which examines the consistency of estimates 

based on the waves S+1 ... T with the observed outcomes in wave S. If no significant 

conflict is found for wave S, we then reduce the skip rate from S to S-1 waves and re-

estimate to improve efficiency. This can be done sequentially until a satisfactory point 

on the bias-efficiency tradeoff is reached. We consider an approach based on the score 

vector for wave S-1.5 

This approach allows wave-specific parameters such as time dummies. Write 

the log-likelihood function based on y-data for waves 0, S+1 ... T as L(ψ, τ1), where ψ 

is the subvector of θ  which is common to all waves and τ1 is the vector of any further 

parameters identifiable from the estimation sample (typically time dummies for 

periods S+1 ... T-1). Let L*(ψ, τ2) be the log-likelihood for an estimation sample 

                                                 
5 Another possibility is a Hausman parameter contrast test, comparing the parameter estimates resulting 
from skipping S and S-1 waves. In practice, this often encounters problems arising from non-positive-
definiteness of the estimated variance matrix of the contrast vector. The Hausman test also requires two 
major estimation steps. 
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covering only waves 0 and S. The vector τ2 will usually contain only the coefficient of 

a dummy for period S, which is essentially an intercept term. Now maximise 

),ˆ(* 2τψL with respect to the unknown wave-S parameter to give 2
~τ . This is a low-

dimensional (usually scalar) optimisation and relatively easy to perform. Expanding 

the first-order condition for 2
~τ  about (ψ, τ2) gives: 

0
ττLψψL

=

+−+−+= )1()~()ˆ(~
22

**
pOτττψττ

** ll   (53) 

Differentiating )~,ˆ(* 2τψL with respect to ψ̂ gives: 

)1()~()ˆ(~
22

*1*1
pOnn +−+−+= −− ττLψψL ψτψψψψ

** ll   (54) 

where:  *lτ
~ and *lψ

~ are the partial derivatives of )~,ˆ(* 2τψL with respect to  ψ̂  and 2
~τ ; 

*lτ  and *lψ  are the derivative vectors of L*(ψ, τ2); and ****  and ' , τττψψτψψ LLLL =  are the 

second-derivative matrices of n-1L* evaluated at the true parameter values. Standard 

likelihood results imply: 

)1()()()ˆ( 121
p

/- onn +−=− −+ θθHθθ l    (55) 

where H(θ) is the Hessian matrix of the mean log-likelihood L/n; and l(θ) = ∑li(θ)  is 

the score vector. Using (53)-(55), the normed second-stage score vector for ψ̂  is: 

( ) ( ) [ ] ( ) )1()()(|~ 2/11*1***2/11**2/12/1
ponnnn +−−−= −−−−−−− θθH0LLLLLL llll ***

τψττψτψψτττψτψψ

  (56) 

Under H0, the vectors *lτ
21/-n , *lψ

21/-n  and n-1/2 l(θ) converge in distribution to a 

limiting zero-mean normal distribution. Consequently, *lψ
~2/1−n  converges to a normal 

distribution with zero mean vector and covariance matrix estimated consistently by: 

∑
=

=
n

i
iin 1

'1~ ξξV      (57) 

where: 

[ ] )ˆ()ˆ(|~~~~~~~~ 1*1***1** θθH0LLLLLLξ i
** lll −−− −−−= τψττψτψψτττψτψ iii   (58) 

Here the subscript i denotes the score contribution of the ith observation and the tilde 

denotes derivatives evaluated at the point )~,ˆ( 2τθ . The score test statistic is then: 

** ll ψψ
~~'~ 1−= VnLM      (59) 

which has a χ2 distribution under H0 with degrees of freedom equal to the dimension 

of ψ. This test can be viewed either as a specific test for the presence of bias induced 
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by the initial conditions approximation or more generally as a test of the specified 

dynamic structure relating successive waves. 

 The main technical difficulty with the test is the computation of the second 

derivative matrices ** ~ and ~
ψψψτ LL . The last of these is particularly troublesome, owing 

to its high-dimensionality. These matrices are very complicated to calculate through 

analytical formulae and numerical approximations to large Hessian matrices tend to 

be very inaccurate. In the implementation described below, we have computed *~
ψψL  

by means of a simulation algorithm (described in Appendix 1) and *~
ψτL  using 

recursive central difference approximations. 

 

6 An application to individual expectations data 

The British Household Panel Survey (BHPS) is the principal source of nationally-

representative household- and individual-level panel data in the UK. This application 

is based on the first 11 waves, relating to the years 1991-2001. Each year, BHPS 

participants are asked a series of questions about their attitudes. Here we analyse 

responses to the following question, using a sample of 1,277 male household heads: 

“How well would you say you yourself are managing financially these days?” 

Responses have been recoded as: y = 1 “Finding it very difficult”; y = 2 “Finding it 

quite difficult”; y = 3 “Just about getting by”, y = 4 “Doing alright”; y = 5 “Living 

comfortably”. Under the LAR model, the individual’s underlying assessment of his 

financial position at time t is a naturally continuous variable, *
ity , which we assume to 

be generated according to the panel autoregression (2). The respondent is then 

assumed to translate *
ity  into a response to the categorical survey question according 

to the rule (7).  

 The final parameter estimates for this LAR model are given in Table 1. 

Computation was done using the GHK simulator, using successive passes, initially 

with 50 replications (with antithetic variance reduction), rising to 500 once the 

neighbourhood of the optimum was reached. Following convergence, a single 

iteration was performed with 2000 replications as a check on convergence and the 

optimised likelihood value.  

 Following initial experimentation with alternative specifications, we used a 

subset of the x-variables from wave 0 for the initial conditions model. Estimation was 
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then done sequentially, starting with S = 8, so that it initially involved only the y-

observations from waves 0, 9 and 10. The skip rate S was then reduced sequentially 

while the score test remained insignificant. We encountered no rejection at any stage, 

so our final specification uses all available waves of data. Consequently, the rectangle 

probabilities involved in SML estimation are 11-dimensional.  

The analogous SD model is: 

itiit
m

mitmit u'dy εα +++= ∑
=

− xβ
4

1
1

*    (60) 

where ( )myd itmit == *1 . Estimated parameters for the SD model are given in 

Appendix Table A2.1. They were computed using 48-point Gauss-Hermite 

quadrature. Despite the fact that the SD model has 3 more parameters than the LAR 

model, the latter achieves a substantially higher log-likelihood.  

In the model, economic circumstances are represented by the level of 

household income per capita, the proportion of household income earned by the 

respondent himself, and a dummy for owner-occupation, together with the estimated 

value of the equity in the house. As expected, the level of household per capita 

income has a significant positive effect on perceptions of financial well-being. The 

magnitude of the respondent’s personal contribution to household finances has a 

significant positive influence on his reported perceptions. There is strong evidence to 

support the widely-held view that homeowners’ perceptions respond to rising house 

values. Human capital also appears to be an important element in perceived financial 

well-being, since there is a strong positive influence of educational attainment. Recent 

changes in circumstances are represented by the first differences in per capita 

household income, the respondent’s own income and the estimated house value. None 

of these is statistically significant. 

 However, these ‘objective’ financial factors are not sufficient to explain the 

determination and evolution of perceived financial well-being. Other explanatory 

variables are mostly are time-invariant. The small number of time-varying covariates 

are included in the form of current levels and changes from the previous year.  

Ethnicity is represented by dummies for the Black and Asian groups and there 

is evidence of a negative difference, which is statistically significant for the latter 

group. The effect of marital status is captured by dummies for being 

married/cohabiting, divorced/separated or widowed. A further dummy identifies those 
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who have made a transition into the divorced/separated group within the last year. 

Other status transitions were insignificant or too few in number to permit reliable 

estimation. There is a significant positive influence of a marital or cohabitation 

relationship and of widowhood. Divorce or separation reduces perceived well-being, 

with a further temporary reduction in the year of separation. Labour market status is 

represented by dummies for employment and self-employment, with significant 

positive effects. The status of unemployment has a significant negative effect, with a 

further temporary effect in the year of transition into unemployment.  

Differences in household size and structure are important. There is a 

significant positive coefficient for the number of household members and a nearly 

offsetting negative coefficient for the number of children in the household. There is 

no detectable impact of a new birth on financial perceptions. These effects are in 

addition to the per capita equivalisation used for the household income variables. The 

relationship between perceived well-being and age is inverse U-shaped with a peak at 

the 51-65 age group, reflecting a standard life-cycle pattern of asset accumulation. 

Health status has no significant impact. The year dummies show a strongly rising 

trend from wave 1 (1992) to wave 9 (2000), followed by an abrupt fall in 2001. These 

year effects reflect quite closely the macroeconomic trend in average earnings growth. 

 Dynamic adjustment is captured by the autoregressive coefficient α, which is 

positive and strongly significant. On this evidence, there is a significant degree of 

persistence in perceptions. The comparison between the LAR and SD estimates shows 

that the latter generates too little persistence through the inherent dynamics and 

compensates for this misspecification by overestimating the variance of the individual 

effect. In our application, the intra-person correlation, σu
2/(1+σu

2), is estimated to be 

0.273 for the LAR model, compared to 0.406 for the SD model. The lagged responses 

of y to x decay rather faster in the SD model. For example, consider the probability of 

a good or very good response (yt > 3). Let δ(s) be the derivative ∂Pr(yt >3|X)/∂β′xt-s 

evaluated at the point xt = xt-1 = xt-2 ... = x  and consider the scaled sequence δ*(s) = 

δ(s)/δ(1). We find δ*(1) = 0.331 and 0.279 for the LAR and SD models respectively, 

decaying to δ*(2) = 0.110 and 0.076 and δ*(3) = 0.036 and 0.021. These are 

substantial differences. For applications to data displaying greater persistence than is 

apparent here, the difference between SD- and LAR-estimated dynamics could be 

very important indeed. 
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Table 1   Estimates and tests (standard errors in parentheses) 
    

Dynamic model Initial conditions  

Covariate β̂  Std. err. ησ̂/δ̂  Std. err. 
α 0.331 0.012   
Black -0.224 0.290 0.153 0.602 
Asian -0.366 0.128 -0.030 0.235 
In relationship 0.081 0.043 -0.069 0.100 
Divorced/separated -0.161 0.079 -0.729 0.181 
Widowed 0.300 0.159 0.765 0.828 
Newly divorced/separated/widowed -0.178 0.114   
Employed 0.291 0.048 0.346 0.129 
Self-employed 0.234 0.060 0.250 0.155 
Unemployed -0.340 0.076 -0.653 0.171 
Newly unemployed -0.396 0.096   
Degree or other further education 0.222 0.055 0.448 0.111 
A-level 0.269 0.066 0.384 0.125 
O-level / GCSE / CSE / other qualification 0.130 0.062 0.373 0.110 
Household size 0.169 0.026 0.175 0.050 
Number of children in household -0.105 0.018 -0.137 0.039 
∆ number of children -0.026 0.029   
Homeowner 0.078 0.057 0.053 0.199 
Annual household income per head (£×10-3) 0.199 0.013 0.474 0.053 
∆ household income per head (£×10-3) 0.005 0.016   
∆ own income (£×10-3) -0.018 0.019   
Own income as share of household income 0.356 0.061 0.498 0.639 
Value of house (£×10-5) 0.211 0.062 0.245 0.268 
Proportionate change in value of house 0.000 0.005   
Age 18-30 -0.065 0.052 -0.293 0.119 
Age 31-40 -0.084 0.044 -0.101 0.129 
Age 41-50 -0.052 0.045 -0.009 0.130 
Age 51-65 0.117 0.052 -0.004 0.157 
Poor health 0.014 0.067 0.016 0.122 
Newly-developed ill-health 0.036 0.082   
Wave 1 dummy -0.270 0.130   
Wave 2 dummy -0.136 0.051   
Wave 3 dummy -0.075 0.051   
Wave 4 dummy -0.148 0.051   
Wave 5 dummy 0.041 0.051   
Wave 6 dummy 0.007 0.052   
Wave 7 dummy 0.018 0.051   
Wave 8 dummy -0.081 0.052   
Wave 9 dummy -0.111 0.052   
Γ1 -1.542 0.168 -1.598 0.315 
Γ2 -0.620 0.166 -0.577 0.309 
Γ3 0.934 0.166 1.233 0.323 
Γ4 2.463 0.167 2.870 0.360 
σu

2 0.375 0.027   
γ 1.005 0.081   
ση

2 2.666 0.193   
Score test for the S = 1 model χ2(59) 54.78 (P = 0.368) 
Log-likelihood -14,535.50 
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7 Conclusions 

We have considered an alternative to the discrete state dependence (SD) model for 

dynamic modelling of ordinal variables from panel data. The alternative LAR model 

involves ordinal observation of a latent autoregression, rather than lagged feedback of 

the previous period’s discrete outcome. It is argued that this specification is more 

appropriate for a range of applications involving observational, rather than inherent, 

discreteness. Examples include interval regressions and models of expectations, and 

satisfaction. 

 We have developed a simulated maximum likelihood estimator and an 

associated test procedure designed to assist in handling the initial conditions problem.  

As part of this procedure, a novel simulation algorithm has been implemented for 

computing a required numerical Hessian matrix. 

 The method has been applied to a simple model of individual perceptions of 

financial well-being, applied to UK household panel data. The LAR model provides a 

robust description of the evolution of financial perceptions over time, with a 

significant role for lagged adjustment. The LAR model fits the data considerably 

better than the conventional SD model and has quite different equilibrium and 

dynamic properties. In particular, the SD model generally displays less persistence 

than the LAR model, and when misused to model highly-persistent data, the estimated 

variance of the individual effect is biased upwards to compensate. 
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Appendix 1:  A simulation approximation to *~
ψψL  

 

Our aim is to estimate the probability limit of the partial Hessian 

'ˆˆ/)~,ˆ(* 2
21 ψψτψ ∂∂∂− Ln . Let V be an asymptotically valid approximation to the 

covariance matrix of ψ̂ : for example, we might use 11 )ˆ( −−−= θHV n . Since V reflects 

the variability of ψ̂  and is Op(n-1), it provides a good metric for the approximation of 

derivatives. Let K be the Choleski factor such that V = KK′. Note that K = Op(n-1/2). 

Now generate a sequence of independent pseudo-random N(0, I) vectors v1 … vM and 

construct ( ))~,ˆ(*)~,ˆ(* 22
1 τψτKvψ LLnz m

n
m −+= − µ , where µ is a steplength 

parameter. Note that zm, and any covariance (with respect to the distribution of vm) of 

zm with powers of vm, are Op(n-1/2µ ). Expand zm in a Taylor series: 
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where dp and Dpq are elements of ( )ψτψKd ˆ/)~,ˆ(*' 2
1 ∂∂= − Lnn  and 

( )KψψτψKD 'ˆˆ/)~,ˆ(*' 2
21 ∂∂∂= − Lnn , and ζ is a remainder term. Note that d and D 

are Op(1). We then have the following results: 
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where the expectations are taken with respect to vm.  

 If necessary, the process for generating the variates vm should be appropriately 

truncated to ensure that )~,ˆ(* 2τKvψ m
nL µ+  always exists and that terms of the form 

( )( )
)(

*3 |/
v+=

∂∂∂∂
ψψ

ψψψ rqpjiv LvvE  exist for any function ψ+(v) bounded by 

)ˆ,ˆ( Kvψψ µ+ . In practice, this requires ensuring that simulation of mKvψ µ+ˆ  avoids 

regions where the Γr are non-ordered. A sufficiently small value for µ (for example 
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0.001) will generally achieve this. Under these circumstances, the remainder terms in 

(A2)-(A4) are op(1). Thus we can estimate the cross-partials consistently as follows: 
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To calculate the remaining second derivatives, we solve the simulated analogue of the 

system of equations (A4), to give: 
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Now transform D back to ψ-space: 

KDKL 11* 'ˆ −−≈ nψψ      (A7) 

One advantage of this method is that replications can be made sequentially and the 

procedure stopped when the quantities (A5) and (A6) appear to have reached 

convergence. The simulated analogue of expression (A2) can be compared with a 

conventional numerical derivative to check on the negligibility assumption for the 

remainder terms. Antithetic variance reduction can be used to improve simulation 

precision in (A5) and (A6).  
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Appendix 2:  SD model estimates 
 

Table A2.1   Estimates for the SD model (standard errors in parentheses) 
    

Dynamic model Initial conditions  

Covariate β̂  Std. err. ησ̂/δ̂  Std. err. 
α1 0.286 0.080   
α2 0.631 0.071   
α3 1.083 0.074   
α4 1.524 0.076   
Black -0.254 0.327 0.186 0.603 
Asian -0.398 0.144 -0.034 0.247 
In relationship 0.088 0.045 -0.085 0.100 
Divorced/separated -0.173 0.083 -0.708 0.181 
Widowed 0.328 0.165 0.780 0.818 
Newly divorced/separated/widowed -0.160 0.113   
Employed 0.302 0.050 0.342 0.131 
Self-employed 0.239 0.062 0.270 0.156 
Unemployed -0.387 0.077 -0.634 0.172 
Newly unemployed -0.321 0.096   
Degree or other further education 0.240 0.059 0.454 0.111 
A-level 0.297 0.071 0.398 0.127 
O-level / GCSE / CSE / other qualification 0.144 0.066 0.369 0.111 
Household size 0.181 0.027 0.184 0.050 
Number of children in household -0.116 0.019 -0.131 0.039 
∆ number of children -0.016 0.029   
Homeowner 0.087 0.059 0.064 0.207 
Annual household income per head (£×10-3) 0.215 0.012 0.484 0.056 
∆ household income per head (£×10-3) -0.010 0.016   
∆ own income (£×10-3) -0.010 0.019   
Own income as share of household income 0.365 0.063 0.574 0.639 
Value of house (£×10-5) 0.215 0.065 0.215 0.290 
∆ value of house (£×10-5) 0.000 0.005   
Age 18-30 -0.077 0.053 -0.283 0.118 
Age 31-40 -0.090 0.044 -0.092 0.128 
Age 41-50 -0.052 0.045 -0.007 0.129 
Age 51-65 0.124 0.053 -0.001 0.154 
Poor health 0.017 0.068 0.025 0.122 
Newly-developed ill-health 0.029 0.082   
Wave 1 dummy -0.175 0.053   
Wave 2 dummy -0.148 0.051   
Wave 3 dummy -0.084 0.051   
Wave 4 dummy -0.155 0.051   
Wave 5 dummy 0.031 0.051   
Wave 6 dummy 0.010 0.051   
Wave 7 dummy 0.020 0.050   
Wave 8 dummy -0.075 0.051   
Wave 9 dummy -0.109 0.050   
Γ1 -0.954 0.132 -1.092 0.212 
Γ2 -0.037 0.131 -0.367 0.213 
Γ3 1.511 0.132 0.892 0.219 
Γ4 3.028 0.132 2.035 0.221 
σu

2 0.684 0.022   
γ 0.945 0.071   
Log-likelihood -14,560.686 

 


