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Nonparametric Identification of Auction Models with

Non-Separable Unobserved Heterogeneity∗

Yingyao Hu David McAdams Matthew Shum

Abstract

We propose a novel methodology for nonparametric identification of first-price auc-
tion models with independent private values, which accommodates auction-specific un-
observed heterogeneity and bidder asymmetries, based on recent results from the econo-
metric literature on nonclassical measurement error in Hu and Schennach (2008). Un-
like Krasnokutskaya (2009), we do not require that equilibrium bids scale with the
unobserved heterogeneity. Our approach accommodates a wide variety of applications,
including settings in which there is an unobserved reserve price, an unobserved cost of
bidding, or an unobserved number of bidders, as well as those in which the econometri-
cian fails to observe some factor with a non-multiplicative effect on bidder values.

1 Introduction

In this short paper, we propose a methodology for nonparametric identification of first-
price auctions with unobserved heterogeneity, in the independent private values framework.
By unobserved heterogeneity, we mean auction-specific factors that are observed by the
bidders and affect their equilibrium bids. However, these factors are not observed by the
econometrician, leading to spurious correlation between the bids for a given auction, even
under the assumption of independent private values.
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NC 27708; email: david.mcadams@duke.edu. Author affiliations: Yingyao Hu in Department of Economics,
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Krasnokutskaya (2009) proposed an ingenious approach to identify and estimate such a
model, as long as the unobserved heterogeneity affects bidders’ valuations multiplicatively
and is independent of the bidder-specific component of each bidder’s valuation. Under
these assumptions, Krasnokutskaya shows that results from the classical measurement error
literature can be applied, so that two bids per auction are sufficient to identify and estimate
the structural components of the model, which consist of the marginal distributions of
the unobserved heterogeneity and of bidders’ valuations. Subsequently, Krasnokutskaya’s
results have been used in applied analyses of timber auctions (Athey, Levin, and Seira
(2005)), stamp auctions (Asker (2009)), and procurement auctions (Decarolis (2009)).

In this paper, we apply findings from the more recent literature on nonclassical measure-
ment error in Hu and Schennach (2008). Using these more powerful tools, we obtain non-
parametric identification of bidder values under much weaker assumptions. In particular,
we allow the unobserved heterogeneity to affect bidders’ valuations in arbitrary nonlinear
fashion, and we do not assume that bidders’ private signals are independent of the unob-
served heterogeneity. We show that, using two bids per auction plus a third instrument
(which could be a third bid), we can identify the marginal distribution of the unobserved
heterogeneity, as well as the distributions of bidder valuations conditional on the unobserved
heterogeneity.

Our identification results are very similar in spirit to those in d’Haultfoeille and Fevrier
(2008), who focus on conditionally independent common value (“mineral rights”) models.
Roberts (2009) takes a control-function approach to identify an ascending auction model
with unobserved heterogeneity, using two bids and the reserve price as an instrument. Our
identification approach, which is based on measurement error results, is quite distinct from
these two papers.

The rest of the paper is organized as follows. In Section 2, we present the model, develop
our main identification result, discuss an extension to settings with both unobserved het-
erogeneity and endogenous entry, and compare our approach with that of Krasnokutskaya
(2009). Section 3 then discusses various additional examples in which this paper’s methods
can be applied, including settings with an unobserved reserve price, an unobserved cost of
bidding, and an unobserved number of bidders.
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2 Model and identification

A fixed set of bidders i = 1, ..., n participates in a first-price auction t, where n ≥ 3.
Bidder i’s value is distributed as Vit = v(Xit, Yt), where Xit is privately observed, Yt is
one-dimensional “unobserved heterogeneity” that is commonly observed by all bidders but
not by the econometrician, and v(·, ·) is some deterministic function.1 Xit are independent
across bidders conditional on Yt, so that our model is one of asymmetric independent private
values (IPV). For all Yt, Xit|Yt has a well-defined, continuous density over the same support
for all i.

Given these assumptions, there exists a unique Bayesian equilibrium of the bidding game
in strictly increasing and differentiable strategies that depend on Yt (Lebrun (1999)). We
assume that bidders play these equilibrium strategies, generating random bids Bt = (Bit :
i = 1, ..., n) observed by the econometrician.

The assumption here that there are at least three bidders is important, as the third bid
plays the role of an instrument for the unobserved heterogeneity Yt. If there are only two
bidders, our analysis still applies if an appropriate alternative instrument can be found.
Loosely speaking, such an instrument must be correlated with the bids but independent of
the bids conditional on Yt. See Assumptions 2-4 below for precise conditions.

2.1 Identification

In this paper, we provide a novel approach to identify both the distribution of the unobserved
heterogeneity Yt and the distribution of bids Bt conditional on Yt from the distribution
of bids Bt. Given these distributions, identification of the distribution of bidder values
Vt = (Vit : i = 1, ..., n) is straightforward from existing results. To see why, let Git(b|y) =
Pr(maxj 6=iBjt ≤ b|Yt = y) denote the cdf of the highest bid submitted by any of bidder i’s
competitors conditional on Yt = y, and let git(b|y) be the associated pdf. The first-order
condition of equilibrium bidding implies that bidder i’s realized private value vit when he
bids bit in equilibrium can be expressed simply as his bid plus a mark-up that depends on

1Random variables are capitalized while realizations are in lower case. For simplicity, we assume that

the function v(·, ·) is identical across bidders. Our approach allows v(·, ·) to differ across bidders but, in any

case, this distinction is not very important because we will not be able to identify v(·, ·).
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the elasticity of his probability of winning:

vit = bit +
Git(bit|y)
git(bit|y)

. (1)

(See Guerre, Perrigne, and Vuong (2000) and Athey and Haile (2002) for more details on
this standard step.) Finally, given the distributions of both Vt|Yt and Yt, one may recover
the latent distribution of bidder values Vt.

Fix any three bidders i, j, k. We shall provide conditions given which both the distribution
of Yt and the joint distribution of (Bit, Bjt, Bkt) conditional on Yt are identified from the
joint distribution of (Bit, Bjt, Bkt). When these conditions hold for all triplets of bidders,
then our methods allow one to identify both the distribution of Yt and of Bt|Yt from the
distribution of Bt, as desired.

Assumption 1 The joint density of (Bit, Bjt, Bkt, Yt) exists and is bounded away from zero
and infinity.

Let fi (bit|Yt), fj (bjt|Yt), fk (bkt|Yt), and f (Yt) denote the marginal densities and Bi, Bj ,
Bk, and Y ⊂ R the supports of bit|Yt, bjt|Yt, bkt|Yt, and Yt, respectively.

Assumption 2 (i) fi (bit|Yt, bjt, bkt) = fi (bit|Yt) and (ii) fj (bjt|Yt, bkt) = fj (bjt|Yt).

That is, (bit, bjt, bkt) are independent conditional on Yt. This assumption is satisfied in the
IPV bidding model.

Assumption 3 For all bounded functions h : R→ R, E [h (bkt) |bit] = 0 for all bit ∈ Bi

implies that h (bkt) = 0 for all bkt ∈ Bk.

Assumption 4 For all bounded functions h : R→ R, either E [h (Yt) |bjt] = 0 for all bjt ∈
Bjt or E [h (Yt) |bkt] = 0 for all bkt ∈ Bkt implies that h (y) = 0 for all y ∈ Y.

Assumption 3 implies that the bid bit is correlated with bkt through the unobserved het-
erogeneity Yt, while Assumption 4 implies that the bids bjt, bkt are correlated with Yt. In
Krasnokutskaya (2009)’s convolution setting, Assumptions 3-4 are implied by her assump-
tion that Yt and Xit have non-vanishing characteristic functions.
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Assumption 5 There exists a known functional M such that M [fi (·|y)] = y for all y ∈ Y.

Examples of functionals M that could be used to satisfy Assumption 5 include those cor-
responding to any location of the distribution of bit|Yt, such as the mean, i.e., M [f ] =∫
xf(x)dx, the mode, i.e., M [f ] = arg maxx f(x), or the τ -th quantile, i.e., M [f ] =

inf
{
x∗ :

∫ x∗

−∞ f(x)dx ≥ τ
}

. For instance, suppose that the mean of bit|Yt is known to be
strictly monotone in Yt. If so, one can normalize Yt via some monotone transformation so
that E[bit|Yt = y] = y for all y ∈ Y and Assumption 5 is satisfied.

As a simple illustration, consider a symmetric example in which bidders’ valuations take
the form Vit = Xit ∗ Yt, where Xit ∼ U [0, 1] i.i.d. across bidders. In equilibrium, bit =
Yt ∗ n−1

n Xit. Moreover, med(bit|Yt) = aYt, for the constant a ≡ n−1
2n . Hence, the functional

M [fi(·|y)] ≡ med(bit|Yt = y)/a = y satisfies Assumption 5. See Section 3 for a variety of
additional examples.

Let f (bit, bjt, bkt) =
∫
fi (bit|Yt) fj (bjt|Yt) fk (bkt|Yt) f (Yt) dYt denote the joint density of

(bit, bjt, bkt). The main result of the paper is that, under these assumptions, one may
identify the distributions of bit|Yt, bjt|Yt, bkt|Yt, and Yt from the distribution of (bit, bjt, bkt).

Theorem 1 Under Assumptions 1-5 above, the density f (bit, bjt, bkt) uniquely determines
fi (bit|Yt), fj (bjt|Yt), fk (bkt|Yt), and f (Yt) .

Proof. We prove the identification by showing that all the assumptions in Theorem 1 in
Hu and Schennach (2008) are satisfied. Their Assumptions 1, 2, 5 are directly assumed. As
discussed in their paper, Assumption 3 and the (bkt,Bk) part of Assumption 4 here together
imply their Assumption 3. Their Assumption 4 requires that for all y1, y2 ∈ Y, the set
{b : fj (b|y1) 6= fj (b|y2)} has positive probability whenever y1 6= y2. This can be shown as
follows. Suppose their Assumption 4 does not hold in our model. Then there exist two
y1, y2 ∈ Y such that fj (·|y1) = fj (·|y2), i.e., the two distributions are the same. We may
then construct a function h such that

∫
fj (b|y)h(y)dy = 0 for all b and the function h (·)

not equal to zero at y1 and y2. Therefore, their Assumption 4 is implied by the (bjt,Bj)
part of Assumption 4 here. Finally, their Theorem 1 implies our identification results.

2.2 Extension: endogenous participation

Consider an augmented version of our model in which there is a universe {1, ..., n} of po-
tential bidders, of which only a random subset Nt choose to bid. Theorem 1 provides
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conditions under which to identify the distributions of the unobserved heterogeneity and
of bidder values conditional on Nt for all Nt ⊂ {1, ..., n}. In this way, our analysis can
accommodate models of endogenous entry, in which the set of bidders Nt is associated with
the unobserved heterogeneity Yt. Recently, there has been interest in such models (e.g. Li
and Zheng (2009), Marmer, Shneyerov, and Xu (2009)).

Indeed, across a random sample of auctions in which all bids and bidders are observed, one
can estimate directly from the data the probability that Nt is the set of active bidders,
for all Nt. Hence, given our estimates of f(Yt|Nt), one can also form the joint distribution
f(Yt, Nt) = f(Yt|Nt) · f(Nt), and hence also the conditional distribution f(Nt|Yt). This
suggests that, in the IPV context, a model with non-separable unobserved heterogeneity
and endogenous number of bidders can be estimated.

2.3 Comparison with Krasnokutskaya (2009)

In a path-breaking paper, Krasnokutskaya (2009) provided conditions under which results
from the literature on classical measurement error can be used to identify IPV first-price
auction models in the face of unobserved heterogeneity. Our paper is similar in spirit,
but differs in that we bring to bear more powerful results from the recent literature on
non-classical measurement error.

These results allow us to weaken most of the restrictive assumptions imposed by Kras-
nokutskaya (2009). First, Krasnokutskaya assumes that the unobserved heterogeneity has
the same multiplicative effect on all bidders’ valuations, i.e. Vit = Xit ∗Yt, with the implica-
tion that equilibrium bids also scale multiplicatively with Yt. By contrast, we require only
that some location of the distribution of equilibrium bids be increasing in Yt. This condition
is automatically satisfied in her setting, since the mean of each bidder’s equilibrium bid is
not only increasing but linear in Yt. Second, Krasnokutskaya assumes that the unobserved
heterogeneity Yt is independent of the idiosyncratic components Xit of bidders’ values, as
well as that Xit are independent conditional on Yt. By contrast, we only require that Xit are
independent conditional on Yt. Also, as noted earlier in the text, the completeness Assump-
tions 3-4 are implied by Krasnokutskaya’s assumption that Yt and Xit have non-vanishing
characteristic functions. On the other hand, Krasnokutskaya makes weaker demands on the
data. Whereas we require the observation of three bids, she requires only two.

By insisting only on a monotone relationship between bids and unobserved heterogeneity,
rather than a multiplicative one, our approach opens up a wide variety of new applications.
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For instance, suppose that bidders are symmetric and each bidder faces a cost Ct of bidding
which varies across auctions. While equilibrium bids will certainly not be multiplicative in
Ct, the probability that each bidder chooses not to submit a bid is increasing in Ct. Using
our approach, one may therefore non-parametrically identify both the distribution of Ct

and the distribution of bidder values conditional on Ct. (See Section 3.2 for details.)

3 Examples

This section provides a variety of examples in which this paper’s identification approach may
be applied. In each example, one object is sold via first-price auction to risk-neutral bid-
ders having independent private values. Except as otherwise specified, the econometrician
observes all bids and the set of bidders is fixed and known to the econometrician.

3.1 Unobserved reserve price

Suppose that each auction t has a reserve price Rt that is random and unobserved by the
econometrician, common knowledge among the bidders before the bidding, and independent
of bidders’ private valuations. For example, if the seller lacks the power to commit to a
reserve price, then Rt would equal his opportunity cost of selling the good. Or, if the seller
has the power to set an optimal reserve price based on the true distribution of bidder values,
then Rt is some strictly increasing function of that seller cost. Let ∅ denote the “null bid”
(∅ < b for all b ≥ 0) made in equilibrium by any bidder whose value is less than the reserve.

This paper’s approach allows the econometrician to identify the distribution of Rt as well
as the distribution of each (asymmetric) bidder’s valuation, as long as (i) there are at least
three bidders and (ii) the probability that the reserve price Rt binds on bidder i is strictly
increasing in Rt over its support.2 In particular, condition (ii) implies that the functional
M [fi(·|r)] = inf{b : Pr(Bit > b|Rt = r) < Pr(Bit > ∅|Rt = r)} corresponding to the
minimal submitted bid equals r. Thus, Assumption 5 is satisfied without any need for a

2Condition (ii) is satisfied in a broad set of circumstances. For example, suppose that the seller is able

to set an optimal reserve, and that the seller’s private cost Ct has support [0, c] while each bidder i’s value

has support [0, vi] for some c < max{v1, ..., vN}. Condition (ii) fails for bidder i only if his maximal value

is low enough that he is sometimes “priced out” of the auction, i.e. Pr(Rt > vi) > 0. An optimally chosen

reserve price will never price out all bidders, so (ii) must be satisfied for at least one bidder. Furthermore,

should bidders be symmetric, it will be satisfied for all bidders.
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normalization of Rt. The other assumptions are trivial to check, given that bidders have
independent private values that are uncorrelated with the reserve price. The distribution
of Rt and of bidders’ values are therefore non-parametrically identified.

3.2 Unobserved cost of bidding

Suppose that bidders are symmetric and the reserve price is zero, but some bidders choose
not to participate because of a common cost Ct of submitting a bid that is random and
independent of bidders’ valuations.

It is straightforward to show that, in the unique (symmetric) equilibrium, the probability
that each bidder chooses not to submit a bid is increasing in Ct. Thus, the functional
M [fi(·|c)] = Pr(bi = ∅) corresponding to the probability of non-participation is strictly
increasing in the unobserved heterogeneity Ct. Hence, Assumption 5 is satisfied after an
appropriate normalization, i.e. when Yt = γ(Ct) for some strictly increasing γ(·). All other
assumptions are again trivial to check. Thus, the distribution of bidder values conditional
on Yt and conditional on having made a bid are non-parametrically identified.

Since γ(·) is an unknown normalization, however, more work is necessary in order to back
out the bidding costs Ct corresponding to each conditional distribution of values. Let bt(y)
denote the minimal bid submitted by each bidder when Yt = y, and let vt(y) denote the
corresponding bidder value. In equilibrium, a bidder having value vt(y) must be indifferent
between bidding bt(y) and not bidding at all:

Ct = (vt(Yt)− bt(Yt)) Pr(max
j 6=i

bjt = ∅|Yt). (2)

Through this indifference condition, the distribution of Ct is also identified.

3.3 Unobserved number of bidders

Suppose that Nt symmetric bidders choose to participate in an auction with zero reserve
price, where Nt is random and common knowledge among the participating bidders before
the bidding, and each participating bidder’s value is drawn iid from the same distribution
regardless of Nt. The econometrician observes detailed bid-data for three bidders i, j, k, i.e.
whether they chose to participate and what they bid, but does not observe the bids made by
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other bidders, nor the total number of bidders.3 Such a scenario could arise if a researcher
has acquired data from individual bidders only.

The condition here that the distribution of bidder values does not depend on Nt is naturally
satisfied in several sorts of settings. (See Section 2.2 for discussion of an alternative setting
in which bidder values are correlated with Nt.) For example, if participation is costly and
bidders observe their values before deciding to participate, then in equilibrium each bidder
will participate iff his value exceeds a symmetric threshold. In this case, the distribution of
participating bidders’ values is just a truncation of the original distribution of values. Or,
if bidders do not observe their values until they decide to participate, then obviously the
distribution of participating bidders’ values will just be the original distribution. Or, finally,
participation might simply be exogenous, as when participants are comprised of “random
passers-by”.

The distribution of each bidder’s bid in the unique equilibrium is easily shown to be strictly
increasing in the number of bidders Nt, in the sense of first-order stochastic dominance.
(Since equilibrium strategies are also symmetric across bidders, we will drop reference to
bidder i in what follows.) In particular, the mean of Bt|Nt is strictly increasing in Nt.
Consequently, Assumption 5 is satisfied for an appropriate normalization Yt = γ(Nt), when
we use the functional corresponding to the mean. The other assumptions are again trivial
to check, given that bidders have independent private values drawn from the same distri-
bution regardless of the number of bidders. By our results, then, the distribution of Yt and
the distribution of each bidder’s bid conditional on Yt are non-parametrically identified.
However, more work is required to identify the distribution of bidder values: The mark-up
of values over bids in (1) depends on the number of bidders, and Nt cannot be directly
inferred from Yt since γ(·) is unknown.

Since γ(·) is strictly increasing, each element y ∈ supp(Yt) corresponds to a different number
of bidders n(y) = γ−1(y) in the support of Nt. For any quantile α ∈ (0, 1), let vt(α) and
bt(α|y) denote the α-th quantiles of the (symmetric) distributions of bidder values and equi-
librium bids conditional on Yt = y, respectively. (Recall that, by assumption, the distribu-
tion of bidder values does not depend on the number of bidders.) Conditional on Yt = y, the
probability that a bidder wins the object with bid bt(α|y) is simply Gt(bt(α|y)|y) = αn(y)−1.

3See Athey and Haile (2007) Section 6.3 for an excellent discussion of scenarios in which bidders do not

observe the number of other bidders. Here, only the econometrician fails to observe Nt.
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Consequently, for each α ∈ (0, 1), (1) may be re-written as

vt(α) = bt(α|y) +
αb′(α|y)
n(y)− 1

for all y ∈ Y. (3)

In particular, for any pair of quantiles α̃, α and pair ỹ, y ∈ supp(Yt),

bt(α̃|ỹ) +
α̃b′(α̃|ỹ)
n(ỹ)− 1

= bt(α̃|y) +
α̃b′(α̃|y)
n(y)− 1

(4)

bt(α|ỹ) +
αb′(α|ỹ)
n(ỹ)− 1

= bt(α|y) +
αb′(α|y)
n(y)− 1

. (5)

Note that we have already identified all variables in the system of equations (4-5) except for
(n(ỹ), n(y)). Nt is therefore identified, as long as (4-5) has a unique solution for all ỹ, y ∈
supp(Yt).4 Given the distribution of Nt = n(Yt), one may now identify the distribution of
bidder values from the first-order condition (3).

In this way, the distribution of the number of bidders Nt and of bidder values can be
non-parametrically identified as long as the support of Nt has at least two elements. By
contrast, ifNt is unknown but non-random (i.e. the identified distribution of Yt has singleton
support), then bidder values cannot possibly be identified.
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