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1 Introduction

Survey sampling is principally conducted to gather complete information on all sampling

units. Due to a variety of reasons, nonresponse is an unfortunate but endemic feature

of sample surveys. For a fraction of the subjects either no data at all are available

or information on one or more variables is missing. Indeed, some sampling units may

simply refuse to participate at all in the study or answer the questionaire incompletely.

The interviewer may not be able to contact all the sampling units or fails to ask all

questions. Some questionnaires or parts thereof may be destroyed in data processing.

Conversely, there are also cases where the presence of missing values is a deliberate part

of the sampling process. In variable probability sampling, for example, an observation is

randomly drawn from the population and the stratum to which it belongs is identified,

the observation being retained in the sample with a probability defined by the agent

who collects the sample.1 Because the latter sampling scheme deliberately generates

incomplete data, the mechanism which governs the missingness pattern is known. In

the former situation, which is the subject of this paper, in contradistinction, nothing is

generally known about the missingness mechanism as data is missing for reasons beyond

the control of the researcher.

In econometrics, nonresponse has been addressed primarily in the context of panel

data studies, where often some sampling units will drop out after participating in the

initial waves of the survey; see, for example, Ridder (1990), Fitzgerald, Gottschalk and

Moffitt (1998) and Hirano, Imbens, Ridder and Rubin (2001). In contrast, Horowitz and

Manski (1995, 1998, 2001) provide a general discussion of nonparametric identification

for regression with missing data on either (both) the variable of interest or (and) the

covariates. An enormous statistical literature has also been developed to address the

1Moreover, the statistical literature often deals with two-stage sampling designs where in a first stage
the main sample is collected and in a second stage further variables, more expensive and/or difficult to
collect, are obtained but only for a subset of the survey participants.
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issue of nonresponse; see inter alia Little and Rubin (1987) and Schafer (1997). Two

forms of missing data are commonly distinguished: unit nonresponse, where for some

sampling units no data at all is available, and item nonresponse, where only part of

the information is missing. For the former class, most of the literature suggests the

use of weighting adjustments, which involve the assignment of weights to respondents

to compensate for their systematic differences relative to nonrespondents. For the latter

form of nonresponse, most papers propose imputation inference procedures in which the

missing values are filled in to produce complete data sets.

Many empirical studies, however, do not adopt either of the above approaches or that

taken in this paper, simply discarding all sampling units with missing values and employ-

ing the usual inference procedures associated with random sampling (RS). This practice

may seriously bias results when the characteristics of respondents and nonrespondents

differ systematically, that is, when the missingness mechanism is endogenous. The non-

ignorable nature of nonresponse arises because the rate of response may differ across the

possible values taken by the dependent variable which thereby causes the observed data

to provide a distorted picture of the features of the population of interest. Therefore, for

likelihood-based inference, an appropriate model for a description of the available data

becomes a complicated function of the structural model defined by the assumed pop-

ulation conditional distribution of the dependent variable given the covariates and the

missing data mechanism. As the observation of the sampling units may depend on the

dependent variable, an additional complication may arise because the covariates are no

longer ancillary for the parameters of interest, rendering conditional maximum likelihood

(ML) estimation given the covariates inefficient.

This paper proposes a unified likelihood-based approach for parametric discrete choice

models with missing data in a cross-section context. We address cases where the discrete

reponse variable, and possibly the covariates, are missing for some sampling units. This

set-up is adapted to handle situations where, due to the nature of some of the questions

contained in the survey, a fraction of the sample either omits the answer to those ques-

tions or refuses to participate in the survey at all. Specifically, we address cases where
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observations on the response variable only are missing for some subjects, designated as

item nonresponse (INR), and where both response variable and covariates are missing

for some sampling units, termed unit nonresponse (UNR). Furthermore, we reconsider

these two situations, denoted respectively as INRS and UNRS, when a supplementary

random sample (SRS) is available, consisting of observations on all covariates and as-

sumed independent of the main sample. Such additional information might naturally

arise from census data; see Cosslett (1981a). Analysis focusses on the more general INRS

and UNRS, which are then specialized for INR and UNR.

To provide a unified framework, we allow three types of sampling unit to be present.

Two types belong to the main sample: those for which all the data is available and those

for which information is absent or is incomplete, designated respectively respondents and

nonrespondents. We therefore reserve the terms response for a complete response, while

nonresponse describes either an incomplete or the absence of response. The third class of

sampling unit is those included in the SRS. All incomplete data patterns are underpinned

by the same (unknown) missing data mechanism which is assumed to be completely

determined by the response variable.2 That is, individual characteristics included in the

covariates do not contain any additional information on unit response/nonresponse over

and above that provided by the response variable. The probabilities defining the missing

data mechanism do not require prior knowledge, being treated as additional parameters to

be estimated. The distribution of the covariates is handled semiparametrically. Central

to our analysis is a similarity of nonresponse to choice-based (CB) samples. Consequently,

all of the aforementioned incomplete data patterns may be formulated as modifications

of CB sampling. Therefore, Imbens’ (1992) efficient generalized method of moments

(GMM) approach may be adapted and extended to our context.

This paper is organized as follows. Section 2 formalizes the model specification for the

2This assumption may be straightforwardly relaxed to permit a degree of dependence on the covariates
also if this dependence is expressed in terms of a finite partition of the covariate sample space, for example,
a partition defined by discrete-valued covariates. However, to achieve an economy of notation, we confine
attention in the main part of the text to a missingness mechanism determined purely in terms of the
discrete choice dependent variable with appropriate modifications given in a series of footnotes which
deal with missingness defined additionally in terms of covariates.
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missing data problems of interest. Section 3 details the observed data likelihoods. GMM

estimators are developed and compared in section 4. Specification tests are described in

section 5. Section 6 reports some simulation evidence on the performance of some of the

proposed estimators. Finally, section 7 concludes. Some technical details are relegated

to Appendices.

2 Model Specification

2.1 Some Notation

The response variable is denoted by Y and takes values on a set Y of (C + 1) mutually
exclusive alternatives, Y = {0, 1, ..., C}. Let X ∈ X be a p-vector of weakly exogenous

covariates. The random variables Y and X are assumed to be defined on Y × X with

population joint density function

f(y, x, θ) = P{y|x, θ}fX(x), (2.1)

where the discrete probability P{.|., θ} is known up to the parameter vector θ of dimen-
sion p and the marginal density function fX(.) for X is unknown. The problem addressed

in this paper is consistent estimation of and efficient inference on the parameter vector

θ. Where there is no loss of clarity, we suppress the dependence on θ of (2.1) and other

joint density functions.

Let θ0 denote the true value of θ. The population probability of observing Y = y is

Qy = P{Y = y} (2.2)

=
Z
X
P{y|x, θ0}fX(x)dx,

where 0 < Qy < 1, y ∈ Y , and Py∈Y Qy = 1. The probabilities Qy, y ∈ Y, may in fact be
known, for example, from a large random sample like a census. In such circumstances,

this information is treated as if it were exact similarly to the approach in the choice-based

(CB) sampling literature; see, for example, Manski and Lerman (1977), Imbens (1992)

and Wooldridge (1999, 2001).
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2.2 Survey Sampling Structure

The survey objective is to collect a random sample (RS) of size N of complete obser-

vations on Y and X. Suppose, however, that only n sampling units provide all the

information requested. These respective samples are designated the initial (or incom-

plete) and complete samples whereas those sampling units in the initial sample which

provide observations on either both Y and X or X only comprise the main sample.

Assumption 2.1 (Initial Sample (IS).) The IS is a random sample of size N .

We additionally assume that an independent supplementary random sample (SRS) of

observations of size m on X is drawn from the population of interest.

Assumption 2.2 (Supplementary Random Sample (SRS).) The SRS of observations of

size m on X is independent of the main sample.

Let the binary indicator S take value 1 when the sampling unit belongs to the sup-

plementary data set and 0 otherwise. Also define Nm = N +m and nm = n+m.

Alternative Y = y is chosen by Ny individuals, of whom only ny provide complete

questionnaires. Hence, N =
P
y∈Y Ny and n =

P
y∈Y ny.

As all incomplete data problems considered here involve missing data on (Y,X) or

on Y only, we always observe ny, n and m but never Ny, y ∈ Y. The size of the initial
random sample, N , is always available for item nonresponse (INR) (and INR with SRS

(INRS)), since the covariates are measured for all units. For unit nonresponse (UNR)

(and UNR with SRS (UNRS)) N may or may not be known to the econometrician.

However, our exposition assumes knowledge of N for three reasons. Firstly, the same

approach may be followed for both INRS (INR) and UNRS (UNR). Secondly, the analysis

is straightforwardly adapted for UNRS (UNR) when N is unknown. Finally, inclusion of

information on N improves inference for the parameters of interest.3

3See Li and Qin (1998) for a discussion of several examples of biased data where information on N
improves semiparametric likelihood-based inference.
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2.3 Missing Data Mechanism

A critical assumption is that, conditional on Y , unit response/nonresponse is indepen-

dent of the covariates X, that is, the influence of X on response/nonresponse is only

transmitted through the response variable Y .

Define the binary indicator

R =

(
1 if (Y,X) is fully observed
0 if either Y or (Y,X) is missing

.

Assumption 2.3 (Conditional Probability of Response.) The conditional probability Py

of observing a respondent unit given Y = y and X is independent of X; that is

Py = P{R = 1|Y = y,X = x} (2.3)

= P{R = 1|Y = y},

where 0 < Py < 1, y ∈ Y.

In all cases, we assume that 0 < Py < 1. If Py = 0, alternative Y = y would not be

observed in the complete sample. If, on the other hand, Py = 1, then there would be no

missing values among units with Y = y.4

When a SRS is available, by Assumptions 2.2 and 2.3, P{R = 1|Y = y,X = x, S =

0} = P{R = 1|Y = y}. Hence, although Y is not observed in the SRS, the missingness

pattern, namely Py of (2.3), in the main sample is all that is required.

Combining (2.2) and (2.3), the probability of observing a respondent unit is

P{R = 1} = X
y∈Y

PyQy, (2.4)

4As noted in the Introduction, Assumption 2.3 may be weakened to allow response/nonresponse to
depend also on a finite partition of the sample space X of the covariates. Let Xj , j ∈ J , J = {1, ...,M},
be a partition of X such that Xj ∩ Xk = ∅, j 6= k, and X = ∪j∈JXj . Define the random variable J = j
if X ∈ Xj . Then Assumption 2.3 and (2.3) are modified to

P j
y = P{R = 1|Y = y,X = x}

= P{R = 1|Y = y, J = j},
if x ∈ Xj , j ∈ J .
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which, because Py is unknown, in general, will also be unknown even though Qy may be

known.5

If the rate of response were the same for all alternatives, that is, Py = P , y ∈ Y , the
data are said to be missing completely at random (MCAR) [Little and Rubin (1987)] as

in this case the complete sample is also random. Naturally, RS estimation methods may

be used since nonresponse is ignorable, units with missing values being no different from

those with complete information.

If only information on X was missing, according to the mechanism (2.3), data would

be missing at random (MAR), because the probability of recording X would be indepen-

dent of X after controlling for Y , which in this case would be observed for all subjects.

This problem falls outside of the scope of this paper as the missingness mechanism is

ignorable for likelihood-based inference if Py of (2.3) does not depend on θ; see Rubin

(1976) and Little and Rubin (1987). Most of the statistical literature on nonresponse

focusses on data MAR, dealing mainly with procedures for imputing missing values; see,

for example, Little and Rubin (1987) and Schafer (1997). In econometrics, the issue

of nonignorable nonresponse has been considered in the extensive literature on sample

selection pioneered by Heckman (1976) and also in some papers dealing with attrition

in panel data [see, for example, Fitzgerald, Gottschalk and Moffitt (1998) and Hirano,

Imbens, Ridder and Rubin (2001)].

2.4 Missing Data Formulation by Stratification

An important point of departure for this paper is the adaptation of the approach taken

in the CB sampling literature to the missing data problems considered here. In order to

do so, we reinterpret respondents and nonrespondents as strata for each discrete value

of Y . For both INRS and UNRS a further stratum including the SRS of units is added.

5If response/nonresponse depend on the finite partition X = ∪J
j=1Xj then

P{R = 1} =
X
y∈Y

X
j∈J

P j
yQ

j
y,

where Qj
y = P{Y ∈ Y, J = j} =

R
Xj
P{y|x, θ}fX(x)dx, cf. (2.2).
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First of all, then, there are C+1 strata containing the respondent subjects for each value

of Y . The proportions of each of these strata in the sample and in the population are

denoted by Hy and Qy respectively; see (2.2). Secondly, C + 1 additional strata contain

the nonrespondent individuals for each response Y . Each of these strata has an unknown

sampling proportion Hnr
y but the same population proportion Qy. Therefore, the initial

random sample is interpreted as a combination of two CB samples consisting of the

respondent and the nonrespondent sampling units. Finally, the stratum containing the

SRS has a proportion of P{S = 1} = HS in the sample, while in the population, as the
supplementary sample is random, we observe units from this stratum with probability 1.

ProbabilitiesHy andH
nr
y are defined differently according to the presence or otherwise

of a SRS and whether N is known or unknown. We firstly examine Hy and H
nr
y in the

presence of a SRS. The absence of a SRS is dealt with as a special case.

2.4.1 Known N

The probability of observing a respondent unit and Y = y is

Hy = P{Y = y, R = 1, S = 0}, (2.5)

while the corresponding probability for nonrespondent units is

Hnr
y = P{Y = y,R = 0, S = 0}. (2.6)

Aggregating over Y yields the probability of observing, respectively, respondent, P{R =
1, S = 0} = P

y∈Y Hy, and nonrespondent units, P{R = 0, S = 0} = P
y∈Y Hnr

y . A

further summation reveals the proportion of the main sample in the full data set (the

main and the supplementary samples)

P{S = 0} = 1−HS
=

1X
r=0

X
y∈Y

P{Y = y, R = r, S = 0}

=
X
y∈Y

Hy +
X
y∈Y

Hnr
y . (2.7)
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From Assumption 2.2, from independence, the marginal probability of observing Y =

y in the population may be rewritten as

Qy = P{Y = y|S = 0}
=

P1
r=0P{Y = y, R = r, S = 0}

1−HS
=

Hy +H
nr
y

1−HS . (2.8)

This result will prove useful later as it permits the estimation of the unknown sample

probabilities Hnr
y , y ∈ Y, to be avoided.

Also, by Assumption 2.2, cf. (2.8), P{Y = y, S = 0} = Qy (1−HS). Hence, by
Assumptions 2.2 and 2.3,6

Py = P{R = 1|Y = y, S = 0}
=

P{Y = y, R = 1, S = 0}
P{Y = y, S = 0}

=
Hy

Qy (1−HS) . (2.9)

From (2.9), as 0 < Py < 1 by Assumption 2.3, 0 < Hy < Qy (1−HS). Moreover,
data MCAR are characterized by Hy/Qy constant for all y because Py is invariant across

y ∈ Y . In all cases Hy may be estimated from the incomplete sample as ny/Nm. Hence,

equation (2.9) may be used to estimate Py when Qy is either known or estimated by the

methods set out in section 4.

2.4.2 Unknown N

To adapt the above analysis for when N is unknown, the (C + 1) strata containing

nonrespondents are suppressed, since we now only consider respondent individuals in the

main sample. Now Hy is defined as the sampling probability of observing Y = y in the

main sample conditional on R = 1:

Hy = P{Y = y, S = 0|R = 1}. (2.10)

6If response/nonresponse depends on the finite partition X = ∪J
j=1Xj then defineH

j
y = P{Y = y, J =

j,R = 1, S = 0} with a similar definition for Hnrj
y ; cf. (2.5) and (2.6). Then Qj

y = (H
j
y+H

nrj
y )/(1−HS)

and P j
y = H

j
y/Q

j
y(1−HS). Cf. (2.8) and (2.9).
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Consequently, P{S = 0|R = 1} = P
y∈Y Hy. From Assumption 2.2, as P{S = 0} =

P{S = 0|R = 1},
1−HS =

X
y∈Y

Hy.

However, the population probability Qy may no longer be written in terms of Hy as

in (2.8). Instead of (2.9), the relation between Py, Hy, HS and Qy is now given by

Hy =
P{Y = y, R = 1, S = 0}

P{R = 1}
=

PyQy (1−HS)P
y∈Y PyQy

; (2.11)

see (2.4) and (2.9).7 From (2.11), Hy is no longer necessarily less than Qy. Furthermore,

in contrast with known N , Hy = Qy (1−HS) for all y characterizes both data MCAR
and the absence of missing data. For unknown N , from (2.11), even if Hy and Qy are

known, the probabilities Py are not identified. However, for any two choices Y = y1 and

Y = y2, their ratios may be estimated from Py1/Py2 = (Hy1/Hy2)/(Qy1/Qy2), which is of

course 1 for all y for data MCAR.8

2.4.3 Unavailable SRS

When a SRS is unavailable or is not utilized, we merely deal with the main sample. All

probabilities defined above are straightforwardly adapted for this situation by setting

HS = 0. As all sampling units are now associated with S = 0, S = 0 should also be

suppressed. These alterations are also applicable to the likelihood functions defined in

the next section.

7If response/nonresponse depends on the finite partition X = ∪J
j=1Xj then if N is unknown Hj

y =

P{Y = y, J = j, S = 0|R = 1}; cf. (2.10). Then 1 − HS =
P

y∈Y
P

j∈J H
j
y and H

j
y = P j

yQ
j
y(1 −

HS)/
P

y∈Y
P

j∈J P
j
yQ

j
y; cf. (2.11).

8An alternative formulation for nonresponse is possible by analogy with variable probability sampling
(VPS) briefly outlined in the Introduction which deliberately produces missing data. This particular
endogenous stratified sampling mechanism retains subjects in the sample with a pre-defined probability
chosen by the sampling agent. Our missing data patterns might be obtained by regarding Py, y ∈ Y, as
the probabilities of retention and treating them as additional parameters to be estimated. This avenue
is not explored here because of the identification problems for UNRS (and UNR) arising when N is
unknown and discussed below. Equation (2.11) would also require a different formulation relative to the
other cases in a VPS-type framework whereas our approach produces a unified framework for estimation
in all patterns of nonresponse discussed in this paper.
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3 Observed Data Likelihoods

This section considers the individual likelihood functions for the observed data under

both INRS and UNRS, as well as other sampling densities of interest which also provide

important characterizations of INRS and UNRS. INRS is analysed first because the INRS

observed data likelihood may be modified to obtain that for UNRS by eliminating the

covariate information provided by nonrespondents. In fact, the same data on respondent

and SRS units is observed for both INRS and UNRS, (Y,X,R = 1, S = 0) and (X,S = 1)

respectively. For nonrespondents, we observe either (X,R = 0, S = 0) for INRS or merely

(R = 0, S = 0) for UNRS. The generic notation h(.) is used for sample density functions.

We only need consider INR and UNR again in section 4.9

3.1 INRS

The joint sample density function for Y , X, R and S is

hINRS(y, x, r, s) =
h
h(y, x, r = 1, s = 0)rh(x, r = 0, s = 0)1−r

i1−s
h(x, s = 1)s (3.1)

=

[P{y, R = 1, S = 0}h(x|y)]r
X
y∈Y

P{y, R = 0, S = 0}h(x|y)
1−r

1−s

× [HSfX(x)]s

=


"
Hy
Qy
P{y|x, θ}fX(x)

#r X
y∈Y

Qy (1−HS)−Hy
Qy

P{y|x, θ}fX(x)
1−r

1−s

× [HSfX(x)]s

=


"
Hy
Qy
P{y|x, θ}fX(x)

#r 1−HS −X
y∈Y

Hy
Qy
P{y|x, θ}

 fX(x)
1−r

1−s

×[HSfX(x)]s.

The second equality in (3.1) arises since h(x|y, r, S = 0) = h(x|y) because, from Assump-
tion 2.2, h (x|y, r, S = 0) = h (x|y, r), and h (x|y, r) = h (x|y) by Assumption 2.3. The

9In the following, if response/nonresponse depends on the finite partition X = ∪J
j=1Xj , Hy and

Qy should be replaced by Hj
y and Q

j
y respectively, see fns. 5 and 6, and integration over X (

R
X ) by

summation over j ∈ J and integration over Xj (
P

j∈J
R
Xj
).
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third equality eliminates the dependence on the unknown probabilities Hnr
y = P{y, R =

0, S = 0} using (2.8).
The contribution of the units of the initial sample, associated with the indicator

1 − S, to the sample density (3.1) is composed of two parts. The first term contains

the information provided by respondent units and may be interpreted as the complete

data likelihood, while the second term accommodates the information on the covariates

provided by nonrespondent units. The third component of (3.1) is information on X

provided by individuals in the SRS. Note that the data on X reported by nonrespondent

and SRS units enter the density function in quite different ways. Only the behaviour of

nonrespondents, which are included in the main sample, is affected by the missing data

mechanism Assumption 2.3.

3.2 UNRS

Relative to INRS, nonrespondent units do not provide any information. Therefore, the

joint sample density function for Y , X, R and S is

hUNRS(y, x, r, s) =
h
h(y, x,R = 1, S = 0)rP{R = 0, S = 0}1−ri1−s h(x, S = 1)s (3.2)

=


"
Hy
Qy
P{y|x, θ}fX(x)

#r 1−HS −X
y∈Y

Hy
Qy

Z
X
P{y|x, θ}fX(x)dx

1−r
1−s

× [HSfX(x)]s

=


"
Hy
Qy
P{y|x, θ}fX(x)

#r 1−HS −X
y∈Y

Hy

1−r
1−s

[HSfX(x)]
s .

Relative to (3.1), only the term associated with nonrespondents is modified, no longer be-

ing a function of X. As will become apparent, this term merely incorporates information

on the total sample size N which is employed in the estimation of Hy and HS.

3.3 Ancillarity

The conditionality principle states that inference should be conducted conditionally on

statistics ancillary for the parameters of interest θ; see Cox and Hinkley (1974). The

[12]



analysis of the marginal sampling density function of the covariates from the joint sample

density functions (3.1) and (3.2) reveals that INRS and UNRS are quite different in

nature.

3.3.1 INRS

The sampling density function of X is

hINRS (x) = fX(x)
1X
s=0

1X
r=0


X
y∈Y

Hy
Qy
P{y|x, θ}

r 1−HS −X
y∈Y

Hy
Qy
P{y|x, θ}

1−r
1−s

[HS]
s

= fX(x)

X
y∈Y

Hy
Qy
P{y|x, θ}+ 1−HS −

X
y∈Y

Hy
Qy
P{y|x, θ}+HS


= fX(x), (3.3)

the population density function fX(.) which is not a function of θ. Thus, inference should

be conducted using the conditional density given X10

hINRS(y, r, s|x) =

"
Hy
Qy
P{y|x, θ}

#r 1−HS −X
y∈Y

Hy
Qy
P{y|x, θ}

1−r
1−s

[HS]
s. (3.4)

3.3.2 UNRS

The sampling density of X is

hUNRS(x) =
1X
s=0

1X
r=0


X
y∈Y

Hy
Qy
P{y|x, θ}fX(x)

r 1−HS −X
y∈Y

Hy

1−r
1−s

[HSfX(x)]
s

= fX(x)

HS +X
y∈Y

Hy
Qy
P{y|x, θ}

+ 1−HS −X
y∈Y

Hy, (3.5)

which depends on θ. Hence, X is not ancillary for θ and conditional maximum likelihood

given X will be inefficient.11 Efficient estimation should therefore be based on (3.2).

10Note that fX(x) may be factored out of hINRS(y, x, r, s) in (3.1) leaving hINRS(y, r, s|x) of (3.4).
11For a discussion on the issue of covariate ancillarity for problems where data are MAR, see Lawless,

Kalbfleisch and Wild (1999).
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3.3.3 Joint Density of R and S

In contradistinction to those for X, the joint density of the indicators R and S is identical

under both INRS and UNRS. Calculations for INRS yield

P{R = r, S = s} =
X

y∈Y

Z
X
Hy
Qy
P{y|x, θ}fX(x)dx

r

Z
X

1−HS −X
y∈Y

Hy
Qy
P{y|x, θ}

 fX(x)dx


1−r
1−s ·

HS

Z
X
fX(x)dx

¸s

=


X
y∈Y

Hy

r 1−HS −X
y∈Y

Hy

1−r
1−s

[HS]
s. (3.6)

From (3.6), both R and S are ancillary for θ and, thus, inference should be conducted

conditional on R and S. Although, similarly to Imbens (1992) and Imbens and Lancaster

(1996) for endogenous stratified sampling, estimation is based on the likelihood functions

(3.2) and (3.4), which are not conditional on R and S, the method does conform with

the conditionality principle as, for example, the estimator for Hs is the marginal ML

estimator ĤS = m/Nm obtained from (3.6).

3.4 Unknown N

As noted in section 2.4, UNRS must be adapted if the initial sample size N is unknown.

The main sample now consists only of those units for which R = 1. As now 1 −HS =P
y∈Y Hy the density function of the observed data is therefore

hUNRS(y, x, r = 1, s) = h(y, x, r = 1, s = 0)r(1−s)h(x, s = 1)s

=

"
Hy
Qy
P{y|x, θ}fX(x)

#r(1−s)
[HSfX(x)]

s . (3.7)

Relative to (3.2), the terms associated with the indicator 1 − R have been suppressed.
This density function (and the simpler version for UNR obtained when S = 0) coincides

with that for CB sampling with (without) a SRS; see, for example, Cosslett (1981a).

Thus, inference procedures appropriate for CB samples may be used if N is unknown.

In a similar fashion both (3.5) and (3.6) are simplified by the elimination of the term
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1−HS −P
y∈Y Hy; see the comments below (2.10).

For all of the above missing data patterns, an important aspect of the analysis is that

the component associated with the joint indicator R (1− S), which corresponds to the
complete data density, differs from the population joint density function of Y and X in

(2.1) which would be appropriate under RS. Hence, unless the data are MCAR, in which

case Hy/Qy is invariant to y ∈ Y and is thus irrelevant for likelihood-based inference, RS
procedures should not be used with the complete sample.

4 Generalized Method of Moments

This section adapts efficient GMM estimation under CB sampling [Imbens (1992)] for

the missing data patterns discussed above. To implement GMM for INRS and UNRS, a

set of moment indicators is derived, which may be employed when either the marginal

population stratum probabilities Qy, y ∈ Y , are unknown or known. The parameters
of interest θ are estimated jointly with the population and sample stratum occupancy

probabilities, Qy and Hy, y ∈ Y , respectively, and HS. Let the parameter vector ϕ denote
Qy, Hy, y ∈ Y , HS and θ and ϕ0 the true value of ϕ.

Our reinterpretation of incomplete data problems for discrete choice models using a

CB sampling setting suggests that some of the estimators originally proposed for that

set-up may be relevant here also. In particular, as noted in section 3.4, all CB sampling

estimators may be used to deal with UNR when the initial sample size N is unknown.

As we later demonstrate, our estimators, when simplified to deal with this case, coincide

with those proposed by Imbens (1992). Similarly, Cosslett’s (1981a) ML estimators for

CB samples combined with a SRS of covariates, may be employed to describe UNRS if

information on N is ignored. However, in the same sense that Imbens (1992) simplified

Cosslett’s (1981a,b) estimators for CB samples, the GMM estimators for UNRS derived

here are substantially simpler than those corresponding to Cosslett (1981a). Further-
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more, our estimators embed Lancaster and Imbens’ (1996) efficient GMM estimators

for case-control binary models with contaminated controls, where there are two strata,

one consisting of a random sample where only the covariates are observable, the other

including units choosing Y = 1.12,13

The remainder of this section is organized as follows. Section 4.1 derives the moment

indicators for INRS and UNRS. These moment indicators are used in section 4.2 to ob-

tain alternative GMM estimators, appropriate for handling all the missing data patterns

considered in this paper. Section 4.3 presents a brief analysis and comparison of these

estimators. Finally, section 4.4 discusses particular estimation issues which arise with

multiplicative intercept models (MIM).

4.1 Moment Indicators

To avoid the need to specify the marginal distribution of X, we initially assume that X

is discrete with L points of support xl with associated probability mass P{X = xl} = πl,
0 < πl < 1, l = 1, 2..., L; we impose L > J where J is the number of strata considered.

This subsidiary assumption is innocuous because the nuisance parameters π = (π1, ..., πL)

may be concentrated out as demonstrated in Appendix A.

4.1.1 INRS

Under INRS, X is ancillary for θ and, thus, by the conditionality principle, efficient in-

ference is conducted conditional on X using the conditional likelihood (3.4). We prefer,

however, to base analysis on the joint likelihood obtained from (3.1) which allows an

identical approach to be adopted for estimation under both INRS and UNRS and semi-

parametric efficiency to be analysed in a similar fashion for both nonresponse schemes.

12In this case, Y = {0, 1}, P0 = 0 and P1 = 1. Hence, Assumption 2.3 where 0 < Py < 1 is relaxed to
0 ≤ Py ≤ 1.

13Alternatively, INR could also be described by the likelihood function suggested by Hausman and
Wise (1981) for a VPS scheme where the covariates are observed for all individuals and the variable of
interest is measured according to the probability of retention associated with each stratum. A stratum is
defined for each value of Y and the (C + 1) probabilities of retention (which are known under VPS but
are unknown here) are treated as additional parameters to be estimated. However, for reasons discussed
in fn. 8, we do not consider the VPS framework further here.
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Appendix A.1 verifies directly the equivalence of the unconditional and conditional likeli-

hood approaches. Recall from section 4.3.3 that the indicators R and S are also ancillary

for θ.

The unconditional log-likelihood function based on (3.1) is

logLINRS(ϕ, π) =
NmX
i=1

(
(1− si) ri log

"
Hyi
Qyi

P{yi|xli , θ}πli
#
+ (4.1)

(1− si) (1− ri) log
1−HS −X

y∈Y

Hy
Qy
P{y|xli, θ}

πli


+si (logHS + log πli)} ,

where Qy =
PL
l=1 πlP{y|xl, θ}, y ∈ Y . Maximization of (4.1) is undertaken subject to

the restriction
PL
l=1 πl = 1.

Given the ancillarity of S, for inference conditional on S, the marginal ML estimator

for HS is the ancillary statistic ĤS = m/Nm; see (3.6). Hence, from Appendix A.1, (A.6),

(A.8) and (A.9), the resultant system of GMM moment indicators is

Ht : (1− s) rI(y = t)− Ht
Qt

(1− s)(1− r)P{t|x, θ}
1−HS −P

y∈Y
Hy
Qy
P{y|x, θ} , t ∈ Y, (4.2)

HS : s−HS, (4.3)

θ : (1− s)
(
r
∂ logP{y|x, θ}

∂θ
− (4.4)

(1− r)
1−HS −X

y∈Y

Hy
Qy
P{y|x, θ}

−1 X
y∈Y

Hy
Qy

∂P{y|x, θ}
∂θ

 ,
Qy : Qy − P{y|x, θ}, y ∈ Y , (4.5)

where I(.) denotes an indicator function.

The presence of the multiplicative factor associated with Ht in the second term of

(4.2) indicates that additional information is conveyed by the covariate information from

INRS nonrespondents for the stratum probabilities, Ht, over and above that of the sample

proportions, nt/Nm, t ∈ Y .
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4.1.2 UNRS

The log-likelihood function based on (3.2) is

logLUNRS(ϕ, π) =
NmX
i=1

(
(1− si) ri log

"
Hyi
Qyi

P{yi|xli , θ}πli
#
+ (4.6)

(1− si) (1− ri) log
1−HS −X

y∈Y
Hy


+si (logHS + log πli)} ,

where Qy =
PL
l=1 πlP{y|xl, θ}, y ∈ Y . Maximization of (4.6) is undertaken subject to

the restriction
PL
l=1 πl = 1.

Appendix A.2 presents the first order derivatives (A.10)-(A.14) arising from (4.6)

which after some manipulation result in the system of GMM moment indicators given by

Ht : (1− s) rI(y = t)−Ht, t ∈ Y , (4.7)

HS : s−HS, (4.8)

θ : (1− s) r∂ logP{y|x, θ}
∂θ

− (4.9)

[(1− s) r + s]
HS +X

y∈Y

Hy
Qy
P{y|x, θ}

−1 X
y∈Y

Hy
Qy

∂P{y|x, θ}
∂θ

,

Qy : Qy − [(1− s) r + s]
HS +X

y∈Y

Hy
Qy
P{y|x, θ}

−1

P{y|x, θ}, y ∈ Y . (4.10)

Equations (4.7) and (4.8) reflect the ancillarity of R and S for θ resulting in the ancillary

GMM estimators Ĥy = ny/Nm and ĤS = m/Nm; cf. (4.2).

4.2 GMM Estimation

Let g(ϕ) denote the vector of moment indicators obtained after stacking either (4.2)-(4.5)

or (4.7)-(4.10). A subscript i denotes evaluation at observation (yi, xi, si, ri), i = 1, ...,Nm.

The GMM objective function is defined by

Ĵ(ϕ) = ĝ(ϕ)0Ŵ ĝ(ϕ), (4.11)
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where Ŵ is a positive semi-definite weighting matrix. The vector ĝ(ϕ) =
PNm
i=1 gi(ϕ)/Nm

is the sample counterpart of the moment conditions E [g(ϕ0)] = 0, where E [.] denotes ex-

pectation taken over hUNRS(y, x, r, s) of (3.2) or hINRS(y, r, s|x) of (3.4) for, respectively,
UNRS and INRS. Let ϕ̂ denote the minimiser of (4.11).

4.2.1 Unknown Qy

When the population marginal choice probability Qy is unknown, the parameter vector

ϕ is just-identified. We adopt the following standard regularity conditions which are

sufficient for the consistency and asymptotic normality of ϕ̂. See Imbens (1992) and

Newey and McFadden (1994, Theorems 2.6 and 3.4).

Assumption 4.1 (a) θ0 ∈ int(Θ), Θ a compact subset of Rp; (b) Hy > 0, y ∈ Y, and
HS > 0.

Assumption 4.2 (a) P{y|x, θ} is twice continuously differentiable in θ ∈ Θ; (b) P{y|x, θ}
and ∂P{y|x, θ}/∂θ are continuous at each θ ∈ Θ; (c) P{y|x, θ} > 0, y ∈ Y, for all
x ∈ X and θ in an open neighbourhood of θ0; (d) fX(x) > 0 for all x ∈ X ; (e)
1 − HS > P

y∈Y(Hy/Qy)P{y|x, θ} for all x ∈ X and θ in an open neighbourhood of

θ0.

Assumptions 4.2 (c) and (d) ensure that Qy > 0, y ∈ Y . Assumption 4.2 (e) requires
a positive sample (and population) probability of observing R = 0 and S = 0, an

assumption which is not required for UNR with N unknown.

Let G = E [∂g(ϕ0)/∂ϕ
0] and Ω = E [g(ϕ0)g(ϕ0)

0].

Assumption 4.3 (a) Ŵ
p→ W , W positive definite; (b) ϕ0 is the unique solution to

E[g(ϕ0)] = 0; (c) E[supϕ kg(ϕ)k2] <∞ and E[supϕ∈N k∂g(ϕ)/∂ϕ0k] <∞ where N is a

neighbourhood of ϕ0; (d) Ω is nonsingular; (e) G is full column rank.

These conditions lead to the following result.
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Theorem 1 (Consistency and Asymptotic Normality of ϕ̂.) If Assumptions 2.1-2.3 and

4.1-4.3 are satisfied then

ϕ̂
p→ ϕ0, (4.12)

N1/2
m (ϕ̂− ϕ0)

d→ N(0, G−1ΩG0−1),

where
p→ and

d→ denote convergence in probability and distribution respectively.

When X is discrete, ϕ̂ is the ML estimator for ϕ and is, thus, asymptotically first

order efficient. Asymptotic efficiency, in the semiparametric sense, is proved analogously

to Imbens (1992, Theorem 3.3). Appendix B provides such a proof for UNRS and UNR;

a similar proof may be obtained for INRS and INR but at the expense of more algebraic

complexity.

Theorem 2 (Efficiency of ϕ̂.) If Assumptions 2.1-2.3 and 4.1-4.3 are satisfied then ϕ̂

achieves the semiparametric efficiency bound.

4.2.2 Known Qy

When Qy is known, the system (4.7)-(4.10) or (4.2)-(4.5) is over-identified. Let ϕ now

denote the unrestricted parameters with the definitions for G and Ω above Assumption

4.3 suitably adapted. Also let ϕ̃ be a preliminary consistent estimator of ϕ0, obtained

for example, by setting the metric Ŵ as the identity matrix in (4.11). The optimal

GMM estimator is obtained using the weighting matrix Ŵ = Ω̃−1 in (4.11), where Ω̃ =PNm
i=1 gi(ϕ̃)gi(ϕ̃)

0/Nm. Similarly to Theorem 4.1 and, in particular, (4.12),

ϕ̂
p→ ϕ0, N1/2

m (ϕ̂− ϕ0)
d→ N(0, (G0Ω−1G)−1). (4.13)

Asymptotic efficiency of ϕ̂ may be proved similarly to Appendix B.

4.2.3 Unknown N

Firstly, in all the above derivations and results for UNRS, Nm is replaced by nm. Con-

sequently, Hy is now estimated by ny/nm and the estimating function for HS of (4.8) is
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suppressed, because now HS may be estimated by 1−Py∈Y Ĥy; see the comments below

(2.10). Secondly, the indicator R is set to 1 in (4.7), (4.9) and (4.10). All observations

now enter the calculation of the second terms in both (4.9) and (4.10) because X is

observed for all units in the sample, since strata containing nonrespondents are no longer

considered. Expectations are now taken over hUNRS (y, x,R = 1, s) of (3.7).

4.2.4 UNR and INR

Estimators for ϕ under UNR (N known or unknown) and INR may be straightforwardly

obtained from their respective SRS versions. In all derivations and results Nm and nm are

replaced by, respectively, N and n. In the moment indicators we set HS = 0 and S = 0

and suppress the estimating functions for HS in (4.8) and (4.3). Naturally, expectations

are now taken with respect to the density functions referred to above, but where now

HS = 0 and S = 0. It is interesting to note that the estimators for UNR with N unknown

coincide with those suggested by Imbens (1992) for CB sampling.

4.3 Estimator Comparison

The various GMM estimators obtained above use different information, ranging from the

case where only the respondents are observed, UNR, to that where data on respondents,

nonrespondents and a SRS, INRS, are available. In the latter and intermediate cases, be-

sides the data on respondents, we also use information on X provided by nonrespondents

(INR) or by units of the SRS (UNRS). An analysis of the respective systems of moment

indicators in (4.2)-(4.5) and (4.7)-(4.10) (and their simplified INR and UNR forms) al-

lows both the common characteristics of the different estimators and the mechanisms by

which the information on X is incorporated in the estimation procedure to be examined.

The moment indicator for HS is identical in all cases where a SRS is present, reflecting

the ancillarity of S for θ. The moment indicator for θ has two components. The first

term in all cases is the score function of the RS ML (RSML) estimator for θ and, being

a function of both Y and X, is only calculated for respondent units. The other term

only involves X, being calculated for respondents and units of the SRS in UNRS, for
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nonrespondents in INRS and INR and for respondents in UNR. The estimating functions

for Qy use information from the same units as the second term of the moment indicator

for θ under UNRS and UNR, while for INRS and INR data from all units observed

(respectively, those of both main sample and SRS and those of the main sample) are

used. Thus, relative to UNR, GMM for INR and UNRS includes additional information

on X through the second terms of the moment indicators for θ and Qy. When most data

is available, INRS, the SRS only contributes to the estimation of Qy relative to INR.

4.4 Multiplicative Intercept Models

The GMM estimators proposed above deal with different patterns of nonresponse gov-

erned by a nonignorable missing data mechanism. In general, unless data are MCAR,

conventional RS estimators applied with the complete data set are inconsistent. How-

ever, Carroll, Ruppert and Stefanski (1995, p.184) and Allison (2001, p.7), aver that, as

long as the probability of response conditional on the dependent variable is independent

of the covariates, precisely the missingness mechanism assumed in Assumption 2.3, then

estimators for the slope parameters of logit models remain consistent in apparent contra-

diction to the results presented here. As is shown below, their conjecture results from the

particular properties of multiplicative intercept models (MIM), which include the logit

model as a particular case and are also widely discussed in the area of CB sampling.

The literature on CB sampling demonstrates that, on the one hand, both intercept terms

and marginal choice probabilities Qy are not separately identified in MIM when these

probabilities are unknown. On the other hand, except for the shift in intercept terms, all

parameters in MIM are consistently estimated by the RSML estimator; see, for example,

Hsieh, Manski and McFadden (1985) and Weinberg and Wacholder (1993).

UNR should preserve these two characteristics, since only a slight modification of

the CB sampling formulation is required; see section 4.2.4. However, neither of these

properties can be extended to the other cases unless incomplete units are discarded

which would again reduce to UNR.
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Define a MIM as in Hsieh, Manski and McFadden (1985),

P{y|x, vy, θ1
y} =

νyVy(θ
1
y)P

y∈Y νyVy(θ1
y)
. (4.14)

where νy = vy(θ
0
y). The coefficients θ

0
y and θ

1
y are, respectively, the constant term and

vector of slope parameters associated with alternative Y = y. We set ν0(θ
0
0) = 1, V0(θ

1
0) =

1, Vy(θ
1
y) > 0, ∂νy(θ

0
y)/∂θ

0
y = νy(θ

0
y) and ∂Vy(θ

1
y)/∂θ

1
y = xyVy(θ

1
y) for all y.

14

Under UNR the identification problem for intercept terms of MIM becomes apparent

because the moment indicators for the intercept parameters are perfectly correlated with

those relevant for the estimation of Qy; cf. Imbens (1992) for CB samples. The moment

indicator (4.9) for θ0
t is

θ0
t : r

I(y = t)−
X
y∈Y

Hy
Qy
νyVy(θ

1
y)

−1
Ht
Qt
νtVt(θ

1
t )

 , (4.15)

t = 0, ..., C. Clearly the moment indicator (4.15) coincides with Ht/Qt times that for

Qt (4.10) plus that for Ht (4.7). Thus, identification of θ
0
y is only possible when Qy is

known, in which case the known Qy is substituted in the moment indicators for θ
0
y and

θ1
y and that for Qy is suppressed.

The particular property of MIM which causes these identification problems allows the

use of RS procedures to estimate the slope parameters θ1
y under UNR. This is apparent

because the moment indicators for θ1
t , given by (4.15) pre-multiplied by xt, apart from

the distortion in the intercept parameters, which are now (Hy/Qy)νy, y ∈ Y , coincide
with the RS moment indicators

xt(I(y = t)− P{t|x, νt, θ1
t }). (4.16)

Thus, (4.16) may be used to consistently estimate θ1
t under UNR.

This property, however, does not hold when data on X provided by nonrespondents

and/or units of the SRS are used (UNRS, INRS and INR) as none of the moment indi-

cators for θ may be written in the RS form (4.16). Thus, although the RSML estimator

14The multinomial logit model arises when νy(θ0
y) = exp(θ

0
y), Vy(θ1

y) = exp(x
0θ1

y) and θ
0
0 = 0, θ

1
0 = 0.
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based on the complete sample is consistent for the slope parameters in all cases, if one

wishes to include the additional information on X from the nonrespondents and/or the

SRS in the estimation procedure, then the GMM estimators for UNRS, INRS or INR

proposed in the previous sections must be used.

5 Specification Tests

5.1 MCAR

In general, unless data are MCAR, RSML applied to the complete sample will yield

inconsistent estimators. In an application whether or not the missingness mechanism

is ignorable would be unknown. If information on the population probabilities Qy was

available, a comparison of Qy with the sampling proportion Hy might be used to draw

rough conclusions about the nature of the missing data. More formally, specification

tests for the null hypotheses of data MCAR may be constructed as is now described.

If the data are MCAR, both Py and the ratio Hy/Qy are constant for all y ∈ Y; that
is, Py = P , y ∈ Y . See the comments below (2.9) and (2.11). The MCAR null hypothesis
H0 for when the initial sample size N is known is

H0 :
Hy
Qy

= P (1−HS), y ∈ Y , (5.1)

and, when N is unknown,

H0 :
Hy
Qy

= 1−HS, y ∈ Y , (5.2)

which also corresponds to the absence of missing data.

GMM estimation under either version of H0 using the moment indicator systems

(4.2)-(4.5) or (4.7)-(4.10) is straightforward. The moment indicator for θ is identical to

the score function of the RSML estimator since
P
y∈Y(Hy/Qy)∂P{y|x, θ}/∂θ = (Hy/Qy)P

y∈Y ∂P{y|x, θ}/∂θ = 0; see (4.4) and (4.9). Additionally, the moment indicators for Ht
under INRS and Qy under UNRS utilise

P
y∈Y(Hy/Qy)P{y|x, θ} = Hy/Qy; see (4.2) and

(4.10). From (3.4), the INRS conditional sample density becomes

hMCARINRS (y, r, s|x) = P{y|x, θ}r(1−s)
h
P r(1− P )1−r

i1−s h
Hs
S(1−HS)1−s

i
.
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Therefore, the INRS MCAR estimators are P̃ = n/N , H̃S = m/Nm and H̃y = Q̃yP̃ (1−
H̃S), where, from (4.5), Q̃y =

PNm
i=1P{y|xi, θ̃}/Nm, y ∈ Y , and θ̃ is the RSML estimator.

For UNRS, from (3.2),

hMCARUNRS (y, x, r, s) = P{y|x, θ}r(1−s)
h
P r(1− P )1−r

i1−s h
Hs
S(1−HS)1−s

i
fX(x)

r(1−s)+s.

Therefore, the UNRSMCAR estimators are as above except, from (4.10), Q̃y =
Pnm
i=1P{y|xi, θ̃}/nm,

y ∈ Y . If N is unknown, from (3.7), the UNRS sample density now becomes

hUNRS(y, x, r = 1, s) = P{y|x, θ}r(1−s)
h
Hs
S(1−HS)r(1−s)

i
fX(x)

r(1−s)+s.

The UNRS estimators remain the same except that H̃S = m/nm. Let ϕ̃ denote the H0

MCAR estimator for ϕ.

A test for data MCAR may be based on the difference of estimated GMM criteria

(4.11) under null and alternative hypotheses; that is, the statistic

Nm
h
ĝ(ϕ̃)0Ω̂−1ĝ(ϕ̃)− ĝ(ϕ̂)0Ω̂−1ĝ(ϕ̂)

i
, (5.3)

where Ω̂ =
PNm
i=1 ĝ(ϕ̂)ĝ(ϕ̂)

0/Nm with obvious adjustments if there is no SRS and Nm

replaced by nm if N is unknown. Under the MCAR null hypothesis H0, (5.1) or (5.2),

the statistic (5.3) will converge in distribution to a chi-square random variable with

respectively C and C + 1 degrees of freedom. See Newey and West (1987) for other

asymptotically equivalent test statistics.

5.2 Missing Data Mechanism

Assumption 2.3 is crucial to the foregoing analysis. It requires that nonresponse is

determined by covariates solely through the dependent variable although as explained

above it may be relaxed to allow dependence on a finite partition of the covariate sample

space.

Consider a general definition of the missingness mechanism

Py(x) = P{R = 1|Y = y,X = x};
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cf. (2.3). The major alterations which are required concern the resultant specifications

of the sample densities for INRS (INR) and UNRS (UNR); cf. sections 3.1 and 3.2. For

INRS, h(x|y) in (3.1) is replaced appropriately by h(x|y, r = 1) = h(y, r = 1, x)/h(y, r =
1) or

h(x|y, r = 1) =
Py(x)P{y|x, θ}fX(x)R

X Py(x)P{y|x, θ}fX(x)dx
=

Py(x)

Py

P{y|x, θ}fX(x)
Qy

.

and

h(x|y, r = 0) = (1− Py(x))
(1− Py)

P{y|x, θ}fX(x)
Qy

.

Therefore,

hINRS(y, x, r, s) =

("
Py(x)

Py

Hy
Qy
P{y|x, θ}

#r
(5.4)

×
X
y∈Y

(1− Py(x))
(1− Py)

Ã
1−HS − Hy

Qy

!
P{y|x, θ}

1−r
1−s

×[HS]sfX(x).

Correspondingly, for UNRS with N known, cf. (3.2),

hUNRS(y, x, r, s) =

("
Py(x)

Py

Hy
Qy
P{y|x, θ}fX(x)

#r
(5.5)

×
X
y∈Y

Z
X
(1− Py(x))
(1− Py)

Ã
1−HS − Hy

Qy

!
P{y|x, θ}fX(x)dx

1−r
1−s

× [HSfX(x)]s .

The proposed specification test is based on the Lagrange multiplier principle; see inter

alia Newey and West (1987). Firstly, the response probabilities are parameterised as

Py(x) = Py(z
0
yηy) where zy = zy(x) is a suitably chosen vector of independent functions

of the covariates x and Py(0) = Py, y ∈ Y . Secondly, log-likelihoods are constructed
based on the sample densities (5.4) and (5.5); cf. (4.1) and (4.6) respectively. Thirdly,

the moment indicators corresponding to ηy are obtained by differentiating the resultant
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log-likelihoods and evaluation at ηy = 0, y ∈ Y . For INRS:

ηt : P
0
y(0)(1−HS)

Qt
Ht
zt

(1− s) rI(y = t)− Ht
Qt

(1− s)(1− r)P{t|x, θ}
1−HS −P

y∈Y
Hy
Qy
P{y|x, θ}

 , t ∈ Y ,
where P 0y(.) denotes the derivative of Py(.) with respect to its argument. Similarly for

UNRS:

ηt : P
0
y(0)(1−HS)

Qt
Ht
zt ((1− s) rI(y = t)−Ht) , t ∈ Y.

Because the multiplicative factors P 0y(0)(1 −HS)(Qt/Ht) are observation invariant they
may be omitted so that the relevant moment indicator becomes zt multiplied by the

moment indicator for Ht, (4.2) or (4.7). For UNRS with N unknown an appropriate

moment indicator is defined by analogy as that for UNRS with N known.15

Let q(ϕ) define the vector of moment indicators obtained from g(ϕ) defined in sec-

tion 4.2 augmented by those given above for ηy, y ∈ Y . Let Q(ϕ) = ∂q(ϕ)/∂ϕ0.

Correspondingly, define q̂(ϕ) =
PNm
i=1 qi(ϕ)/Nm, Q̂(ϕ) =

PNm
i=1Qi(ϕ)/Nm and Σ̂(ϕ) =PNm

i=1 qi(ϕ)qi(ϕ)
0/Nm. Therefore, a GMM Lagrange multiplier specification test for As-

sumption 2.3 is given by

LM = Nmq̂(ϕ̂)
0Σ̂(ϕ̂)−1Q̂(ϕ̂)

³
Q̂(ϕ̂)0Σ̂(ϕ̂)−1Q̂(ϕ̂)

´−1
Q̂(ϕ̂)Σ̂(ϕ̂)−1q̂(ϕ̂);

cf. Newey and West (1987). For INR and UNR, Nm is replaced by N . Hence, q̂(ϕ) =PN
i=1 qi(ϕ)/N , Q̂(ϕ) =

PN
i=1Qi(ϕ)/N and Σ̂(ϕ) =

PN
i=1 qi(ϕ)qi(ϕ)

0/N . For UNR(S) and

N unknown, the form of statistic is as for UNR(S) except N (Nm) is replaced by n (nm).

If Assumption 2.3 is satisfied LM has a limiting chi-square distribution with degrees of

freedom given by
P
y∈Y dim(ηy).

15With N unknown, cf. (3.7),

hUNRS(y, x, r = 1, s) =

·
Py(x)

Py

Hy

Qy
P{y|x, θ}fX(x)

¸r(1−s)

[HSfX(x)]
s
.

However, the response probabilities Py and Py(x) are unidentified when N is unknown; see section 2.4.2.
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6 Simulation Evidence

This section presents a simulation study based on a Probit model in order to investigate

the performance in practice of some of the estimators developed in previous sections.

Section 6.1 describes the experimental design and section 6.2 discusses the results.

6.1 Experimental Design

All experiments consider binary data; thus Y = {0, 1}. The variable of interest, Y ,
conditional on the scalar covariate X = x, is generated by the Probit model characterized

by P{1|x, θ} = Φ (xθ) where Φ(.) denotes the standard normal distribution function.

The scalar covariate X has mean 3 and variance 4 and is generated as a mixture of

normally distributed variates, N (2, 1.2915) with probability 0.7 and N (5.333, 1.2915)

with probability 0.3. To obtain a population probability Q1 = 0.75 of observing Y = 1,

we set the true value θ0 = 0.251. The initial sample size is N = 300 throughout.

Five experimental designs characterized by different ratios P ∗ = P1/P0 are analysed.

The size of the SRS is m = N − n, so that the improvements due to combining infor-
mation on X from this independent sample (under UNRS) or from the same number

of nonrespondents from the initial sample (under INR) may be compared. The differ-

ent combinations of P1 and P0 produce different proportions of individuals responding

Y = 1 (Y = 0) in the main sample and the SRS, H1 (H0) and HS respectively.
16 Table

1 summarizes the main characteristics of the five experimental designs. For comparison

purposes, the first experimental design, Experiment a, contains no missing values. The

number of incomplete responses N−n is increased from Experiment b to Experiment c, as
well as the differential between P1 and P0. Experiment d considers a relatively large ratio

P ∗, which is a little smaller than that in Experiment b, associated with a small complete

sample size (n = 120 as in Experiment c), in order to distinguish the effects of varying

P ∗ and n. Finally, Experiment e assumes that the data are MCAR, that is P ∗ = 1. All

16From (2.9), H1 = P1Q1 (1−HS) and H0 = P0 (1−Q1) (1−HS).
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computations were done using S-Plus. Each experiment uses 1000 replications.

Table 1 about here

Eight estimators were compared. Four assume the absence of information on Q1,

including the RSML estimator (RSMLE), which uses the complete data set, and the esti-

mators proposed in this paper for UNR (UNRE), UNRS (UNRSE) and INR (INRE). The

remaining four estimators incorporate information on Q1 and are denoted by QRSMLE,

QUNRE, QUNRSE and QINRE. Table 2 lists the moment indicators for INRS and

UNRS which are obtained from, respectively, (4.2)-(4.5) and (4.7)-(4.10). The moment

indicators for INR and UNR use the simplifications described in section 4.2 and the mo-

ment indicator for θ for RSMLE is that in UNR with the second term suppressed. For

INRS (INR) rather than use the efficient moment indicator (4.2), the simpler indicators

(1− s) rI(y = t)−Ht, t ∈ {0, 1}, as in UNRS (UNR), are implemented.

Table 2 about here

6.2 Results

Summary statistics are presented in Table 3, which provides the mean and the median

bias in percentage terms and the standard deviation across the replications for the vari-

ous estimators of θ. Figures 1 and 2 show the estimated sampling distributions of these

estimators for Experiments b, c and d. Figure 1 considers the four estimators in which in-

formation on Q1 is not used (RSMLE, UNRE, UNRSE and INRE) together with QUNRE

which, among the estimators which use the known value of Q1, gave the worst perfor-

mance. Figure 2 illustrates the behaviour of RSMLE compared with that of the four

estimators where Q1 is known, QRSMLE, QUNRE, QUNRSE and QINRE.

Table 3 about here

Figures 1 and 2 about here

As expected, RSMLE performs well in Experiment a, where there are no missing val-

ues, and Experiment e, where data are MCAR. In these experiments the incorporation
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of aggregate information on Q1 reduces the standard deviations across replications by

more than 50%. For Experiments b, c and d, however, where the probability of response

differs for Y = 1 and Y = 0, RSMLE suffers from substantial mean and median biases.

These biases are less in Experiments b and d, which are characterized by a ratio P ∗ close

to 1, and are, thus, closer to a MCAR pattern. But even in these cases, the biases are

still unacceptably high, being of the order of at least 10%. In these three experiments,

the incorporation of information on Q1 produces substantial improvements. Except for

Experiment c, where P ∗ is very small, QRSMLE displays relatively small mean and me-

dian distortions, which are smaller than some of those for the GMM estimators UNRE

and UNRSE, and a variability similar to that of GMM estimators when Q1 is known;

see also Figure 2. These results are especially interesting. Imbens and Lancaster (1994)

show that combining macro and micro information results in more efficient estimators.

Clearly, as these experiments reveal, an improvement in efficiency is not the only advan-

tage of their proposal, since it also produces more robust estimators in the presence of

nonignorable nonresponse.17

All of the GMM estimators proposed to deal with nonignorable missing data perform

relatively well. None of their results appears to be strongly affected by the experimental

design, apart from some adverse effects on estimator variability when the complete sample

size n is reduced, which become more serious when P ∗ is close to 1 in Experiment d. In

effect, the mean and median biases of the GMM estimators are small; see also Figures 1

and 2, in which the estimated densities for these estimators are always centrally located

around the true value of θ0 = 0.251. Table 3 and these Figures show that the inclusion

of information on X from nonrespondents and units of the SRS is only relevant when

Q1 is unknown. In fact, while UNRSE and INRE exhibit, in general, better results than

UNRE, especially when P ∗ is reduced, the mean and the median biases are very similar

for QUNRE, QUNRSE, and QINRE. On the other hand, the inclusion of information on

Q1 only appears to substantially ameliorate bias under UNR, the case where X is only

17Similar conclusions were also reached in simulation studies conducted in Ramalho (2001, 2002).
These experiments concerned problems of misclassification in the reponse variable under CB sampling
and measurement error in the covariates.
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measured for respondents.

Standard deviations across replications reported in Table 3 exemplify the improve-

ments due to the knowledge of Q1. The estimators QUNRE, QUNRSE and QINRE, rel-

ative to their respective versions with Q1 estimated, have dispersion reduced by at least

31%. Figure 1 reinforces this observation; compare QUNRE in Figure 1 with UNRE,

UNRSE and INRE. Moreover, for Experiments b, c and d, standard deviations across

replications are reduced for both UNRSE and INRE relative to UNRE, and QUNRSE

and QINRE relative to QUNRE, which results from including information on X from the

incomplete questionnaires. These improvements are more considerable in Experiment c,

where the differential between P1 and P0 is large and the complete sample size is small, a

situation in which the information on X incorporated in UNRS and INR has an increas-

ing weight relative to that on (Y,X) provided by units with complete responses. It is

also clear that when Q1 is unknown the reductions in variability are more significant for

INRE than UNRSE. Thus, as the sample size of the SRS in UNRS equals the number of

nonrespondents in INR in our experiments, we may conclude that the observations on X

contributed by nonrespondents are more informative than those from the SRS. Finally,

it is also worth noting that RSMLE underestimates the variability of the data, which is

a common feature if a sampling problem, not only nonresponse but also several forms

of measurement error, is ignored; see, for example, Hausman et al. (1998) and Chesher

(1998), who examine two different forms of measurement error.

Additionally, the ratio P ∗ for cases where Q1 is unknown was estimated using (2.9)

for experiments with missing data (Experiments b, c, d and e). Mean and the median

biases in percentage terms and standard deviations across the replications are presented

in Table 4. The conclusions for the P ∗ estimates are similar to those for the estimators

of θ. The mean and median biases are small and worst for UNR with the two smaller

values of P ∗ (Experiments c and d) and for UNRS when m is small (Experiment b). Also,

the variability of these estimates seems to be dependent on P ∗: standard deviations are

smaller in Experiment c, with the smallest P ∗, and then increase dramatically in the

other cases, especially in Experiment d, where a relatively large value of P ∗ is associated
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with a small complete sample size n.

Table 4 about here

These experiments show the importance of using all the available information in the

estimation procedure. Undoubtedly, aggregate information on Q1 is the major source of

improvement followed by data on X from incomplete responses, and, finally, data on X

from a SRS. The use of one or other of these two last forms of information when Q1 is

available does not appear to offer any advantage. However, the incorporation of known

Q1 appears to be beneficial in all cases.

7 Conclusion

This paper considers several nonignorable missing data problems when the dependent

variable is discrete. A unified GMM estimation and inference methodology is proposed

for such circumstances which adapts and extends that usually employed with choice based

sampling. The advantages of an integrated approach are obvious. The same methodology

is employed for both model specification and estimator derivation in all cases. Addition-

ally, it also allows the investigation of and comparison between the different nonresponse

problems. The nonresponse pattern, INRS, encompasses all the rest. Discarding the

information on covariates provided by nonrespondents and individuals in the SRS, re-

spectively, UNRS and INR, are straightforwardly obtained. The additional suppression

of similar information from these two cases yields UNR. Moreover, for a MIM struc-

tural model, RS estimation methods using the complete data set can be employed in all

cases for consistent estimation of the slope parameters, but at the expense of the loss of

information on the covariates from nonrespondents and/or SRS units.

The critical assumption in our framework, besides the correct specification of the

structural model, is that the probability of response conditional on the dependent vari-

able and covariates is independent of the covariates. This assumption might be expected

to relevant in many practical situations. In cases of INR (and INRS), it is not neces-

sarily too unreasonable to assume that covariates influence the choice variable and the
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willingness to report that choice in a similar fashion. Under UNR (and UNRS), this

assumption is likely to be appropriate in cases where the refusal to participate in the sur-

vey is especially motivated by an unwillingness to reveal the value of the choice variable.

We suggest how this assumption may be weakened to allow the response mechanism to

depend additionally on a finite partition of the covariate sample space. Specification tests

are presented both for MCAR and the missingness assumption.

A small simulation study revealed very promising results. The GMM estimators sug-

gested here display negligible bias, which is especially apparent in cases where data on

the covariates, from either nonrespondents or units of a SRS, are incorporated in the

estimation procedure. In contradistinction, RSML estimators are considerably biased in

all cases where response rates across the alternatives are different, even in experiments

where this differential was not very substantial. The incorporation of aggregate informa-

tion on the marginal population choice probabilities only greatly improved the properties

of both the proposed GMM estimators and the RS estimators based on the complete data

set when response was nonignorable.
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Appendix A: Derivation of Moment Indicators

A.1 INRS

Let L denote the Lagrangean arising from (4.1) with µ as the Lagrange multiplier asso-

ciated with the constraint
PL
l=1 π

l = 1. The resultant first order derivatives are

∂L
∂Hy

=
NmX
i=1

(1− si)
riI(yi = y)

Hy
− (1− ri)
1−HS −P

y∈Y
Hy
Qy
P{y|xli, θ}

P{y|xli, θ}
Qy

 , (A.1)
∂L
∂HS

=
NmX
i=1

 si
HS

− (1− si) (1− ri)
1−HS −P

y∈Y
Hy
Qy
P{y|xli , θ}

 , (A.2)

∂L
∂θ

=
NmX
i=1

(1− si)
(
ri

"
∂ logP{yi|xli , θ}

∂θ
− 1

Qyi

LX
l=1

πl
∂P{yi|xl, θ}

∂θ

#
(A.3)

− (1− ri)
1−HS −P

y∈Y
Hy
Qy
P{y|xli, θ}

×
X
y∈Y

Hy
Qy

∂P{y|xli, θ}
∂θ

−X
y∈Y

Hy
Q2
y

P{y|xli, θ}
LX
l=1

πl
∂P{y|xl, θ}

∂θ

 ,
∂L
∂πl

=
NmX
i=1

(1− si)
(
ri

"
I(li = l)

πl
− 1

Qyi
P{yi|xl, θ}

#
(A.4)

(1− ri)
Py∈Y

Hy
Q2
y
P{y|xli, θ}P{y|xl, θ}

1−HS −P
y∈Y

Hy
Qy
P{y|xli , θ} +

I(li = l)

πl

+
NmX
i=1

si
I(li = l)

πl
− µ,

∂L
∂µ

=
LX
l=1

πl − 1, (A.5)

where y ∈ Y and l = 1, ..., L.
Equating (A.1) to zero and solving yields the ML estimator for Hy

Ĥy = nyQ̂y

NmX
i=1

(1− si)(1− ri)P{y|xli , θ̂}
1− ĤS −P

y∈Y
Ĥy
Q̂y
P{y|xli, θ̂}


−1

, (A.6)

where Q̂y =
PL
l=1 π̂lP{y|xl, θ̂}. The ancillary statistic ĤS = m/Nm is the ML estimator

for HS and is obtained by multiplying (A.1) by Hy, summing over y and then equating

the resultant expression and (A.2) to zero.
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The mass point probabilities πl, l = 1, ..., L, can be concentrated out, thus removing

the dependence on the discrete distribution of X; cf. Imbens (1992). Firstly, note that,

from (A.6), the second and third terms in (A.4) sum to zero. Secondly, multiplying (A.4)

by π̂l and summing over l = 1, ..., L yields

µ̂ =
NmX
i=1

{(1− si) [(ri + (1− ri))] + si}
LX
l=1

I(li = l)

= Nm.

Substituting for µ̂ in (A.4),

π̂l =
1

Nm

NmX
i=1

I(li = l), (A.7)

which is the the usual nonparametric ML estimator for a probability mass point at each

of L points of support; see, for example, Cosslett (1997). Note that X is observed for all

units and, thus, hINRS (x) of (3.3) coincides with fX(x). Hence, the ML estimator for

Qy is given from (2.2) by

Q̂y =
LX
l=1

π̂lP{y|xl, θ̂} (A.8)

=
1

Nm

NmX
i=1

P{y|xli, θ̂}, y ∈ Y .

Substitution for π̂l in (A.3) from (A.7) results in the second and fourth terms summing

to zero after using (A.6). Therefore, (A.3) becomes

∂L
∂θ

=
NmX
i=1

(1− si)
(
ri
∂ logP{yi|xli, θ}

∂θ
− (A.9)

(1− ri)
1−HS −X

y∈Y

Hy
Qy
P{y|xli , θ}

−1 X
y∈Y

Hy
Qy

∂P{y|xli, θ}
∂θ

 .
A.2 UNRS

The Lagrangean L now arises from (4.6). The resultant first order derivatives are

∂L
∂Hy

=
NmX
i=1

(1− si)
"
riI(yi = y)

Hy
− (1− ri)
1−HS −P

y∈Y Hy

#
, (A.10)

∂L
∂HS

=
NmX
i=1

"
si
HS

− (1− si) (1− ri)
1−HS −P

y∈Y Hy

#
, (A.11)
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∂L
∂θ

=
NmX
i=1

(1− si) ri
"
∂ logP{yi|xli , θ}

∂θ
− 1

Qyi

LX
l=1

πl
∂P{yi|xl, θ}

∂θ

#
, (A.12)

∂L
∂πl

=
NmX
i=1

(
(1− si) ri

"
I(li = l)

πl
− 1

Qyi
P{yi|xl, θ}

#
+ si

I(li = l)

πl

)
− µ, (A.13)

∂L
∂µ

=
LX
l=1

πl − 1, (A.14)

where y ∈ Y and l = 1, ..., L.
Equating (A.10) and (A.11) to zero, we obtain the ancillary statistics Ĥy = ny/Nm

and ĤS = m/Nm as ML estimators for Hy and HS respectively.

Similarly to INRS in Appendix A.1, the dependence on the discrete distribution

for X may be removed. Recall that the ML estimator for Qy from (2.2) is Q̂y =PL
l=1 π̂lP{y|xl, θ̂}. Hence, multiplying (A.13) by π̂l and summing over l = 1, ..., L yields

µ̂ =
NmX
i=1

(1− si) ri
"
LX
l=1

I(li = l)−
PL
l=1 π̂lP{yi|xl, θ̂}PL
l=1 π̂lP{yi|xl, θ̂}

#

+
NmX
i=1

si
LX
l=1

I(li = l) = m = NmĤS.

Replacing µ̂ in (A.13) and solving,

π̂l =
1

Nm

NmX
i=1

[(1− si) ri + si] I(li = l)
"
ĤS +

1

Nm

NmX
i=1

(1− si) ri
Q̂yi

P{yi|xl, θ̂}
#−1

=
1

Nm

NmX
i=1

[(1− si) ri + si] I(li = l)
ĤS +X

y∈Y

Ĥy

Q̂y
P{y|xl, θ̂}

−1

. (A.15)

The estimator (A.15) for πl reflects the distortion of hUNRS(x) in (3.5) relative to fX(x)

induced by the pattern of nonresponse. If there were no missing values in the main

sample, then π̂l would equal the usual nonparametric ML estimator
PNm
i=1 I(li = l)/Nm;

cf. (A.7) above. This result obtains since R = 1 for all units of the main sample. SoP
y∈Y ĤyP{y|xl, θ̂}/Q̂y = (Ĥy/Q̂y)

P
y∈Y P{y|xl, θ̂} = (1−ĤS)

P
y∈Y P{y|xl, θ̂} = 1−ĤS,

the first and second equalities resulting from Py = 1 in eq. (2.9). Substituting π̂l of (A.15)

in the last term of (A.12),

NmX
i=1

(1− si) ri 1
Q̂yi

LX
l=1

π̂l
∂P{yi|xl, θ̂}

∂θ
=
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=
NmX
i=1

(1− si) ri
Q̂yi

LX
l=1

 1

Nm

NmX
j=1

[(1− sj) rj + sj ] I(lj = l)

×
ĤS +X

y∈Y

Ĥy

Q̂y
P{y|xl, θ̂}

−1
 ∂P{yi|xl, θ̂}

∂θ

=
NmX
i=1

(1− si) ri
Q̂yi

1

Nm

NmX
j=1

[(1− sj) rj + sj]
ĤS +X

y∈Y

Ĥy

Q̂y
P{y|xlj , θ̂}

−1

×∂P{yi|x
lj , θ̂}

∂θ

=
NmX
j=1

[(1− sj) rj + sj]
ĤS +X

y∈Y

Ĥy

Q̂y
P{y|xlj , θ̂}

−1
1

Nm

NmX
i=1

(1− si) ri
Q̂yi

×∂P{yi|x
lj , θ̂}

∂θ

=
NmX
i=1

[(1− si) ri + si]
ĤS +X

y∈Y

Ĥy

Q̂y
P{y|xli, θ̂}

−1 X
y∈Y

Ĥy

Q̂y

∂P{y|xli , θ̂}
∂θ

.

The ML estimator Q̂y becomes

Q̂y =
LX
l=1

1

Nm

NmX
i=1

[(1− si) ri + si] I(li = l)
ĤS +X

y∈Y

Ĥy

Q̂y
P{y|xl, θ̂}

−1

P{y|xl, θ̂}

=
1

Nm

NmX
i=1

[(1− si) ri + si]
ĤS +X

y∈Y

Ĥy

Q̂y
P{y|xli , θ̂}

−1

P{y|xli , θ̂}. (A.16)

Appendix B: Semiparametric Efficiency

Following Imbens (1992), estimator efficiency, when the exact value Qy is known or

unknown, can be proved by showing that the Cramér-Rao lower bounds associated with

a sequence of parametric models which satisfy the same regularity conditions as our

model, converge to the asymptotic covariance matrix of our semiparametric estimators.

For reasons of expositional simplicity only we confine attention here to UNRS and UNR.

To construct the sequence of parametric models recall thatX has density fX(.) defined

on X . For any ε > 0, partition X into Lε subsets Xl, l = 1, ..., Lε, where Xl ∩ Xm = ∅
if l 6= m and kx− zk < ε if x, z ∈ Xl. Define φl(x) = 1 if x ∈ Xl and 0 otherwise
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and f εX(x) = fX(x)
hPLε

l=1 φl(x)
R
Xl fX(x)dx

i−1
. Define the parameters δl = P{x ∈ Xl} =R

Xl fX(x)dx, l = 1, ..., Lε.

Under UNRS, the sequence of parametric models indexed by ε, and which result from

substituting for fX(x) in (3.2), is

hεUNRS(y, x, r, s) =


"
Hy

P{y|x, θ}f εX(x)
PLε
l=1 φl(x)δlPLε

l=1 δl
R
Xl P{y|x, θ}f εX(x)φl(x)dx

#r1−HS −X
y∈Y

Hy

1−r
1−s

×
Ã
HSf

ε
X(x)

LεX
l=1

φl(x)δl

!s
,

where f εX (x) is a known function and Hy, y ∈ Y , HS, θ and δl, l = 1, ..., Lε are the

unknown parameters.

The ML estimator for Qy from (2.2) is

Q̂y =
LεX
l=1

δ̂lφl(x)
Z
Xl
P{y|x, θ̂}f εX(x)dx.

Hence, the dependence of the likelihood equations obtained from hεUNRS(y, x, r, s) on δl

may be removed by the same procedure employed to remove dependence on π̂l in the

system (A.10)-(A.14). The resultant score vector is described by the moment indicators

Ht : (1− s) rI(y = t)−Ht, (B.1)

HS : s−HS, (B.2)

θ : (1− s) r∂ logP{y|x, θ}
∂θ

− (B.3)

[(1− s) r + s]
HS +X

y∈Y

Hy
Qy

LεX
l=1

φl(x)
Z
Xl
P{y|x, θ}f εX(x)dx

−1

×X
y∈Y

Hy
Qy

LεX
l=1

φl(x)
Z
Xl

∂P{y|x, θ}
∂θ

f εX(x)dx,

Qy : Qy − (B.4)

[(1− s) r + s]
HS +X

y∈Y

Hy
Qy

LεX
l=1

φl(x)
Z
Xl
P{y|x, θ}f εX(x)dx

−1

×
LεX
l=1

φl(x)
Z
Xl
P{y|x, θ}f εX(x)dx.

[B.2]



Define the expectations Eε[P{y|x, θ}] = PLε
l=1 φl(x)

R
Xl P{y|x, θ}f εX(x)dx and Eε[∂

P{y|x, θ}/∂θ] and Eε[∂2P{y|x, θ}/∂θ∂θ0] similarly. Therefore, the score vector based on
the system of moment indicators (B.1)-(B.4) corresponds to (4.7)-(4.10) with P{y|x, θ}
and ∂P{y|x, θ}/∂θ replaced by their respective expectations.
Continuous differentiability of P{y|x, θ}, ∂P{y|x, θ}/∂θ and ∂2P{y|x, θ}/∂θ∂θ0 in x

implies uniform convergence of Eε[P{y|x, θ}], Eε[∂P{y|x, θ}/∂θ] and Eε[∂2P{y|x, θ}/∂θ∂θ0]
to P{y|x, θ}, ∂P{y|x, θ}/∂θ and ∂2P{y|x, θ}/∂θ∂θ0 respectively. LetΩε = Eε[gε(ϕ)gε(ϕ)0]
and Gε = Eε[∂gε(ϕ)/∂ϕ0] where gε(ϕ) stacks the moment indicators (B.1)-(B.4). When
Qy, y ∈ Y , are unknown, limε→0Ωε = Ω and limε→0Gε = G. Thus, the asymptotic

variance matrix G−1
ε ΩεG

0−1
ε , which is the Cramér-Rao lower bound for the parametric

estimator defined by (B.1)-(B.4), also converges to G−1ΩG0−1, the asymptotic variance

matrix of the GMM estimator. Therefore, the GMM estimator is semiparametrically ef-

ficient. Analogously, in the presence of exact information on Qy, a suitable re-definition

of Ωε and Gε allows a similar conclusion to be reached, since the asymptotic variance

matrix (G0εΩ
−1
ε Gε)

−1 of the ML estimator converges to (G0Ω−1G)−1.

[B.3]
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Table 1: Experimental Designs: Missing Data Patterns

Experiment P1 P0 P ∗ HS H1 H0 n1 n0 n N − n
a 1.000 1.000 1.000 0 .750 .250 225 75 300 0
b .760 .920 .826 .167 .475 .192 171 69 240 60
c .227 .920 .247 .375 .106 .144 51 69 120 180
d .373 .480 .778 .375 .175 .075 84 36 120 180
e .920 .920 1.000 .074 .639 .213 207 69 276 24

Table 2: Binary Models: Individual Moment Indicators

Estimators
INRSE UNRSE

H1 (1− s) ry −H1 (1− s) ry −H1

H0 (1− s) r (1− y)−H0 (1− s) r (1− y)−H0

HS s−HS s−HS

θ (1− s)xp
h

r(y−P )
P (1−P )

− xp
h

(1−s)r(y−P )
P (1−P )

−
(1−r)[(H1/Q1)−(H0/Q0)]

1−HS−(H0/Q0)(1−P )−(H1/Q1)P

i
− [(1−s)r+s][(H1/Q1)−(H0/Q0)]

HS+(H0/Q0)(1−P )+(H1/Q1)P

i
Q1 Q1 − P Q1 − [(1−s)r+s]

HS+(H0/Q0)(1−P )+(H1/Q1)P
P

Note: P = P{1|x, θ}, p = ∂P{1|x, θ}/∂(xθ).

[T.1]



Table 3: Probit Model: Summary Statistics for GMM Estimators

θ = 0.251, Q1 = 0.75
Experiment Estimator Bias St. Dev.

Mean Median
a RSMLE .008 .005 .028

QRSMLE .015 .012 .011
b RSMLE −.105 −.110 .028

UNRE .024 .013 .048
UNRSE .022 .017 .046
INRE .010 .011 .047
QRSMLE .015 .012 .012
QUNRE .013 .011 .012
QUNRSE .013 .011 .011
QINRE .015 .013 .012

c RSMLE −.841 −.842 .029
UNRE .032 .036 .059
UNRSE .016 .008 .052
INRE .014 .012 .039
QRSMLE −.130 −.127 .023
QUNRE .014 .011 .016
QUNRSE .016 .015 .011
QINRE .016 .014 .012

d RSMLE −.138 −.145 .033
UNRE .034 .027 .068
UNRSE .010 .011 .060
INRE .015 .021 .061
QRSMLE .018 .014 .017
QUNRE .016 .013 .017
QUNRSE .015 .013 .012
QINRE .015 .014 .012

e RSMLE .009 .009 .028
UNRE .021 .015 .046
QRSMLE .016 .014 .012
QUNRE .016 .013 .012

[T.2]



Table 4: Probit Model: Summary statistics for P ∗ Estimates

θ = .251, Q1 = 0.75
Experiment Estimator Bias St. Dev.

Mean Median
b UNRE .006 −.020 .204

UNRSE −.001 −.030 .192
INRE .020 −.021 .203

c UNRE .006 −.047 .078
UNRSE .036 −.019 .107
INRE .005 −.023 .044

d UNRE .017 −.034 .253
UNRSE .060 −.021 .284
INRE .031 −.018 .216

e UNRE .007 −.023 .239

[T.3]
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