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`1-PENALIZED QUANTILE REGRESSION IN HIGH-DIMENSIONAL

SPARSE MODELS

By Alexandre Belloni and Victor Chernozhukov∗,†

Duke University and Massachusetts Institute of Technology

We consider median regression and, more generally, quantile re-

gression in high-dimensional sparse models. In these models the over-

all number of regressors p is very large, possibly larger than the sam-

ple size n, but only s of these regressors have non-zero impact on the

conditional quantile of the response variable, where s grows slower

than n. Since in this case the ordinary quantile regression is not con-

sistent, we consider quantile regression penalized by the `1-norm of

coefficients (`1-QR). First, we show that `1-QR is consistent at the

rate
√

s/n
√

log p, which is close to the oracle rate
√

s/n, achievable

when the minimal true model is known. The overall number of re-

gressors p affects the rate only through the log p factor, thus allowing

nearly exponential growth in the number of zero-impact regressors.

The rate result holds under relatively weak conditions, requiring that

s/n converges to zero at a super-logarithmic speed and that regular-

ization parameter satisfies certain theoretical constraints. Second, we

propose a pivotal, data-driven choice of the regularization parame-

ter and show that it satisfies these theoretical constraints. Third, we

show that `1-QR correctly selects the true minimal model as a valid

submodel, when the non-zero coefficients of the true model are well

separated from zero. We also show that the number of non-zero co-

efficients in `1-QR is of same stochastic order as s, the number of

non-zero coefficients in the minimal true model. Fourth, we analyze

the rate of convergence of a two-step estimator that applies ordi-

nary quantile regression to the selected model. Fifth, we evaluate the

performance of `1-QR in a Monte-Carlo experiment, and provide an

application to the analysis of the international economic growth.

∗First version: December, 2007, This version: April 19, 2009.
†The authors gratefully acknowledge the research support from the National Science Foundation.

AMS 2000 subject classifications: Primary 62H12, 62J99; secondary 62J07

Keywords and phrases: median regression, quantile regression, sparse models

1



2 BELLONI AND CHERNOZHUKOV

1. Introduction. Quantile regression is an important statistical method for analyzing

the impact of regressors on the conditional distribution of a response variable (cf. Laplace

[22], Koenker and Bassett [20]). In particular, it captures the heterogeneity of the impact

of regressors on the different parts of the distribution [7], exhibits robustness to outliers

[19], has excellent computational properties [29], and has a wide applicability [19]. The

asymptotic theory for quantile regression is well-developed under both fixed number of

regressors and increasing number of regressors. The asymptotic theory under fixed number of

regressors is given by Koenker and Bassett [20], Portnoy [28], Gutenbrunner and Jurečková

[14], Knight [17], Chernozhukov [9] and others. The asymptotic theory under increasing

number of regressors is given in He and Shao [15] and Belloni and Chernozhukov [4, 5],

covering the case where the number of regressors p is negligible relative to the sample size

n (p = o(n)).

In this paper, we consider quantile regression in high-dimensional sparse models (HDSMs).

In such models, the overall number of regressors p is very large, possibly much larger than

the sample size n. However, the number s of significant regressors – those having a non-zero

impact on the response variable – is smaller than the sample size, that is, s = o(n). The

HDSMs ([8], [26]) have emerged to deal with many new applications, arising in biometrics,

signal processing, machine learning, econometrics, and other areas of data analysis, where

high-dimensional data sets have become widely available.

A number of papers began to investigate estimation of HDSMs, primarily focusing on

penalized mean regression, with `1-norm acting as a penalty function. Candes and Tao [8]

demonstrated that, remarkably, an estimator, called the Dantzig selector, achieves the rate√
s/n

√
log p, which is very close to the oracle rate

√
s/n obtainable when the significant

regressors are known. Thus the estimator can be consistent even under very rapid, nearly

exponential growth in the total number of regressors p. Meinshausen and Yu [26] and Zhang

and Huang [39] demonstrated similar striking results for the `1-penalized least squares

proposed by Tibshirani [35]. van der Geer [37] derived valuable finite sample bounds on

empirical risk for `1-penalized estimators in generalized linear models. Fan and Lv [11] used

screening and derived asymptotic results under even weaker conditions on p. There were

many other interesting developments, which we shall not review here.

Our paper’s contribution is to develop, within the HDSM framework, a set of results on

model selection and rates of convergence for quantile regression. Since ordinary quantile

regression is not consistent in HDSMs, we consider quantile regression penalized by the

`1-norm of parameter coefficients. We show that the `1-penalized quantile regression is
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consistent at the rate
√

s/n
√

log p, which is close to the oracle rate
√

s/n achievable when

the true minimal model is known. In order to make the penalized estimator practical,

we propose a pivotal, data-driven choice of the regularization parameter, and show that

this choice leads to the same sharp convergence rate. Further, we show that the penalized

quantile regression correctly selects the true minimal model as a valid submodel, when

the non-zero coefficients of the true model are well separated from zero. We also analyze

a two-step estimator that applies standard quantile regression to the selected model and

aims at reducing the bias of the penalized quantile estimator. We illustrate the use of the

penalized and post-penalized estimators with a Monte carlo experiment and an international

economic growth example. Thus, our results contribute to the literature on HDSMs by

examining a new class of problems. Moreover, our proof strategy, developed to cope with

non-linearities and non-smoothness of quantile regression, may be of interest in other M-

estimation problems. (We provide more detailed comparisons to the literature in Section

2.)

Finally, let us comment on the role of computational considerations in our analysis.

The choice of the `1-penalty function arises from considering a tradeoff between statistical

efficiency and computational efficiency, with the latter being of particular importance in

high-dimensional applications. Indeed, in model selection problems, the statistical efficiency

criterion favors the use of the `0-penalty functions (Akaike [1] and Schwarz [32]), where the

`0-penalty counts the the number of non-zero components of a parameter vector. However,

the computational efficiency criterion favors the use of convex penalty functions. Indeed,

convex penalty functions lead to efficient convex programming problems ([27]); in contrast,

the `0-penalty functions lead to inefficient combinatorial search problems, plagued by the

computational curse of dimensionality. Precisely because it is a convex function that is

closest to the `0-penalty (e.g. [30]), the `1-penalty has emerged to play a central role in

HDSMs, in general (e.g. [25]), and in our analysis, in particular. In other words, the use

of the `1-penalty takes us close to performing the most effective model selection, while

respecting the computational efficiency constraint.

We organize the rest of the paper as follows. In Section 2, we introduce the problem and

some simple primitive assumptions D.1-D.4, and propose pivotal choices for the regular-

ization parameter. We also describe our key results under D.1-D.4, and provide detailed

comparisons with the literature. In Section 3, we develop the main results under condi-

tions E.1-E.5, which are implied by D.1-D.4, and also hold much more generally. Section 4

analysis the pivotal choice of the penalization parameter. In Section 5, we carry out a com-
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putational experiment and provide an application to an international growth example. In

Section 6, we provide conclusions and discuss possible extensions. In Appendix A, we verify

that conditions E.1-E.5 are implied by conditions D.1-D.4 and also hold more generally.

1.1. Notation. In what follows, we implicitly index all parameter values by the sample

size n, but we omit the index whenever this does not cause confusion. We carry out all of

the asymptotic analysis as n →∞. We use the notation a . b to denote that a = O(b), that

is a ≤ cb for all sufficiently large n, for some constant c > 0 that does not depend on n, and

we use a .p b to denote that a = Op(b); we use a ' b to denote a . b . a and a 'p b to

denote a .p b .p a. We also use the notation a ∨ b = max{a, b} and a ∧ b = min{a, b}. We

denote `2-norm by ‖ · ‖, `1-norm by ‖ · ‖1, `∞-norm by ‖ · ‖∞, and the `0-“norm” by ‖ · ‖0.

2. Basic Settings, the Estimator, and Overview of Results. In this section,

we formulate the setting, the estimator, and state primitive regularity conditions. We also

provide an overview of the main results.

2.1. Basic Setting. The set-up of interest corresponds to a parametric quantile regression

model, where the dimension p of the underlying model increases with the sample size n.

Namely, we consider a response variable y and p-dimensional covariates x such that the

u-th conditional quantile function of y given x is given by

(2.1) Qy|x(u) = x′β(u), β(u) ∈ IRp.

We consider the case where the dimension p of the model is large, possibly much larger than

the available sample size n, but the true model β(u) is sparse having only s = s(u) < p

non-zero components. Throughout the paper the quantile index u ∈ (0, 1) is fixed.

The population coefficient β(u) is known to be a minimizer of the criterion function

Qu(β) = E[ρu(y − x′β)],(2.2)

where ρu(t) = (u − 1{t ≤ 0})t is the asymmetric absolute deviation function [20]. Given

a random sample (y1, x1), . . . , (yn, xn), the quantile regression estimator β̂(u) of β(u) is

defined as a minimizer of

(2.3) Q̂u(β) = En
[
ρu(yi − x′iβ)

]

where En [f(yi, xi)] := n−1 ∑n
i=1 f(yi, xi) denotes the empirical expectation of a function f

in the given sample.



PENALIZED QUANTILE REGRESSION 5

In the high-dimensional settings, particularly when p ≥ n, quantile regression is generally

not consistent, which motivates the use of penalization in order to remove all or at least

nearly all regressors whose population coefficients are zero, thereby possibly restoring con-

sistency. The penalization that has been proven to be quite useful in least squares settings

is the `1-penalty leading to the lasso estimator [35].

2.2. The Choice of Estimator, Linear Programming Formulation, and Its Dual. The

`1-penalized quantile regression estimator β̂(u) is a solution to the following optimization

problem:

(2.4) min
β∈Rp

Q̂u(β) +
λ

n

p∑

j=1

|βj |.

When the solution is not unique, we define β̂(u) as a basic solution having the minimal

number of non-zero components. The criterion function in (2.4) is the sum of the criterion

function (2.3) and a penalty function given by a scaled `1-norm of the parameter vector.

This `1-penalized quantile regression or quantile regression lasso has been considered by

Knight and Fu [18] under the small (fixed) p asymptotics.

For computational purposes, it is important to note that the penalized quantile regression

problem (2.4) is equivalent to the following linear programming problem

(2.5)
min

ξ+,ξ−,β+,β−∈R2n+2p
+

En

[
uξ+

i + (1− u)ξ−i
]
+

λ

n

p∑

j=1

(β+
j + β−j )

ξ+
i − ξ−i = yi − x′i(β

+ − β−), i = 1, . . . , n.

The problem minimizes a sum of `1-norm of the absolute positive β+
j and negative β−j parts

of the parameter βj = β+
j − β−j and of an average of asymmetrically weighted residuals

ξ+
i and ξ−i . The linear programming formulation (2.5) is useful for computation of the

estimator, particularly in high-dimensional applications. There are a number of efficient,

that is, polynomial time, algorithms for the linear programming problem (2.5). Using these

algorithms, one can compute the estimator (2.4) efficiently, avoiding the computational

curse of dimensionality.

Furthermore, for both computational and theoretical purposes, it is important to note

that the primal problem (2.5) has the following dual problem:

(2.6)

max
a∈Rn

En [yiai]

|En [xijai] | ≤ λ
n , j = 1, . . . , p,

(u− 1) ≤ ai ≤ u, i = 1, . . . , n.



6 BELLONI AND CHERNOZHUKOV

The dual problem maximizes the correlation between the response variable and the rank

scores subject to the condition requiring the rank scores to be approximately uncorrelated

with the regressors. This condition is reasonable, since the true rank scores, defined as

a∗i (u) = (u− 1{yi ≤ x′iβ(u)}), should be independent of regressors xi. This follows because

by (2.1) the event {yi ≤ x′iβ(u)} is equivalent to the event {ui ≤ u}, for a standard uniformly

distributed variable ui which is independent of xi.

Since both primal and dual problems are feasible, by strong duality for linear program-

ming the optimal values of (2.6) equals the optimal value of (2.4) (see, for example, Bert-

simas and Tsitsiklis [6]). The optimal solution to the dual problem plays an important role

in our analysis, helping us control the sparseness of the penalized estimator β̂(u) as well

as choose the penalization parameter λ. Of course, the optimal solution to the dual prob-

lem (2.6) also plays an important role in the non-penalized case, with λ = 0, yielding the

regression generalization of Hajek-Sidak rank scores (Gutenbrunner and Jurečková [14]).

Another potential approach worth considering is the Dantzig selector approach of Candes

and Tao [8], proposed in the context of mean regression. We can extend this approach to

quantile regression by defining the estimator as solution to the following problem:

(2.7) inf
β∈Rp

p∑

j=1

|βj | : ‖Ŝu(β)‖∞ ≤ γ

n
,

where λ is a penalization parameter, and Ŝu is a subgradient of the quantile regression

objective function Q̂u(β):

(2.8) Ŝu(β) = En[(1{yi ≤ x′iβ} − u)xi].

The estimator (2.7) minimizes the `1-norm of the coefficients subject to a goodness-of-fit

constraint.

On computational grounds, we prefer the `1-penalized estimator (2.4) over to the Dantzig

selector estimator (2.7). The reason is that the subgradient Ŝu in (2.8) is a piece-wise con-

stant function in parameters, leading to a serious difficulty in computing the estimator

(2.7). In particular, the problem (2.7) can be recast as a mixed integer programming prob-

lem with n binary variables, for which (generally) there is no known polynomial time algo-

rithm. (In sharp contrast, in the mean regression case the subgradient is a linear function,

Ŝ(β) = En[(yi − xiβ)xi], corresponding to the objective function Q̂(β) = En[(yi − xiβ)2]/2.

Accordingly, in the mean regression case, the optimization problem can be recast as a linear

programming problem, for which there are polynomial time algorithms.)
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Another idea for formulating a Dantzig type estimator for quantile regression would be

to minimize the `1 norm of the coefficients subject to a convex goodness-of-fit constraint,

namely

(2.9) min
β∈Rp

p∑

j=1

|βj | : Q̂u(β) ≤ γ.

Since the constraint set {β : Q̂u(β) ≤ γ} is piece-wise linear and convex, this problem is

equivalent to a linear programming problem. Of course, this is hardly a surprise, since this

problem is equivalent to an `1-penalized quantile regression problem (2.4) that we started

with in the first place. Indeed, for every feasible choice of γ in (2.9) there is a feasible choice

of λ that makes the solutions to (2.9) and to (2.4) identical. To see this, fix a γ and let κ

denote the optimal value of the Lagrange multiplier for the constraint Q̂u(β) ≤ γ, then the

problem (2.9) is equivalent to minβ∈Rp
∑p

j=1 |βj |+ κ(Q̂u(β)− γ), which is then equivalent

to the original problem (2.4) with λ = n/κ. Therefore it suffices to focus our analysis on

the original problem.

2.3. The Choice of the Regularization Parameter. Here we propose a pivotal, data-driven

choice for the regularization parameter value λ. We shall verify in Section 4 that such

choice will agree with our theoretical choice of λ maximizing the speed of convergence of

the penalized estimate to the true parameter value.

Because the objective function in the primal problem (2.4) is not pivotal in either small or

large samples, finding a pivotal λ appears to be difficult a priori. However, instead of looking

at the primal problem, let us look at its linear programming dual (2.6), which requires that

(2.10) |En [xijai]| ≤ λ

n
, for all j = 1, . . . , p ⇔ ‖En [xiai]‖∞ ≤ λ

n
.

This restriction requires that potential rank scores must be approximately uncorrelated

with regressors. It then makes sense to select λ so that the true rank scores

a∗i (u) = (u− 1{yi ≤ x′iβ(u)}) for i = 1, . . . , n

satisfy this constraint. That is, we can potentially set λ = Λn, where

(2.11) Λn = n ‖En [xia
∗
i (u)]‖∞ .

Of course, since we do not observe the true rank scores, this choice is not available to us.

The key observation is that the finite sample distribution of Λn is pivotal conditional on
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the regressors x1, . . . , xn. We know that rank scores can be represented almost surely as

a∗i (u) = (u− 1{ui ≤ u}), for i = 1, . . . , n,

where u1, . . . , un are i.i.d. uniform (0, 1) random variables, independently distributed from

the regressors, x1, . . . , xn. Thus, we have

(2.12) Λn = n ‖En [xi(u− 1{ui ≤ u})]‖∞ ,

which has a known distribution conditional on x1, . . . , xn. Therefore we can use the tail

quantiles Λn as our choice for λ. In particular, we set λ = λ(x1, . . . , xn) as the 1 − αn

quantile of Λn

(2.13) λ = inf{c : P (Λn ≤ c|x1, . . . , xn) ≥ 1− αn},

where αn ↘ 0 at some rate to be determined below.

Finally, let us note that we can also derive the pivotal quantity Λn, and thus also our

choice of the regularization parameter λ, from the subgradient characterization of optimality

for the primal problem (2.4).

2.4. Primitive Conditions. We follow Huber’s framework of high-dimensional parame-

ters [16], which formally consists of a sequence of models with parameter dimension p = pn

tending to infinity as the sample size n grows to infinity. Thus, the parameters of the mod-

els, the parameter space, and the parameter dimension are all indexed by the sample size

n. However, following Huber’s convention, we will omit the index n whenever this does not

cause confusion. Let us consider the following set of conditions:

D.1. Sampling. Data (yi, x
′
i)
′, i = 1, . . . , n are an i.i.d. sequence of real (1 + p)-vectors,

with the conditional u-quantile function given by (2.1), and with the first component of xi

equal to one.

D.2. Sparseness of the True Model. The number of non-zero components of β(u) is

bounded by 1 ≤ s = sn ≤ n/ log(n ∨ p).

D.3. Smooth Conditional Density. The conditional density fyi|xi
(y|x) and its derivative

∂
∂yfyi|xi

(y|x) are bounded above uniformly in y and x ranging over supports of yi and xi,

and uniformly in n.

D.4. Identifiability in Population and Well-Behaved Regressors. Eigenvalues of the popu-

lation design matrix E[xix
′
i] are bounded above and away from zero, and sup‖α‖=1 E[|x′iα|3]
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is bounded above, uniformly in n. The conditional density evaluated at the conditional quan-

tile, fyi|xi
(x′β(u)|x) is bounded away from zero, uniformly in x ranging over the support of

xi, and uniformly in n.

The conditions D.1-D.4 stated above are a set of simple conditions that ensure that the

high-level conditions developed in Section 3 hold. These conditions allow us to demonstrate

the general applicability of our results and straightforwardly compare to other results in

the literature. In particular, condition D.1 imposes random sampling on the data, which is

a conventional assumption in asymptotic statistics (e.g [38]). Condition D.2 requires that

the effective dimension of the true model is smaller than the sample size. Condition D.3

imposes some smoothness on the conditional distribution of the response variable. Condition

D.4 requires the population design matrix to be uniformly non-singular and the regressors’

moments to be well-behaved.

Further, let φ(k) be the maximal k-sparse eigenvalue of the empirical design matrix

En [xix
′
i], that is,

(2.14) φ(k) = sup
‖α‖≤1,‖α‖0≤k

En

[
(α′xi)2

]
.

Following Meinshausen and Yu [26], we will state our general results on convergence rates of

the penalized estimator in terms of the maximal sparse eigenvalue φ(m0). Meinshausen and

Yu [26] worked with m0 = n∧p as an initial upper bound on the zero norm of the penalized

estimator. In this paper we can work with a smaller m0, in particular, under D.1-D.4, we

can work with

m0 = p ∧ (n/ log(n ∨ p)),

as this provides a valid initial bound on the zero norm of our penalized estimator under a

suitable choice of the penalization parameter.

By using an assumption on the growth rate of φ(k), we avoid imposing Candes and Tao’s

[8] uniform uncertainty principle on the empirical design matrix En [xix
′
i]. Meinshausen and

Yu [26] argue that the assumption in terms of φ(k) are less stringent than the uniform

uncertainty principle, since it allows for non-vanishing correlation between the regressors.

Meinshausen and Yu [26] provide a thorough discussion of the behavior of φ(n) in many

cases of interest. In particular, they show that the condition φ(n) .p 1 appears reasonable

in several cases (for example, when the empirical design matrix is block diagonal). Note

that if the intercept is included as a covariate we have φ(1) ≥ 1. For the purposes of a basic
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overview of results in the next subsection, we employ the assumption

(2.15) φ(n/ log(n ∨ p)) .p 1.

which will cover standard Gaussian regressors and some other regressors considered in

Meinshausen and Yu [26] (because φ(n/ log(n ∨ p)) ≤ φ(n)). Furthermore, in our general

analysis presented in Section 3, we do not impose (2.15) and allow for the sparse eigenvalue

φ(n/ log(n ∨ p)) to diverge, which should permit for situations with regressors having tails

thicker than Gaussian.

In order to illustrate our conditions we employ the following canonical examples through-

out the paper.

Example 1 (Isotropic Normal Design). Let us consider estimating the median (u =

1/2) of the following regression model

y = x′β0 + ε,

where the covariate x1 = 1 is the intercept and the covariates x−1 ∼ N(0, I), and the errors

are independent identically distributed with a smooth probability density function which

is positive at zero and has bounded derivatives. This example satisfies conditions D.1, D.3,

D.4, and D.2 if ‖β0‖0 ≤ s = o(n/ log(n ∨ p)). Moreover, the maximal k-sparse eigenvalues

for k ≤ n satisfy

φ(k) := sup
‖α‖=1,‖α‖0≤k

En

[
(α′xi)2

]
'p 1 +

√
k log p

n

by Lemma 14. Thus, this design satisfies our conditions with φ(n/ log(n∨p)) 'p 1. Moreover,

as shown in [8], this design satisfies Candes and Tao’s uniform uncertainty principle.

Example 2 (Correlated Normal Design). We consider the same setup as in Example

1, but instead we suppose that the covariates are correlated, namely x−1 ∼ N(0, Σ), where

Σij = ρ|i−j| and −1 < ρ < 1 is fixed. This example satisfies conditions D.1, D.3, D.4, and

D.2 if ‖β0‖0 ≤ s = o(n/ log(n ∨ p)). The maximal k-sparse eigenvalues for k ≤ n satisfy

φ(k) := sup
‖α‖=1,‖α‖0≤k

En

[
(α′xi)2

]
'p

1 + |ρ|
1− |ρ|


1 +

√
k log p

n




by Lemmas 14. Thus, this design satisfies our conditions with φ(n/ log(n∨p)) 'p 1. However,

as mentioned in [26] this design violates Candes and Tao’s uniform uncertainty principle,

which requires |ρ| → 0 at log p rate.
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Finally, it is worth noting that our analysis in Sections 3 and 4, and in Appendix A allows

the key parameters of the model, such as the bounds on the eigenvalues of the design matrix

and on the density function, to change with the sample size. This will explicitly allow us

to trace out the impact of these parameters on the large sample behavior of the penalized

estimator. In particular, we will be able to immediately see how some basic changes in

the primitive conditions stated above affect the large sample behavior of the penalized

estimator.

2.5. Overview of Main Results. Here we discuss our results under simplest assumptions,

consisting of conditions D.1-D.4 and condition (2.15) on the maximal (n/ log(n∨ p))-sparse

eigenvalue. These simplest assumptions allow us to straightforwardly compare our results to

those obtained in the literature, without getting into nuisance details. We state our results

under more general conditions in the subsequent sections: in Section 3, we present various

results on convergence rates and model selection; in Section 4, we analyze our choice of the

penalization parameter.

In order to achieve the most rapid rate of convergence, we need to choose

(2.16) λ = t
√

n log(n ∨ p)

with t growing as slowly as possible with n; for concreteness, let t ∝ log log n.

Our first main result is that the `1-penalized quantile regression estimator converges at

the rate:

(2.17) ‖β̂(u)− β(u)‖ .p
λ
√

s

n
=

√
s

n
· t ·

√
log(n ∨ p),

provided that the number of non-zero components s satisfies

(2.18)
√

s

n
· t ·

√
log(n ∨ p) → 0.

We note that the total number of regressors p affects the rate of convergence (2.17) only

through a logarithm in p. Hence if p is polynomial in n, the rate of convergence is
√

s/n ·
t ·√log(n ∨ p), which is very close to the oracle rate

√
s/n, obtainable when we know the

minimal true model. Further, we note that our resulting restriction (2.18) on the dimension

s of the minimal true model is very weak; when p is polynomial in n and t ∝ log log n, s

can be of almost the same order as n, namely s = o(n/(t2 log n))).

Our second main result is that the dimension ‖β̂(u)‖0 of the model selected by the `1-

penalized estimator is of the same stochastic order as the dimension s of the minimal true
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model, namely

(2.19) ‖β̂(u)‖0 .p s.

Further, if the parameter values of the minimal true model are well separated away from

zero, namely

(2.20) min
j∈support(β(u))

|βj(u)| > ` ·
√

s

n
· t ·

√
log(n ∨ p),

for some diverging sequence ` of positive constants, then with probability converging to one,

the model selected by the `1-penalized estimator correctly nests the true minimal model:

(2.21) support (β(u)) ⊆ support (β̂(u)).

Moreover, we provide conditions under which a hard-thresholding selects the correct sup-

port.

Our third main result is that a two-step estimator, which applies standard quantile re-

gression to the selected model, achieves a similar rate of convergence:

(2.22)
√

s

n

√
log(n ∨ p) → 0,

provided the true non-zero coefficients are well-separated from zero in the sense of equation

(2.20).

Finally, our fourth main result is to propose (2.13), a data-driven choice of the regu-

larization parameter λ which has a pivotal finite sample distribution conditional on the

regressors, and to verify that (2.13) satisfies the theoretical restriction (2.16), supporting

its use in practical estimation.

Our results for quantile regression parallel the results for least squares by Meinshausen

and Yu [26] and by Candes and Tao [8]. Our results on the pivotal choice of the regularization

parameter partly parallel the results by Candes and Tao [8], except that our choice is pivotal

whereas Candes and Tao’s choice relies upon the knowledge of the standard deviation of

the regression disturbances. The existence of close parallels may seem surprising, since, in

contrast to the least squares problem, our problem is highly non-linear and non-smooth.

Nevertheless, there is an intuition presented below, suggesting that we can overcome these

difficulties.

While our results for quantile regression parallel results for least squares, our proof strat-

egy is substantially different, as it has to address non-linearities and non-smoothness. In
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order to explain the difference, let us recall, e.g., the proof strategy of Meinshausen and

Yu [26]. They first analyze the problem with no disturbances, recognize sparseness of the

solution for this zero noise problem, and then analyze a sequence of problems along the

path interpolating the zero-noise problem and the full-noise problem. Along this sequence,

they bound the increments in the number of non-zero components and in the rates of

convergence. This approach does not seem to work for our problem, where the zero-noise

problem does not seem to have either the required sparseness or the required smoothness. In

sharp contrast, our approach directly focuses on the full-noise problem, and simultaneously

bounds the number of non-zero components and convergence rates. Thus, our approach may

be of independent interest for other M-estimation problems and even for the least squares

problem.

Our analysis is perhaps closer in spirit to, but still quite different from, the important

work of van der Geer [37] which derived finite sample bounds on the empirical risk of `1-

penalized estimators in generalized linear models (but did not investigate quantile regression

models). The major difference between our proof and van der Geer [37]’s proof strategies

is that we analyze the sparseness of the solution to the penalized problem and then further

exploit sparseness to control empirical errors in the sample criterion function. As a result, we

derive not only the results on model selection and on sparseness of solutions, which are of a

prime interest, but also the results on the consistency and rates of convergence under weak

conditions on the number of non-zero components s. As mentioned above, our approach

allows s to be of almost the same order as the sample size n, and delivers convergence

rates that are close to
√

s/n. In contrast, van der Geer’s [37] approach requires s to be

much smaller than n, namely s2/n → 0, and thus does not deliver consistency or rates of

convergence when s2/n →∞.

In our proofs we critically rely on two key quantities: the number of non-zero components

m = ‖β̂(u)‖0 of the solution β̂(u) and the empirical error in the sample criterion, Q̂u(β)−
Qu(β) (with β ranging over all m-dimensional submodels of the large p-dimensional model).

In particular, we make use of the following relations:

(1) lower m implies smaller empirical error, and

(2) smaller empirical error can imply lower m.

Starting with a structural initial upper bound on m (see condition E.3 below) we can use

the two relations to solve for sharp bounds on m and the empirical error, given which we

then can solve for convergence rates.

Let us comment on the intuition behind relations (1) and (2). Relation (1) follows from
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an application of the usual entropy-based maximal inequalities, upon realizing that the en-

tropy of all m dimensional models grows at the rate m log p. In particular, the lower the m,

the closer the sample criterion function Q̂u to a locally quadratic function, uniformly across

all m-dimensional submodels. Relation (2) follows from the use of `1-penalty, which tends

to favor lower-dimensional solutions when Q̂u is close to being quadratic. Figure 1 provides

a visual illustration of this, using a two-dimensional example with a one-dimensional true

minimal submodel; in the example, the true parameter value (β1(u), β2(u)) is (1, 0). Fig-

ure 1 plots a diamond, centered at the origin, representing a contour set of the `1-penalty

function and a pearl, representing a contour set of the criterion function Q̂u. By the dual

interpretation (2.9) of our estimation problem, the penalized estimator looks for a minimal

diamond, subject to the diamond having a non-empty intersection with a fixed pearl. The

set of optimal solutions is then given by the intersection of the minimal diamond with the

pearl. Smaller empirical errors shape the pearl into an ellipse and center it closer to the true

parameter value of (1, 0) (left panel of Figure 1). Larger empirical errors shape the pearl

like a non-ellipse and can center it far away from the true parameter value (right panel of

Figure 1). Therefore, smaller empirical errors tend to cause sparse optimal solutions, cor-

rectly setting β̂2(u) = 0; larger empirical errors tend to cause non-sparse optimal solutions,

incorrectly setting β̂2(u) 6= 0.

β1

β2

β̂(u) β(u) β1

β2

β(u)

β̂(u)

Fig 1. These figures provide a geometric illustration for the discussion given in the text concerning why
`1-penalized estimation may be (left panel) or may not be (right panel) successful at selecting the minimal
true model.

3. Analysis and Main Results Under High-Level Conditions. In this section

we prove the main results under general conditions that encompass the simple conditions
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D.1-D.4 as a special case.

3.1. The Five Basic Conditions. We will work with the following five basic conditions

E.1-E.5 which are the essential ingredients needed for our asymptotic approximations. In

Appendix A, we verify that conditions E.1-E.5 hold under simple sufficient conditions D.1-

D.4 stated in Section 2, and we also show that E.1-E.5 arise much more generally. In

particular, in Appendix A we characterize key constants appearing in E.1-E.5 in terms of

the parameters of the model.

E.1. True Model Sparseness. The true parameter value β(u) has at most s < n/ log(n ∨ p)

non-zero components, namely

(3.1) ‖β(u)‖0 = s < n/ log(n ∨ p).

E.2. Identification in Population. In the population, the true parameter value β(u) is the

unique solution to the quantile objective function. Moreover, the following minorization

condition holds,

(3.2) Qu(β)−Qu(β(u)) & q
(
‖β − β(u)‖2 ∧ g(‖β − β(u)‖)

)
,

uniformly in β ∈ IRp, where g : R+ → R+ is a fixed convex function with g′(0) > 0, and

q is a sequence of positive numbers that characterizes the strength of identification in the

population.

E.3. Empirical Pre-Sparseness. The number m = ‖β̂(u)‖0 of non-zero components of β̂(u)

of the solution to the penalized quantile regression problem (2.4) obeys the inequality

(3.3) m ≤ n ∧ p ∧ n2φ(m)
λ2

,

where φ(m) is the maximal m-sparse eigenvalue.

E.4. Empirical Sparseness. For r = ‖β̂(u)−β(u)‖, m = ‖β̂(u)‖0 obeys the following stochas-

tic inequality

(3.4)
√

m .p µ
n

λ
(r ∧ 1) +

√
m

√
n log(n ∨ p)φ(m)

λ
,

where µ ≥ q is a sequence of positive constants. The sequence of constants µ is determined

by the population analog of the empirical sparse eigenvalue φ(m0) (cf. Appendix A).

E.5. Sparse Control of Empirical Error. The empirical error that describes the deviation

of the empirical criterion from the population criterion satisfies the following stochastic
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inequality

(3.5)
∣∣∣Q̂u(β)−Qu(β)−

(
Q̂u(β(u))−Qu(β(u))

)∣∣∣ .p r

√
(m + s) log(n ∨ p)φ(m + s)

n
,

uniformly over {β ∈ IRp : ‖β‖0 ≤ m∧ n∧ p, ‖β − β(u)‖ ≤ r}, uniformly over m ≤ n, r ≥ 0.

Let us briefly comment on each of the conditions. As stated earlier, condition E.1 is a

basic modeling assumption, and condition E.2 is an identification assumption, required to

hold in population. Conditions E.3 and E.4 arise from two characterizations of sparseness of

the solution to the optimization problem (2.4) defining the estimator. Condition E.3 arises

from simple bounds applied to the first characterization. Condition E.4 arises from maxi-

mal inequalities applied to the second characterization. Condition E.5 arises from maximal

inequalities applied to the empirical criterion function. To derive conditions E.4 and E.5,

we crucially exploit the fact that the entropy of all m-dimensional submodels of the p-

dimensional model is of order m log p, which depends on p only logarithmically. Finally, we

note that Conditions E.1-E.5 easily hold under primitive assumptions D.1-D.4, in particular

µ ' q ' 1, but we also permit them to hold more generally. We refer the reader to Section

5 for verification and further analysis of these conditions.

Theorem 1 combines conditions E.1-E.5 to establish bounds on the rate of convergence

and sparseness of the estimator (2.4).

Theorem 1. Assume that conditions E.1-E.5 hold. Let t →p ∞ be a sequence of positive

numbers, possibly data-dependent, define

(3.6) m0 = p ∧
(

n

log(n ∨ p)
q2

µ2

)
, and set λ = t

√
n log(n ∨ p)φ(m0 + s)

µ

q
.

Then we have that

(3.7) ‖β̂(u)− β(u)‖ .p
λ
√

s

qn
= t

√
s log(n ∨ p)φ(m0 + s)

n

µ

q2
,

provided that λ
√

s/(qn) →p 0, and

(3.8) ‖β̂(u)‖0 .p

(
µ

q

)2

s.

This is the main result of the paper that derives the rate of convergence of the `1-penalized

quantile regression estimator and a stochastic bound on the dimension of the selected model.

Our results parallel the results of Meinshausen and Yu [26] obtained for the `1-penalized
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mean regression. We refer the reader to Section 2 for a detailed discussion of this and other

main results of this section under simplified conditions. Here we only note that the rate of

convergence generally depends on the number of significant regressors s, the logarithm of

the number of regressors p, the strength of identification q, the empirical sparse eigenvalue

φ(m0), and the constant µ determined by the population sparse eigenvalue. The bound on

the dimension also depends on the sequence of constants s, q, and µ.

It is also helpful to state the main result separately under the simple set of conditions

D.1-D.4, where q ' µ ' 1.

Corollary 1 (A Leading Case). Conditions D.1-D.4 imply conditions E.1-E.5 with

q ' µ ' 1. Therefore, under D.1-D.4, m0 = p ∧ (n/ log(n ∨ p)), so setting

λ = t
√

n log(n ∨ p)φ(m0) and if t

√
s log(n ∨ p)φ(m0)

n
→ 0

we have that

‖β̂(u)− β(u)‖ .p t

√
s log(n ∨ p)φ(m0)

n
,

and

‖β̂(u)‖0 .p s.

If in addition φ(m0) .p 1, then we obtain the rate result listed in equation (2.17).

This corollary follows from lemmas stated in Appendix A, where we verify that conditions

D.1-D.4 imply conditions E.1-E.5. Moreover, we use the fact that φ(m0 + s) ≤ φ(2m0) if

s log(n ∨ p) < n for m0 = p ∧ (n/ log(n ∨ p)), and that φ(2m0) ≤ 2φ(m0) by Lemma 11.

It is useful to revisit our concrete examples.

Example 3 (Isotropic Normal Design, continued). In the isotropic normal design con-

sidered earlier, recall that we have that φ(k) .p 1 +
√

(k/n) log p. If λ/
√

n log(n ∨ p) →∞,

by Theorem 1 we have m0 ≤ n/ log(n ∨ p), and, since we assume s ≤ n/ log(n ∨ p), by

Lemma 11 we have φ(m0 + s) .p 1. Also, we verify in Appendix A that q ' µ ' 1. Thus,

the rate result listed in equation (2.17) applies to this example.

Example 4 (Correlated Normal Design, continued). In the correlated normal design

considered earlier, we have that φ(k) .p
1+|ρ|
1−|ρ|(1 +

√
(k/n) log p). If λ/

√
n log(n ∨ p) → ∞,

by Theorem 1 we have m0 ≤ n/ log(n∨p) and, since we assume s ≤ n/ log(n∨p), by Lemma
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11 we have φ(m0 + s) .p
1+|ρ|
1−|ρ| .p 1. Also, we verify in Appendix A, that q ' µ ' 1. Thus,

the rate result listed in equation (2.17) applies to this example too.

Proof. (Theorem 1) Let

r := ‖β̂(u)− β(u)‖ and m := ‖β̂(u)‖0.

The proof successively refines upper bounds on m and r. We divide the proof in four

steps. The first step provides an initial bound on m, the second step obtains preliminary

inequalities, the third step verifies consistency, and the fourth step establishes the rate

result.

Step 1. We start by proving that m ≤ m0 if t ≥ √
2. Since t →p ∞, m ≤ m0 will occur

with probability converging to one. By condition E.3 we have

m ≤ m̄ = max

{
m : m ≤ n ∧ p ∧ n2φ(m)

λ2

}
.

If m0 = p we have directly that m̄ ≤ m0. Next consider the case m0 =

(
n

log(n ∨ p)
q2

µ2

)
.

Suppose that m̄ > m0 when t ≥ √
2. Therefore we have m̄ = m0` for some ` > 1 (since

m̄ ≤ n ∧ p is finite). By definition m̄ satisfies the inequality

(3.9) m̄ ≤ n2 φ(m̄)
λ2

.

Since φ(m0) ≤ φ(m0 + s) we have λ ≥ t
√

n log(n ∨ p)φ(m0)(µ/q). Inserting this bound on

λ, the value of m0, and m̄ = m0` in (3.9), and then using Lemma 11 and t ≥ √
2 we obtain

m̄ = m0` ≤ n2

t2n log(n ∨ p)
φ(m0`)
φ(m0)

q2

µ2
<

n

t2 log(n ∨ p)
2`

q2

µ2
=

2
t2

m0` ≤ m0`,

which is a contradiction.

Step 2. In this step we obtain some preliminary inequalities.

By Condition E.1, the support of β(u)

Tu := support(β(u)) := {j ∈ {1, . . . , p} : |βj(u)| > 0}

has exactly s elements, that is, |Tu| = s. Let β̂Tu(u) denote a vector whose Tu components

agree with Tu components of β̂(u), and whose remaining components are equal to zero.
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By definition of β̂(u) and since ‖β̂Tu(u)‖1 ≤ ‖β̂(u)‖1 we have that

Q̂u(β̂(u))− Q̂u(β(u)) ≤ λ

n
(‖β(u)‖1 − ‖β̂(u)‖1) ≤ λ

n
(‖β(u)‖1 − ‖β̂Tu(u)‖1).

Using that

|‖β(u)‖1 − ‖β̂Tu(u)‖1| ≤ ‖β(u)− β̂Tu(u)‖1 ≤
√
|Tu|‖β̂Tu(u)− β(u)‖ ≤ √

sr

we obtain that

Q̂u(β̂(u))− Q̂u(β(u)) ≤ λ

n

√
sr.

Applying condition E.5 to control the difference between the sample and population criterion

functions, we further get that

Qu(β̂(u))−Qu(β(u)) .p
λ

n

√
sr + r

√
(m + s) log(n ∨ p)φ(m + s)

n
.

Invoking the identification condition E.2 and the definition of r, we obtain

(3.10) q(r2 ∧ g(r)) .p
λ

n

√
sr + r

√
(m + s) log(n ∨ p)φ(m + s)

n
.

Step 3. In this step we show consistency, namely r = op(1). By Step 1 we have m ≤ m0

with probability converging to one.

The construction (3.6) of λ, t →p ∞, and the condition λ
√

s/(qn) →p 0 assumed in the
theorem imply

(i)
λ
√

s

n
= op(q), (ii)

√
s log(n ∨ p)φ(m0 + s)

n

µ

q
= op(q), (iii)µ

√
n log(n ∨ p)φ(m0 + s)

λ
= op(q).

Condition (iii), µ ≥ q, and empirical sparseness condition E.4, stated in equation (3.4),

imply that

(3.11)
√

m .p µ(r ∧ 1)n/λ +
√

mop(1),

which implies the following second bound on m:

(3.12)
√

m .p µn/λ.

Using (3.12) and m ≥ s in equation (3.10) gives

(3.13) 1{m > s}q
(
r2 ∧ g(r)

)
.p r

λ

n

√
s + r

√
n log(n ∨ p)φ(m0 + s)µ

λ
= rop(q)
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where the last equality follows by conditions (i) and (iii). On the other hand, using (3.12)

and m ≤ s in equation (3.10) gives

(3.14) 1{m ≤ s}q
(
r2 ∧ g(r)

)
.p r

λ

n

√
s + r

√
s log(n ∨ p)φ(m0 + s)

n
= rop(q)

where the last equality follows by conditions (i) and (ii) and µ ≥ q. Conclude from (3.13)

and (3.14) that

(3.15) q
(
r2 ∧ g(r)

)
= rop(q).

Next we show that (3.15) implies r = op(1). Dividing both sides of (3.15) by q and by

r we have 1{r > 0}[r ∧ (g(r)/r)] .p 1{r > 0}op(1). By condition E.2, g is a fixed convex

function with g′(0) > 0, so that g(r) ≥ g′(0)r. Thus, 1{r > 0}[r ∧ g′(0)] = 1{r > 0}op(1),

that is, r = op(1).

Step 4. This step derives the rate of convergence.

Using that r = op(1) we improve the bound (3.11) on m to the following third bound:

(3.16)
√

m .p
rµn

λ
.

Plugging (3.16) into (3.10) and using the relation r2 = op(g(r)) under r = op(1), gives us

(3.17) qr2 .p r
λ
√

s

n
+ op(q)r2 or equivalently r .p

λ
√

s

qn
.

Finally, inserting (3.17) into (3.16), we obtain
√

m .p
√

s(µ/q), which verifies the final

bound (3.8) on m.

3.2. Model Selection Properties. Next we turn to the model selection properties of the

estimator.

Theorem 2. If conditions of Theorem 1 hold, and if the non-zero components of β(u)

are separated away from zero, namely

(3.18) min
j∈support(β(u))

|βj(u)| > `t

√
s log(n ∨ p)φ(m0 + s)

n

µ

q2
,

for some diverging sequence ` of positive constants, ` →∞, then with probability approaching

one

(3.19) support (β(u)) ⊆ support (β̂(u)).
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Moreover, the hard-thresholded estimator β̄(u), defined by

β̄j(u) = β̂j(u)1



|β̂j(u)| > `′t

√
s log(n ∨ p)φ(m0 + s)

n

µ

q2





where `′ →∞ and `′/` → 0, satisfies with probability converging to one,

support (β̄(u)) = support (β(u)).

Theorem 2 derives some model selection properties of the `1−penalized quantile regres-

sion. These results parallel analogous results obtained by Meinshausen and Yu [26] for the

`1-penalized mean regression. The first result says that in order for the support of the estima-

tor to include the support of the true model, non-zero coefficients need to be well-separated

from zero, which is a stronger condition than what we required for consistency. The inclu-

sion of the true support is in general one-sided; the support of the estimator can include

some unnecessary components having the true coefficients equal zero. The second result de-

scribes the performance of the `1-penalized estimator with an additional hard thresholding,

which does eliminate inclusions of such unnecessary components. However, the value of the

right threshold explicitly depends on the parameter values characterizing the separation of

non-zero coefficients from zero.

Proof. (Theorem 2) The result on inclusion of the support stated in equation (3.19)

follows from the separation assumption (3.18) and the inequality ‖β̂(u)−β(u)‖∞ ≤ ‖β̂(u)−
β(u)‖. Indeed, by Theorem 1 we have with probability going to one,

(3.20) ‖β̂(u)− β(u)‖∞ ≤ ‖β̂(u)− β(u)‖ < min
j∈support(β(u))

|βj(u)|.

The last inequality follows from the rate result of Theorem 1 and from the separation

assumption (3.18). Next, the converse of the inclusion event (3.19) implies that ‖β̂(u) −
β(u)‖∞ ≥ minj∈support(β(u)) |βj(u)|. Since the latter can occur only with probability ap-

proaching zero, we conclude that the event (3.19) occurs with probability converging to

one.

Consider the hard-thresholded estimator next. Let rn = t
√

(s/n) log(n ∨ p)φ(m0 + s)µ/q2.

To establish the inclusion note that by Theorem 1 and the separation assumption (3.18)

min
j∈support (β(u))

|β̂j(u)| ≥ min
j∈support (β(u))

{|βj(u)| − |βj(u)− β̂j(u)|} &p `rn − rn
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so that minj∈support (β(u)) |β̂j(u)| > `′rn with probability going to one by `′ → ∞ and

`′/` → 0. Therefore, support (β(u)) ⊆ support (β̄(u)) with probability going to one. To

establish the opposite inclusion, consider the quantity

en = max
j /∈support (β(u))

|β̂j(u)|.

By Theorem 1 en .p rn so that en < `′rn with probability going to one by `′ → ∞. Since

by the hard-threshold rule all components smaller than `′rn are excluded from the support

of β̄(u), we have that support (β̄(u)) ⊆ support (β(u)) with probability going to one.

3.3. Two-step estimator. Next we consider the following two-step estimator that applies

the ordinary quantile regression to the selected model. Let T̂ be a model, that is, a subset of

{1, . . . , p}, selected by a data-dependent procedure. We define the two-step estimator β̂T̂ (u)

as a solution of the following optimization problem:

(3.21) β̂T̂ (u) ∈ arg min
β∈Rp:βj=0,j 6∈T̂

Q̂u(β).

In this problem we constrain the components of the parameter vector β that were not

selected to be zero; or, equivalently, we remove the regressors that were not selected from

further estimation. Moreover, we no longer use `1-penalization.

Theorem 3. Suppose that conditions E.1, E.2, and E.5 hold. Let T̂ be any selected

model that contains the true model Tu with probability converging to one, and whose dimen-

sion |T̂ | is of stochastic order s, then

∥∥∥∥β̂T̂ (u)− β(u)
∥∥∥∥ .p

√
s log(n ∨ p)φ(s)

n

1
q
,

provided the right side converges to zero in probability.

Under conditions of the theorem see that the rate of convergence of the two-step estimator

is generally faster than the rate of the one-step penalized estimator, unless φ(n) 'p φ(s),

in which case the rate is the same. It is also helpful to note that when q ' 1 and φ(s) .p 1,

‖β̂T̂ (u)− β(u)‖ .p

√
s

n
log(n ∨ p).

Proof. (Theorem 3). Let r = ‖β̂T̂ (u) − β(u)‖. By definition of β̂T̂ (u) and by Tu ⊆ T̂

with probability approaching one, we have that with probability approaching one

Q̂u(β̂T̂ (u))− Q̂u(β(u)) ≤ 0.
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First note that since |T̂ | .p s, by Lemma 11 we have that φ(|T̂ | + s) .p φ(s). Applying

condition E.5 to control the empirical error in the objective function, we get that

Qu(β̂T̂ (u))−Qu(β(u)) .p r

√
s log(n ∨ p)φ(|T̂ |+ s)

n
.p r

√
s log(n ∨ p)φ(s)

n
.

Invoking the identification condition E.2 we obtain that

(3.22) q(r2 ∧ g(r)) .p r

√
s log(n ∨ p)φ(s)

n
.

Since we assumed that
√

s log(n ∨ p)φ(s)/n = op(q), we conclude that q(r2∧g(r)) .p rop(q).

As in the proof of Theorem 1, this implies that r = op(1), and that r2 = op(g(r)). Therefore

we can refine the bound (3.22) to

qr2 .p r

√
s log(n ∨ p)φ(s)

n
or r .p

√
s log(n ∨ p)φ(s)

n

1
q
,

proving the result.

4. Analysis of the Pivotal Choice of the Penalization Parameter. In this section

we show that under some conditions the pivotal choice for the penalization parameter λ

proposed in Section 2.3 satisfies the theoretical requirements needed to achieve the rates of

convergence stated in Theorem 1.

Recall that the true rank scores can be represented almost surely as

a∗i (u) = (u− 1{ui ≤ u}), for i = 1, . . . , n,

where u1, . . . , un are i.i.d. uniform (0, 1) random variables, independently distributed from

the regressors, x1, . . . , xn. Thus, we have

(4.1) Λn = n ‖En [xi(u− 1{ui ≤ u})]‖∞ ,

which has a known distribution conditional on X = (x1, . . . , xn).

Theorem 4. Let the regularization parameter λ(X) be defined as

(4.2) λ(X) = inf{λ : P (Λn ≤ λ|X) ≥ 1− αn}, αn =
(

1
n ∨ p

)t2

,



24 BELLONI AND CHERNOZHUKOV

for some sequence t →∞. Assume that there exists a sequence cn,p such that uniformly in

j = 1, . . . , p

(4.3) max
i=1,...,n

|xij | ≤ cn,p

(
n∑

i=1

x2
ij

)1/2

and cn,p · t ·
√

log(n ∨ p) → 0.

Moreover, assume q ' µ, φ(1) 'p φ(n/ log(n ∨ p)), and that t
√

s log(n ∨ p)φ(1)/n/q →p

0. Then λ = λ(X) satisfies the assumptions on the regularization parameter assumed in

Theorem 1, namely there exists a sequence t̃ →p ∞ such that

(4.4) λ = t̃
√

n log(n ∨ p)φ(m0 + s)
µ

q
and

λ
√

s

qn
→p 0

where m0 = p ∧
(

n

log(n ∨ p)
q2

µ2

)
, and t̃ 'p t.

Proof. (Theorem 4) We will use the following inequalities of Stout [34], Theorem 5.2.2:

Let {Xi, i ≥ 1} denote a sequence of independent random variables with zero mean and

finite variances, and let Sn =
∑n

i=1 Xi and s2
n =

∑n
i=1 E

[
X2

i

]
for all n ≥ 1. Let |Xi| ≤ csn

almost surely for each 1 ≤ i ≤ n and n ≥ 1. Suppose ε > 0 and γ > 0. Then for each n ≥ 1,

the inequality εc ≤ 1 implies that

P (Sn/sn > ε) ≤ exp
(
−

(
ε2/2

)
(1− εc/2)

)
,(4.5)

and there exist constants ε(γ) and π(γ) such that if ε ≥ ε(γ) and εc ≤ π(γ), then

P (Sn/sn > ε) ≥ exp
(
−

(
ε2/2

)
(1 + γ)

)
.(4.6)

We need to establish upper and lower bounds on the value of λ. We first establish an

upper bound. Let v2
j =

∑n
i=1 x2

ij and note that φ(1) = supj≤p v2
j /n. Next observe that

Var (
∑n

i=1 xija
∗
i (u)|X) = u(1 − u)v2

j . Note that by (4.3) we have sup1≤i≤n |xija
∗
i (u)| ≤

cn,pvj/
√

u(1− u), j = 1, . . . , p. Moreover, for n large enough, condition (4.3) also implies

that

(4.7) 2cn,p(t + 1)
√

log(n ∨ p)/
√

u(1− u) < 1/2.

Under (4.7), we can apply (4.5) with ε = 2(t + 1)
√

log(n ∨ p), and c = cn,p/
√

u(1− u) to

obtain that for every j = 1, . . . , p

(4.8)

P

(
|∑n

i=1 xija
∗
i (u)|√

u(1− u)vj
> ε|X

)
≤ exp

(
−ε2

2

(
1− cn,pε

2
√

u(1− u)

))
< exp

(
−(t2 + 1) log(n ∨ p)

)
.
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Therefore, since
√

nφ(1) ≥ vj we have

(4.9) P

(
|∑n

i=1 xija
∗
i (u)|√

u(1− u)nφ(1)
> ε|X

)
< exp

(
−(t2 + 1) log(n ∨ p)

)
=

1
(n ∨ p)

(
1

(n ∨ p)

)t2

.

Next note that using (4.9) we have

(4.10)

P
(
Λn >

√
u(1− u)nφ(1)ε|X

)
≤

p∑

j=1

P

(∣∣∣∣∣
n∑

i=1

xija
∗
i (u)

∣∣∣∣∣ >
√

u(1− u)nφ(1)ε|X
)

≤ p max
j≤p

P

(∣∣∣∣∣
n∑

i=1

xija
∗
i (u)

∣∣∣∣∣ >
√

u(1− u)nφ(1)ε|X
)

<
(

1
(n∨p)

)t2

.

Since P (Λn > λ|X) is decreasing in λ, we conclude that

(4.11) λ ≤
√

u(1− u)nφ(1)ε . 2(t + 1)
√

n log(n ∨ p)φ(1).

Next we turn to establishing the lower bound. Let jn ∈ {1, . . . , p} denote an index such

that vjn =
√

nφ(1). By definition of Λn we have

(
1

(n ∨ p)

)t2

≥ P

(
max
j≤p

∣∣∣∣∣
n∑

i=1

xija
∗
i (u)

∣∣∣∣∣ > λ|X
)
≥ P

(∣∣∣∣∣
n∑

i=1

xijna∗i (u)

∣∣∣∣∣ > λ|X
)

.

Fix γ > 0 (which implicitly fix ε(γ) and π(γ)), and set ε = t
√

2 log(n ∨ p)/(1 + γ), c =

cn,p/
√

u(1− u). Since ε diverges, and, by (4.3) we have εc = o(1), for n large enough we

have ε > ε(γ) and εc < π(γ). Therefore we can apply (4.6) to obtain

P

(
|∑n

i=1 xijna∗i (u)|√
u(1− u)nφ(1)

> ε|X
)

≥ exp
(−(ε2/2)(1 + γ)

)

≥ exp
(−t2 log(n ∨ p)

)
=

(
1

(n∨p)

)t2

.

Since P (Λn > λ|X) is decreasing in λ, it follows that

(4.12) λ ≥ ε
√

u(1− u)nφ(1) = t
√

2u(1− u)n log(n ∨ p)φ(1)/(1 + γ).

Thus, taking in account that µ ' q, we have established λ 'p t
√

n log(n ∨ p)φ(m0 + s)µ
q .

In order to verify (4.4) define t̃ = λ/[
√

n log(n ∨ p)φ(m0 + s)(µ/q)]. By construction we

have that t̃ 'p t →∞. Thus, the first result of (4.4) follows, and the second result of (4.4)

follows from the assumptions that t
√

s log(n ∨ p)φ(1)/n/q →p 0.



26 BELLONI AND CHERNOZHUKOV

For concreteness, we now verify the conditions of Theorem 4 in our examples.

Example 5 (Isotropic Normal Design, continued). Let x·j denote the n-vector associ-

ated with the jth covariate, where x·1 is a column of ones representing the intercept. Next

we use standard Gaussian concentration bounds, see [23] Section 3. For any value K > 1

we have

(4.13) P (|xij | > K) ≤ exp(−K2/2).

In turn this implies that max1≤i≤n,1≤j≤p |xij | .p

√
log(n ∨ p). Moreover, the vectors x·j are

such that

(4.14) P (| ‖x·j‖ − E [‖x·j‖] | > K) ≤ 2 exp
(
−2K2/π2

)
and E [‖x·j‖] '

√
n, j = 1, . . . , p.

Combining these bounds we obtain minj=1,...,p

√∑n
i=1 x2

ij &p
√

n−√log p. Therefore, con-

ditions (4.3) hold with cn,p 'p

√
log(n∨p)

n and t2 log2(n ∨ p) = o(n). On the other hand, we

have φ(1) ≥ 1 and φ(m0 + s) .p 1 +
√

(m0/n) log p +
√

(s/n) log p . 1 by Lemma 14 and

the definition of m0. Thus, Theorem 4 requires t2s log(n ∨ p) = o(n). We also verify that

q ' µ ' 1 in the next section.

Example 6 (Correlated Normal Design, continued). We analyze the correlated de-

sign similarly using comparison theorems for Gaussian random variables, Corollary 3.12 of

Ledoux and Talagrand [23]. The upper bound for the case ρ > 0 follows from the result

that for K > 1

(4.15) P

(
max

1≤i≤n,1≤j≤p
|xij | > K

)
≤ P

(
max

1≤i≤n,1≤j≤p
|zij | > K

)

where zij ∼ N(0, 1) are i.i.d. as in Example 5. (The case with ρ < 0 follows by changing

the signs of xij for each even j and redefining the parameter β(u) for these new regressors;

so that after the transformation we obtain the design with ρ > 0.) The lower bound relies

only on the independence within the components of each vector x·j . Since xi′j and xij

are independent for i′ 6= i, we can invoke the same results of Example 5. Therefore we

obtain cn,p 'p

√
log(n∨p)

n and t2 log2(n ∨ p) = o(n). In addition, φ(1) ≥ 1 and φ(m0 + s) .p

{(1+ |ρ|)/(1−|ρ|)}
(
1 +

√
(m0/n) log p +

√
(s/n) log p

)
. {(1+ |ρ|)/(1−|ρ|)} by Lemma 14

and the definition of m0. Since ρ is fixed it follows that φ(1) 'p φ(m0 + s). Thus, Theorem

4 also requires t2s log(n ∨ p) = o(n) in this case. We also verify that q ' µ ' 1 in the next

section.
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5. Empirical Performance. In order to access the finite sample practical perfor-

mance of the proposed estimators, we conducted a Monte Carlo study and an application

to international economic growth.

5.1. Monte Carlo Simulation. In this section we will compare the performance of the

canonical quantile regression estimator, the `1-penalized quantile regression, the two-step

estimator, and the ideal oracle estimator. Recall that the two-step estimator applies the

canonical quantile regression to the model selected by the penalized estimator. The oracle

estimator applies the canonical quantile regression on the minimal true model. (Of course,

such an estimator is not available outside Monte Carlo experiments.) We focus our attention

on model selection properties of the penalized estimator and biases and standard deviations

of these estimators.

We begin by considering the following regression model (see Example 1) where

y = x′β(1/2) + ε, β(1/2) = (1, 1, 1, 1, 1, 0, . . . , 0)′,

where an intercept and the covariates x−1 ∼ N(0, I), and the errors ε are independent

identically distributed ε ∼ N(0, 1). We set the dimension p of covariates x equal to 1000,

and the dimension s of the true minimal model to 5, and the sample size n to 200. We

set the regularization parameter λ equal to 0.9-quantile of the pivotal random variable Λn,

following our proposal in Section 2.

We also consider a variant of the model above with correlated regressors, namely x−1 ∼
N(0, Σ), where Σij = ρ|i−j|, as specified in Example 2 with ρ = 0.5. This design is note-

worthy because it violates the condition of the uniform uncertainty principle, but it easily

satisfies our conditions.

We summarize the results on model selection performance of the penalized estimator in

Figures 2-3. In the left panels of Figures 2-3, we plot the frequencies of the dimensions of the

selected model; in the right panel we plot the frequencies of selecting the correct components.

From the right panels we see that the model selection performance is particularly good.

From the left panels we see that the frequency of selecting much larger model than the

minimal true model is very small. We also see that in the design with correlated regressors,

the performance of the estimator is quite good, as we would expect from our theoretical

results. These results confirm the theoretical results of Theorem 2, namely, that when the

non-zero coefficients are well-separated from zero, with probability tending to one, the

penalized estimator should select the model that includes the minimal true model as a
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subset. Moreover, these results also confirm the theoretical result of Theorem 1, namely that

the dimension of the selected model should be of the same stochastic order as the dimension

of the true minimal model. In summary, we that find the model selection performance of

the penalized estimator very well agree with our theoretical results.

We summarize results on the estimation performance in Table 1. We see that the penalized

quantile regression estimator significantly outperforms the canonical quantile regression, as

we would expect from Theorem 1 and from inconsistency of the latter when the number of

regressors is larger than the sample size. The penalized quantile regression has a substantial

bias, as we would expect from the definition of the estimator which penalizes large deviations

of coefficients from zero. Furthermore, we see that the two-step estimator improves upon

the penalized quantile regression, particularly in terms of drastically reducing the bias. The

two-step estimator in fact does almost as well as the ideal oracle estimator, as we would

expect from Theorem 4. We also see that the (unarbitrary) correlation of regressors does not

harm the performance of the penalized and the two-step estimators, which we would expect

from our theoretical results. In fact, since data-driven value of λ tends to be slightly lower for

the correlated case, as we would expect by the comparison theorem mentioned in Example

8, the penalized estimator selects smaller models and also makes smaller estimation errors

than in the canonical uncorrelated case. In summary, we find the estimation performance

of the penalized and two-step estimators to be in agreement with our theoretical results.

MONTE CARLO RESULTS

Example 1: Isotropic Gaussian Design

Mean `0 norm Mean `1 norm Bias Std Deviation

Canonical QR 992.29 25.27 1.6929 0.99
Penalized QR 5.14 2.43 1.1519 0.37

Two-step QR 5.14 4.97 0.0276 0.29
Oracle QR 5.00 5.00 0.0012 0.20

Example 2: Correlated Gaussian Design

Mean `0 norm Mean `1 norm Bias Std Deviation

Canonical QR 988.41 29.40 1.2526 1.11
Penalized QR 5.19 4.09 0.4316 0.29

Two-step QR 5.19 5.02 0.0075 0.27
Oracle QR 5.00 5.00 0.0013 0.25

Table 1
The table displays the average `0 and `1 norm of the estimators as well as mean bias and standard

deviation. We obtained the results using 5000 Monte Carlo repetitions for each design.
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Fig 2. The figure summarizes the covariate selection results for the isotropic normal design example, based
on 5000 Monte Carlo repetitions. The left panel plots the histogram for the number of covariates selected out
of the possible 1000 covariates. The right panel plots the histogram for the number of significant covariates
selected; there are in total 5 significant covariates amongst 1000 covariates.
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Fig 3. The figure summarizes the covariate selection results for the correlated normal design example with
correlation coefficient ρ = .5, based on 5000 Monte Carlo repetitions. The left panel plots the histogram for
the number of covariates selected out of the possible 1000 covariates. The right panel plots the histogram
for the number of significant covariates selected; there are in total 5 significant covariates amongst 1000
covariates. We obtained the results using 5000 Monte Carlo repetitions.
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5.2. International Economic Growth Example. In this section we apply `1-penalized

quantile regression to an international economic growth example, using it primarily as a

method for model selection. We use the Barro and Lee data consisting of a panel of 138

countries for the period of 1960 to 1985. We consider the national growth rates in gross

domestic product (GDP) per capita as a dependent variable y for periods 1965-75 and

1975-85.1 In our analysis, we will consider model with nearly p = 60 covariates, which

allows for a total of n = 90 complete observations. Our goal here is to select a subset of

these covariates and briefly compare the resulting models to the standard models used in

the empirical growth literature (Barro and Sala-i-Martin [2], Koenker and Machado [21]).

One of the central issues in the empirical growth literature is the estimation of the effect

of an initial (lagged) level of GDP per capita on the growth rates of GDP per capita. In

particular, a key prediction from the classical Solow-Swan-Ramsey growth model is the

hypothesis of convergence, which states that poorer countries should typically grow faster

and therefore should tend to catch up with the richer countries. Thus, such a hypothesis

states that the effect of initial level of GDP on the growth rate should be negative. As

pointed out in Barro and Sala-i-Martin [3], this hypothesis is rejected using a simple bivariate

regression of growth rates on the initial level of GDP. (In our case, median regression yields

a positive coefficient of 0.00045.) In order to reconcile the data and the theory, the literature

has focused on estimating the effect conditional on the pertinent characteristics of countries.

Covariates that describe such characteristics can include variables measuring education and

science policies, strength of market institutions, trade openness, savings rates and others

[3]. The theory then predicts that for countries with similar other characteristics the effect

of the initial level of GDP on the growth rate should be negative ([3])

Given that the number of covariates we can condition on is comparable to the sample

size, the covariate selection becomes an important issue in this analysis ([24], [31]). In

particular, past previous findings came under severe criticisms for relying upon ad hoc

procedures for covariate selection. In fact, in some cases, all of the previous findings have

been questioned ([24]). Since the number of covariates is high, there is no simple way to

resolve the model selection problem using only the classical tools. Indeed the number of

possible lower-dimensional model is very large, though see [24] and [31] for an attempt

to search over several millions of these models. Here we use the lasso selection device,

specifically the `1-penalized median regressions, to resolve this important issue.
1 The growth rate in GDP over period from t1 to t2 is commonly defined as log(GDPt2/GDPt1)− 1.
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Let us now turn to our empirical results. We performed covariate selection using the `1-

penalized median regressions, where we initially used our data-driven choice of penalization

parameter λ. This initial choice led us to select no covariates, which is consistent with the

situations in which the true coefficients are not well-separated from zero. We then proceeded

to slowly decrease the penalization parameter in order to allow for some covariates to be

selected. We present the model selection results in Table 2. With the first relaxation of

the choice of λ, we select the black market exchange rate premium (characterizing trade

openness) and a measure of political instability. With a second relaxation of the choice of λ

we select an additional set of educational attainment variables, and several others reported

in the table. With a third relaxation of λ we include yet another set of variables also reported

in the table. We refer the reader to [2] and [3] for a complete definition and discussion of

each of these variables.

We then proceeded to apply the standard median and quantile regressions to the selected

models and we also report the standard confidence intervals for these estimates. In Figures 4

and 5 we show these results graphically, plotting estimates of quantile regression coefficients

β̂(u) and pointwise confidence intervals on the vertical axis against the quantile index u on

the horizontal axis. We should note that the confidence intervals do not take into account

that we have selected the models using the data. (In an ongoing companion work, we are

working on devising procedures that will account for this.) We find that, in all models that

we have selected, the median regression coefficients on the initial level of GDP is always

negative and the standard confidence intervals do not include zero. Similar conclusions also

hold for quantile regressions with quantile indices in the middle range. In summary, we

believe that our empirical findings support the hypothesis of convergence from the classical

Solow-Swan-Ramsey growth model. Of course, it would be good to find formal inferential

methods to fully support this hypothesis. Finally, our findings also agree and thus support

the previous findings reported in Barro and Sala-i-Martin [2] and Koenker and Machado

[21].

6. Conclusion and Extensions. In this work we characterize the estimation and

model selection properties of the `1-penalized quantile regression for high-dimensional sparse

models. Despite the non-linear nature of the problem, we provide results on estimation

and model selection that parallel those recently obtained for the penalized least squares

estimator. It is likely that our proof techniques can be useful for deriving results for other

M-estimation problems.
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MODEL SELECTION RESULTS FOR THE INTERNATIONAL
GROWTH REGRESSIONS

Penalization
Parameter Real GDP per capita (log) is included in all models

λ = 1.077968 Additional Selected Variables

λ -
λ/2 Black Market Premium (log)

Political Instability
λ/3 Black Market Premium (log)

Political Instability
Measure of tariff restriction

Infant mortality rate
Ratio of real government “consumption” net of defense and education

Exchange rate
% of “higher school complete” in female population

% of “secondary school complete” in male population
λ/4 Black Market Premium (log)

Political Instability
Measure of tariff restriction

Infant mortality rate
Ratio of real government “consumption” net of defense and education

Exchange rate
% of “higher school complete” in female population

% of “secondary school complete” in male population
Female gross enrollment ratio for higher education

% of “no education” in the male population
Population proportion over 65

Average years of secondary schooling in the male population
λ/5 Black Market Premium (log)

Political Instability
Measure of tariff restriction

Infant mortality rate
Ratio of real government “consumption” net of defense and education

Exchange rate
% of “higher school complete” in female population

% of “secondary school complete” in male population
Female gross enrollment ratio for higher education

% of “no education” in the male population
Population proportion over 65

Average years of secondary schooling in the male population
Growth rate of population

% of “higher school attained” in male population
Ratio of nominal government expenditure on defense to nominal GDP

Ratio of import to GDP
Table 2

For this particular decreasing sequence of penalization parameters we obtained nested models. All the
columns of the design matrix were normalized to have unit length.
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Fig 4. This figure plots the coefficient estimates and standard pointwise 90 % confidence intervals for the
model associated with λ/2 which selected two covariates in addition to the initial level of GDP.
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Fig 5. This figure plots the coefficient estimates and standard pointwise 90% confidence intervals for the
model associated with λ/3 which selected eight covariates in addition to the initial level of GDP.
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There are several possible extensions that we would like to pursue in the future work.

First, we would like to extend out results to hold uniformly across a continuum of quantile

indices. We expect that most of our results will generalize to this case with a few appropriate

modifications. Second, following van der Geer [37], we would like to allow for regressor-

specific choice of the penalization parameter. Specifically, we would like to consider the

following estimator:

(6.1) β̂(u) ∈ arg min
β∈Rp

En
[
ρu(yi − x′iβ)

]
+

λ

n

p∑

j=1

σ̂j |βj |

where σ̂j =
√

1
n

∑n
i=1 x2

ij . The dual problem associated with (6.1) has the form:

(6.2)

max
a∈Rn

En [yiai]

|En [xijai] | ≤ λ
n σ̂j , j = 1, . . . , p,

(u− 1) ≤ ai ≤ u, i = 1, . . . , n.

To map this to our previous framework, we can redefine the regressors and the parameter

spaces via transformations x̃ij = xij/σ̂j and β̃j(u) = σ̂jβj(u). We can then proceed with an

analogous proof strategy. Third, we would like to extend our analysis to cover non-sparse

models that are well-approximated by sparse models. In such a framework, the components

of β(u) reordered by magnitude, namely |β(1)(u)| ≥ |β(2)(u)| ≥ · · · ≥ |β(p−1)(u)| ≥ |β(p)(u)|,
exhibit a sufficiently rapid decay behavior, for example, |β(k)(u)| < Rk−1/t for some con-

stants R and t. Therefore, truncation to zero of all components below a particular moving

threshold can still lead to consistent estimation.

APPENDIX A: VERIFICATION OF CONDITIONS E.1-E.5

In this section we verify that conditions E.1-E.5 hold under the simple set of conditions

D.1-D.4 discussed in Section 2 and also hold much more generally. For convenience, we

denote by

Sk
p = {α ∈ IRp : ‖α‖ = 1, ‖α‖0 ≤ k}

the k-sparse unit sphere in IRp. In what follows, we show how the key constants, such as q

and µ appearing in E.1-E.5, are functions of the following population constants (which can
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possibly depend on the sample size n):

(A.1)

f := inf
x

fyi|xi
(x′β(u)|x), f̄ := sup

y,x
fyi|xi

(y|x),

%(k) := inf
α∈Sk

p

E
[
(α′x)2

]
, f̄ ′ := sup

y,x

∂

∂y
fyi|xi

(y|x),

γ(k) := inf
α∈Sk

p

E
[|α′x|2]

E [|α′x|3] , ϕ(k) := sup
α∈Sk

p

E
[
(α′xi)2

]
,

where values of y and x range over the support of yi and xi. The results also depend on the

sparse eigenvalue of sample design matrix

φ(k) := sup
α∈Sk

p

En

[
(α′xi)2

]

already mentioned earlier. As an illustration we compute the constants in (A.1) for two

common designs used in the literature.

Example 7 (Isotropic Normal Design, continued). We revisit the design of Example

1. For concreteness assume that the errors are ε ∼ N(0, 1). Under this simple design we

can compute the values of the several constants involved in the analysis: f̄ = 1/
√

2π ≤ 0.4,

f = 1/
√

2π ≥ 0.39, f̄ ′ = 1/
√

2πe ≤ 0.25, γ(k) =
√

π/8 ≥ 0.6, %(k) = 1, and ϕ(k) = 1.

Example 8 (Correlated Normal Design, continued). Consider next the design in Ex-

ample 2. For concreteness assume that ε ∼ N(0, 1) and that ρ = 1/2. The relevant con-

stants are bounded by f̄ = 1/
√

2π ≤ 0.4, f = 1/
√

2π ≥ 0.39, f̄ ′ = 1/
√

2πe ≤ 0.25,

γ(k) ≥
√

1−|ρ|
1+|ρ|

√
π/8 ≥ 1/3, %(k) ≥ 1

2
1−|ρ|
1+|ρ| = 1/6, and ϕ(k) ≤ 1+|ρ|

1−|ρ| = 3.

A.1. Verification of E.1-E.5. Conditions E.1 (model sparseness) is the key underly-

ing model assumption, which we impose throughout, including in condition D.2. Lemmas

1, 2, 3, 4, and 5 below establish the remaining conditions E.2-E.5.

Lemma 1 (Verifying Condition E.2 - Identification). We have that in the linear quantile

model (2.1) under random sampling, for each β ∈ Rp : ‖β − β(u)‖ = r, ‖β − β(u)‖0 ≤ m,

(A.2) Qu(β)−Qu(β(u)) ≥ q(m)
(
r2 ∧ g(r)

)
,

where

(A.3) g(r) = r and q(m) =
%(m)f

4
min

{
1,

( 3f

2f̄ ′
γ(m)

)2
}

.
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Thus, condition E.2 holds with q = q(n). In particular, under Conditions D.1-D.4, condition

E.2 holds with q = q(n) ' 1.

Proof. (Lemma 1) Let Fy|x denote the conditional distribution of y given x. From

Knight [17], for any two scalars w and v we have that

(A.4) ρu(w − v)− ρu(w) = −v(u− 1{w ≤ 0}) +
∫ v

0
(1{w ≤ z} − 1{w ≤ 0})dz.

Applying (A.4) with w = y−x′β(u) and v = x′(β−β(u)) we have that E [−v(u− 1{w ≤ 0})] =

0. Using the law of iterated expectations and mean value expansion, we obtain for z̃x,z ∈ [0, z]

(A.5)

Qu(β)−Qu(β(u)) = E
[∫ x′(β−β(u))

0 Fy|x(x′β(u) + z)− Fy|x(x′β(u))dz
]

= E
[∫ x′(β−β(u))

0 zfy|x(x′β(u)) + z2

2 f ′y|x(x′β(u) + z̃x,z)dz
]

≥ E
[

1
2(x′(β − β(u)))2fy|x(x′β(u))

]
− f̄ ′

6 E[|x′i(β − β(u))|3]
≥ f

2E
[
(x′(β − β(u)))2

]− f̄ ′
6 E[|x′(β − β(u))|3].

Next define

rm = sup
{

r̃ : Qu(β(u) + r̃d)−Qu(β(u)) ≥ f

4
r̃2E

[
(x′d)2

]
, for all d ∈ Sm

p

}
.

By (A.5) we have that

rm ≥ 3
2

f

f̄ ′
inf

α∈Sm
p

E
[|α′x|2]

E [|α′x|3] =
3
2

f

f̄ ′
γ(m).

By construction of rm and the convexity of Qu, for any β such that ‖β − β(u)‖ ≤ m, we

have that

Qu(β)−Qu(β(u)) ≥ f

4
E

[
(x′(β − β(u)))2

]
∧

{
‖β − β(u)‖

(
inf

d∈Sm
p

Qu(β(u) + rmd)−Qu(β(u))

)}
.

Letting ‖β − β(u)‖ = r we have

r

(
inf

d∈Sm
p

Qu(β(u) + rmd)−Qu(β(u))

)
≥ rf%(m)r2

m

4
and

f

4
E

[
(x′(β − β(u)))2

]
≥ r2f%(m)

4
,

where the first inequality holds by construction of rm; hence

Qu(β)−Qu(β(u)) ≥ r2f%(m)
4

∧ rf%(m)r2
m

4
≥ q(m)(r2 ∧ r)

for q(m) defined in (A.3).
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The following two lemmas verify the Empirical Pre-sparseness condition.

Lemma 2 (Verifying Condition E.3 - Empirical Pre-Sparseness). We have that the num-

ber of non-zero components of β̂(u) is bounded by n ∧ p, namely

‖β̂(u)‖0 ≤ n ∧ p.

Suppose that y1, . . . , yn are absolutely continuous conditional on x1, . . . , xn, then the number

of interpolated points, h = |{i : yi = x′iβ̂(u)}|, is equal to ‖β̂(u)‖0 with probability one.

Proof. Trivially we have ‖β̂(u)‖0 ≤ p. Let Y = (y1, . . . , yn)′, X be the n × p matrix

with rows x′i, i = 1, . . . , n, c = (ue′, (1 − u)e′, λe′, λe′)′, and A = [I − I X − X], where

e = (1, 1, . . . , 1)′ denotes vectors of ones of conformable dimensions, and I denotes the n×n

identity matrix. Note that the penalized quantile regression can be written as

min
ξ+,ξ−,β+,β−

ue′ξ+ + (1− u)e′ξ− + λe′β+ + λe′β−

ξ+ − ξ− + Xβ+ −Xβ− = Y

(ξ+, ξ−, β+, β−) ∈ IR2n+2p
+

⇔
min

w
c′w

Aw = Y

w ≥ 0.

Matrix A has rank n, since it has linearly independent rows. By Theorem 2.4 of Bertsimas

and Tsitsiklis [6] there is at least one optimal basic solution w∗ with at most n non-zero

components. We defined β̂(u) as a basic solution with the minimal number of non-zero

components (note that ‖β̂(u)‖0 = ‖β̂+(u)‖0 + ‖β̂−(u)‖0 since λ > 0). Let h denote the

number of interpolated points. We have that n − h components of ξ and ξ̃ are non-zero.

Therefore, we have ‖β̂(u)‖0 + (n− h) ≤ n which leads to ‖β̂(u)‖0 ≤ h ≤ n.

To prove the second statement, consider the dual problem maxa{Y ′a : A′a ≤ c}. Condi-

tional on X consider the polyhedron defined by {a : A′a ≤ c} which has a finite number

of vertices. Since c > 0 componentwise this polyhedron is non-empty (i.e., zero is always

feasible for the dual problem). Moreover, the form of A′ implies that {a : A′a ≤ c} is a

bounded set. Therefore, if the solution of the dual is not unique there exist vertices a1, a2

such that Y ′(a1 − a2) = 0. This is a zero probability event since Y is absolutely continuous

conditional on X and the number of vertices is finite. Therefore the dual problem has a

unique solution with probability one. If the dual basic solution is unique, we have that the

primal basic solution is non-degenerate, that is, the number of non-zero variables equals

n, see [6]. Therefore, we have with probability one that ‖β̂(u)‖0 + (n − h) = n, or that

‖β̂(u)‖0 = h.
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From the complementary slackness condition of linear programming, see Theorem 4.5 of

[6], we have that for any component j ∈ {1, . . . , p}

(A.6)
β̂j(u) > 0 only if En [xij âi(u)] =

λ

n
, and

β̂j(u) < 0 only if En [xij âi(u)] = −λ

n

where â(u) solves the dual problem (2.6).

Lemma 3 (Verifying Condition E.3 - Empirical Pre-Sparseness, continued). Let m =

‖β̂(u)‖0. For any λ > 0 we have

m ≤ n2φ(m)
λ2

.

Proof. Let â(u) be the solution of the dual problem (2.6), T̂ = support(β̂(u)), and

m = ‖β̂(u)‖0 = |T̂ |. For any k ∈ T̂ , from (A.6) we have (X ′â(u))k = sign(β̂k(u))λ and, for

k /∈ T̂ we have sign(β̂k(u)) = 0. Therefore, by Cauchy-Schwarz inequality we have

mλ = sign(β̂(u))′sign(β̂(u))λ = sign(β̂(u))′(X ′â(u)) =
(
Xsign(β̂(u))

)′
â(u)

≤ ‖Xsign(β̂(u))‖‖â(u)‖ ≤ √
nφ(m)‖sign(β̂(u))‖‖â(u)‖,

where we used that ‖sign(β̂(u))‖0 = m. Since ‖â(u)‖ ≤ √
max{u, 1− u}n ≤ √

n, and

‖sign(β̂(u))‖ =
√

m we have mλ ≤ n
√

mφ(m), which yields the result.

We shall need some additional notation in what follows. Let

ψi(β, u) = (1{yi ≤ x′iβ} − u)xi

denote the score function for the ith observation. Define the set of m-sparse vectors near to

the true value β(u)

R(r,m) := {β ∈ IRp : ‖β‖0 ≤ m, ‖β − β(u)‖ ≤ r} ,

and define the sparse sphere associated with a given vector β as

S(β) = {α ∈ IRp : ‖α‖ ≤ 1, support(α) ⊆ support(β)}.

Also, define the following empirical and linearization errors

(A.7)
ε0(m,n, p) := supα∈Sm

p
|Gn(α′ψi(β(u), u))|,

ε1(r,m, n, p) := supβ∈R(r,m),α∈S(β) |Gn(α′ψi(β, u))−Gn(α′ψi(β(u), u))|,
ε2(r,m, n, p) := supβ∈R(r,m),α∈S(β)

√
n|E[α′ψi(β, u)]− E[α′ψi(β(u), u)]|.
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where Gn is the empirical process operator, that is Gn(f) := n−1/2 ∑n
i=1(f(Xi)−E[f(Xi)]).

Next we verify condition E.4.

Lemma 4 (Verifying Condition E.4 - Empirical Sparseness). Let m = ‖β̂(u)‖0, r =

‖β̂(u)−β(u)‖, and suppose that y1, . . . , yn are absolutely continuous conditional on x1, . . . , xn.

We have that, in the linear quantile model (2.1) under random sampling,

√
m .p µ(m)

n

λ
(r ∧ 1) +

√
m

(√
n log(n ∨ p)φ(m) ∨√

n log(n ∨ p)ϕ(m)
)

λ
,

uniformly in m ≤ n and r, where µ(m) =
√

ϕ(m)(
√

ϕ(m)f̄ ∨ 1). Therefore, provided

ϕ(m) .p φ(m), condition E.4 holds with µ = µ(n), namely

√
m .p µ

n

λ
(r ∧ 1) +

√
m

√
n log(n ∨ p)φ(m)

λ
.

In particular, under D.1-D.4, ϕ(m) . 1 and φ(1) ≥ 1, so that condition E.4 holds with

µ = µ(n) ' 1.

Proof. (Lemma 4) It will be convenient to define three vectors of rank scores (dual

variables):

1. the true rank scores, a∗i (u) = u− 1{yi ≤ x′iβ(u)} for i = 1, . . . , n;

2. the estimated rank scores, ai(u) = u− 1{yi ≤ x′iβ̂(u)} for i = 1, . . . , n;

3. the dual optimal rank scores, â(u) that solve the dual program (2.6).

Let T̂ denote the support of β̂(u). Let x
iT̂

= (xij , j ∈ T̂ )′, and β̂
T̂
(u) = (β̂j(u), j ∈ T̂ )′.

From the complementary slackness characterizations (A.6) we have that

(A.8) sign(β̂
T̂
(u)) =

nEn

[
x

iT̂
âi(u)

]

λ
, i.e.

√
m = ‖sign(β̂

T̂
(u))‖ =

∥∥∥∥∥∥
nEn

[
x

iT̂
âi(u)

]

λ

∥∥∥∥∥∥
.

Therefore we can bound the number of non-zero components of β̂(u) provided we can

bound the empirical expectation in (A.8). This is achieved in the next step by combining

the maximal inequalities and assumptions on the design matrix.

Using the triangle inequality in (A.8), write

λ
√

m ≤
∥∥∥nEn

[
x

iT̂
(âi(u)− ai(u))

]∥∥∥ +
∥∥∥nEn

[
x

iT̂
(ai(u)− a∗i (u))

]∥∥∥ +
∥∥∥nEn

[
x

iT̂
a∗i (u)

]∥∥∥ .
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Then we bound each of the three components in this display. To bound the last component,

we use Lemma 9 to get
∥∥∥nEn

[
x

iT̂
a∗i (u)

]∥∥∥ ≤ √
nε0(m, n, p) .p

√
nm log(n ∨ p)

(√
ϕ(m) ∨

√
φ(m)

)
.

To bound the first component, we observe that âi(u) 6= ai(u) only if yi = x′iβ̂(u). By Lemma

2 the penalized quantile regression fit can interpolate at most m points with probability

one. This implies that En
[|âi(u)− ai(u)|2] ≤ m/n. Therefore, we get

∥∥∥nEn

[
x

iT̂
(âi(u)− ai(u))

]∥∥∥ ≤ n supα∈Sm
p
En [|α′xi| |âi(u)− ai(u)|]

≤ n supα∈Sm
p

√
En [|α′xi|2]

√
En [|âi(u)− ai(u)|2]

≤ √
nφ(m)m.

To bound the second component, note that
∥∥∥nEn

[
x

iT̂
(ai(u)− a∗i (u))

]∥∥∥ =
∥∥∥√n Gn

(
x

iT̂
(ai(u)− a∗i (u))

)∥∥∥ +
∥∥∥nE

[
x

iT̂
(ai(u)− a∗i (u))

]∥∥∥
≤ √

nε1(r,m, n, p) +
√

nε2(r,m, n, p)

.p

√
nm log(n ∨ p)

√
ϕ(m) ∨ φ(m) + n

√
ϕ(m)(

√
ϕ(m)f̄ r ∧ 1)

where we use Lemma 8 and Lemma 10 to bound respectively ε1(r,m, n, p) and ε2(r,m, n, p).

Setting µ(m) =
√

ϕ(m)(
√

ϕ(m)f̄ ∨ 1) ≥ √
ϕ(m) and using that m ≤ n the first result

follows.

Under D.1-D.4 we ϕ(n) . 1, and φ(1) ≥ 1 and condition E.4 holds.

Lemma 5 (Verifying Condition E.5 - Empirical Error). We have that, in the linear
quantile model (2.1) under random sampling, and uniformly over m ≤ n, r ≥ 0, and the
region R(r,m):
∣∣∣Q̂u(β)−Qu(β)−

(
Q̂u(β(u))−Qu(β(u))

)∣∣∣ .p
r
√

(m + s) log(n ∨ p)√
n

(√
ϕ(m + s) ∨ φ(m + s)

)
.

In particular, under D.1-D.4 we have that condition E.5 holds, namely
∣∣∣Q̂u(β)−Qu(β)−

(
Q̂u(β(u))−Qu(β(u))

)∣∣∣ .p
r√
n

√
(m + s) log(n ∨ p) φ(m + s)

uniformly over m ≤ n, r ≥ 0, and the region R(r,m).

Proof. For convenience let εn :=
∣∣∣Q̂u(β)−Qu(β)−

(
Q̂u(β(u))−Qu(β(u))

)∣∣∣. Since r ≥
‖β − β(u)‖, and ‖β − β(u)‖0 ≤ m + s we have that

εn ≤ 1√
n
| ∫ r

0
(β−β(u))

r

′
(Gn(ψi( r−z

r β + z
r β(u), u))−Gn(ψi(β(u), u)))dz|

≤ 1√
n

∫ r

0
ε1(r,m + s, n, p)dz = r√

n
ε1(r,m + s, n, p).
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The first result follows from Lemma 8.

Under D.1-D.4 we have ϕ(n) . 1 and φ(1) ≥ 1 and condition E.5 holds.

A.2. Controlling Empirical and Linearization Errors. Here we exploit the tech-

nical results of Appendix A.4 to control the empirical errors ε0 and ε1. These technical

results provide the maximal inequalities for a collection of empirical processes indexed by

submodels’ dimensions m ≤ n, which may be of some independent interest. These technical

results and their usage rely on the concepts of the VC dimension and the uniform covering

number for a class of functions (see, e.g., [38]).

We begin with a bound on the VC dimension of relevant functions classes.

Lemma 6. Consider a fixed subset T ⊂ {1, 2, . . . , p}, |T | = m. The classes of functions

FT =
{
α′(ψi(β, u)− ψi(β(u), u)) : α ∈ S(β), support(β) ⊆ T

}
, and

GT =
{
α′ψi(β(u), u) : support(α) ⊆ T

}

have their VC index bounded by cm for some universal constant c.

Proof. We prove the result for FT , and we omit the proof for GT as it is similar.

Consider the classes of functions W := {x′α : support(α) ⊆ T} and V := {1{y ≤ x′β} :

support(β) ⊆ T} (for convenience let Z = (y, x)). Since T is fixed and has cardinality m,

their VC index is bounded by m+2; see, for example, van der Vaart and Wellner [38] Lemma

2.6.15. Next consider f ∈ FT which can be written in the form f(Z) := g(Z)(1{h(Z) ≤
0} − 1{p(Z) ≤ 0}) where g ∈ W, 1{h ≤ 0} and 1{p ≤ 0} ∈ V. The VC index of FT is by

definition equal to the VC index of the class of sets {(Z, t) : f(Z) ≤ t}, f ∈ FT , t ∈ R. We

have that

{(Z, t) : f(Z) ≤ t} = {(Z, t) : g(Z)(1{h(Z) ≤ 0} − 1{p(Z) ≤ 0}) ≤ t}
= {(Z, t) : h(Z) > 0, p(Z) > 0, t ≥ 0} ∪
∪ {(Z, t) : h(Z) ≤ 0, p(Z) ≤ 0, t ≥ 0} ∪
∪ {(Z, t) : h(Z) ≤ 0, p(Z) > 0, g(Z) ≤ t} ∪
∪ {(Z, t) : h(Z) > 0, p(Z) ≤ 0, g(Z) ≥ t}.

Thus each set {(Z, t) : f(Z) ≤ t} is created by taking finite unions, intersections, and

complements of the basic sets {Z : h(Z) > 0}, {Z : p(Z) ≤ 0}, {t ≥ 0}, {(Z, t) : g(Z) ≥ t},
and {(Z, t) : g(Z) ≤ t}. These basic sets form VC classes, each having VC index of order m.
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Therefore, the VC index of a class of sets {(Z, t) : f(Z) ≤ t}, f ∈ FT , t ∈ R is of the same

order as the sum of the VC indices of the set classes formed by the basic VC sets; see van

der Vaart and Wellner [38] Lemma 2.6.17.

Next we control the uniform L2 covering numbers for function classes generated by taking

the union of all m-dimensional subsets of a p-dimensional set.

Lemma 7. For any m ≤ n, consider the classes of functions

Fm,n,p = {α′(ψi(β, u)− ψi(β(u), u)) : β ∈ IRp, ‖β‖0 ≤ m,α ∈ S(β)} and

Gm,n,p =
{
α′ψi(β(u), u) : α ∈ Sm

p

}
,

with envelope functions Fm,n,p and Gm,n,p. For each ε > 0

sup
Q

N(ε‖Fm,n,p‖Q,2,Fm,n,p, L2(Q)) ≤ C

(
16e
ε

)2(cm−1) (
ep

m

)m

sup
Q

N(ε‖Gm,n,p‖Q,2,Gm,n,p, L2(Q)) ≤ C

(
16e

ε

)2(cm−1) (
ep

m

)m

for some universal constants C and c.

Proof. Let FT denote a restriction of Fm,n,p for a particular choice of m non-zero

components. It follows that its VC dimension is at most cm by Lemma 6. In turn this

implies that the covering number of FT is bounded by

N(ε‖FT ‖Q,2,FT , L2(Q)) ≤ C(cm)(16e)cm
(

1
ε

)2(cm−1)

,

where C is an universal constant, see van der Vaart and Wellner [38] Theorem 2.6.7. Since we

have at most
( p
m

) ≤ (ep/m)m different restrictions T , the total covering number is bounded

according the statement of the lemma. The proof for Gm,n,p follows similarly.

Next we proceed to control the empirical errors ε0 and ε1 as defined in (A.7).

Lemma 8 (Controlling error ε1). We have that in the linear quantile model (2.1)

ε1(r,m, n, p) .p

√
m log(n ∨ p)max

{√
ϕ(m),

√
φ(m)

}
.

uniformly in r and m ≤ n.
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Proof. By definition of ε1 we have ε1(r,m, n, p) ≤ supf∈Fm,n,p
|Gn(f)|. From Lemma

7 the uniform covering number of Fn,m,p is bounded by C (16e/ε)2(cm−1) (ep/m)m. Using

Lemma 18 we have that uniformly in m ≤ n

(A.9) sup
f∈Fm,n,p

|Gn(f)| .p

√
m log(n ∨ p)max

{
sup

f∈Fm,n,p

E[f2]1/2, sup
f∈Fm,n,p

En[f2]1/2

}

Since |α′ (ψi(β, u)− ψi(β(u), u))| = |α′xi| |1{yi ≤ x′iβ} − 1{yi ≤ x′iβ(u)}| ≤ |α′xi|,

(A.10) En[f2] ≤ En

[
|α′xi|2

]
≤ φ(m) and E[f2] ≤ E

[
|α′xi|2

]
≤ ϕ(m),

using the definition of φ(m) and ϕ(m). Combining (A.10) with (A.9) we obtain the result.

Next we bound ε0 using the same tools we used to bound ε1.

Lemma 9 (Controlling empirical error ε0). In the linear quantile model (2.1) we have

ε0(m,n, p) .p

√
m log(n ∨ p)max

{√
ϕ(m),

√
φ(m)

}

uniformly in m ≤ n.

Proof. The proof is similar to the proof of Lemma 8 with Gm,n,p instead of Fm,n,p. Note

that for g ∈ Gm,n,p we have En[g2] = En[(α′ψi(β(u), u))2] = En
[
(α′xi)2(1{yi ≤ x′iβ(u)} − u)2

]

≤ En
[
(α′xi)2

] ≤ φ(m) for all α ∈ Sm
p .

Alternatively we could bound ε0 using Theorem 5.2.2 of Stout [34] to achieve a dependence

on φ(1) instead of φ(m) by making additional assumptions on the covariates xij . Now we

proceed to bound ε2.

Lemma 10 (Controlling linearization error ε2). We have that in the linear quantile model

ε2(r,m, n, p) .
√

n
√

ϕ(m)
(√

ϕ(m)f̄ r ∧ 1
)

uniformly in r > 0 and m ≤ n.

Proof. By definition we have

ε2(r,m, n, p) = supβ∈R(r,m),α∈S(β)

√
n|E[α′ψi(β, u)]− E[α′ψi(β(u), u)]|

= supβ∈R(r,m),α∈S(β)

√
n|E[(α′xi) (1{yi ≤ x′iβ} − 1{yi < x′iβ(u)})]|.
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By the Cauchy-Schwarz inequality the expression above is bounded by

√
n sup

α∈Sm
p

√
E[(α′xi)2] sup

β∈R(r,m)

√
E[(1{yi ≤ x′iβ} − 1{yi < x′iβ(u)})2].

By definition ϕ(m) = supα∈Sm
p

E[(α′xi)2]. Next, since | 1{yi ≤ x′iβ} − 1{yi < x′iβ(u)} | ≤
1{|yi − x′iβ(u)| ≤ |x′i(β − β(u))|}, we have

E[(1{yi ≤ x′iβ} − 1{yi < x′iβ(u)})2] = E [|1{yi ≤ x′iβ} − 1{yi < x′iβ(u)}|]
≤ E [1{|yi − x′iβ(u)| ≤ |x′i(β − β(u))|}]
≤ E

[∫ |x′i(β−β(u))|
−|x′i(β−β(u))| fy|x(t + x′iβ(u)|xi)dt ∧ 1

]

≤ (2f̄‖β − β(u)‖ supα∈Sm
p

E [|α′xi|]) ∧ 1

≤
(
2rf̄

√
ϕ(m)

)
∧ 1.

A.3. Lemmas on Sparse Eigenvalues. In this section we collect lemmas on the

maximum k-sparse eigenvalues that are used in some of the derivations presented earlier.

Recall the notation for the unit sphere Sn−1 = {α ∈ IRn : ‖α‖ = 1} and the k-sparse

unit sphere Sk
p = {α ∈ IRp : ‖α‖ = 1, ‖α‖0 ≤ k}. For a matrix M , let φM (k) denote the

maximum k-sparse eigenvalue of M , namely φM (k) = sup{ α′Mα : α ∈ Sk
p }.

We begin with a lemma that establishes a type of subadditivity of the maximum sparse

eigenvalues as a function of the cardinality.

Lemma 11. Let M be a semi-definite positive matrix. For any integers k and `k with

` ≥ 1 we have

φM (`k) ≤ d`eφM (k).

Proof. Let ᾱ achieve φM (`k). Moreover let
∑d`e

i=1 αi = ᾱ such that
∑d`e

i=1 ‖αi‖0 = ‖ᾱ‖0.

We can choose αi’s such that ‖αi‖0 ≤ k since d`ek ≥ `k.

Since M is positive semi-definite, for any i, j we have α′iMαi + α′jMαj ≥ 2 |α′iMαj | .
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Therefore, we have

φM (`k) = ᾱ′Mᾱ =
d`e∑

i=1

α′iMαi +
d`e∑

i=1

∑

j 6=i

α′iMαj

≤
d`e∑

i=1

α′iMαi +
d`e∑

i=1

∑

j 6=i

(α′iMαi + α′jMαj)/2

=
d`e∑

i=1

{
α′iMαi + (d`e − 1)α′iMαi

}

≤ d`e
d`e∑

i=1

‖αi‖2φM (‖αi‖0).

Note that
∑d`e

i=1 ‖αi‖2 = 1 and thus φM (`k) ≤ d`emaxi=1,...,d`e φM (‖αi‖0) ≤ d`eφM (k).

The following lemmas characterize the behavior of the maximal sparse eigenvalue for the

case of correlated Gaussian regressors. We start by establishing an upper bound on φ(k)

that holds with high probability.

Lemma 12. Consider xi = Σ1/2zi, where zi ∼ N(0, Ip), p ≥ n, and supα∈Sk
p
α′Σα ≤

σ2(k). Let φ(k) be the maximal k-sparse eigenvalue of En [xix
′
i], for k ≤ n. Then with

probability converging to one, uniformly in k ≤ n,
√

φ(k) . σ(k)
(

1 +
√

k/n
√

log p

)
.

Proof. By Lemma 11 it suffices to establish the result for k ≤ n/2. Let Z be the

n × p matrix collecting vectors z′i, i = 1, . . . , n as rows. Consider the Gaussian process

Gk : (α, α̃) 7→ α̃′Zα/
√

n, where (α, α̃) ∈ Sk
p × Sn−1. Note that

‖Gk‖ = sup
(α,α̃)∈Sk

p×Sn−1

|α̃′Zα/
√

n| = sup
α∈Sk

p

√
α′En[ziz′i]α =

√
φ(k).

Using Borell’s concentration inequality for the Gaussian process (see van der Vaart and Well-

ner [38] Lemma A.2.1) we have that P{‖Gk‖−median‖Gk‖ > r} ≤ e−nr2/2. Also, by classical

results on the behavior of the maximal eigenvalues of the Gaussian covariance matrices (see

German [13]), as n → ∞, for any k/n → γ ∈ [0, 1], we have that limk,n(median‖Gk‖ − 1−√
k/n) = 0. Since k/n lies within [0, 1], any sequence kn/n has convergent subsequence with

limit in [0, 1]. Therefore, we can conclude that, as n → ∞, lim supkn,n(median‖Gkn‖ − 1 −√
kn/n) ≤ 0. This further implies lim supn supk≤n(median‖Gk‖ − 1 − √

k/n) ≤ 0. There-

fore, for any r0 > 0 there exists n0 large enough such that for all n ≥ n0 and all k ≤ n,
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P
{
‖Gk‖ > 1 +

√
k/n + r + r0

}
≤ e−nr2/2. There are at most

(p
k

)
subvectors of zi containing

k elements, so we conclude that for n ≥ n0,

P



 sup

α∈Sk
p

√
α′En[ziz′i]α > 1 +

√
k/n + rk + r0



 ≤

(
p

k

)
e−nr2

k/2.

Summing over k ≤ n we obtain

n∑

k=1

P



 sup

α∈Sk
p

√
α′En[ziz′i]α > 1 +

√
k/n + rk + r0



 ≤

n∑

k=1

(
p

k

)
e−nr2

k/2.

Setting rk =
√

ck/n log p for c > 1 and using that
(p
k

) ≤ pk, we bound the right side

by
∑n

k=1 e(1−c)k log p → 0 as n → ∞. We conclude that with probability converging to

one, uniformly for all k: supα∈Sk
p

√
α′En[ziz′i]α . 1 +

√
k/n

√
log p. Furthermore, since

supα∈Sk
p
α′Σα ≤ σ2(k), we conclude that with probability converging to one, uniformly

for all k: supα∈Sk
p

√
α′En[xix′i]α . σ(k)(1 +

√
k/n

√
log p).

Next, relying on Sudakov’s minoration, we show a lower bound on the expectation of

the maximum k-sparse eigenvalue. We do not use the lower bound in the analysis, but the

result shows that the upper bound is sharp in terms of the rate dependence on k, p, and n.

Lemma 13. Consider xi = Σ1/2zi, where zi ∼ N(0, Ip), and infα∈Sk
p
α′Σα ≥ σ2(k). Let

φ(k) be the maximal k-sparse eigenvalue of En [xix
′
i], for k ≤ n < p. Then for any even k

we have that:

(1) E
[√

φ(k)
]
≥ σ(2k)

3
√

n

√
(k/2) log(p− k) and (2)

√
φ(k) &p

σ(2k)
3
√

n

√
(k/2) log(p− k).

Proof. Let X be the n× p matrix collecting vectors x′i, i = 1, . . . , n as rows. Consider

the Gaussian process (α, α̃) 7→ α̃′Xα/
√

n, where (α, α̃) ∈ Sk
p × Sn−1. Note that

√
φ(k) is

the supremum of this Gaussian process

(A.11) sup
(α,α̃)∈Sk

p×Sn−1

|α̃′Xα/
√

n| = sup
α∈Sk

p

√
α′En[xix′i]α =

√
φ(k).

Hence we proceed in three steps: In Step 1, we consider the uncorrelated case and prove

the lower bound (1) on the expectation of the supremum using Sudakov’s minoration, using

a lower bound on a relevant packing number. In Step 2, we derive the lower bound on the

packing number. In Step 3, we generalize Step 1 to the correlated case. In Step 4, we prove

the lower bound (2) on the supremum itself using Borell’s concentration inequality.
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Step 1. In this step we consider the case where Σ = I and show the result using Sudakov’s

minoration. By fixing α̃ = (1, . . . , 1)′/
√

n ∈ Sn−1, we have
√

φ(k) ≥ supα∈Sk
p
En[x′iα] =

supα∈Sk
p
Zα, where α 7→ Zα := En[x′iα] is a Gaussian process on Sk

p. We will bound

E[supα∈Sk
p
Zα] from below using Sudakov’s minoration.

We consider the standard deviation metric on Sk
p induced by Z: for any t, s ∈ Sk

p,

d(s, t) =
√

σ2(Zt − Zs) =
√

E [(Zt − Zs)2] =
√

E[En [(x′i(t− s))2]] = ‖t− s‖/√n.

Consider the packing number D(ε,Sk
p, d), the largest number of disjoint closed balls of radius

ε with respect to the metric d that can be packed into Sk
p, see [10]. We will bound the packing

number from below for ε = 1√
n
. In order to do this we restrict attention to the collection T

of elements t = (t1, . . . , tp) ∈ Sk
p such that ti = 1/

√
k for exactly k components and ti = 0

in the remaining p − k components. There are |T | =
(p
k

)
of such elements. Consider any

s, t ∈ T such that the support of s agrees with the support of t in at most k/2 elements. In

this case

(A.12) ‖s− t‖2 =
p∑

j=1

|tj − sj |2 ≥
∑

j∈support(t)
\support(s)

1
k

+
∑

j∈support(s)
\support(t)

1
k
≥ 2

k

2
1
k

= 1.

Let P be the set of the maximal cardinality, consisting of elements in T such that |support(t)\
support(s)| ≥ k/2 for every s, t ∈ P. By the inequality (A.12) we have that D(1/

√
n,Sk

p, d) ≥
|P|. Furthermore, by Step 2 given below we have that |P| ≥ (p− k)k/2.

Using Sudakov’s minoration ([12], Theorem 4.1.4), we conclude that

E
[
sup
t∈Sk

p

Zt

]
≥ sup

ε>0

ε

3

√
log D(ε,Sk

p, d) ≥
√

log D(1/
√

n,Sk
p, d) ≥ 1

3

√
k log(p− k)/(2n),

proving the claim of the lemma for the case Σ = I.

Step 2. In this step we show that |P| ≥ (p− k)k/2.

It is convenient to identify every element t ∈ T with the set support(t), where support(t) =

{j ∈ {1, . . . , p} : tj = 1/
√

k}, which has cardinality k. For any t ∈ T let N (t) = {s ∈ T :

|support(t) \ support(s)| ≤ k/2}. By construction we have that maxt∈T |N (t)||P| ≥ |T |.
Since as shown below maxt∈T |N (t)| ≤ K :=

( k
k/2

)(p−k/2
k/2

)
for every t, we conclude that

|P| ≥ |T |/K =
(p
k

)
/K ≥ (p− k)k/2.

It remains only to show that |N (t)| ≤ ( k
k/2

)(p−k/2
k/2

)
. Consider an arbitrary t ∈ T . Fix

any k/2 components of support(t), and generate elements s ∈ N (t) by switching any of

the remaining k/2 components in support(t) to any of the possible p − k/2 values. This
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gives us at most
(p−k/2

k/2

)
such elements s ∈ N (t). Next let us repeat this procedure for

all other combinations of initial k/2 components of support(t), where the number of such

combinations is bounded by
( k
k/2

)
. In this way we generate every element s ∈ N (t). From

the construction we conclude that |N (t)| ≤ ( k
k/2

)(p−k/2
k/2

)
.

Step 3. The case where Σ 6= I follows similarly noting that the new metric, d(s, t) =√
σ2(Zt − Zs) =

√
E [(Zt − Zs)2], satisfies

d(s, t) ≥ σ(2k)‖s− t‖/√n since ‖s− t‖0 ≤ 2k.

Step 4. Using Borell’s concentration inequality (see van der Vaart and Wellner [38] Lemma

A.2.1) for the supremum of the Gaussian process defined in (A.11), we have P{|√φ(k) −
E[

√
φ(k)]| > r} ≤ 2e−nr2/2, which proves the second claim of the lemma.

Next we combine the previous lemmas to control the empirical sparse eigenvalues of

Examples 1 and 2.

Lemma 14. For k ≤ n, under the design of Example 1 we have φ(k) 'p 1 +
√

k log p
n .

For k ≤ n, under the design of Example 2 we have

φ(k) .p
1 + |ρ|
1− |ρ|


1 +

√
k log p

n


 and φ(k) &p

1− |ρ|
1 + |ρ|


1 +

√
k log p

n


 .

Proof. Consider Example 1. Let xi,−1 denote the ith observation without the first com-

ponent. Write

En
[
xix

′
i

]
=


 1 En

[
x′i,−1

]

En [xi,−1] 0


 + En


0 0

0 En

[
xi,−1x

′
i,−1

]

 = M + N.

We first bound φN (k). Letting N−1,−1 = En

[
xi,−1x

′
i,−1

]
we have φN (k) = φN−1,−1(k).

Lemma 12 implies that φN (k) .p 1 +
√

k/n
√

log p. Lemma 13 bounds φN (k) from below

because φN−1,−1(k) &p

√
(k/2n) log(p− k).

We then bound φM (k). Since M11 = 1, we have φM (1) ≥ 1. To produce an upper bound

let w = (a, b′)′ achieve φM (k) where a ∈ IR, b ∈ IRp−1. By definition we have ‖w‖ = 1,

‖w‖0 ≤ k. Note that |a| ≤ 1, ‖b‖ =
√

1− |a|2 ≤ 1, ‖b‖1 ≤
√

k‖b‖. Therefore

φM (k) = w′Mw = a2 + 2ab′En [xi,−1] ≤ 1 + 2b′En [xi,−1]

≤ 1 + 2‖b‖1‖En [xi,−1] ‖∞ ≤ 1 + 2
√

k‖b‖‖En [xi,−1] ‖∞.
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Next we bound ‖En [xi,−1] ‖∞ = maxj=2,...,p |En [xij ]|. Since En [xij ] ∼ N(0, 1/n) for j =

2, . . . , p, by (4.13) we have ‖En [xi,−1] ‖∞ .p

√
(1/n) log p. Therefore we have φM (k) .p

1 + 2
√

k/n
√

log p.

Finally, we bound φ. Note that φ(k) = supα∈Sk
p
α′(M + N)α = supα∈Sk

p
α′Mα + α′Nα ≤

φM (k) + φN (k). On the other hand, φ(k) ≥ 1 ∨ φN−1,−1(k) since the covariates contain an

intercept. The result follows by using the bounds derived above.

The proof for the design of Example 2 is similar with the same steps. Since −1 < ρ < 1 is

fixed, the bounds on the eigenvalues of the population design matrix Σ to apply Lemmas 12

and 13 are given by σ2(k) = supα∈Sk
p
α′Σα ≤ (1+ |ρ|)/(1− |ρ|) and σ2(k) = infα∈Sk

p
α′Σα ≥

1
2(1− |ρ|)/(1 + |ρ|). To bound φM (k) comparison theorem (4.15) allows for the same bound

as for the uncorrelated design to hold.

A.4. Maximal Inequalities for a Collection of Empirical Processes. The main

result of this section is Lemma 18, stating a maximal inequality that controls the empirical

process uniformly over a collection of classes of functions using class-dependent bounds.

We need this lemma, because the standard maximal inequalities applied to the union of

function classes yield a single class-independent bound that is too large for our purposes.

We prove the main result by first stating Lemma 15, giving a bound on tail probabilities

of a separable sub-Gaussian process, stated in terms of uniform covering numbers. Here

we want to explicitly trace the impact of covering numbers on the tail probability, since

these covering numbers grow rapidly under increasing parameter dimension. Using the sym-

metrization approach, we then obtain Lemma 17, giving a bound on tail probabilities of

a general separable empirical process, also stated in terms of uniform covering numbers.

Finally given a growth rate on the covering numbers, we obtain our final Lemma 18, which

we repeatedly employ throughout the paper.

Lemma 15 (Exponential Inequality for Sub-Gaussian Process). Consider any linear

zero-mean separable process {G(f) : f ∈ F}, whose index set F includes zero, is equipped

with a L2(P ) norm, and has envelope F . Suppose further that the process is sub-Gaussian,

namely for each g ∈ F − F :

P {|G(g)| > η} ≤ 2 exp
(
−1

2
η2/D2‖g‖2

P,2

)
for any η > 0,

with D a positive constant; and suppose that we have the following upper bound for the
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uniform L2 covering numbers for F :

sup
Q

N(ε‖F‖Q,2,F , L2(Q)) ≤ n(ε,F , L2) for each ε > 0,

where n(ε,F , L2) is increasing in 1/ε, and ε
√

log n(ε,F , L2) → 0 as 1/ε → ∞ and is

decreasing in 1/ε. Then for K > D, for some universal constant c < 30, ρ(F , P ) :=

supf∈F ‖f‖P,2/‖F‖P,2,

P
{

supf∈F |G(f)|
‖F‖P,2

∫ ρ(F ,P )/4
0

√
log n(x,F , L2)dx

> cK

}
≤

∫ ρ(F ,P )/2

0
ε−1n(ε,F , L2)−{(K/D)2−1}dε.

The result of Lemma 15 is similar in spirit to the result of Ledoux and Talagrand [23],

page 302, on tail probabilities of a process stated in terms of Orlicz-norm covering numbers.

However, Lemma 15 gives a tail probability stated in terms of the uniform L2 covering

numbers. The reason is that in our context estimates of the uniform L2 covering numbers

for common function classes are more readily available than the estimates the Orlicz-norm

covering numbers.

In order to prove a bound on tail probabilities of a general separable empirical process,

we need to go through a symmetrization argument. Since we use data-dependent threshold,

we need an appropriate extension of the classical symmetrization lemma to allow for this.

Let us call a threshold function x : IRn 7→ IR k-sub-exchangeable if for any v, w ∈ IRn and

any vectors ṽ, w̃ created by the pairwise exchange of the components in v with components

in w, we have that x(ṽ)∨x(w̃) ≥ [x(v)∨x(w)]/k. Several functions satisfy this property, in

particular x(v) = ‖v‖ with k =
√

2 and constant functions with k = 1. The following result

generalizes the standard symmetrization lemma for probabilities (Lemma 2.3.7 of [38]) to

the case of a random threshold x that is sub-exchangeable.

Lemma 16 (Symmetrization with Data-dependent Threshold). Consider arbitrary in-

dependent stochastic processes Z1, . . . , Zn and arbitrary functions µ1, . . . , µn : F 7→ IR. Let

x(Z) = x(Z1, . . . , Zn) be a k-sub-exchangeable random variable and for any τ ∈ (0, 1) let qτ

denote the τ quantile of x(Z), p̄τ := P (x(Z) ≤ qτ ) ≥ τ , and pτ := P (x(Z) < qτ ) ≤ τ . We

have

P

(∥∥∥∥∥
n∑

i=1

Zi

∥∥∥∥∥
F

> x0 ∨ x(Z)

)
≤ 4

p̄τ
P

(∥∥∥∥∥
n∑

i=1

εi (Zi − µi)

∥∥∥∥∥
F

>
x0 ∨ x(Z)

4k

)
+ pτ

where x0 is a constant such that inff∈F P
(|∑n

i=1 Zi(f)| ≤ x0
2

) ≥ 1− p̄τ

2 .
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Note that we can recover the classical symmetrization lemma where threshold is fixed by

setting k = 1, p̄τ = 1, and pτ = 0. The next lemma follows from combining the previous

two lemmas.

Lemma 17 (Exponential inequality for separable empirical process). Consider a sep-

arable empirical process Gn(f) = n−1/2 ∑n
i=1{f(Zi) − E[f(Zi)]}, where Z1, . . . , Zn is an

underlying i.i.d. data sequence. Let K > 1 and τ ∈ (0, 1) be constants, and en(F ,Pn) =

en(F , Z1, . . . , Zn) be a k-sub-exchangeable random variable, such that

‖F‖Pn,2

∫ ρ(F ,Pn)/4

0

√
log n(ε,F , L2)dε ≤ en(F ,Pn) and sup

f∈F
varPf ≤ τ

2
(4kcKen(F ,Pn))2

for the same constant c > 0 as in Lemma 15, then

P
{

sup
f∈F

|Gn(f)| ≥ 4kcKen(F ,Pn)

}
≤ 4

τ
EP

([∫ ρ(F ,Pn)/2

0
ε−1n(ε,F , L2)−{K

2−1}dε

]
∧ 1

)
+τ.

Finally, our main result in this section is as follows.

Lemma 18 (Maximal Inequality for a Collection of Empirical Processes). Consider a

collection of separable empirical processes Gn(f) = n−1/2 ∑n
i=1{f(Zi) − E[f(Zi)]}, where

Z1, . . . , Zn is an underlying i.i.d. data sequence, defined over function classes Fm,m =

1, . . . , n with envelopes Fm = supf∈Fm
|f(x)|,m = 1, . . . , n, and with upper bounds on the

uniform covering numbers of Fm given for all m by

n(ε,Fm, L2) = (n ∨ p)m(κ/ε)υm, 0 < ε < 1,

with some constants κ > 1 and υ > 1. For a constant C := (1 +
√

2υ)/4 set

en(Fm,Pn) = C
√

m log(n ∨ p)max

{
sup

f∈Fm

‖f‖P,2, sup
f∈Fm

‖f‖Pn,2

}
.

Then, for any δ ∈ (0, 1), there is a large enough constant K ≥ √
2/δ, for n sufficiently

large, the inequality

sup
f∈Fm

|Gn(f)| ≤ 4
√

2cKen(Fm,Pn), for all m ≤ n,

holds with probability at least 1− δ, where the constant c is the same as in Lemma 15.

Now we prove Lemmas 15, 16, 17, and 18.
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Proof of Lemma 15. The proof follows by specializing arguments given van der Vaart

[36], page 286, to the sub-Gaussian processes and also tracing out the bounds on tail prob-

abilities in full detail.

Step 1. There exists a sequence of nested partitions of F , {(Fqi, i = 1, . . . , Nq), q = q0, q0+

1, . . .} where the q-th partition consists of sets of L2(P ) radius at most ‖F‖P,22−q, where q0

is the largest positive integer such that 2−q0 ≤ ρ(F , P )/4 so that q0 ≥ 2. The existence of

such partition follows from a standard argument, e.g. van der Vaart [36], page 286, which

we repeat here: To construct the q-th partition, cover F with at most nq = n(2−q,F , L2)

balls of L2(P ) radius ‖F‖P,22−q and replace these by the same number of disjoint sets. If

the sequence of partitions does not yet consist of successive refinements, then replace the

partition at stage q by the set of all intersections of the form ∩q
j=q0

Fji. This gives partition

into at most Nq = nq0 · · ·nq sets, so that log Nq =
∑q

j=q0
log nj .

Let fqi be an arbitrary point of Fqi. Set πq(f) = fqi if f ∈ Fqi. By separability

of the process, we can replace F by ∪q,ifqi, since the supremum norm of the process

can be computed by taking this set only. In this case, we can decompose f − πq0(f) =
∑∞

q=q0+1(πq(f)− πq−1(f)). Hence by linearity

G(f)−G(πq0(f)) =
∞∑

q=q0+1

G(πq(f))−G(πq−1(f)) =
∞∑

q=q0+1

G(πq(f)− πq−1(f)),

and |G(f)| ≤ ∑∞
q=q0+1 maxf |G(πq(f)− πq−1(f))|+ maxf |G(πq0(f))|. Thus

P
{

sup
f∈F

|G(f)| >
∞∑

q=q0

ηq

}
≤

∞∑
q=q0+1

P
{

max
f
|G(πq(f)− πq−1(f))| > ηq

}
+ P

{
max

f
|G(πq0(f))| > ηq0

}
,

for constants ηq chosen below.

Step 2. By construction of the partition sets

‖πq(f)− πq−1(f)‖P,2 ≤ 2‖F‖P,22−(q−1) ≤ 4‖F‖P,22−q, for q ≥ q0 + 1.

Setting ηq = 8K‖F‖P,22−q
√

log Nq, using sub-Gaussianity, setting K > D, using that
2 log Nq ≥ log NqNq−1 ≥ log nq, using that q 7→ log nq is increasing in q, and 2−q0 ≤
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ρ(F , P )/4, we obtain

∞∑
q=q0+1

P
{

max
f
|G(πq(f)− πq−1(f))| > ηq

}
≤

∞∑
q=q0+1

NqNq−12 exp
(−η2

q/(4D‖F‖P,22−q)2
)

≤
∞∑

q=q0+1

NqNq−12 exp
(−(K/D)22 log Nq

)

≤
∞∑

q=q0+1

2 exp
(−{(K/D)2 − 1} log(NqNq−1)

)

≤
∞∑

q=q0+1

2 exp
(−{(K/D)2 − 1} log nq

)

≤
∫ ∞

q0

2 exp
(−{(K/D)2 − 1} log nq

)
dq

=
∫ ρ(F,P )/4

0

(x ln 2)−12n(x,F , L2(P ))−{(K/D)2−1}dx.

By Jensen’s inequality
√

log Nq ≤ aq :=
∑q

j=q0

√
log nq, so that

∞∑

q=q0+1

ηq ≤ 8
∞∑

q=q0+1

K‖F‖P,22−qaq.

Letting bq = 2 · 2−q, noting aq+1 − aq =
√

log nq+1 and bq+1 − bq = −2−q, we get using
summation by parts

∞∑
q=q0+1

2−qaq = −
∞∑

q=q0+1

(bq+1 − bq)aq = −
(

aqbq|∞q0+1 −
∞∑

q=q0+1

bq+1(aq+1 − aq)

)

=

(
2 · 2−(q0+1)

√
log nq0+1 +

∞∑
q=q0+1

2 · 2−(q+1)
√

log nq+1

)
= 2

∞∑
q=q0+1

2−q
√

log nq,

where we use the assumption that 2−q
√

log nq → 0 as q → ∞, so that −aqbq|∞q0+1 =

2 · 2−(q0+1)
√

log nq0+1. Using that 2−q
√

log nq is decreasing in q by assumption,

2
∞∑

q=q0+1

2−q
√

log nq ≤ 2
∫ ∞

q0

2−q
√

log n(2−q,F , L2(P ))dq.

Using a change of variables and that 2−q0 ≤ ρ(F , P )/4, we finally conclude that

∞∑

q=q0+1

ηq ≤ K‖F‖P,2
16

log 2

∫ ρ(F ,P )/4

0

√
log n(x,F , L2(P ))dx.

Step 3. Letting ηq0 = K‖F‖P,2ρ(F , P )
√

2 log Nq0 , recalling that Nq0 = nq0 , using ‖πq0(f)‖P,2 ≤
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‖F‖P,2 and sub-Gaussianity, we conclude

P
{

max
f
|G(πq0(f))| > ηq0

}
≤ nq2 exp

(
−(K/D)2 log nq

)
≤ 2 exp

(
−{(K/D)2 − 1} log nq

)

≤
∫ q0

q0−1
2 exp

(
−{(K/D)2 − 1} log nq

)
dq =

∫ ρ(F ,P )/2

ρ(F ,P )/4
(x ln 2)−12n(x,F , L2(P ))−{(K/D)2−1}dx.

Also, since nq0 = n(2−q0 ,F , P ), 2−q0 ≤ ρ(F , P )/4, and n(x,F , P ) is increasing in 1/x, we

obtain:

ηq0 = 4K‖F‖P,2[ρ(F , P )/4]
√

2 log n(2−q0 ,F , P ) ≤ 4
√

2K‖F‖P,2

∫ ρ(F ,P )/4

0

√
log n(x,F , P )dx.

Step 4. Finally, adding the bounds on tail probabilities from Steps 2 and 3 we obtain the

tail bound stated in the main text. Further, adding bounds on ηq from Steps 2 and 3, and

using c = 16/log 2 + 4
√

2 < 30, we obtain
∞∑

q=q0

ηq ≤ cK‖F‖P,2

∫ ρ(F ,P )/4

0

√
log n(x,F , L2(P ))dx.

Proof of Lemma 16. The proof proceeds analogously to the proof of Lemma 2.3.7

(page 112) in [38] with the necessary adjustments. Letting qτ be the τ quantile of x(Z) we

have

P

{∥∥∥∥∥
n∑

i=1

Zi

∥∥∥∥∥
F

> x0 ∨ x(Z)

}
≤ P

{
x(Z) ≥ qτ ,

∥∥∥∥∥
n∑

i=1

Zi

∥∥∥∥∥
F

> x0 ∨ x(Z)

}
+ P{x(Z) < qτ}.

Next we bound the first term of the expression above. Let Y = (Y1, . . . , Yn) be an inde-

pendent copy of Z = (Z1, . . . , Zn), suitably defined on a product space. Fix a realization

of Z such that x(Z) ≥ qτ and ‖∑n
i=1 Zi‖F > x0 ∨ x(Z). Therefore ∃fZ ∈ F such that

|∑n
i=1 Zi(fZ)| > x0 ∨ x(Z). Conditional on such Z and using the triangular inequality we

have that

PY

{
x(Y ) ≤ qτ , |

∑n
i=1 Yi(fZ)| ≤ x0

2

} ≤ PY

{
|∑n

i=1(Yi − Zi)(fZ)| > x0∨x(Z)∨x(Y )
2

}

≤ PY

{
‖∑n

i=1(Yi − Zi)‖F > x0∨x(Z)∨x(Y )
2

}
.

By definition of x0 we have inff∈F P
{|∑n

i=1 Yi(f)| ≤ x0
2

} ≥ 1−p̄τ/2. Since PY {x(Y ) ≤ qτ} =

p̄τ , by Bonferroni inequality we have that the left hand side is bounded from below by

p̄τ − p̄τ/2 = p̄τ/2. Therefore, over the set {Z : x(Z) ≥ qτ , ‖
∑n

i=1 Zi‖F > x0∨x(Z)} we have

p̄τ

2
≤ PY

{∥∥∥∥∥
n∑

i=1

(Yi − Zi)

∥∥∥∥∥
F

>
x0 ∨ x(Z) ∨ x(Y )

2

}
.
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Integrating over Z we obtain

p̄τ

2
P

{
x(Z) ≥ qτ ,

∥∥∥∥∥
n∑

i=1

Zi

∥∥∥∥∥
F

> x0 ∨ x(Z)

}
≤ PZPY

{∥∥∥∥∥
n∑

i=1

(Yi − Zi)

∥∥∥∥∥
F

>
x0 ∨ x(Z) ∨ x(Y )

2

}
.

Let ε1, . . . , εn be an independent sequence of Rademacher random variables. Given ε1, . . . , εn,
set (Ỹi = Yi, Z̃i = Zi) if εi = 1 and (Ỹi = Zi, Z̃i = Yi) if εi = −1. That is, we create vectors
Ỹ and Z̃ by pairwise exchanging their components; by construction, conditional on each
ε1, . . . , εn, (Ỹ , Z̃) has the same distribution as (Y,Z). Therefore,

PZPY

{∥∥∥∥∥
n∑

i=1

(Yi − Zi)

∥∥∥∥∥
F

>
x0 ∨ x(Z) ∨ x(Y )

2

}
= EεPZPY

{∥∥∥∥∥
n∑

i=1

(Ỹi − Z̃i)

∥∥∥∥∥
F

>
x0 ∨ x(Z̃) ∨ x(Ỹ )

2

}
.

By x(·) being k-sub-exchangeable, and since εi(Yi − Zi) = (Ỹi − Z̃i), we have that

EεPZPY

{∥∥∥∥∥
n∑

i=1

(Ỹi − Z̃i)

∥∥∥∥∥
F

>
x0 ∨ x(Z̃) ∨ x(Ỹ )

2

}
≤ EεPZPY

{∥∥∥∥∥
n∑

i=1

εi(Yi − Zi)

∥∥∥∥∥
F

>
x0 ∨ x(Z) ∨ x(Y )

2k

}
.

By the triangular inequality and removing x(Y ) or x(Z), the latter is bounded by

P

{∥∥∥∥∥
n∑

i=1

εi(Yi − µi)

∥∥∥∥∥
F

>
x0 ∨ x(Y )

4k

}
+ P

{∥∥∥∥∥
n∑

i=1

εi(Zi − µi)

∥∥∥∥∥
F

>
x0 ∨ x(Z)

4k

}
.

Proof of Lemma 17. We would like to apply exponential inequalities to the general

separable empirical process Gn(f) = n−1/2 ∑n
i=1{f(Zi) − E[f(Zi)]}, which is not sub-

Gaussian; here Z1, . . . , Zn is an underlying i.i.d. data sequence. To achieve this we use

the standard symmetrization approach. Indeed, we first introduce the symmetrized process

Go
n(f) = n−1/2 ∑n

i=1{εif(Zi)}, where ε1, . . . , εn are i.i.d. Rademacher random variables,

i.e., P (εi = 1) = P (εi = −1) = 1/2, which are independent of Z1, . . . , Zn. Then the tail

probabilities of the general empirical process are bounded by the tail probabilities of the

symmetrized process using the symmetrization lemma recalled below. Further, we know that

by Hoeffding inequality the symmetrized process is sub-Gaussian conditional on Z1, . . . , Zn

with respect to the L2(Pn) norm, where Pn is the empirical measure, and this delivers the

result.

By the Chebyshev’s inequality and the assumption on en(F ,Pn) we have for the constant

τ fixed in the statement of the lemma

P (|Gn(f)| > 4kcKen(F ,Pn) ) ≤ supf varPGn(f)

(4kcKen(F ,Pn))2
=

supf∈F varPf

(4kcKen(F ,Pn))2
≤ τ/2.
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Therefore, by the symmetrization Lemma 16 we obtain

P
{

sup
f∈F

|Gn(f)| > 4kcKen(F ,Pn)

}
≤ 4

τ
P

{
sup
f∈F

|Go
n(f)| > cKen(F ,Pn)

}
+ τ.

We then condition on the values of Z1, . . . , Zn, denoting the conditional probability measure

as Pε. Conditional on Z1, . . . , Zn, by the Hoeffding inequality the symmetrized process Go
n

is sub-Gaussian for the L2(Pn) norm, namely for g ∈ F − F

Pε{Go
n(g) > x} ≤ 2 exp

(
−1

2
x2

‖g‖2
Pn,2

)
.

Hence by Lemma 15 with D = 1, we can bound

Pε

{
sup
f∈F

|Go
n(f)| ≥ cKen(F ,Pn)

}
≤

[∫ ρ(F ,Pn)/2

0
ε−1n(ε,F , L2)−{K

2−1}dε

]
∧ 1.

The result follows from taking the expectation over Z1, . . . , Zn.

Proof of Lemma 18. The proof proceeds in two steps, with the first step containing

the main argument and the second step containing some auxiliary calculations.

Step 1. In this step we prove the main result. First, we observe that the bound ε 7→
n(ε,Fm, L2) satisfies the monotonicity hypotheses of Lemma 17 uniformly in m ≤ n.

Second, recall that en(Fm,Pn) := C
√

m log(n ∨ p)max{supf∈Fm
‖f‖P,2, supf∈Fm

‖f‖Pn,2}
for C = (1 +

√
2υ)/4. Note that supf∈Fm

‖f‖Pn,2 is
√

2-sub-exchangeable and ρ(Fm,Pn) :=
supf∈Fm

‖f‖Pn,2/‖Fm‖Pn,2 ≥ 1/
√

n by Step 2 below. Thus, uniformly in m ≤ n:

‖Fm‖Pn,2

∫ ρ(Fm,Pn)/4

0

√
log n(ε,F , L2)dε ≤ ‖Fm‖Pn,2

∫ ρ(Fm,Pn)/4

0

√
m log(n ∨ p) + υm log(κ/ε)dε

≤ (1/4)
√

m log(n ∨ p) sup
f∈Fm

‖f‖Pn,2 + ‖Fm‖Pn,2

∫ ρ(Fm,Pn)/4

0

√
υm log(κ/ε)dε

≤
√

m log(n ∨ p) sup
f∈Fm

‖f‖Pn,2

(
1 +

√
2υ

)
/4

≤ en(Fm,Pn),

which follows by
∫ ρ
0

√
log(κ/ε)dε ≤ (

∫ ρ
0 1dε)1/2 (

∫ ρ
0 log(κ/ε)dε)1/2 ≤ ρ

√
2 log n, for 1/

√
n ≤

ρ ≤ 1 and κ < n for n sufficiently large.

Third, set K :=
√

2/δ > 1 so that B(K) := (K2 − 1) = 2/δ, and let τm = δ/(2m log(n ∨
p)). Recall that 4

√
2cC > 1 where 1 < c < 30 is defined in Lemma 15. Note that for any

m ≤ n and f ∈ Fm, we have by Chebyshev inequality

P (|Gn(f)| > 4
√

2cKen(Fm,Pn) ) ≤ supf∈Fm
‖f‖2

P,2

(4
√

2cKen(Fm,Pn))2
≤ δ/4

(4
√

2cC)2m log(n ∨ p)
≤ τm/2.
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Using Lemma 17 with our choice of τm, m ≤ n, κ > 1, υ > 1, and ρ(Fm,Pn) ≤ 1, we
obtain

P
{

sup
f∈Fm

|Gn(f)| > 4
√

2cKen(Fm,Pn), ∃ m ≤ n
}
≤

n∑
m=1

P

{
sup

f∈Fm

|Gn(f)| > 4
√

2cKen(Fm,Pn)

}

≤ 4
n∑

m=1

[
(n ∨ p)−B(K)m

τm

∫ 1/2

0

(κ/ε)−υB(K)m+1dε + τm

]

≤ 4
n∑

m=1

(n ∨ p)−B(K)m

τm

1
υB(K)m

+
n∑

m=1

τm

< 8(n ∨ p)−B(K) log(n ∨ p) +
δ

2
(1 + log n)
log(n ∨ p)

< δ

by our choice of B(K) and n sufficiently large.

Step 2. In this step we perform some auxiliary calculations.

To establish that supf∈Fm
‖f‖Pn,2 is

√
2-sub-exchangeable, let Z̃, Ỹ be created by pairwise

exchanging any components of Z and Y . Then
√

2
(
supf∈Fm

‖f‖Pn(Z̃),2 ∨ supf∈Fm
‖f‖Pn(Ỹ ),2

)
≥

{
supf∈Fm

‖f‖2
Pn(Z̃),2

+ supf∈Fm
‖f‖2

Pn(Ỹ ),2

}1/2 ≥
{
supf∈Fm

En

[
f(Z̃i)2

]
+ En

[
f(Ỹi)2

]}1/2
=

{
supf∈Fm

En
[
f(Zi)2

]
+ En

[
f(Yi)2

]}1/2 ≥
{
supf∈Fm

‖f‖2
Pn(Z),2 ∨ supf∈Fm

‖f‖2
Pn(Y ),2

}1/2
=

supf∈Fm
‖f‖Pn(Z),2 ∨ supf∈Fm

‖f‖Pn(Y ),2.

Next we show that ρ(Fm,Pn) := supf∈Fm
‖f‖Pn,2/‖Fm‖Pn,2 ≥ 1/

√
n for m ≤ n. The

latter follows from En
[
F 2

m

]
= En[supf∈Fm

|f(Zi)|2] ≤ supi≤n supf∈Fm
|f(Zi)|2, and from

supf∈Fm
En[|f(Zi)|2] ≥ supf∈Fm

supi≤n |f(Zi)|2/n.
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