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Abstract

This paper develops an overlapping generations model to analyze the conse-
quences of demographic structure changes induced by an exogenous shift in the
birth rate. We �rst show that a �nite growth rate of the population that maximizes
long-run capital per capita exists. Then, we examine the theoretical properties
of this growth rate by showing that: (i) it corresponds to the demographic struc-
ture such that the average ages of capital holders and workers are equal; (ii) it is
associated to an e¢ cient steady state; (iii) it increases with compulsory transfers
from younger to older generations. Finally, we explain why standard overlapping
generations models do not exhibit such a growth rate.

JEL Classi�cation: D91; E13; J10
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1 Introduction

Overlapping generations (OLG) models are the neoclassical literature�s com-
mon tool for analyzing the economic consequences of demographic structure
changes. In this paper, we focus on the impact of exogenous shifts in the birth
rate on long-run capital accumulation. This relationship is crucial for ana-
lyzing the consequences of population aging on most macro-variables 1 , such
as growth, assets prices and unemployment. An increase in the population
growth rate simultaneously induces a reduction in capital per worker and an
increase in savings; the problem is to �nd out which one has the strongest
e¤ect. Standard OLG models with production in discrete or continuous time
developed by Diamond [13] and Blanchard [4], respectively, can be used to

0 E-mail address: hippolyte.d-albis@univ-tlse1.fr.
1 See notably the paper by Abel [1] on demographic growth and stock prices.
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show that a birth-rate increase reduces long-run capital per capita. The eco-
nomic intuition given to this result relies on the absence of intergenerational
altruism: the size of future generations does not directly in�uence the saving
choices of current generations. The reduction in aggregate consumption that
follows a birth rate increase is therefore insu¢ cient for compensating the cap-
ital dilution e¤ect. Following Weil [36], the birth rate measures the degree of
disconnection between generations, and newborn individuals are interpreted
as �unloved children�or immigrants.

Empirical studies, however, do not show that demographic structure changes
have a signi�cant impact of on capital accumulation or, more precisely, on its
marginal productivity. In a recent paper, Poterba [30] analyzes the historical
relationship between population structure and assets return, including the
interest rate. Using time series from the United States, Canada and the United
Kingdom for the last seventy years. Poterba �nds no robust evidence of any
impact of demographic variables on assets prices.

At a �rst glance, these empirical �ndings seem to invalidate the OLG models
while validating the Ramsey framework. In this framework 2 , where the popu-
lation is composed of one unique, altruistic family, the demographic variables
have no impact at the balanced equilibrium. That is because the optimal
response to a birth-rate increase is to reduce consumption in order to keep
capital per capita constant. However, in this paper, we argue that Poterba�s
results can be reproduced in an OLG model. We build a continuous time
OLG model of individuals with �nite life-spans to show there exists a �nite
population growth rate, or equivalently an age structure of the population,
that maximizes capital per capita. The existence of this capital maximizer
implies that (i) the sign of the impact of demographic growth on capital per
capita is ambiguous; (ii) the two di¤erent demographic structures could be
associated to the same capital per capita; (iii) and the demographic structure
changes have a little impact on capital per capita when these structures are
at the neighborhood of the one that maximizes capital per capita. Hence, we
conjecture that the demographic structures of developed countries have re-
mained close to the structure which maximizes capital per capita. Of course
an estimation is required to prove this statement, which is not within the
scope of this paper. Instead, we focus on the theoretical characterization of
the demographic growth rate that maximizes steady-state capital per capita.

Our argument hinges on the simple but crucial assumption of a population
composed of non-altruistic individuals who accumulate assets following a life-
cycle behavior. This is standard in neoclassical literature, but is barely im-
plemented in general equilibrium models, because of the technical di¢ culties
that arise in the aggregation procedure. Thus, the two-period lifetime model

2 See Cass [9], Koopmans [24].
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by Diamond [13] and the continuous time models by Blanchard [4] and Weil
[36], which avoid these di¢ culties, are therefore extensively used in the lit-
erature. We show, however, that the assumptions that keep these models
tractable, are responsible for the monotonic relationship they exhibit between
population growth and capital per capita.

We argue that it is possible to develop an analytically tractable model that
reproduces the stylized fact highlighted by Poterba [30]. We build a continuous
time OLG model of individuals with �nite life-spans based on the pioneering
works of Tobin [33] and of Cass and Yaari [10] 3 . We assume a general pat-
tern of individual mortality, which includes such cases as the certain lifetime,
the Blanchard�s Poisson process and the Weil�s in�nitely-lived families. This
formalization makes the comparative discussion straightforward. Aggregation
is made following Lotka�s [27] assumption of a stable population structure as
well as assumptions of perfect �nancial and insurance markets.

We then derive the following results. First, we give su¢ cient conditions for
the existence and uniqueness of a steady-state path. These conditions, which
are easy to interpret and compare with the existing OLG literature. We then
perform a static comparative analysis and show that a �nite population growth
rate that maximizes capital per capita exists. This result crucially depends
on the �niteness of individual life-span. Moreover, the considered growth
rate corresponds to the demographic structure, such that the average age of
capital holders weighted by their wealth equals the average age of the workers
weighted by their earnings. We demonstrate this result using the property
of stable populations to exhibit easily averaged ages associated to individual
variables 4 . Thus, in the steady-state equilibrium, the impact of demographic
growth on capital per capita is positive if the average age of capital holders is
lower than the average age of workers. By construction, this case cannot exist
in the Diamond [13] and Blanchard [4] models.

Before introducing the model, we want to emphasize that our analysis is pos-
itive. Indeed, our intention is di¤erent from the issue raised by Samuelson
[31] on the optimal population growth rate. This growth rate is the one that
maximizes welfare when the equilibrium is golden-rule. Instead, we make a
static comparative analysis when the equilibrium is balanced. Nevertheless,
we show that the equilibrium associated to the demographic growth rate that
maximizes capital per capita, is e¢ cient. Moreover, we complete the analy-
sis by introducing compulsory transfers between generations and show that
transfers from younger to older generations increase the demographic growth

3 Further developments have been made recentely by Burke [8], Malinvaud [28],
Bommier and Lee [5] and Demichelis and Polemarchakis [12].
4 These were �rst introduced in economic models by Arthur and McNicoll [2] and
Lee [26].
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rate that maximizes capital per capita.

The basic framework of the model is presented in Section 2 and the analysis of
the e¤ect of a shift in the demographic growth rate on the steady-state capital
per capita is made in Section 3. A general discussion of the results is proposed
in Section 4. Section 5 concludes and the Appendix presents all the proofs of
the propositions.

2 The model

This section presents an aggregation of individual consumption behavior un-
der an uncertain lifetime in an overlapping generations model of neoclassical
growth. It presents the steady state of such an economy and derives su¢ cient
conditions for its existence and uniqueness. Time is continuous, and all the
variables that depend on time are assumed to be continuous and di¤erentiable.

2.1 Individual behavior

We closely follow Yaari [37] 5 . Individuals are uncertain about the length
� of their life. Let � (�) > 0 denote the probability density function of
the random variable � with support [0;
], where 
 is the �nite maximum
possible lifetime. Individuals also exhibit a pure discount factor � (�) that
satis�es � : (0;
] ! (0; 1) and � (0) = 1; hence, the pure discount rate,
denoted � (�) � ��0 (�) =� (�) which may vary with age and might even be
negative. Individuals only derive satisfaction from their consumption, denoted
c (�) � 0 and have no bequest motives. Instantaneous utility is isoelastic with
an elasticity of intertemporal substitution � 2 (0; 1]. Hence, expected utility
at birth of any individual is:

Z 


0
� (�)

0@Z �

0
� (z)

c (z)1�1=� � 1
1� 1=� dz

1A d� (1)

During a lifetime, the labor supply is �xed and, w (�) > 0; a given stream of
labor income is received. There is a single asset and individuals have access to
competitive capital and complete insurance markets. Individuals hence hold
their entire wealth a (�) in the form of actuarial notes that makes an insurance
company their legatee. Since the notes are assumed actuarially fair, they

5 Our problem is less general, however, since we are considering a speci�c instan-
tanous utility function, namely a CRRA with � 2 (0; 1]. Relaxing this assumption
drastically complicates the proof of the existence of an aggregate equilibrium.
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yield the regular risk-free interest rate, r > 0; plus the hazard rate of death
and are therefore the most lucrative asset if the individual wealth is positive.
Moreover, the uncertainty about life-span makes the subscription to these
notes the only way to borrow. Let p (�) =

R 

� � (z) dz denote the probability at

birth that an individual will be alive at age �. Hence, � (z j�) = � (z) =p (�) is
the conditional probability density evaluated at age z, given that the individual
is alive at age �, and � (� j�) is the hazard rate of death at age �. The
hazard rate of death is supposed to be non-decreasing with respect to age:
�0 (� j�) � 0. The individual budget constraint hence writes:

a0 (�) = [r + � (� j�)] a (�) + w (�)� c (�) (2)

Individuals are born with no �nancial assets and face a terminal condition
that forbids Ponzi games. The two following conditions therefore complete
the individual program:

a (0)= 0 (3)
a (
)� 0 (4)

We, moreover, assume that � (�), � (�), w (�) and a (�) are of class C2 on
[0;
] and that c (�) is of call C1 on [0;
]. For simplicity�s sake, we de�ne
G (:) and H (:) such that:

G (x)�
Z 


0
p (�)w (�) exp (�x�) d� (5)

H (x)�
Z 


0
p (�) [� (�)]� exp (�x�) d� (6)

which are both positive and decreasing. Note that
R 

0 p (�) exp (�r�) d� rep-

resents the expected discounted value of a constant �ow of one unit of output;
this value is weighted with the income distribution in G (r) and with the pref-
erence parameters in H (r).

Given prices r and w, each individual chooses fc (�)g that maximizes (1)
subject to (2), (3) and (4). The optimal behavior is now described by the
following proposition:

Proposition 1 There exists a unique solution to the individual problem. For
� 2 [0;
], the optimal consumption pro�le satis�es:

c (�) =
G (r)

H ((1� �) r)
[� (�)]� exp (�r�) (7)
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while the optimal wealth satis�es:

a (�) =
Z 


�

p (z)

p (�)
exp (�r (z � �)) [c (z)� w (z)] dz (8)

with a (
) = 0.

The individual behavior described by equation (7) is the standard neoclassical
one. Note that G (r) =H ((1� �) r) represents the product of the expected dis-
counted �ow of earnings at birth and the marginal propensity to consume out
of total individual wealth at birth, i.e. the initial consumption c (0). Deriving
equation (7) with respect to � yields:

c0 (�) = � [r � � (�)] c (�) (9)

Perfect annuity markets imply that the optimal consumption growth rate only
depends on the di¤erence between the interest rate and the pure discount rate.
Since the latter varies with age, individual consumption may then decrease
during the life-span. Moreover, it may also be a concave function of age if the
pure rate of discount su¢ ciently increases with age.

Concerning the optimal asset accumulation, its pro�le is characterized in the
following proposition:

Proposition 2 For � 2 [0;
], the optimal wealth is positive and hump-shaped
if:

� [r � � (�)] >
�0 (� j�)
� (� j�) and

�0 (� j�)
r + � (� j�) >

w0 (�)

w (�)
(10)

A borrowing period during the life-cycle is a possible output of the individual
problem. However, under rather plausible assumptions, proposition 2 rules
out this possibility. It is indeed su¢ cient to have a consumption growth rate
greater than the hazard rate of death�s growth rate and a bounded income
growth rate. Remark that the hazard rate of death is usually assumed by
demographers to follow a Gompetz�law such that � (� j�) = exp (x�) with
x > 0. Alternatively, if the individual consumption is decreasing during the
life-span, the optimal wealth may not be hump-shaped. Finally, note that
condition (10) remains to be check at the equilibrium since it involves the
interest rate that is to be an endogenous variable.

Remark 1. Our rather general speci�cations ease the comparison with OLG
models developed by Blanchard [4] and Weil [36]. Blanchard assumes that an
individual lifetime follows a Poisson process and that the pure discount rate
and the wage stream are constants. With our notation, 
 =1, � (� j�) = p;
� (�) = �, and w (�) = w with p; �; w > 0. Thus, G (x) = w= (x+ p) and
H (x) = 1= (x+ p+ ��). It is moreover necessary to replace condition (4) by

6
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the No-Ponzi-Game condition: lim
�!+1

exp (� (r + p)�) a (�) � 0. Weil inter-

prets the individual as an in�nitely lived family, an assumption that can be
obtained by setting p = 0. Replacing in equation (7), the individual consump-
tion behavior becomes for all � � 0:

c (�) = w
[(1� �) r + p+ ��]

(r + p)
exp (� (r � �)�) (11)

Simple manipulations of equation (11) yields the individual asset accumula-
tion:

a (�) =
w

(r + p)
[exp (� (r � �)�)� 1] for � � 0 (12)

In Blanchard and Weil models, the consumption and asset accumulation pro-
�les are hence a monotonic function of age.

2.2 Aggregation and competitive equilibrium

The demographic structure is based on Lotka�s [27] stable population theory.
Each individual belongs to a large cohort of identical individuals. Therefore
even though each individual�s life-span is stochastic, there is no aggregate
uncertainty. The law of large numbers is supposed to apply 6 , and thus, the
size of each cohort is decreasing at rate � (� j�). Then, at time t, the size
of the age-� cohort is �N (t� �) p (�) where � > 0 is the birth rate and
N (t� �) is the size of the population at time t � �. Since a new cohort is
born at each instant, N (t) satis�es:

N (t) =
Z 


0
�N (t� �) p (�) d� (13)

Lotka demonstrates that the demographic structure (i.e. the relative size of
each cohort in the population) reaches a steady state when the birth and
death rates have been constant over a su¢ ciently long period of time. The
stationary distribution, characterized by the demographic growth rate n, is
obtained by replacing N (t) = N (0) exp (nt) in (13) and then solving:

Z 


0
p (�) exp (�n�) d� = 1

�
(14)

The unique real solution of equality (14) de�nes 7 the population growth rate n
whose sign depends on the di¤erence between the birth rate and the inverse of
the life expectancy at birth. Formally, n � 0 if and only if � � 1=

R 

0 p (�) d�.

6 See the discussion in Judd [21] and Feldman and Gilles [16].
7 The left hand side of (14) is a positive, decreasing function of n, whose limits are
respectively +1 and 0 when n goes to �1 and +1.
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Note that the relative size of each cohort in the population, �p (�) exp (�n�),
is then time independent, which is why the population is said to be stable.

Aggregate wage per capita, denoted as w, satis�es:

w �
Z 


0
�p (�) exp (�n�)w (�) d� (15)

while consumption per capita, denoted as c, satis�es:

c �
Z 


0
�p (�) exp (�n�) c (�) d� (16)

Hence, replace equation (7) in (16) and replace � using (5) and (15), to obtain:

c = w
G (r)

G (n)

H (n� �r)

H ((1� �) r)
(17)

Moreover, when the individuals consumption pro�le is optimal, aggregate �-
nancial wealth per capita, denoted as a, satis�es 8 :

a =
c� w

r � n
(18)

There is a unique material good, whose price is normalized to 1. It can be used
for consumption or for adding to the capital stock. This good is produced by
many competitive �rms whose aggregate activity is described by a constant
return-to-scale production function with labor and capital as inputs. Let k
be the capital per capita, � � 0 be the depreciation rate and f (:) be the
production function in intensive form. Assume that f : [0;1)! [0;1); that
f 0 (k) > 0 and f 00 (k) < 0 for all k > 0, and that lim

k!0
f 0 (k) =1. Factor prices

equal marginal products; hence w = f (k)� kf 0 (k) and r = f 0 (k)� �.

As in Diamond [13] and Blanchard [4], the equilibrium condition is obtained
by identifying asset holdings with capital stock: a = k. The analysis of steady-
state equilibrium turns out to be a �xed-point problem, k = � (k), where func-
tion � is obtained by �rst replacing equation (17) in (18) and then replacing
factor prices such that:

� (k) � f (k)� kf 0 (k)

f 0 (k)� (n+ �)

"
G (f 0 (k)� �)

G (n)

H (n� � (f 0 (k)� �))

H ((1� �) (f 0 (k)� �))
� 1

#
(19)

Let us introduce s (k) � kf 0 (k) =f (k), the share of capital in output and
" (k) � �f 0 (k) [1� s (k)] = [kf 00 (k)], the elasticity of substitution between cap-
ital and labor. The concavity of f implies that s 2 (0; 1) and " > 0 for all
k > 0.

8 See the appendix for the details.
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Proposition 3 There exists k̂ > 0 such that k̂ = �
�
k̂
�
if

lim
k!0

[�kf 00 (k)] > 1

�

(20)

k̂ is unique if

s (k) � " (k) and
d

dk

 
s (k)

" (k)

!
� 0 (21)

Proposition 3 gives existence and uniqueness conditions for a non-trivial equi-
librium. Technically, condition (20) implies lim

k!0
� (k) = +1 and conditions

(21) ensure �0
�
k̂
�
< 1. Let us now turn to the interpretation.

Our existence condition (20) is close to the condition proposed by Bommier
and Lee [5] who extend to a continuous-time framework the �ndings of Konishi
and Perera-Tallo [23] for the Diamond model [13]. Their condition, named
the �non-vanishing labor share�, has the advantage of relying only on the
production function. Formally it can be written as:

lim
k!0

s (k) 2 [0; 1) (22)

However, (22) is more restrictive than (20). To demonstrate that point, let
us observe that

lim
k!0

"
1� s (k)

s (k)
f 0 (k)

#
� lim

k!0
[�kf 00 (k)] (23)

Let us now recall the Inada condition on f 0 (k) and conclude that (22) implies
lim
k!0

[�kf 00 (k)] = +1.

In condition (20), the key elements are the maximum possible lifetime and
the elasticity of inter-temporal substitution. Strong income e¤ects yielded
by a small �, may hence be compensated by a longer lifespan. Moreover, in
Blanchard [4] and Weil�s [36] models, where 
 =1, a competitive equilibrium
always exists.

Multiple equilibria may occur in such a framework: see notably Kehoe [22]
for production economies and Ghiglino and Tvede [18] for economies with
heterogeneous endowments. Further restrictions on the production function
are hence needed to exclude this possibility. Our conditions (21) state that
inputs should be rather substitutable, especially if capital per capita is low at
equilibrium. These conditions are notably satis�ed by production functions
with a constant elasticity of substitution that is greater than one (" � 1); that
is the functions that verify the Inada condition for k = 0. Let us also note
that relaxing the assumption of � 2 (0; 1] may produce multiple equilibria.

9
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Remark 2. The complete analysis of the inter-temporal equilibrium is be-
yond the scope of this paper. Note nevertheless, that recent contributions
have pointed out the importance of the initial condition of the economy on
the existence of the equilibrium. Burke [8] notably extend to continuous time
the result that the equilibrium may fail to exist if time has a �nite start-
ing point (See Geanakoplos and Polemarchakis [14]). As a consequence, the
particular solution that is given by the steady-state equilibrium may also fail
to exist. Moreover, the dynamics of the equilibrium path is not necessar-
ily monotoneous: in a pure exchange economy, Demichelis and Polemarchakis
[12] show the existence of exponnentially decreasing �uctuations along the
transition while Ghiglino and Tvede [19] show that a cycle may exist.

A graphical illustration. We propose a graphical example of the equilib-
rium in the (k; c) space when conditions (20) and (21) are respected. Note �rst
that equation (18) may be written as c = (r � n) a + w; at the equilibrium,
this de�nes c1 (:) such that:

c1 (k) = f (k)� (n+ �) k (24)

The c1 (k) line represents the resource constraint of the economy. If n+� > 0,
c1 (k) is hump-shaped with golden-rule consumption that occurs at the point
where c1 (k) reaches its maximum. Then, we use the de�nition of the wages
given above and replace it in (17); at the equilibrium, this de�nes c2 (:) such
that:

c2 (k) =
k [f 0 (k)� (n+ �)]

1� G(n)
G(f 0(k)��)

H((1��)(f 0(k)��))
H(n��(f 0(k)��))

(25)

The c2 (k) line stands for the aggregation of individual consumption decisions
for each level of capital. Here, for example, �gure 1 represents 9 the situation
where n+ � > 0, f (0) = 0 and there is dynamic e¢ ciency.

9 Details of the derivation of this �gure are given in the Appendix.
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6

c

- k
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c2ppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppppp̂
k

Figure 1

This �gure is the extension, for any stationary demographic structure, of the
one presented in Blanchard [4].

3 Demographic growth and capital per capita

This section analyses the impact of a shift in the population growth rate
on the steady-state capital per capita and shows that a �nite growth rate
that maximizes capital per capita exists. It then characterizes this capital
maximizer.

3.1 Main results

It is useful to de�ne ��x, the average age calculated cross-sectionally such that:

��x �
R 

0 �p (�) exp (�n�)x (�) d�R 

0 p (�) exp (�n�)x (�) d�

(26)

where x (�) is a relevant characteristic. In the case x (�) = 1; ��1 is the
standard de�nition of the average age of the population. If x (�) = w (�) ;
��w is the average age of workers weighted by their earnings and equivalently,
if x (�) = a (�) ; ��a is the average age of capital holders weighted by their
wealth.

We now implicitly consider that the change in the demographic growth is
induced by a change in the birth rate. It is, however, not worth represent-
ing changes in the birth rate since its long-run relationship with demographic

11
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growth is monotonously increasing. Indeed, implicit di¤erentiation of condi-
tion (14) yields:

dn

d�
=

1

���1
> 0 (27)

Hence, a static comparative of demographic growth on steady-state capital
per capita yields the following result:

Proposition 4 The impact of an increase in population growth on capital per
capita depends on the di¤erence between the average age of capital holders and
the average age of workers; one indeed has:

dk̂

dn
= � k̂

1� �0
�
k̂
� [��a � ��w] (28)

Proposition 4 states that an increase in population growth does not neces-
sarily reduce the steady-state capital per capita but depends on income and
population distributions. Observe moreover that ��a is an endogenous variable
while ��w is exogenous. The interpretation of this result will be given after the
next proposition.

Proposition 5 There exists a �nite value of the population growth rate, de-
noted as n�, that maximizes steady-state capital per capita.

Propositions 4 and 5 show that the relationship between the population growth
rate and steady-state capital per capita is non monotonic and that capital per
capita reaches a maximum when the average age of capital holders equals
the average age of workers. The intuition of this result can be obtained by
comparing the impact of demographic growth on the age structure of the
working population and the pattern of individual assets. Let us �rst observe
that the average age of the workers is decreasing with n; at the limit, it equals
0 for n = +1 and 
 for n = �1. Next, let us recall that the optimal asset
accumulation pattern during lifetime is such that a (0) = a (
) = 0. Therefore,
when n goes to plus or minus in�nity, (i.e. when ��1 goes to 0 or 
) the capital
accumulated in the economy is very low. Conversely, the steady-state capital
per capita is maximal when the distribution of population concentrates a large
mass of individuals around the maximum wealth in the life-cycle accumulation
pro�le. Remark that Proposition 5 does not rule out multiples n�. Observe
nevertheless, that if n� is unique, the relationship between n and k is hump-
shaped.

Remark 3. An n-maximizer has also been recently presented in Boucekkine,
de la Croix and Licandro [6]. In an endogenous growth model with schooling
and retirement choices, they �nd a hump-shaped relationship between the
population growth rate and the per-capita growth rate of human capital. Their

12
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result is based on a functional but realistic survival law and an instantaneous
utility that is linear with respect to consumption. There is no capital in their
model, but the existence of an n-maximizer relies on the same reasoning: the
vintage structure of human capital.

3.2 Optimality

The population growth rate that maximizes capital per capita is not optimal
since it does not maximize individual welfare or aggregate consumption; it can
be only stated that the equilibrium to which it is associated with is e¢ cient.
To see that point, let us �rst consider the following proposition:

Proposition 6 Let �k be such that �
�
�k
�
= 0 and � such that f 0

�
�k
�
= �+ �.

Then,
n� < � (29)

Proposition 6 introduces �, the lower bound on the interest rate, associated
to �k, the maximal value for capital per capita at equilibrium. This bound
corresponds to the interest rate above which outstanding debt in the economy
outweighs positive assets. If the individual pure discount rate is constant, such
that � (�) = �, then � = �. Otherwise, � depends on the model parameters,
including demographic ones. Thus, proposition 5 states that the population
growth rate that maximizes capital per capita is lower than the lower bound
on the interest rate. This result is quite intuitive if the individual consumption
pro�le is supposed to be increasing: then, the age at which individuals have a
maximal wealth takes place during the second half of their lives. Therefore,
capital per capita is maximized by a demographic structure with a relatively
high average population age, which means a rather low population growth
rate.

Corollary 1. At the steady-state equilibrium associated with n�, there is
under-accumulation of capital.

The de�nition of �, given in proposition 6, implies that any steady-state k̂ sat-
is�es f 0

�
k̂
�
�� > �. Consequently, the equilibrium associated with n� exhibits

an interest rate strictly greater that the population growth rate. Consequently,
the equilibrium (i) cannot be a golden-rule equilibrium and (ii) is e¢ cient as
proved by de La Croix and Michel [11] 10 . This does not implies that the
equilibrium associated with n� is Pareto optimal. This problem has been �rst
discussed in Cass and Yaari [10] and carefully studied by Grandmont [20],

10 Proposition 2.4 page 83.
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Wang [34], and Duc and Ghiglino [15]. The latter notably propose a general
characterization of the endowment distributions leading to an optimal barter
steady-state.

Remark 4. The aggregate consumption per capita is not maximized when
the population growth rate equals n�. Our work then di¤er from those of
Samuelson [31] and Michel and Pestieau [29] who have studied the existence
of an �optimal� population growth rate that maximize individual�s welfare
when the economy is at the golden-rule equilibrium. In a continuous-time
OLG framework, Arthur and McNicoll [3], Lee [26] and Willis [35] interpret
this �optimal�population growth rate in terms of average ages of consumption
and earnings.

3.3 Intergenerational transfers

Real world economies include many kinds of non-competitive intergenerational
transfers such as child rearing, Pay-As-You-Go pension systems and intra-
familial transfers. In this subsection, we will introduce a simple intergenera-
tional transfer scheme in our model and analyze its impact on n�.

Following Blanchard [4], we introduce a simple intergenerational transfers
scheme assuming that disposable incomes are growing with age at the con-
stant rate of 
: a 
 > 0 (respectively, a 
 < 0) implies a transfer scheme from
younger to older (from older to younger) individuals. Let us assume that the
disposable income, denoted ~w (�), is such that:

~w (�) = w (�)� exp (
�) (30)

where � is a constant whose value is determined to ensure that the following
equality is satis�ed:

Z 


0
�p (�)w (�) exp (�n�) d� =

Z 


0
�p (�) ~w (�) exp (�n�) d� (31)

Replacing (30) yields � = G (n) =G (n� 
) and therefore:

~w (�) = w (�)
G (n)

G (n� 
)
exp (
�) (32)

Then, equation (7) can be rewritten as:

c (�) =
G (n)

G (n� 
)

G (r � 
)

H ((1� �) r)
[� (�)]� exp (�r�) (33)
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and equation (19) becomes:

� (k) � f (k)� kf 0 (k)

f 0 (k)� (n+ �)

"
G (f 0 (k)� � � 
)

G (n� 
)

H (n� � (f 0 (k)� �))

H ((1� �) (f 0 (k)� �))
� 1

#
(34)

It is easy to show that, upon conditions stated in proposition 3, the existence
and uniqueness of a steady-state equilibrium are guaranteed for any �nite 
.
The impact of 
 on k̂ is negative, which is standard: increasing transfers to
older individuals reduces private savings and therefore steady-state capital per
capita. We will discuss the impact of 
 on n� in the following proposition.

Proposition 7 Let n� be the demographic growth rate that maximizes k̂, given
by k̂ = �

�
k̂;n; 


�
, and suppose n� is unique; thus:

dn�

d

> 0 (35)

Proposition 7 states that transfers from younger to older (respectively, from
older to younger) individuals increase (reduce) the demographic growth rate
that maximizes capital per capita.

To interpret proposition 7, it is necessary to recall proposition 4 and observe
that the impact of 
 on n� depends on two opposite e¤ects. On the one hand,
��w increases with 
: equation (32) implies that transfers to older individuals
reduce the wage of newborn individuals and increase the wage growth rate.
On the other hand, ��a also increases with 
. This is the consequence of the
induced increase in the interest rate that postpones the age at which individ-
uals stop saving. Hence, proposition 7 states that the �rst e¤ect dominates
the second one, and therefore that the introduction of transfers to older indi-
viduals increases n�. This result is also supported by analyzing the impact
of 
 on �. Simple calculus shows that the impact is positive, which enhances
the idea of proposition 7.

4 Comparison with the literature

We will now explain why commonly used OLG models developed by Dia-
mond [13] and Blanchard [4] imply a negative relationship between population
growth and capital per capita.

Diamond [13] supposes each individual lifetime to be composed of two discrete
periods. During the �rst period, individuals work and earn a wage that allows
them to save for retirement. To do so, they buy the assets accumulated by
those in the second period of their life. This assumption eases aggregation
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because the savings of the younger individuals correspond to the total capital
of the economy. However, by construction, elder individuals hold all the assets.
Thus, the average age of capital holders is always greater than the average
age of workers. It is true that in our model, individuals work their entire lives.
Such an assumption would not change the implication of the two-period model:
if individuals were allowed to work during both periods, the average age of
earnings would be equal to the average age of the population, but would still
be lower than the average age of capital holders 11 . The monotonic result of
the Diamond model therefore comes from the exogenous length of time that
the individual saves. Conversely, if a lifetime covers N � 3 discrete periods
as in Gale [17] or a �nite interval as in our framework, the �economic youth�,
de�ned as the saving period, is endogenous and the result of proposition 5
applies.

The continuous time model of Blanchard [4] is also widely used in macro-
economics. We will now discuss Buiter [7] and Weil�s [36] models; these
two extensions of Blanchard allow for changes in the population growth rate.
Buiter assumes a non-stationary population that grows at rate n = � � p,
where � is the birth rate and p is the death rate de�ned in remark 1. The
identi�cation of the aggregate with the private death rate implies that the
average age of the population, and consequently the average age of workers
when the wage is age-independent, depends only on the birth rate: ��w = 1=�.
To obtain Weil speci�cations, we only need to assume that p = 0. In that
case, the population growth rate is equal to the birth rate. Because cohorts
have homogenous horizons whatever their age, human wealth and propensity
to consume out total wealth are age-independent. Moreover, as mention in
remark 1, the consumption and asset accumulations pro�les are monotonic
functions of age. Now let us compute (12) in (26) to obtain the average age
of capital holders:

��a =
(2� � � (r � �))

� (� � � (r � �))
for r 2

 
�; �+

�

�

!
(36)

Hence, ��a > ��w. This result hinges on the assumption that individuals have
age-independent horizons. Every agent therefore behaves as a newborn and
accumulates assets forever: a (�) is not hump-shaped but increasing and con-
vex. On the other hand the relative size of a cohort, given by � exp (���), is
always decreasing even if the demographic growth rate is negative. Therefore,
Blanchard-Buiter and Weil�s models systematically exhibit an average age of
capital ownership greater than the average age of the population.

11 It is only at the limit (i.e., in a discrete time model, when the population growth
rate goes to �1) that both ages would be equal.
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5 Conclusion

In this paper, we have developed a continuous time, overlapping generations
model to analyze the impact of demographic changes on steady-state capi-
tal per capita. First, we presented new conditions for the existence and the
uniqueness of a steady state with a general pattern of individual mortality
and income distribution. We then performed a comparative static analysis of
the impact of the population growth rate on capital per capita, and showed
that the functional relationship between those two variables is non-monotonic.
Models by Diamond [13] and Blanchard [4], therefore, constitute particular ex-
ceptions by exhibiting a strictly decreasing relationship. We next de�ned an
age structure of the population that maximizes capital per capita. This struc-
ture made the average ages of capital holders and workers equal. Finally, we
showed that the growth rate of the population that corresponds to the consid-
ered structure is lower than the equilibrium interest rate and increases with
non-competitive transfers to older individuals.

Our model constitutes a rather simple framework for the analysis of age-
dependant behaviors. Notably, consequences of fertility and labor-market
decisions can be directly investigated in such a general equilibrium setting.
Moreover, a study of transition dynamics should be an interesting extension
of this paper since the dynamics are not likely to be monotonic. Lotka [27]
demonstrates that any population with constant birth and death rates con-
verges toward a stable age structure with exponentially decreasing oscillations.
The problem is similar in economic models, although they deal with a forward
variable. Numerical methods are proposed in Laitner [25] and Boucekkine
et al. [6] to analyze the behavior of non-stationary paths. The latter shows
that the vintage structure of the model creates discrete delays in the dynamic
behavior of aggregate variables which are then governed by echo e¤ects.
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Appendix

PROOF. [Proof of proposition 1] The individual program can be solve us-
ing classical calculus of variation 12 ; change �rst the order of integration of
function (1) to rewrite the objective asZ 


0
p (�) � (�)u (c (�)) d� (37)

with

u (c (�)) =
c (�)1�1=� � 1
1� 1=� (38)

Using (2), (3) and (4), the program becomes

max
Z 


0
L (�; a; a0) d�

s:t:

�����������
a (0) = 0

a (
) � 0h
r � p0(�)

p(�)

i
a (�) + w (�)� a0 (�) � 0

(39)

with

L (�; a; a0) = p (�) � (�)u

 "
r � p0 (�)

p (�)

#
a (�) + w (�)� a0 (�)

!
(40)

Since L is a C2-function of (�; a; a0), necessary conditions for a C2-function
a (�) to be a solution of program (39) are the Euler equation:

d

d�

"
�p (�) � (�)u0

 "
r � p0 (�)

p (�)

#
a (�) + w (�)� a0 (�)

!#

=

"
r � p0 (�)

p (�)

#
p (�) � (�)u0

 "
r � p0 (�)

p (�)

#
a (�) + w (�)� a0 (�)

!
(41)

and the terminal condition: 
@L (�; a; a0)

@a0

!
�=


� 0 (42)

Equation (41) rewrites using (38) as follows

c0 (�) = �

"
r +

�0 (�)

� (�)

#
c (�) (43)

12 See e.g. Seierstad and Sydsæter [32].
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which yields
c (�) = c (0) [� (�)]� exp (�r�) (44)

Now observe that

@L (�; a; a0)

@a0
=�� (�) [p (�)]1+

1
� (45)

� ([rp (�)� p0 (�)] a (�) + p (�)w (�)� p (�) a0 (�))
� 1
�

Hence for all a (
) � 0, the terminal condition (42) is satis�ed. We, neverthe-
less, now show that there exists a unique candidate for optimality. To do so,
integrate forward in time condition (2) to obtain

a (�) =
Z 


�

p (z)

p (�)
exp (�r (z � �)) [c (z)� w (z)] dz (46)

When � = 0 use condition (3) to derive the intertemporal budget constraint
at birth Z 


0
p (�) exp (�r�) c (�) d� =

Z 


0
p (�)w (�) exp (�r�) d� (47)

and replace (44) to obtain the individual initial consumption

c (0) =

R 

0 p (�)w (�) exp (�r�) d�R 


0 p (�) [� (�)]
� exp (� (1� �) r�) d�

(48)

Consequently, there exists a unique consumption pro�le that satis�es the nec-
essary condition. Replacing this pro�le in (46) yields a unique wealth pro�le.
Since for all z 2 (�;
) one has p (z) < p (�) observe �nally with (46) that
a (
) = 0.

We conclude this proof showing that the necessary conditions are su¢ cient.
To do so, we have to prove that for all � 2 [0;
] ; L (�; a; a0) is concave as a
function of (a; a0). The Hessian matrix writes

H =

264 p (�) � (�)
h
r � p0(�)

p(�)

i2
u00 (c (�)) �p (�) � (�)

h
r � p0(�)

p(�)

i
u00 (c (�))

�p (�) � (�)
h
r � p0(�)

p(�)

i
u00 (c (�)) p (�) � (�)u00 (c (�))

375
(49)

Then, L is concave and the unique solution of the Euler equation is globally
maximal. �

PROOF. [Proof of proposition 2] Observe �rst that since the optimal wealth
pro�les satis�es a (0) = a (
) = 0, there exists at least one age denoted �̂ 2
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(0;
) such that a0 (�̂) = 0. We proceed by showing that under (10) one has
a00 (�̂) < 0. Deriving equation (2) with respect to �, yields

a00 (�̂) = �0 (�̂ j�̂) a (�̂) + w0 (�̂)� c0 (�̂) (50)

Then, a00 (�̂) < 0 is equivalent to

c0 (�̂) >
�0 (�̂ j�̂)

r + � (�̂ j�̂)c (�̂)� w (�̂)

"
�0 (�̂ j�̂)

r + � (�̂ j�̂) �
w0 (�̂)

w (�̂)

#
(51)

Then if one assumes �0 (� j�) = [r + � (� j�)] > w0 (�) =w (�), it is su¢ cient
that c0 (�) =c (�) > �0 (� j�) =� (� j�). Use (9) to obtain (10). Consequently,
(i) wealth is positive for � 2 (0;
) (ii) there is a unique �̂. �

Derivation of equation (18) Recall that the optimal wealth accumulation
at age � is such that

a (�) =
Z 


�
exp

�
�
Z z

�
r + � (u ju) du

�
[c (z)� w (z)] dz (52)

The de�nition of aggregate wealth per capita is

a �
Z 


0
�p (�) exp (�n�) a (�) d� (53)

where p (�) = exp (�
R �
0 � (u ju) du). Replacing (52) in a and rearranging

yields

a =
Z 


0
� exp ((r � n)�)

(Z 


�
p (z) exp (�rz) [c (z)� w (z)] dz

)
d� (54)

which, changing the order of integration, turns to be equal to

a =
Z 


0
�p (�) exp (�r�) [c (�)� w (�)]

�Z �

0
exp ((r � n) z) dz

�
d� (55)

which yields

a=

R 

0 �p (�) exp (�n�) [c (�)� w (�)] d�

r � n

�
R 

0 �p (�) exp (�r�) [c (�)� w (�)] d�

r � n
(56)

Using (47), and then (16) and (15), equation (18) follows.

Now it is useful for the next proofs to consider the following lemma:
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Lemma 8 Let function J : R! R++ be such that

J (x) � G (x)

G (n)

H (n� �x)

H ((1� �)x)
(57)

(i) J is strictly convex, (ii) lim
x!+1

J (x) = lim
x!�1

J (x) = +1.

PROOF. As a preliminary, consider the function J �rst derivative

J 0 (x) = [�h (n� �x) + (1� �)h ((1� �)x)� g (x)] J (x) (58)

where

g (x) � �G0 (x)
G (x)

=

R 

0 �p (�) exp (�x�) d�R 

0 p (�) exp (�x�) d�

> 0 (59)

and

h (x) � �H 0 (x)

H (x)
=

R 

0 �p (�) [� (�)]

� exp (�x�) d�R 

0 p (�) [� (�)]

� exp (�x�) d�
> 0 (60)

The function J second derivative is

J 00 (x)=
h
��2h0 (n� �x) + (1� �)2 h0 ((1� �)x)� g0 (x)

i
J (x)

+ [�h (n� �x) + (1� �)h ((1� �)x)� g (x)]2 J (x) (61)

(i) To prove that J 00 (x) > 0 we show that g0 < 0 and h0 < 0 and that

(1� �)2 h0 ((1� �)x) > g0 (x). Observe that g0 (x) has the sign of [G0 (x)]2 �
G00 (x)G (x). Let functions u and v be such that u (�; x) = [exp (�x�) p (�)]1=2
and v (�; x) = �u (�; x) : Then G0 (x) = �

R 

0 u (�; x) v (�; x) d�; using the

Cauchy-Schwartz inequality, g0 (x) < 0. Similarly h0 (x) < 0.

Now, since lim
�!1

(1� �)2 h0 ((1� �)x) = 0 and since (1� �)2 h0 ((1� �)x) is

increasing in �, for all � 2 (0; 1] ; part (i) of the lemma follows.

(ii) Observe that lim
x!+1

g (x) = lim
x!+1

h (x) = 0 and lim
x!�1

g (x) = lim
x!�1

h (x) =


. Therefore,

lim
x!+1

J 0 (x)

J (x)
= � lim

x!�1

J 0 (x)

J (x)
= �
 (62)

and part (ii) of the lemma follows. �

PROOF. [Proof of proposition 3] We derive conditions for (i) existence and
(ii) uniqueness of a balanced steady state k̂ that solves k̂ = �

�
k̂
�
, where

function �, which is given by (19), can be rewritten for convenience as follows

� (k) � f (k)� kf 0 (k)

f 0 (k)� (n+ �)
[J (f 0 (k)� �)� 1] (63)
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with J given by (57).

(i) Existence. We proceed in two steps: we �rst show it exists a unique
�k > 0 satisfying �

�
�k
�
= 0, and that � (k) is continuous and positive for all

k 2
�
0; �k

�
; then, we propose a condition such that lim

k!0
� (k) > 0.

Step 1. To prove the existence of �k, we study the solutions of equation � (k) = 0
for all k > 0. Given the concavity of f for all k > 0, one has f (k)�kf 0 (k) > 0.
Hence, it is su¢ cient to look at the solutions of

J (f 0 (k)� �)� 1
f 0 (k)� (n+ �)

= 0 (64)

Let us de�ne the �golden rule�level of capital per capita, kgr such that

f 0 (kgr) = n+ � (65)

Observe with (57) that J (f 0 (kgr)� �) = 1. Now, applying l�Hôpital�s rule,
using (58) when x = n, yields

lim
k!kgr

J (f 0 (k)� �)� 1
f 0 (k)� (n+ �)

= h ((1� �)n)� g (n) (66)

Then, � (kgr) does not exist, but limk!kgr � (k) = 0 only if h ((1� �)n) =
g (n). If h ((1� �)n) 6= g (n), there is a unique other solution that solves
J (f 0 (k)� �) = 1 because J is U-shaped (see lemma 1). Let us denote �k this
solution, which is greater than kgr if and only if the slope of J in kgr is negative;
formally one has

�k � kgr , h ((1� �)n)� g (n) � 0 (67)

Hence, whatever the relative position of �k and kgr, it can be stated that for
all k 2

�
0; �k

�
then J 2 (0; 1) if k > kgr and J > 1 if k < kgr. Conversely, for

all k > �k then J > 1 if k > kgr and J 2 (0; 1) if k < kgr. Therefore, conclude
with (64) that � (k) > 0 for all k 2

�
0; �k

�
.

Continuity of � (k) for all k 2
�
0; �k

�
is guaranteed because, using (66), one

has

lim
k!kgr

� (k) = [f (kgr)� kgrf 0 (kgr)] [h ((1� �)n)� g (n)]�1 (68)

Step 2. Since lim
k!0

[f (k)� kf 0 (k)] = 0 and lim
k!0

f 0 (k) = +1, observe that

lim
k!0

� (k) can be 0. But since � (k) > 0 for all k 2
�
0; �k

�
, a su¢ cient condition

to have lim
k!0

� (k) > 0 is lim
k!0

�0 (k) < 0.
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Function � �rst derivative is

�0 (k)=�f 00 (k)� (k)

�
"

k

f (k)� kf 0 (k)
� J 0 (f 0 (k)� �)

J (f 0 (k)� �)� 1 +
1

f 0 (k)� (� + n)

#
(69)

Then lim
k!0

�0 (k) < 0 if and only if

lim
k!0

"
k

f (k)� kf 0 (k)
� J 0 (f 0 (k)� �)

J (f 0 (k)� �)

#
< 0 (70)

Using l�Hôpital�s rule and (62), yields condition (20).

(ii) Uniqueness. We give su¢ cient conditions that ensure �0
�
k̂
�
< 1. We

�rst study the case given by �k > kgr then the one given by �k < kgr (see
condition (67)).

Case 1: �k > kgr. In this case the equilibrium may be dynamically e¢ cient (k̂ <
kgr or equivalently J > 1) or ine¢ cient (k̂ > kgr or J 2 (0; 1)). Computing
(69) for k = k̂ yields

�0
�
k̂
�
=�k̂f 00

�
k̂
� J

�
f 0
�
k̂
�
� �

�
J
�
f 0
�
k̂
�
� �

�
� 1

�
24 k̂

f
�
k̂
�
� k̂f 0

�
k̂
� � J 0

�
f 0
�
k̂
�
� �

�
J
�
f 0
�
k̂
�
� �

�
35 (71)

Therefore �0
�
k̂
�
< 0 if and only if

J 0
�
f 0
�
k̂
�
� �

�
J
�
f 0
�
k̂
�
� �

� � k̂

f
�
k̂
�
� k̂f 0

�
k̂
� , k̂ � kgr (72)

Recall (lemma 1) that J 0=J is increasing in f 0
�
k̂
�
�� and therefore decreasing

in k̂. Moreover, observe, using (68), that condition (72) is always veri�ed for
k̂ = kgr. Then, conclude that a su¢ cient condition for �0

�
k̂
�
< 0 is

d

dk

 
k

f (k)� kf 0 (k)

!
� 0, " (k) � s (k) (73)

since condition (20) is assumed.

Case 2: �k < kgr. In this case the equilibrium can only be dynamically e¢ cient
(k̂ < kgr or J > 1) and J 0=J is necessarily positive. It is easy to see that condi-
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tion (73) is not su¢ cient in this case because J 0=J and k= [f (k)� kf 0 (k)] may
cross each other before �k, opening then the possibility for multiple equilibria.
Hence, use (71) to state that �0

�
k̂
�
< 1 if and only if

J 0
�
f 0
�
k̂
�
� �

�
J
�
f 0
�
k̂
�
� �

� >  
�
k̂
�
for k̂ < kgr (74)

with

 
�
k̂
�
� k̂

f
�
k̂
�
� k̂f 0

�
k̂
� �

241� 1

J
�
f 0
�
k̂
�
� �

�
35 1

�k̂f 00
�
k̂
� (75)

A su¢ cient condition for uniqueness is then  0
�
k̂
�
> 0 because (using l�Hôpital�s

rule)

lim
k̂!0

 
�
k̂
�
= lim

k!0

"
k

f (k)� kf 0 (k)
� 1

�kf 00 (k)

#
= 0 (76)

This implies that if there exists a k̂i such that �
0
�
k̂i
�
> 1, then all k̂j, such

that k̂j > k̂i, will verify �
0
�
k̂j
�
> 1. Since there exists a �nite �k and since

� (k) is continuous over
�
0; �k

�
, this is impossible. To obtain a nice condition

implying  0
�
k̂
�
> 0, rewrite (75) such that

 (k) � k

f (k)� kf 0 (k)

(
1�

"
1� 1

J (f 0 (k)� �)

#
" (k)

s (k)

)
(77)

where " and s are de�ned in the core of the text. Then it is su¢ cient for  (k)
to increase in k that (73) be satis�ed and that

d

dk

 
s (k)

" (k)

!
� 0 (78)

Hence, (73) and (78) are su¢ cient for uniqueness. �

The following �gures give a graphical intuition of this proof: if � (k) is con-
tinuous and positive for all k 2

�
0; �k

�
, it is su¢ cient that lim

k!0
� (k) > 0 to

have at least one equilibrium. Moreover, if there are multiple equilibria, the
one with the greater k̂ must verify �0

�
k̂
�
< 1. Examples of unique equilibrium

24

ha
l-0

06
30

20
0,

 v
er

si
on

 1
 - 

7 
O

ct
 2

01
1



and multiple equilibria are respectively presented in Figure (2-a) and (2-b).

6

- k�
�
�
�
�
�
�
�
�

�k

� (k)

6

- k�
�
�
�
�
�
�
�
�

� (k)

�k

Figure 2-a Figure 2-b

Derivation of �gure 1

The function c1 : [0;1) ! R with c1 (0) = f (0). If n + � > 0, c1 is �rst
increasing until it reaches c1 (kgr) and then strictly decreasing to�1. If n+� �
0, c1 is strictly increasing to +1. Consider now function c2 : [0;1)! [0;1).
Its �rst derivative with respect of k is given by

dc2 (k)

dk
=

f 0 (k)� (n+ �)

1� 1=J (f 0 (k)� �)
+

kf 00 (k)

1� 1=J (f 0 (k)� �)

�f 00 (k) J 0 (f 0 (k)� �)

[J (f 0 (k)� �)]2
k [f 0 (k)� (n+ �)]

[1� 1=J (f 0 (k)� �)]2
(79)

Condition (20) ensures c2 (0) = 0. Then, let, k̂ be such that c1
�
k̂
�
= c2

�
k̂
�
;

simple manipulations of (79) show that

dc1
�
k̂
�

dk
�
dc2

�
k̂
�

dk
< 0 (80)

is equivalent to �0
�
k̂
�
< 1. Hence, if (21) is veri�ed, c1 (k) and c2 (k) cross

each other only once and �gure 1 follows.

PROOF. [Proof of proposition 4] We have de�ned k̂ such that k̂ = �
�
k̂;n

�
.

This proof details the simple computing that leads to (28). Application of
implicit functions theorem yields

dk̂

dn
=

�0n
�
k̂;n

�
1� �0k

�
k̂;n

� (81)
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Deriving equation (19) with respect to n yields

�0n (k;n)=
1

f 0 (k)� (n+ �)
� (k;n) (82)

+
f (k)� kf 0 (k)

f 0 (k)� (n+ �)
[g (n)� h (n� � (f 0 (k)� �))] J (f 0 (k)� �)

where J , g and h are de�ned in lemma 1. At the equilibrium such that k̂ =
�
�
k̂;n

�
one may, using equations (17) and (19), rewrite (82) such that

�0n
�
k̂;n

�
k̂

=
J
�
f 0
�
k̂
�
� �

�
J
�
f 0
�
k̂
�
� �

�
� 1

"
g (n)� h

�
n� �

�
f 0
�
k̂
�
� �

��
+
k̂

ĉ

#
(83)

where ĉ stands for the aggregate consumption.

Now turn to the de�nition of the average age of capital holders using (26).
Integrating by parts the numerator, using a (0) = p (
) = 0; yields

��a=
1

n
�
R 

0 �� (� j�) p (�) exp (�n�) a (�) d�

n
R 

0 p (�) exp (�n�) a (�) d�

+

R 

0 �p (�) exp (�n�) a0 (�) d�
n
R 

0 p (�) exp (�n�) a (�) d�

(84)

Replace condition (2) and rearrange using (59), (60) and (7) to obtain

��a =
1

n
� 1

n

�
r��a + g (n)

w

a
� h (n� �r)

c

a

�
(85)

Then, since a = k and using factor prices equations, it yields

h (n� �r) = (f 0 (k)� (n+ �)) ��a
k

c
+ g (n)

f (k)� kf 0 (k)

c
+
k

c
(86)

Replace (86) in (83) and arrange, using (57) and recalling that g (n) = ��w, to
obtain

�0n
�
k̂;n

�
= �k̂ [��a � ��w] (87)

replace in (81); this yields (28). �

PROOF. [Proof of proposition 5] We demonstrate it exists a n� that solve

�0n
�
k̂;n�

�
= 0 (88)
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with �0n de�ned by (83). Let � be such that f
0
�
�k
�
= � + �. Since there is no

restrictions on n at the equilibrium, it is su¢ cient for the existence of n� to
show that: (i) �0n is continuous in n; (ii) �

0
n

�
k̂;n

�
< 0 for all n > �; (iii)

lim
n!�1

�0n
�
k̂;n

�
> 0 (89)

(i) To show the continuity of �0n in n, we simply have to prove that �
0
n (k

gr;n)�

1 when kgr < �k. Indeed, observe with (65) and (68) that both numerator and
denominator of (83) equal zero, for k̂ = kgr. Applying l�Hôpital�s rule yields

lim
k̂!kgr

�0n
�
k̂;n

�
=

kgr

h ((1� �)n)� g (n)
� (90)8><>:�h

0 ((1� �)n)� [g (n)� h ((1� �)n)]2

+ 1
f 00(kgr)

d
dk

�
kgr

f(kgr)�kgrf 0(kgr)

�
9>=>;

which, using (67) and (73) and recalling that h0 < 0, is negative and �nite.

(ii) Inequality n > � is equivalent to kgr < �k. Hence note with (83) that since

ĉ = f
�
k̂
�
� (n+ �) k̂ (91)

we have to prove that

h
�
n� �

�
f 0
�
k̂
�
� �

��
� g (n) � k̂

f
�
k̂
�
� (n+ �) k̂

, k̂ � kgr (92)

Recall with (68), that the equality between the two terms of (92) is guaranteed
when k̂ = kgr. Then, observing that the left hand side is decreasing in k̂
(because h0 < 0) and that the right hand side is increasing in k̂, is su¢ cient
to prove that (92) always holds.

(iii) Recall �rst (lemma 1) that

lim
n!�1

g (n) = lim
n!�1

h
�
n� �

�
f 0
�
k̂
�
� �

��
= 
 (93)

Hence, with (83)

lim
n!�1

�0n
�
k̂;n

�
= lim

n!�1

k̂

f 0
�
k̂
�
� (n+ �)

(94)

which is necessarily positive. �
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PROOF. [Proof of proposition 6] This is proven by the point (ii) of the proof
of proposition 5. �

PROOF. [Proof of proposition 7] As a preliminary, let us denote �0n
�
k̂;n; 


�
the �rst derivative of (34) with respect to n; the same kind of computations
as those done in the proof of proposition 4 yield that

�0n
�
k̂;n; 


�
k̂

=
J
�
f 0
�
k̂
�
� �

�
J
�
f 0
�
k̂
�
� �

�
� 1

"
g (n� 
)� h

�
n� �

�
f 0
�
k̂
�
� �

��
+
k̂

ĉ

#
(95)

where ĉ = f
�
k̂
�
� (n+ �) k̂. Hence, we de�ne n� such that

�0n
�
k̂;n�; 


�
= 0 (96)

To show that dn�=d
 > 0, we demonstrate that

@

@n
�0n
�
k̂;n�; 


�
< 0 (97)

and that
@

@

�0n
�
k̂;n�; 


�
> 0 (98)

Condition (97) is trivial since �0n is continuous in n and since it is assumed
there exists a unique n�. If there are multiple solutions to (96), one should
consider the one that maximizes k̂ and the result would be the same.

To prove condition (98), derive (95) when n = n� (i.e. when �0n
�
k̂;n�; 


�
= 0)

to obtain

@

@

�0n
�
k̂;n�; 


�
= �k̂

J
�
f 0
�
k̂
�
� �

�
J
�
f 0
�
k̂
�
� �

�
� 1

g0 (n� � 
) (99)

which is positive because g0 < 0 (lemma 1) and J > 1 for all n < �. This
establishes the proof. �
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