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Abstract: We investigate the bootstrapped size and power properties of five common 

long memory tests - the modified R/S, KPSS, V/S, GPH and Robinson’s �H  tests. 

Even in samples of size 100, the moving block bootstrap controls the empirical size of 

the tests in the DGPs examined. The �H  test appears to be the most powerful. 

Moreover, the bootstrapped tests suffer little loss of power against fractionally 

integrated processes vis á vis asymptotic tests with samples of 250 or more 

observations. This is true both for distributions with heavy tails and with stochastic 

volatility (SV).   
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1. Introduction 

Long memory processes, especially fractionally integrated processes, describe 

many financial time series as well as some macroeconomic series rather well. It is 

important to distinguish long memory processes from more common I(0) and I(1) 

processes as they imply different long run predictions and responses to shocks 

(Baillie, 1996). A range of tests for long memory are available. Unfortunately, the 

evidence is that tests based on asymptotic critical values are often badly sized. 

In this paper we report the results of a series of Monte Carlo experiments used 

to examine the size and power properties of five, commonly used, long memory tests 

using asymptotic and bootstrapped critical values. The five tests are Lo's modified 

rescaled range or R/S statistic (Lo, 1991), the KPSS statistic (Kwiatkowski et al., 

1992), the rescaled variance or V/S statistic (Giraitis et al., 2003), the GPH statistic 

(Geweke and Porter-Hudak, 1983) and the �H  statistic in Robinson (1995) and 

Robinson and Henry (1999). The set of tests considered is broader than in other 

papers.  

We use the moving block bootstrap (MBB) to mimic the dependence in the 

data. All the test statistics are asymptotically pivotal. This means that, for dependent 

stationary data satisfying reasonable regularity conditions, bootstrapped critical values 

should provide a higher order of accuracy than asymptotic critical values. We found 

this when we used the post-blackened MBB to examine the size and power of the 

modified R/S statistic (Izzeldin and Murphy, 2000). 

For the data generation processes we consider, we find that we can control the 

size of all five tests using the moving block bootstrap even in small samples with as 

few as 100 observations. We also find that bootstrapped tests suffer little loss of 

power against fractionally integrated (FI) processes vis á vis asymptotic tests with 

samples of 250 or more observations. This is true both for distributions with heavy 
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tails (log-normal random errors) and with stochastic volatility (SV).  We also show 

that all of the tests lack power against a particular type of fractionally integrated 

process, the sum of a FI and a SV process as opposed to a FI process with a SV error.  

The outline of this paper is as follows. We discuss the five tests of long 

memory in next section. We briefly review the relevant empirical literature on the size 

and power of these tests, as well as bootstrapped long memory tests, in Section 3. We 

discuss the moving block bootstrap in Section 4 and discuss the Monte Carlo 

experiments and our findings in Sections 5 and 6. We present a financial application 

in Section 7 and conclude in Section 8. 

 

2. Tests of Long Memory 

We consider five tests of long memory – the modified rescaled range or R/S 

statistic, the KPSS statistic, the rescaled variance or V/S statistic, the GPH statistic 

and the �H  statistic. The modified R/S, KPSS and V/S statistics for a time series { tx } 

may be expressed in term of the partial sum of the standardized series 
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where ⇒  denotes convergence in distribution, 1( ) ( ) (1)W r W r rW= −  is a standard 

first order Brownian bridge process  and ( )W r  is a standard Brownian motion 

process.  

 Giraitis et al. (2003), inter alia, derive the asymptotic distribution of the R/S, 

KPSS and V/S statistics under short and long memory assumptions. All three tests are 

consistent against fractionally integrated alternatives. In addition, all three tests are 

asymptotically pivotal, so appropriate bootstrap critical values should outperform 

asymptotic critical values in smaller samples. 

 Geweke and Porter-Hudak (1983) show how to consistently estimate the 

fractional integration parameter d  in an ARFIMA model using a semi-nonparametric, 

frequency domain procedure and derived its asymptotic distribution. For frequencies 

near zero, d can be estimated from the least squares regression: 

2ln( ( )) ln{(4sin ( / 2)} , 1,...j j jI w c d w j nη= − + =    (7) 

where ( )jI w  is the periodogram of the { tx } series at the n  frequencies 2 /jw j Tπ= . 

Often the setting [ ]n T=  is chosen, where [ ] denotes the integer part. With a proper 

choice of n, the asymptotic distribution of d does not depend on either the order of the 

ARMA process or on the distribution of the error term in the ARFIMA process { tx }. 

Asymptotically d  is normally distributed with variance 2 / 6π . 

Robinson (1995) derives a semi-parametric, frequency domain estimator of the 

fractional integration parameter d  which is closely related to the trimmed Whittle 

estimator in Kunsch (1987). He refers to it as a Gaussian or local Whittle estimator. 

The estimator is shown to be consistent and asymptotically normal under relatively 
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weak conditions. Moreover, the asymptotic variance of this estimator is free of 

unknown parameters. Robinson also shows that it dominates the Geweke and Porter-

Hudak (1983) estimator. Robinson and Henry (1999) show that, under weak 

conditions, these results continue to hold under common forms of conditional 

heteroscedasticity of both the long and short memory kind.  

For the sort of long memory processes usually estimated using financial time 

series data, the kS
⌢
 test of Harris, McCabe and Leybourne (2006) appears to have 

fairly similar size and power properties to the �H  test in Robinson (1995), so we have 

not examined its performance here. 

 

3. A Review of Previous Monte Carlo Studies 

In this section we briefly review some of the more recent Monte Carlo results 

in the literature on testing long memory. Lee and Schmidt (1996) show that the power 

of the KPSS test against basic fractionally integrated (FI) alternatives in sample sizes 

ranging from 50 to 500 is comparable to that of the modified R/S test. However, they 

argue that rather larger sample sizes, such as T = 500 or T = 1000, are required to 

distinguish reliably between a long memory process and a short memory process with 

comparable short-term autocorrelation. Their results show that both tests are sensitive 

to the choice of lag truncation i.e. the number of covariance terms used to calculate 

the long run variance �
2

σ ∞ . 

Hauser (1997) investigates the size and power properties of the GPH test, the 

modified R/S test, a semi-parametric frequency domain test due to Robinson (1994) 

and a test based on the trimmed Whittle likelihood (Kunsch, 1987), inter alia. He 

examines IID, AR(1), MA(1), FI, ARFIMA, GARCH and IGARCH data generation 

processes (DGPs) but only consider one sample size, namely T = 1000. No single test 



 6 

performs satisfactorily for all of the models considered. He suggests that the R/S 

statistic is generally robust with the disadvantage of relatively small power. The 

trimmed Whittle likelihood has high power in general and is robust except for large 

short run effects. 

Teverovsky et. al. (1999) also show that the value of Lo's (1991) modified R/S 

statistic is sensitive to the choice of the truncation lag used to estimate �
2

σ ∞ . As the 

truncation lag increases, the test statistic has a strong bias towards accepting the null 

of no long run dependence, even when the DGP is a basic FI process. 

Giraitis et. al. (2003) examined the size and power of the modified R/S, KPSS 

and V/S statistics using sample sizes of 500 and 1000 using AR(1), FI and long and 

short memory linear ARCH (Robinson, 1991) DGPs. They find that the V/S statistic 

achieves a somewhat better balance of size and power than the R/S and KPSS test. 

They also highlight the sensitivity of the test to the choice of the truncation lag when 

estimating �
2

σ ∞ . 

Robinson and Henry (1999) report an extensive range of Monte Carlo results. 

They consider IID, ARCH, FI, nearly integrated GARCH, EGARCH and long 

memory linear ARCH models and three sample sizes (T  = 64, 128 and 256). Their 

estimator � ɵ 1/ 2H d= −  appears to perform reasonably well except in the nearly 

integrated GARCH case. 

We now consider Monte Carlo studies using bootstrap methods. Hiemstra and 

Jones (1997) use the original non-parametric bootstrap of Efron (1979), designed for 

IID observations, to test for long memory in stock returns using the modified R/S 

statistic. Anderson and Gredenhoff (1998) use the AR-sieve bootstrap in a Monte 

Carlo experiment looking at the size and power of the modified R/S and GPH tests, as 

well as a LM test due to Agiaklogou and Newbold (1993), in detecting fractional 
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integration using sample sizes of 750 and 1000 observations. They use four bootstrap 

re-sampling procedures. Their basic sieve or residual based bootstrap involves re -

sampling (with replacement) the residuals from an estimated AR model, the maximal 

order of which is selected using the Bayesian information criterion of Schwartz 

(1978). They extend this procedure to incorporate ARCH(1) dependence in the 

residuals. They find that the sieve bootstrap works well in controlling the size of the 

tests.  

Izzeldin and Murphy (2000) use the post-blackened moving block bootstrap to 

examine the size and power of the modified R/S statistic. They consider IID, AR(1), 

MA(1), ARCH(1), GARCH(1,1), MA(1) plus GARCH(1,1) and fractionally 

integrated data generation processes with both normal and log-normal random errors. 

The post-blackened MBB works well. Compared to the asymptotic critical values in 

Lo (1991), the MBB controls the empirical size of the test well without reducing the 

power against FI alternatives much.  

De Peretti (2003) examines the size and power of the R/S, modified R/S, GPH 

and two other test statistics using an AR model to pre-whiten the data and various 

parametric and non-parametric bootstrap procedures. He does not use the MBB. He 

presents his results using a variety of P value plots and size-power curves using AR(p) 

and FI DGPs. He suggests that the proposed bootstrap procedure controls the 

empirical size of the various tests reasonably well without any loss of power. 

Finally, Grau-Carles (2005) follows Izzeldin and Murphy (2000) and uses the 

post-blackened moving block bootstrap to examine the size and power of the R/S, 

modified R/S, Robinson’s �H  and one other test of long memory. He looks at 

relatively small samples (T = 100 and 300) and considers a range of DGPs - IID 

uniform, normal and log-normal; AR(1) and MA(1); ARCH(1) and AR(1) plus 

ARCH(1) as well as FI and ARFIMA(1,1,0). He finds that the size of the post 
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blackening MBB is generally good although the tests are not very powerful. However, 

this may because he used a small block length of 5 for the MBB. In our Monte Carlo 

experiments, the modified R/S test statistic, and to some extent the �H  statistic, is a 

good deal more powerful than in Grau-Carles (2005). 

 

4. The Moving Block Bootstrap 

 The two most common bootstrap procedures for time series are the moving 

block bootstrap (MBB) and the AR-sieve bootstrap for stationary linear time series 

(Buhlmann, 2002). Both procedures are easy to implement, at least in principle. 

However the MBB bootstrap is the more general procedure so we use it in our Monte 

Carlo experiments. In the most common version of the MBB, introduced by Kunsch 

(1989) and Liu and Singh (1992), the bootstrap sample is obtained by resampling 

fixed size blocks of observations rather than the individual observations themselves. 

The blocks may overlap. We experiment with the post blackening bootstrap suggested 

by Davison and Hinkley (1997), which combines the MBB and AR-sieve methods, 

and obtained no better results than the ones reported below. 

Of course, there are some practical and other problems with the MBB 

(Maddala and Kim, 1998, p. 329-330). For example, the pseudo-time series generated 

by the moving block method is not stationary even if the original series { tx } is 

stationary. The choice of block length may be problematic, so the cross-validation and 

plug-in procedures in Hall, Horowitz and Jing (1995) and Lahirir, Furukawa and Lee 

(2007), as well as the frequency domain bootstrapping procedures in Hidalgo (2003), 

may be worth investigating. However, in practice, we did not find this to be the case. 

In addition, there are few theoretical results on bootstrapping long memory data. 
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5. The Monte Carlo Experiments 

We consider a range of data generation processes (DGPs) in our Monte Carlo 

experiments. Here we present representative results for five DGPs:- (i) the IID case; 

(ii) the first order autoregressive AR(1) case; (iii) the AR(1) with stochastic volatility 

(SV) case; (iv) the fractionally integrated (FI) case and (v) the fractionally integrated 

(FI) with stochastic volatility (SV) case. These five cases seem relevant when 

considering financial data.  

In the AR(1) case, we set ρ = 0.5 which is definitely on the high side for 

financial data. However if the MBB bootstrap works well with ρ = 0.5, it will also 

work well when the level of autocorrelation is lower. Conditional heteroscedasticity is 

common in financial data, so we consider a range of GARCH and SV DGPs. The two 

DGPs generated similar results so we only present the SV results here.  

The DGP in (iii) is 1(1 0.5 )t tx L u−= −  where exp( / 2)t t tu h ε=  with 

10.95t t th h η−= + . The 0.95 coefficient on 1th −  means that the SV conditional 

heteroscedasticity is slow to decay. The random errors tε  and tη  are mean zero, 

independent normal random variables with variances equal to 1 10 . For the 

fractionally integrated DGPs, we set the FI parameter d  equal to 1 3 , a reasonable 

value given the range of results in many empirical papers. In the case of (i), (ii) and 

(iv), we look at normal and log normal random errors. We also consider to variants of 

cases (iii) and (v) involving the sum of an AR(1) or FI process and a SV process 

Many of the Monte Carlo results summarized in the previous section are based 

on either rather large or quite small sample sizes. We use four sample sizes - T = 100, 

250, 500 and 1000 - which covers a reasonable range. In practice, sample sizes of 250 
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or more observations are the norm in most economic applications. Much larger 

sample sizes are common in financial applications.  

The Monte Carlo results are based on 1000 replications. A 100 observation 

"burn in" period is used. The bootstrap results are based on 999 bootstrap replications 

using the moving block bootstrap with a block length of 10. In general, the results are 

not sensitive to the choice of block length, as long as it is not too short. 

The long-run variance �
2

σ ∞  in the R/S, KPSS and V/S statistics is calculated 

using 48 100T 
   estimated covariance terms - the midpoint of the two settings 

considered by Lee and Schmidt (1999). We use the standard Newey and West (1987) 

estimator of �
2

σ ∞ . When calculating the GPH and �H  test statistics, we use T 
   

frequency domain terms. All the calculations are carried out in Ox (Doornik, 1999). 

 

6. The Monte Carlo Results 

The Monte Carlo results in Table 1 for the IID case show that, in line with 

other results in the literature, the MBB is reasonably successful in controlling the size 

of all five tests, especially in small samples (T = 100 or 250). This is true for both the 

normal and heavy-tailed, lognormal error cases. The empirical and nominal sizes of 

the asymptotic tests can differ quite a lot, especially for the modified R/S and �H  test 

in small samples. Similar results are obtained in Table 2 using the AR(1) DGP. 

We report the results for the AR(1) model with a stochastic volatility random 

error term in Table 3. The SV random error with 10.95t t th h η−= +  adds a slowly 

decaying conditional heteroscedastic error, similar to a GARCH (1,1) error, to the 

AR(1) model. The sizes of the asymptotic tests can be poor, whereas the nominal and 

empirical sizes of the bootstrapped tests are reasonably close, even when T = 100. The 
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results are in line with the ARCH and GARCH results in Izzeldin and Murphy (2000) 

and Grau-Carles (2005). 

We report the power of the tests against the fractional integrated FI(d) 

alternative, with d  = 1/3, in Table 4. The power of the tests is higher when the 

random error is log-normal than when it is normal. Unsurprisingly, the asymptotic 

tests are generally more powerful than the bootstrapped tests, since we are reporting 

power as opposed to size adjusted power. However, for moderate samples sizes (T ≥ 

250), the difference in power is generally small, the exception being the �H  test when 

T = 250. When T ≥ 250, the power ranking of the bootstrapped tests appears to be �H , 

GPH, V/S followed jointly by the KPSS and the modified R/S tests. In smaller 

samples, the power of all of the tests, apart from the asymptotic �H  test, is low and the 

�H  test is not the most powerful one. Similar results are obtained for other values of d 

in the range 0.1 to 0.4. 

The power of the five tests against the FI alternative with a stochastic 

volatility error term is set out in Table 5. The introduction of the SV error term only 

results in a small reduction in power. The asymptotic tests are somewhat more 

powerful when T = 250. The power ranking of the tests is much the same as in Table 

4. The �H  test is the most powerful, followed by either the GPH or V/S test. 

Finally we present some Monte Carlo results in Tables 6 for DGPs obtained 

by summing an AR(1) or FI(d) process and a stochastic volatility process. 

Unfortunately, in the FI-SV composite error case, none of the bootstrapped or 

asymptotic tests has much power. In most cases, there is little difference in power 

between the bootstrapped and asymptotic tests. The low power of the tests continues 

to hold when, for example, 10.5t t th h η−= +  is used to generate the SV component of 

the DGP.  
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7. Financial Application 

 We apply the R/S, KPSS, V/S, GPH and �H  long memory tests to daily 

Standard and Poor’s (SP500) returns, absolute returns and squared returns. We use the 

data in Tsay (2005). We select the seven year sample period from January 1993 to 

December 1999, a total of 1768 trading days. We also use a smaller, two year sample 

from January 1997 to December 1998, a total of 505 days. 

The long memory test results are shown in Table 7. Statistically significant 

outcomes are shown in bold. In line with the literature, using the larger sample, we 

cannot reject the null hypothesis of short memory in daily returns and we generally 

reject the null hypothesis of short memory in absolute and squared daily returns. 

However, in the smaller sample, we cannot always reject the null hypothesis of short 

memory in the squared daily returns. These results are consistent with our Monte 

Carlo results regarding the power of the tests. 

In this example, the asymptotic and bootstrapped tests produce similar results. 

However, even in the case of actual returns, the bootstrapped and asymptotic critical 

values (and any corresponding P values) can differ quite a lot so it is worthwhile 

bootstrapping the test statistics. 

 

8. Summary and Conclusion 

We use Monte Carlo methods to examine the size and power properties of five 

widely used long memory tests – the modified R/S statistic, the KPSS statistic, the 

rescaled variance or V/S statistic, the GPH statistic and Robinson’s �H  statistic. The 

set of tests considered is broader than in other papers. We use the moving block 

bootstrap to mimic the dependence in the data. All the test statistics are asymptotically 

pivotal.  
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For all of the data generation processes we consider, we find that we can 

control the size of all five tests using the moving block bootstrap even in small 

samples with as few as 100 observations. We also find that bootstrapped tests suffer 

little loss of power against fractionally integrated (FI) processes vis á vis asymptotic 

tests with samples of 250 or more observations. This is true both for distributions with 

heavy tails (log-normal random errors) and with stochastic volatility (SV).  We also 

show that all of the tests lack power against a particular type of fractionally integrated 

process, the sum of a FI and a SV process as opposed to a FI process with a SV error.  
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Notes: The DGP is t tx ε=  with . . (0,1)t n i dε ∼  or, before demeaning, ln . . (0,1)t n i dε ∼ . The Monte Carlo results are based on 1000 replications 
using a 100 observation “burn-in” period. The bootstrap results are based on 999 bootstrap replications using the moving block bootstrap with a 

block length of 10. The long run variance in the R/S, KPSS and V/S statistics is calculated using 4[8 /100]T  estimated covariance terms.  [√T] 
frequency domain terms are used to calculate the GPH and H test statistics. 

 

Table 1: Size of Long Memory Tests for IID Models 
 

Normal Random Error Demeaned Log-Normal Error Sample 

Size 

Test 

Statistic 

Critical 

Values 20% 15% 10% 5% 2½% 1% 20% 15% 10% 5% 2½% 1% 

Bootstrapped 20.1 13.9 8.6 3.3 1.4 0.4 19.2 13.4 6.4 2.9 0.9 0.2 
R/S 

Asymptotic 7.1 2.8 0.4 0.1 0.0 0.0 4.3 1.5 0.2 0.0 0.0 0.0 

Bootstrapped 21.2 15.8 10.4 5.0 3.3 1.2 22.1 16.3 10.4 5.1 2.6 1.1 
KPSS 

Asymptotic 21.7 15.3 9.4 3.8 1.0 0.0 23.4 16.7 10.0 2.8 1.10 0.0 

Bootstrapped 20.5 14.7 8.5 3.4 1.4 0.5 20.3 14.2 8.7 4.9 2.0 0.7 
V/S 

Asymptotic 19.5 12.0 3.8 0.5 0.0 0.0 20.9 12.0 4.6 0.5 0.0 0.0 

Bootstrapped 16.3 10.6 5.9 3.2 1.4 0.4 18.0 12.1 7.0 2.9 1.0 0.4 
GPH 

Asymptotic 6.7 5.5 3.7 1.5 0.7 0.2 8.9 6.8 2.9 1.3 0.3 0.3 

Bootstrapped 13.5 8.5 5.5 2.6 1.0 0.1 15.6 10.1 5.3 2.1 0.6 0.1 

T = 100 

�H  
Asymptotic 16.3 13.1 10.4 6.9 5.0 3.2 16.9 14.8 10.9 7.1 5.0 2.4 

Bootstrapped 21.1 15.0 10.3 5.4 3.4 1.2 19.2 13.5 8.5 4.3 2.2 0.5 
R/S 

Asymptotic 12.8 8.5 5.0 1.4 0.4 0.0 9.4 5.9 2.6 0.2 0.1 0.0 

Bootstrapped 20.5 14.8 10.2 3.8 1.7 0.8 21.5 15.8 10.3 5.3 2.3 0.9 
KPSS 

Asymptotic 20.6 15.5 9.6 3.5 1.2 0.4 21.4 16.0 10.3 4.2 1.4 0.3 

Bootstrapped 19.5 13.9 9.5 5.3 2.6 1.0 19.9 14.7 9.4 4.7 2.8 1.5 
V/S 

Asymptotic 18.7 13.1 8.0 3.5 1.1 0.4 20.1 14.0 7.9 3.5 1.2 0.2 

Bootstrapped 19.9 14.6 10.5 5.1 2.4 1.1 18.8 13.7 9.2 4.8 2.2 0.9 
GPH 

Asymptotic 10.3 7.9 5.1 2.3 0.9 0.3 8.8 6.9 4.3 2.4 1.2 0.4 

Bootstrapped 19.8 14.6 9.5 4.4 2.0 1.0 18.5 13.2 8.7 4.1 1.5 0.5 

T = 250 

�H  
Asymptotic 15.8 13.0 10.7 7.1 4.8 2.9 13.0 11.1 9.0 6.5 4.0 1.8 
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Notes: See first part of Table. 

Table 1 (Continued): Size of Long Memory Tests for IID Models 
 

Normal Random Error Demeaned Log-Normal Error Sample 

Size 

Test 

Statistic 

Nominal 

Size 20% 15% 10% 5% 2½% 1% 20% 15% 10% 5% 2½% 1% 

Bootstrapped 21.4 15.7 10.2 5.6 2.6 1.3 20.2 14.6 9.8 4.4 2.1 0.9 
R/S 

Asymptotic 15.7 11.2 7.1 2.6 0.9 0.2 11.9 9.1 4.3 1.4 0.6 0.2 

Bootstrapped 19.6 14.8 10.1 5.2 3.2 1.5 21.3 15.6 11.0 5.7 3.0 1.3 
KPSS 

Asymptotic 19.7 14.8 10.2 5.0 2.8 1.1 21.9 15.8 10.5 5.1 2.8 0.7 

Bootstrapped 20.4 15.9 10.5 5.2 2.9 1.0 21.4 15.1 9.5 4.6 2.6 1.3 
V/S 

Asymptotic 20.2 16.0 9.3 4.9 1.9 0.5 20.2 14.6 9.5 3.5 1.9 0.6 

Bootstrapped 19.5 15.3 9.7 4.5 2.2 1.1 18.9 13.7 9.3 5.4 2.8 1.2 
GPH 

Asymptotic 9.5 6.8 3.9 2.0 0.8 0.3 8.2 7.0 4.9 2.4 0.9 0.6 

Bootstrapped 21.2 16.4 10.9 4.7 1.8 0.7 18.5 13.9 9.1 4.8 2.8 1.0 

T = 500 

�H  
Asymptotic 15.3 11.9 9.0 5.0 2.7 1.0 11.9 9.6 7.2 5.2 2.8 1.7 

Bootstrapped 18.7 13.5 9.3 4.2 2.1 0.9 18.4 13.3 9.0 4.0 1.9 0.6 
R/S 

Asymptotic 14.6 10.6 6.3 3.1 1.3 0.2 13.1 9.4 5.4 1.9 0.8 0.1 

Bootstrapped 19.0 15.2 9.8 4.3 2.0 0.7 19.8 14.9 10.7 5.1 2.9 1.4 
KPSS 

Asymptotic 19.1 15.0 9.5 4.0 1.8 0.7 19.4 14.8 10.6 5.1 2.4 1.0 

Bootstrapped 18.9 14.5 9.2 3.9 1.8 1.1 19.3 13.9 8.8 4.7 2.8 1.5 
V/S 

Asymptotic 18.2 14.2 9.0 4.0 1.5 0.7 18.8 13.8 8.6 4.3 2.7 0.8 

Bootstrapped 20.0 15.5 10.4 4.7 2.2 0.9 21.6 15.9 9.9 4.9 2.0 0.8 
GPH 

Asymptotic 10.2 7.1 4.2 1.6 0.7 0.2 8.9 6.3 4.3 1.4 0.9 0.4 

Bootstrapped 18.7 13.9 8.6 4.7 1.8 0.9 20.7 16.2 11.1 4.7 1.7 0.5 

T = 1000 

�H  
Asymptotic 11.5 8.9 6.5 3.5 1.9 0.9 13.3 10.7 7.7 3.4 1.8 0.8 
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Notes: See Table 1. The DGP is 10.5t t tx x ε−= +  with . . .(0,1)t n i dε ∼  or, before demeaning, ln . . .(0,1)t n i dε ∼  
 

Table 2: Size of Long Memory Tests for AR(1) Model with ρ = 0.5  
 

Normal Random Error Demeaned Log-Normal Error Sample 

Size 

Test 

Statistic 

Critical 

Values 20% 15% 10% 5% 2½% 1% 20% 15% 10% 5% 2½% 1% 

Bootstrapped 17.5 12.6 8.3 3.2 1.1 0.5 17.6 11.8 5.7 2.7 0.6 0.2 
R/S 

Asymptotic 4.0 1.1 0.2 0.0 0.0 0.0 2.9 0.6 0.2 0.0 0.0 0.0 

Bootstrapped 21.4 14.7 10.7 5.5 2.9 0.8 22.4 16.3 10.3 5.1 2.7 1.1 
KPSS 

Asymptotic 26.4 19.6 12.6 5.0 2.0 0.0 27.7 21.2 13.1 4.5 1.6 0.2 

Bootstrapped 21.4 15.1 9.4 3.4 1.6 0.6 21.5 15.4 9.4 5.0 2.1 0.6 
V/S 

Asymptotic 25.5 17.2 7.2 1.0 0.0 0.0 26.4 17.4 7.7 1.1 0.1 0.0 

Bootstrapped 21.1 14.5 7.6 4.0 1.4 0.7 22.1 15.1 9.2 3.6 1.5 0.5 
GPH 

Asymptotic 17.6 12.3 7.3 4.1 1.9 1.1 18.6 13.7 9.9 4.6 1.6 0.5 

Bootstrapped 18.5 12.0 6.9 3.3 0.7 0.4 19.6 13.5 7.3 2.9 0.8 0.0 

T = 100 

�H  
Asymptotic 34.5 30.4 25.2 17.8 13.5 8.3 31.5 27.2 23.7 17.8 13.3 8.6 

Bootstrapped 20.7 15.4 10.3 5.6 3.3 1.4 19.0 13.4 8.7 4.7 2.0 0.7 
R/S 

Asymptotic 13.7 8.7 5.1 1.7 0.4 0.1 11.2 6.9 3.4 0.7 0.2 0.0 

Bootstrapped 21.3 15.7 10.0 4.4 1.9 0.6 22.2 16.3 11.1 5.2 2.2 0.8 
KPSS 

Asymptotic 24.5 19.2 12.0 5.4 1.9 0.6 26.1 19.9 13.4 6.1 2.5 0.8 

Bootstrapped 20.7 14.4 10.1 5.6 3.2 1.2 20.7 15.7 10.6 5.2 2.9 1.6 
V/S 

Asymptotic 26.4 17.5 11.4 5.5 2.5 0.6 25.4 19.5 12.2 5.3 2.5 0.6 

Bootstrapped 22.7 16.0 11.1 5.8 2.3 1.3 21.2 15.4 10.6 4.9 2.6 1.0 
GPH 

Asymptotic 15.3 11.8 8.1 3.9 1.9 0.7 12.5 9.8 7.1 3.4 2.1 0.9 

Bootstrapped 23.5 16.4 10.6 5.3 2.5 1.1 20.8 14.7 9.7 4.0 1.6 0.6 

T = 250 

�H  
Asymptotic 25.0 21.5 17.4 12.1 8.3 5.4 21.4 17.3 14.3 9.8 7.7 4.9 
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Notes: See Table 1. The DGP is 10.5t t tx x ε−= +  with . . .(0,1)t n i dε ∼  or, before demeaning, ln . . .(0,1)t n i dε ∼  
 

Table 2 (Continued): Size of Long Memory Tests for AR(1) Model with ρ = 0.5  
 

Normal Random Error Demeaned Log-Normal Error Sample 

Size 

Test 

Statistic 

Critical 

Values 20% 15% 10% 5% 2½% 1% 20% 15% 10% 5% 2½% 1% 

Bootstrapped 21.1 16.2 11.3 6.2 2.6 1.2 21.3 15.2 9.9 5.0 2.5 0.8 
R/S 

Asymptotic 19.0 13.7 9.2 3.6 1.7 0.3 16.1 10.9 6.4 2.8 1.0 0.3 

Bootstrapped 20.3 15.2 10.5 5.4 3.3 1.4 22.0 16.3 11.3 6.2 3.3 1.5 
KPSS 

Asymptotic 24.4 18.6 12.2 6.8 3.8 1.8 24.7 20.3 14.2 7.5 4.1 1.5 

Bootstrapped 22.0 16.7 11.9 6.3 3.3 1.2 22.2 17.0 10.7 4.8 3.0 1.6 
V/S 

Asymptotic 26.0 20.6 14.4 7.1 3.7 1.1 26.4 20.4 13.4 6.3 3.2 1.1 

Bootstrapped 20.9 16.0 10.3 5.2 2.3 0.9 19.9 15.3 10.6 6.2 3.1 1.3 
GPH 

Asymptotic 11.3 9.0 5.5 2.5 1.2 0.4 10.6 8.4 6.1 3.2 1.7 0.7 

Bootstrapped 21.9 18.0 12.1 5.8 2.0 0.8 20.3 15.1 10.2 5.1 2.9 1.3 

T = 500 

�H  
Asymptotic 19.6 16.2 12.1 7.9 4.9 2.1 15.6 12.6 9.9 6.3 4.8 2.4 

Bootstrapped 20.2 14.2 9.9 4.6 2.5 1.1 19.4 14.0 9.5 4.5 2.1 0.8 
R/S 

Asymptotic 20.3 13.9 9.6 4.4 2.1 0.6 18.2 12.5 8.8 3.8 1.3 0.5 

Bootstrapped 19.5 15.3 10.4 5.1 1.9 0.8 20.0 15.4 11.1 6.0 3.1 1.3 
KPSS 

Asymptotic 23.3 17.7 13.1 6.6 2.9 1.1 23.6 18.6 12.7 6.7 3.5 1.6 

Bootstrapped 20.3 15.1 10.0 4.4 2.1 1.1 20.5 14.4 9.7 4.9 3.2 1.5 
V/S 

Asymptotic 25.8 18.5 13.3 5.7 3.0 1.1 24.3 19.5 12.5 6.7 3.5 2.0 

Bootstrapped 20.9 16.1 11.0 5.8 2.7 1.3 21.5 16.4 10.6 5.4 2.6 0.7 
GPH 

Asymptotic 11.3 8.5 6.0 2.3 1.2 0.2 10.6 7.6 5.2 2.2 0.9 0.5 

Bootstrapped 19.6 14.2 9.7 4.9 2.3 1.0 21.8 16.7 11.9 5.3 2.0 0.7 

T = 1000 

�H  
Asymptotic 13.5 11.0 7.8 4.4 2.6 1.3 15.8 12.7 9.9 5.0 2.2 1.0 
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Notes: See Table 1. The DGP is 1(1 0.5 )t tx L u−= − , where ( )1

2expt t tu h ε=  with 

10.95t t th h η−= + . tε  and tη  are mean zero, independent normal random variables with 
variances equal to 0.1

Table 3: Size of Long Memory Tests for AR(1) Model with Stochastic Volatility 

Error (ρ = 0.5 and γ = 0.95)  

Nominal Size of Test Sample 

Size 

Test 

Statistic 

Critical  

Values 20% 15% 10% 5% 2½% 1% 

Bootstrapped 20.1 15.2 9.2 3.9 1.2 0.3 
R/S 

Asymptotic 7.0 3.0 0.8 0.0 0.0 0.0 

Bootstrapped 22.4 17.3 11.2 6.4 3.4 1.9 
KPSS 

Asymptotic 24.3 17.9 11.3 4.5 2.4 0.8 

Bootstrapped 22.8 17.3 11.5 5.0 2.1 0.7 
V/S 

Asymptotic 22.4 16.2 8.3 1.7 0.3 0.0 

Bootstrapped 19.4 13.1 7.4 3.5 1.2 0.3 
GPH 

Asymptotic 12.6 9.4 6.5 2.7 1.5 0.7 

Bootstrapped 17.3 11.0 6.3 1.8 0.4 0.1 

T = 250 

�H  
Asymptotic 21.0 18.7 15.9 11.8 8.3 5.8 

Bootstrapped 20.1 16.2 9.8 4.2 1.9 0.4 
R/S 

Asymptotic 14.9 9.5 4.8 1.4 0.2 0.0 

Bootstrapped 19.0 15.5 10.6 5.0 3.6 1.4 
KPSS 

Asymptotic 20.6 15.8 11.3 4.8 3.3 1.1 

Bootstrapped 20.9 15.8 11.3 5.4 2.6 1.0 V/S 
 Asymptotic 21.5 16.4 11.1 4.2 1.7 0.6 

Bootstrapped 20.8 16.1 12.3 5.7 3.4 1.6 GPH 
 Asymptotic 12.0 7.8 5.2 2.9 1.4 0.4 

Bootstrapped 20.5 15.6 12.4 6.7 3.6 1.5 

T = 500 

�H  
Asymptotic 14.2 12.5 10.1 6.6 4.5 3.0 

Bootstrapped 20.7 15.5 10.4 5.3 2.5 1.1 
R/S 

Asymptotic 17.0 11.6 7.4 2.9 1.1 0.3 

Bootstrapped 20.9 16.2 11.4 6.2 3.6 1.6 
KPSS 

Asymptotic 21.7 16.7 11.8 6.1 3.4 1.2 

Bootstrapped 18.8 15.2 9.6 4.4 2.3 1.4 
V/S 

Asymptotic 19.7 15.5 10.3 4.0 2.4 1.0 

Bootstrapped 22.2 18.1 12.5 7.2 4.1 1.7 
GPH 

Asymptotic 11.8 9.0 6.3 3.3 1.4 0.7 

Bootstrapped 24.2 18.9 13.9 7.8 4.1 2.1 

T = 1000 

�H  
Asymptotic 16.7 13.3 10.0 6.8 4.2 2.3 
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Notes: See Table 1. The DGP is 1/3(1 )t tx L ε−= −  with . . .(0,1)t n i dε ∼  or, before demeaning ln . . .(0,1)t n i dε ∼  

Table 4: Power of Long Memory Tests for Fractionally Integrated Model (d = 1/3)  
 

Normal Random Error Demeaned Log-Normal Error Sample 

Size 

Test 

Statistic 

Critical 

Values 20% 15% 10% 5% 2½% 1% 20% 15% 10% 5% 2½% 1% 

Bootstrapped 27.9 19.9 11.4 5.0 2.5 1.1 30.2 20.5 12.7 6.2 1.8 0.4 
R/S 

Asymptotic 7.1 3.0 0.5 0.0 0.0 0.0 7.3 2.1 0.2 0.0 0.0 0.0 

Bootstrapped 38.6 33.3 27.0 16.7 10.7 6.0 41.8 35.7 28.9 17.9 11.2 6.1 
KPSS 

Asymptotic 46.9 39.1 32.0 19.0 10.3 2.3 49.6 43.1 34.0 20.5 10.7 1.9 

Bootstrapped 40.5 33.0 24.0 12.9 6.7 2.3 44.0 36.3 26.2 14.2 7.2 2.8 
V/S 

Asymptotic 48.1 39.5 24.3 6.7 0.7 0.0 53.3 42.2 26.1 6.4 0.5 0.0 

Bootstrapped 41.0 31.0 20.0 8.9 4.2 1.6 40.6 30.7 18.7 8.3 3.7 1.3 
GPH 

Asymptotic 47.8 40.4 31.1 20.3 11.3 5.5 46.7 39.9 30.9 20.5 12.7 6.7 

Bootstrapped 42.6 30.6 18.2 8.3 3.9 1.1 43.0 29.2 17.2 7.5 3.2 0.9 

T = 100 

�H  
Asymptotic 67.6 63.1 58.6 51.0 44.6 36.0 69.9 66.4 62.8 51.6 44.6 35.1 

Bootstrapped 53.4 47.4 39.6 27.6 18.2 11.4 55.1 47.8 40.1 28.4 19.7 11.5 
R/S 

Asymptotic 48.5 41.9 30.8 16.3 7.9 2.4 47.2 39.8 31.0 16.6 8.0 2.8 

Bootstrapped 52.2 44.8 36.8 25.7 18.9 12.5 53.9 47.1 37.9 27.4 20.9 13.4 
KPSS 

Asymptotic 60.9 53.4 43.8 30.7 23.1 14.4 58.1 52.4 44.1 32.8 24.2 16.5 

Bootstrapped 57.2 51.2 41.7 30.3 22.8 15.4 62.2 56.2 47.1 33.6 23.5 15.9 
V/S 

Asymptotic 66.2 59.4 50.3 37.0 25.0 14.8 58.1 52.4 44.1 32.8 24.2 16.5 

Bootstrapped 66.1 58.8 48.4 32.4 21.1 11.9 67.4 60.3 51.5 37.7 27.2 15.9 
GPH 

Asymptotic 65.4 58.3 50.8 39.4 27.1 17.5 67.5 61.3 47.9 30.5 18.6 9.8 

Bootstrapped 75.8 68.4 56.4 37.6 24.8 11.8 77.8 69.5 57.5 35.3 20.5 8.7 

T = 250 

�H  
Asymptotic 83.0 79.9 75.2 68.2 61.1 51.1 84.1 81.5 77.9 69.9 61.3 52.6 
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Notes: See Table 1. The DGP is 1/3(1 )t tx L ε−= −  with . . .(0,1)t n i dε ∼  or, before demeaning ln . . .(0,1)t n i dε ∼  
 

Table 4 (Continued): Power of Long Memory Tests for a Fractionally Integrated Model (d = 1/3) 
 

Normal Random Error Demeaned Log-Normal Error Sample 

Size 

Test 

Statistic 

Critical 

Values 20% 15% 10% 5% 2½% 1% 20% 15% 10% 5% 2½% 1% 

Bootstrapped 72.1 67.0 59.9 49.7 40.0 29.2 74.6 69.0 61.7 50.0 40.3 32.1 
R/S 

Asymptotic 73.1 67.9 60.3 49.3 38.5 25.1 73.9 67.6 60.4 46.8 37.7 26.7 

Bootstrapped 66.6 59.9 51.3 37.9 30.9 23.6 66.5 60.5 52.4 40.3 31.2 24.1 
KPSS 

Asymptotic 74.6 68.6 59.5 46.2 36.6 27.8 74.5 68.6 60.5 47.1 38.1 28.0 

Bootstrapped 73.7 68.1 60.1 49.9 40.7 31.0 74.6 68.7 61.2 49.5 40.7 31.8 
V/S 

Asymptotic 82.0 76.0 70.4 58.1 47.8 37.0 82.6 76.9 69.4 56.6 47.3 36.1 

Bootstrapped 81.5 77.0 69.9 55.3 43.4 31.0 84.2 78.6 68.9 56.0 42.8 28.6 
GPH 

Asymptotic 77.1 72.6 64.4 51.2 40.0 27.5 77.9 71.6 64.7 51.8 39.3 26.1 

Bootstrapped 89.0 85.2 80.3 67.8 55.9 40.5 90.9 86.9 81.0 68.5 53.9 39.1 

T = 500 

�H  
Asymptotic 89.8 87.7 84.4 78.2 71.6 63.0 91.7 89.7 85.0 79.1 70.7 62.3 

Bootstrapped 87.0 82.9 77.1 67.5 60.5 50.9 88.6 86.0 80.0 71.2 63.3 53.8 
R/S 

Asymptotic 90.0 86.6 81.7 72.6 64.1 55.2 90.8 87.7 83.2 74.0 66.7 55.7 

Bootstrapped 78.5 72.7 65.4 53.5 44.6 34.7 79.8 72.6 64.9 53.5 43.3 34.3 
KPSS 

Asymptotic 85.3 80.1 72.8 61.6 53.0 42.7 86.4 81.1 73.3 61.6 52.5 40.9 

Bootstrapped 85.2 81.0 75.5 66.1 56.6 46.3 86.3 83.3 78.0 68.3 59.6 51.0 
V/S 

Asymptotic 91.4 87.8 82.7 75.1 66.7 55.9 92.0 89.1 84.0 76.5 68.8 58.8 

Bootstrapped 92.9 90.0 85.8 78.1 69.1 55.4 93.4 91.2 87.0 79.4 70.1 56.4 
GPH 

Asymptotic 88.4 85.1 80.6 72.6 61.7 48.3 89.9 87.2 81.8 72.9 63.2 48.1 

Bootstrapped 97.0 95.9 93.8 89.8 83.1 75.0 97.7 96.4 94.7 89.4 83.7 74.0 

T = 1000 

�H  
Asymptotic 96.4 95.3 94.0 91.2 87.9 81.7 97.2 96.5 94.7 92.2 87.8 81.7 
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Notes: See Table 1. The DGP is 1/3(1 )t tx L u−= − , where ( )1
2expt t tu h ε=  with 

10.95t t th h η−= + . tε  and tη are mean zero, independent normal random variables with 
variances equal to 1/10. 

Table 5: Power of Long Memory Tests for a Fractionally Integrated Model with 

Stochastic Volatility Error (d = 1/3 and γ = 0.95) 

Nominal Size of Test Sample 

Size 

Test 

Statistic 

Critical  

Values 20% 15% 10% 5% 2½% 1% 

Bootstrapped 53.4 47.5 38.9 25.9 17.5 10.5 
R/S 

Asymptotic 47.5 37.3 26.9 14.6 7.5 1.2 

Bootstrapped 53.2 45.9 38.6 26.4 18.8 11.5 
KPSS 

Asymptotic 59.4 53.1 44.6 32.4 21.9 12.8 

Bootstrapped 54.2 48.9 41.3 29.8 21.3 13.0 
V/S 

Asymptotic 61.8 55.7 47.2 33.0 22.9 11.4 

Bootstrapped 57.9 50.7 41.8 29.1 17.1 9.5 
GPH 

Asymptotic 54.5 49.4 42.4 32.1 23.8 13.5 

Bootstrapped 65.0 57.7 48.1 32.3 20.8 10.0 

T = 250 

�H  
Asymptotic 71.9 69.3 64.1 56.1 49.0 41.2 

Bootstrapped 68.5 63.2 56.2 45.5 36.3 25.7 
R/S 

Asymptotic 69.1 63.7 55.1 44.7 32.7 21.6 

Bootstrapped 63.6 56.7 48.4 36.8 29.5 22.2 
KPSS 

Asymptotic 71.0 64.8 56.1 42.9 34.4 25.9 

Bootstrapped 70.8 65.6 56.4 45.2 36.5 27.4 V/S 
 Asymptotic 76.6 72.7 65.7 52.5 43.3 31.8 

Bootstrapped 78.8 73.6 65.3 52.5 41.2 25.6 GPH 
 Asymptotic 72.6 66.6 60.1 48.5 36.0 21.8 

Bootstrapped 85.1 81.2 75.9 64.5 52.9 37.0 

T = 500 

�H  
Asymptotic 85.3 83.2 79.7 74.9 68.5 59.5 

Bootstrapped 81.6 76.0 70.5 61.1 52.8 43.2 
R/S 

Asymptotic 80.7 75.6 69.4 59.3 50.2 37.7 

Bootstrapped 72.9 65.6 58.0 46.8 37.4 28.2 
KPSS 

Asymptotic 76.7 71.9 62.7 51.8 42.7 31.4 

Bootstrapped 79.3 74.4 68.2 58.9 48.7 38.5 
V/S 

Asymptotic 83.5 79.9 73.2 63.5 54.7 42.8 

Bootstrapped 88.0 84.5 79.1 69.2 58.2 46.5 
GPH 

Asymptotic 81.8 78.2 72.3 60.6 50.6 39.1 

Bootstrapped 94.0 91.6 87.8 82.1 73.1 61.9 

T = 1000 

�H  
Asymptotic 92.5 91.0 87.9 83.7 77.9 70.2 
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Table 6: Size or Power of Long Memory Tests for Various Models with Stochastic Volatility Errors 

 
Nominal Size 

Data Generation Process 
Test  

Statistic 

Critical 

Values 20% 15% 10% 5% 2½% 1% 

Bootstrapped 20.9 15.8 11.3 5.4 2.6 1.0 
V/S 

Asymptotic 21.5 16.4 11.1 4.2 1.7 0.6 

Bootstrapped 20.5 15.6 12.4 6.7 3.6 1.5 

AR(1) with SV Error 

 
�H  

Asymptotic 14.2 12.5 10.1 6.6 4.5 3.0 

Bootstrapped 20.5 15.8 10.4 5.5 2.6 1.0 
V/S 

Asymptotic 20.7 15.8 9.9 4.6 1.9 0.6 

Bootstrapped 23.9 19.0 11.6 6.6 3.6 1.9 
Sum of  AR(1) and SV Errors 

�H  
Asymptotic 16.8 13.4 10.3 7.2 4.3 2.5 

Bootstrapped 70.8 65.6 56.4 45.2 36.5 27.4 
V/S 

Asymptotic 76.6 72.7 65.7 52.5 43.3 31.8 

Bootstrapped 85.1 81.2 75.9 64.5 52.9 37.0 

FI with SV Error 

 
�H  

Asymptotic 85.3 83.2 79.7 74.9 68.5 59.5 

Bootstrapped 35.8 28.7 22.7 15.2 9.2 4.1 
V/S 

Asymptotic 36.7 29.6 23.2 14.4 7.8 3.7 

Bootstrapped 38.8 31.8 24.0 15.5 8.7 3.8 
Sum of FI and SV Errors 

�H  
Asymptotic 31.4 27.4 23.4 17.1 12.0 7.1 

Notes: Sample size T = 500. DGPs (i) and (iii) are the same as in Tables 3 and 5.  DGP (ii) is 1 1
2(1 0.5 ) exp( )t t t tx L u h ε−= − +  with 

10.95t t th h η−= + . DGP (iv) is 1/3 1
2(1 ) exp( )t t t tx L u h ε−= − +  with 10.95t t th h η−= + . The random errors ,t tu ε  and tη  are mean zero, 

independent normal random variables with variances 0.1, 1 and 0.1 respectively. 
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Table 7: Tests of Long Memory – Standard and Poor’s 500 (SP 500) Returns, Absolute Returns and Squared Returns 

tr  tr  2
tr  

Critical Values Critical Values Critical Values Period Test Test  
Statistic 95%  99% 

Test  
Statistic 95% 99% 

Test  
Statistic 95% 99% 

1.650 1.893 1.755 2.008 1.630 1.841 R/S 
Bootstrapped 
Asymptotic 

1.128 
 1.747 2.001 

3.745 
 1.747 2.001 

2.795 
 1.747 2.001 

0.421 0.620 0.557 0.789 0.537 0.808 KPSS 
Bootstrapped 
Asymptotic 

0.229 
 0.463 0.739 

5.423 
 0.463 0.739 

2.899 
 0.463 0.739 

0.170 0.253 0.205 0.309 0.200 0.267 V/S 
Bootstrapped 
Asymptotic 

0.079 
 0.187 0.266 

1.335 
 0.187 0.266 

0.792 
 0.187 0.266 

1.755 2.241 5.031 5.534 1.406 1.797 GPH 
Bootstrapped 
Asymptotic 

-0.925 
 1.960 2.575 

5.765 
 1.960 2.575 

2.406 
 1.960 2.575 

2.014 2.873 6.473 7.109 3.818 4.765 

Jan 1993 to 
Dec 1999 

 
(T = 1768) 

�H  
Bootstrapped 
Asymptotic 

-0.017 
 1.960 2.575 

8.521 
 1.960 2.575 

5.025 
 1.960 2.575 

1.651 1.862 1.686 1.846 1.591 1.764 
R/S 

Bootstrapped 
Asymptotic 

1.652 
1.747 2.001 

1.856 
1.747 2.001 

1.604 
1.747 2.001 

0.484 0.729 0.522 0.800 0.479 0.803 
KPSS 

Bootstrapped 
Asymptotic 

0.154 
0.463 0.739 

1.089 
0.436 0.739 

0.775 
0.463 0.739 

0.199 0.248 0.172 0.270 0.192 0.262 
V/S 

Bootstrapped 
Asymptotic 

0.116 
0.187 0.266 

0.276 
0.187 0.266 

0.209 
0.187 0.266 

1.757 2.403 1.561 2.740 1.889 2.500 
GPH 

Bootstrapped 
Asymptotic 

0.298 
1.960 2.575 

2.752 
1.960 2.575 

1.655 
1.960 2.575 

2.345 2.957 2.084 3.498 2.379 3.606 

Jan 1997 to 
Dec 1998 

 
(T = 505) 

�H  
Bootstrapped 
Asymptotic 

0.805 
1.960 2.575 

3.658 
1.960 2.575 

2.309 
1.960 2.575 

 

Notes: Statistically significant outcomes are shown in bold. The MBB block length is 10 and the number of bootstrap replications is 999. 
Other settings are the same as in Section 2. 
 

 




