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Abstract

This paper examines the impact of temporal aggregation on alternative

de�nitions of in�ation persistence. Using the CPI and the core PCE de�ator

of the US, our results show that temporal aggregation from the monthly to

the quarterly to the annual frequency induces persistence in the in�ation

series.

Keywords: Aggregation, In�ation, Persistence.

JEL classi�cation: C15, C22
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In�ation persistence has become an important topic in both theoretical

and applied economics. The term persistence is used to indicate the extent

to which future values of a particular economic variable are related to past

shocks of the same variable.2 In other words, given a speci�c shock, in�ation

persistence can be interpreted as the tendency of the rate of in�ation to

converge slowly towards its long-run value. Thus, knowledge of the degree of

in�ation persistence is important. Uncertainties from price �uctuations are

usually associated with the degree of in�ation persistence, and this is valuable

information for both monetary policy and macroeconomic modelling.

Di¤erent macroeconomic models are able to generate alternative expla-

nations for the main sources of in�ation persistence (see e.g., Taylor, 1980,

Rotemberg, 1982, Calvo, 1983, Mankiw, and Reis, 2001, Minford, Nowell, So-

fat, and Srinivasan, 2005). However, these models are generally silent with

respect to what frequency the data should be sampled. Models at di¤erent

levels of time aggregation are interpreted as being theoretically equivalent.

In the light of this background, one relevant problem that deserves attention

is the relationship between temporal aggregation and in�ation persistence.

By temporal aggregation we mean the process of moving from one unit of

time measurement (e.g., monthly) to a larger unit (e.g., quarterly). In this

paper, the question we want to explore is the following: does the unit of time

adopted in empirical work on in�ation persistence matter and, if so, by how

much?
2From an econometric point of view, the concept of persistence is closely related to the

order of integration of a variable.
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The econometric literature has accumulated evidence showing that tem-

poral aggregation may a¤ect the properties and information content of the

data generating process.3 For instance, models estimated with high frequency

data (e.g., monthly or quarterly) show fewer signs of persistence than mod-

els estimated with lower frequency data (e.g., annual data). One important

implication of this is that results using temporally aggregated data can be

unreliable, making it more di¢ cult to distinguish empirically between alter-

native explanations of in�ation persistence. For this reason, in this paper we

depart from the approaches mentioned above and, speci�cally, concentrate

on the impact of temporal aggregation on alternative de�nitions of in�ation

persistence.

In applied work the persistence of a stochastic process is determined by

the Impulse Response Function (IRF), which is not invariant to time ag-

gregation e¤ects (see Rossana and Seater, 1995). These authors have also

pointed out three main e¤ects for a temporally aggregated ARIMA(p; d; q)

process. The �rst e¤ect, due to Brewer (1973), de�nes a limit for the MA

structure of the aggregated series. The second e¤ect, due to Tiao (1972),

shows how all the AR coe¢ cients and all but the �rst d MA coe¢ cients

go to zero as aggregation increases, that is, as we move from high to low

frequency data. Consequently, the limiting aggregated model of an ARIMA

3After the pioneer work of Holbrook Working (1960), over the last ten years there has

been a growing literature dealing with the problem of time aggegation in di¤erent �elds

of economics. Outstanding examples are Christiano, Eichenbaum, and Marshall, 1991,

Rossana and Seater, 1992, Heaton, 1993.
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process is an IMA(d; d). The third e¤ect is due to small sample sizes. If the

autocorrelations of the aggregated time series rise by proportionally less than

n
1
2 they may become insigni�cant and suggest a model of order IMA(d; d�),

where d� < d.

In addition to the above e¤ects, there are three issues that need further

consideration: (i) The statistical theory is not de�nitive because some of the

results are asymptotic and leave open the question of what happens with

actual data, for which the aggregation span is �nite; (ii) Empirical research

usually takes logs of the price level series to analyze in�ation. However, the

existing statistical theory of temporal aggregation applies only to unlogged

data; and (iii) There is no unique de�nition of persistence, and alternative

measures of persistence might be a¤ected di¤erently by time aggregation and

small sample e¤ects, specially when the AR structure of the series is higher

than one.

Within this context, our aim in this paper is to shed some light on the

e¤ect of time aggregation on in�ation persistence. In particular, we use

data for the US, and to avoid the potential e¤ects of the above mentioned

issues on our empirical application, we also run Monte Carlo simulations with

arti�cially created data.

The rest of the paper is organized as follows. Section one describes alter-

native measures of persistence commonly used in the literature. Section two

presents the results and, �nally, section three gives the conclusions.
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1 Alternative Measures of Persistence

We assume that in�ation (y) follows an autoregressive process of order p

(AR(p)) which can be written as:

yt = �+

pX
j=1

�jyt�j + "t (1)

where "t is a serially uncorrelated random error. The above model can

be reparameterized as:

�yt = �+

p�1X
j=1

�j�yt�j + (�� 1)yt�1 + "t (2)

where � =
Pp

j=1 �j, and �j = �
Pp

i=1+j �i. In the context of the above

model in�ation is said to be more or less persistent depending on how quickly

it converges to its mean following a shock. In other words, how fast in�ation

absorbs the shock and reverts to its previous mean value. The path of shock

absorption is de�ned by the Impulse Response Function (IRF). In a �nite

AR(p) model, the IRF is determined by the autocorrelation coe¢ cients.

We follow Dias and Marques (2005) and present several scalar measures

of persistence that have been proposed in the literature:

(a) Sum of autoregressive coe¢ cients (�). A related measure is the cu-

mulative impulse response (CIR) given by CIR = 1
1�� : The larger is �, the

larger is the impact of the shock in future values of in�ation and the longer

it will take to mean revert. Andrews and Chen (1994) point out a major

disadvantage of this measure of persistence. In particular, the use of � could
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suggest two series as equally persistent even if they exhibit completely dif-

ferent patterns of mean reversion. Examples are a series that absorbs most

of the shock in the initial periods while another series absorbs most of the

shock in later periods; one series exhibits cyclical behavior while the other

does not.

(b) Largest autoregressive root (lar). As the horizon following a shock

increases, the impulse response of in�ation to a shock becomes increasingly

dominated by the largest root (see Stock, 1991 and 2002). In other words,

the size of the impulse response, �yt+j
�"t
; is determined by lar as the horizon

(j) grows large. A caveat of lar is that it ignores the e¤ects of the other

roots of the autoregressive process in the overall persistence of the series.

Andrews and Chen (1994, p. 190 Table 1) point out this problem by detail-

ing the impulse response function of two series with the same lar but with

di¤erent magnitudes for the other roots. The IRFs di¤er signi�cantly stress-

ing the potential misleading properties of lar if used as the only measure of

persistence.

(c) Half-life (h) is de�ned as the number of periods that it takes to reduce

the initial size of the shock to at least half of it. In the case of an AR(1)

process, h = ln 0:5
ln �
; and for an AR(p) process there is no simple expression for

h. This measure of persistence might not be appropriate in cases where the

IRF is oscillating or the series is very persistent (see Murray and Papell, 2002,

and Pivetta and Reis, 2006). Dias and Marques (2005) suggest computing

the half-life directly from the IRF to avoid some of its drawbacks.

(d) The number of time periods (m) required for �fty percent of the
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total disequilibrium to accumulate. In order to compute this measure we

�rst obtain the total disequilibrium over the whole horizon following the

shock. Subsequently, we compute the number of time periods required for

�fty percent of the total disequilibrium to accumulate. This measure solves

one of the problems that arises when using �: Two series with equal � but

di¤erent patterns of absorption have di¤erent m values.

(e) Absence of mean reversion (
) as measured by Marques (2004). This

measure is de�ned as the unconditional probability of a given process not

crossing its mean in period t, or equivalently as 1 minus the probability

of mean reversion of the process.4 For a white noise process the expected

value of 
; E[
] = 0:5: Figures signi�cantly above 0.5 indicate signi�cant

persistence. Under the null of a symmetric white noise process the following

result holds,

b
 � 0:5
0:5=

p
T
t N(0; 1)

Dias and Marques (2005) also show that

p
T (b
 � 
) t N(0; �21)

where �21 = r0+2
P1

1 rj with rj = cov(xt; x�j): It is also possible to test

the null of random walk using 
 (see Burridge and Guerre, 1996) with the

following statistic KT (0) =

qP
(�yt)

2

TP
j�ytj
T

(T+1)p
T
(1� b
).

4The estimator of 
 is obtained as 
̂ = 1� n
T where n is the number of times the series

crosses the mean during the whole sample with T + 1 observations.

8



In this section we have presented �ve alternative measures that represent

di¤erent ways of measuring persistence. Measures (a) and (b) are simple

numerical measures of persistence, while (c) and (d) re�ect the speed of

adjustment to the equilibrium measured in time periods, and (e) is the prob-

ability of the series reverting to the mean. The ADF statistic is also included

as a standard test for a unit root.

2 Estimation results

2.1 Data and estimation

We consider two alternative measures of price level in the economy. Namely,

the consumer price index (CPI), and the core Personal Consumption Expen-

diture de�ator (PCE). The data consist of monthly observations of the CPI

and the PCE for the US spanning from January 1947 to September 2005, and

from January 1959 to September 2005, respectively. The source is the Federal

Reserve Bank of St. Louis, FRED dataset. We create arithmetic temporal

aggregates5 from the actual highest frequency available data (monthly) as

follows:
5If the data is in logarithmic form, then y�t is the geometric mean instead of the arith-

metic mean of the in�ation rates. We compared the correlation between the arithmetic

and geometric means conditional on some price processes. The correlations were close

to unity and the results qualitatively similar. Given this, for simplicity, we employ the

arithmetic mean for the temporally aggregated data.
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y�t =
(yt + yt�1 + yt�2 + ::::::+ yt�(i�1))

i
(3)

where yt is the one month rate of in�ation from the CPI or the PCE, and

i = 3; 12: The temporally aggregated data will then follow the process:

y�t = �+

pX
j=1

�jy
�
t�j + "t (4)

The autocorrelation coe¢ cients, �j; are a¤ected by the level of temporal

aggregation due to the factors mentioned above. The LS estimators typically

exhibit an upward bias that could actually be quite large when estimating

AR(p) processes. The LS estimator could then be a misleading indicator of

the true autoregressive parameter values providing biased persistence mea-

sures. We follow Andrews and Chen (1994) in order to obtain median un-

biased estimates of � and lar; and we will keep the simple notation of �;

lar; for the median unbiased estimates reported in the tables. Some selected

measures of persistence such as CIR; h; and m will then be computed using

the median unbiased estimators:

2.2 CPI In�ation

We �rst focus our attention on the US CPI from 1947 until 2005. Table

1 presents the persistence of the period-to-period CPI US in�ation rates at

di¤erent frequency levels. The overall conclusion is that time aggregation
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increases the persistence of the series, specially at the annual frequency, re-

gardless of the measure of persistence. It is worth noting that the �expected�

reduction in the sum of the autoregressive terms, �, due to the Tiao e¤ect is

not enough to o¤set the �time period�di¤erence due to time aggregation.6

In other words, the annual value of � implies a higher persistence than its

monthly counterpart. The increase in the largest autoregressive root (lar)

also gives a good measure of the signi�cant increase in persistence. The half-

life also displays dramatic increases in persistence. The proportion of the

total disequilibrium to accumulate, m; gives a similar picture for monthly or

quarterly data but almost doubles for annual data. The Marques measure of

persistence (
) also points to the same direction. The estimated 
 increases

and the hypothesis of equality of 
 at di¤erent levels of aggregation can be

rejected. Moreover, at the annual frequency, the unit root hypothesis, as

tested by 
 and the ADF statistic, cannot be rejected.

6Actually, the reduction of the � value from monthly (� = 0:86) to quarterly (�i=3 =

0:85), and annual (�i=12 = 0:75) is not enough to o¤set the level of aggregation. For

instance, a value of �i=3 = 0:85, in quarterly terms implies a CIR =( 1
1��i ) ' 7 quarters;

and in monthly terms would be 21 (7i = 7 � 3 = 21):Therefore the value of � in the

aggregated series at level i, �i; that would yield the same CIR( 1
1��i ) as the original series

would be �i = �(i � 1) + i�: Below, we present a table with the corresponding values of

�i that would yield equal CIR if the original series had an autoregressive term of value �:

in� 0.85 0.90 0.95

3 0.55 0.70 0.85

12 -0.80 -0.20 0.40
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2.3 Monte Carlo analysis

In order to formally assess the general impact of temporal aggregation on

persistence measures we run a set of Monte Carlo experiments. As a �rst

step we generate a series calibrated with the same autoregressive structure

as the actual CPI monthly data estimated above plus a random error term

with a distribution that matches the empirical one.7 The second step was

to aggregate the arti�cial series and compute all the alternative measures of

persistence. We replicate this experiment 10,000 times and Table 2 presents

the results. Overall, the alternative measures of persistence increase with

the level of aggregation and the results are in line with those in Table 1. We

�nd that the reason underlying those results might not be a straightforward

one. To check whether those results are due to a small sample problem

we generated sample sizes of 3,000 and 12,000 for the original series with

same AR(p) structure as actual CPI in�ation and analyze the results for

aggregated series with 1,000 observations. The results for the mean values

were very similar (except for the standard deviations that were much smaller,

obviously) ruling out the small sample phenomenon as an explanation driving

7The residual analysis from actual data showed a non-normal distribution of the residu-

als with excess kurtosis and fatter tails. We decided to approximate that distribution with

a t�distribution with eight degrees of freedom (d:f:) and a standard deviation of 0.02 that

has all moments (hence d:f: � 5) but could display those features. In order to ensure that

our assumption cannot be rejected we have applied two di¤erent tests following Stephens

(1974). In particular, we applied the Kolmogorov statistic, and the Anderson-Darling

statistic. They yielded values of 0.95 and 1.20, respectively. According to Stephens Table

1.0, the null of the a t�distribution with eight d:f: could not be rejected.

12



those results. The second e¤ect we check is the Tiao e¤ect. In this case, the

autoregressive roots seem to disappear with the level of aggregation. The

quarterly series have lower p parameters than the monthly one, and the

annual series lower than the quarterly one. However, they did not vanish

completely. Aggregated series still keep some AR(p) structure, even for large

samples. Recall that the Tiao e¤ect is an asymptotic result and, in our

particular case, we �nd that the Tiao e¤ect holds but it does not completely

eliminate the whole AR structure.8

The di¤erence between the alternative measures of persistence is low-

est for the quarterly frequency. For instance, there are only small di¤erences

between � and lar, and between h andm. In the light of our results the quar-

terly frequency provides a more �homogenous�measure of persistence. This

leads to the question of which frequency of data to use in empirical work.

There is a trade-o¤ between sample size (monthly data have more observa-

tions than quarterly), information content (monthly data have information

about the monthly frequency while quarterly do not), measurement error

(monthly data are likely to be more unreliable than quarterly or annual data

�see Wilcox, 1992) and temporal aggregation e¤ects (which increase in mov-

8To further examine this issue we have aggregated the monthly calibrated series at

higher frequencies, i = 24; 36; and 1; 000; and computed the corresponding � values. They

still were 0.46, 0.34, and 0.20 respectively. In other words, even with an original sample

size of 1; 000; 000; with a level of aggregation i = 1; 000 the resulting aggregated series of

size 1; 000 still displays an AR structure that does not vanish completely (an AR(1) with

coe¢ cient 0.20).
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ing from monthly to quarterly, and specially, from monthly to annual data).

Our conclusion is to agree with Rossana and Seater (1995) that quarterly

data are the best compromise among frequency of observation, measurement

error and temporal aggregation distortion.

2.4 Robustness checks

The high persistence of the series can also be an artifact of structural breaks

(see Perron, 1989; and Stock, 1994). For this reason, we employ the sample

period 1983-2005, that is believed to belong to the same regime in terms

of in�ation (see Levin and Piger, 2004) and the estimated AR(p) model

considered more robust. We apply the same experiment as above and the

results are displayed in Tables 3 and 4 for the CPI series. The conclusions

regarding both the estimations at di¤erent levels of aggregated data and

the Monte Carlo experiments are qualitatively the same as in Tables 1 and

2. However, it is worth pointing three results. First, the persistence for

this subsample is lower according to all measures of persistence. Second,

the �arti�cially� generated persistence is lower. In particular, in the case

of the quarterly frequency, the di¤erence in persistence with the monthly

series is quite small. Third, the measure of persistence 
 seems quite robust:

According to Table 3, we cannot reject that the hypothesis that this measure

of persistence is the same across di¤erent frequencies. This result is reinforced

with the Monte Carlo that shows that most of the time 
 would be considered

to be equal and therefore robust to temporal aggregation.

14



This subsample might be considered a more �homogenous�one in terms

of in�ation periods, or let us say, possibly free from structural breaks. This

fact strengthens the results of the previous section though to a lesser extent.

We have undertaken a second robustness check concerning the measure of

the price index. The CPI series contains components, such as energy prices,

that have very di¤erent persistence properties from other components that

might distort the overall persistence of the price series. We then consider the

core PCE de�ator as an alternative measure of in�ation for our persistence

analysis. Tables 5 and 6 present the results for the sample 1983-2005.9 Two

conclusions can be drawn from that analysis. First, this series appears to

be more persistent that the CPI series according to all the measures of per-

sistence. Second, the overall trends previously found for the CPI series also

hold for the core PCE.

3 Conclusions

The general conclusion of this paper is that the selection of the unit of time

is important in empirical work on in�ation persistence. In general, lower

frequency implies higher persistence. In particular, temporal aggregation of

in�ation from the monthly to the quarterly to the annual frequency increases

persistence. However, in some cases, aggregation from the monthly to the

quarterly frequency has an almost negligible e¤ect on persistence. Further-

9We have also undertaken the analysis for the sample 1959-2005. We do not report

those results for space consideration but they are available from the authors upon request.
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more, the Marques (2004) measure of persistence seems to be the one less

a¤ected by the temporal aggregation. These conclusions have been empiri-

cally documented using data for the US Consumer Price Index and the core

Personal Consumption Expenditure de�ator.
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Table 1. Estimates of persistence with actual

CPI data for US 1947-2005.

Monthly Quarterly Annual

� 0.860 0.850 0.750

lar 0.279 0.690 0.881

b
 0.668 0.822 0.807


 = 1 11.21* 3.32* 1.82


 = 0:668 4.81* 3.47*

ADF -4.35* -4.43* -1.69

CIR 7 20 48

h 1 6 36

m 12 15 24

Notes: The order of the autoregressive process of the series

chosen was such that leaves no remaining autocorrelation.

We used 24, 8, and 2 lags for the monthly, quarterly, and

annual, respectively. 
 = 1 denotes the KT (0) statistic

for the null of a unit root. 
 = 0:668 denotes the Dias

and Marques (2005) statistic for the null 
 = 0:668.

An asterisk denotes rejection of the null at �ve percent level.

� and lar correspond to their median unbiased estimates.

The �gures for CIR; h; and m are expressed on a

monthly basis and rounded to the nearest month.

20



Table 2. Monte Carlo simulations

calibrated for US CPI 1947-2005

Quarterly Annual

� 0.823(0.04) 0.652(0.11)

lar 0.665(0.06) 1.02(0.50)

b
 0.792(0.03) 0.768(0.04)


 = 1 1.00 0.883


 = 0:668 0.964 0.594

ADF 0.999 0.973

Quarters ME Years ME

CIR 5.46 15 3.08 36

h 2.53(1.13) 9 2.86(0.58) 36

m 4.88(1.56) 15 1.75(2.26) 24

Notes: Figures in table are the mean values obtained from

10,000 replications. Numbers in parentheses are standard

errors. The values for CIR correspond to the median.

The values for ADF; 
 = 1 and 
 = 0:668 denote

the proportion of times that the nulls of unit root and of


 = 0:668 are rejected, respectively. M.E. equivalent

number of months for quarterly and annual aggregates

(rounded)
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Table 3. Estimates of persistence with actual

CPI data for US 1983-2005.

Monthly Quarterly Annual

� 0.520 0.540 0.567

lar 0.381 0.400 0.567

b
 0.630 0.629 0.770


 = 1 7.01* 3.86* 1.20


 = 0:630 -0.017 1.40

ADF -11.63* -6.00* -3.22*

CIR 2 7 28

h 1 3 12

m 5 6 12

Notes: The order of the autoregressive process of the series

chosen was such that leaves no remaining autocorrelation. In

particular, we used 6, 2, and 1 lags for the monthly, quarterly,

and annual, respectively. For the rest of statistics see notes

to Table 1.
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Table 4. Monte Carlo simulations

calibrated for US CPI 1983-2005

Quarterly Annual

� 0.543(0.17) 0.497(0.18)

lar 0.388(0.10) 0.640(0.19)

b
 0.650(0.06) 0.705(0.11)


 = 1 0.998 0.369


 = 0:630 0.071 0.155

ADF 0.894 0.453

Quarters ME Years ME

CIR 2.26 7 2.07 25

h 1.11(0.32) 3 1.75(0.65) 21

m 4.10(4.70) 12 2.39(2.85) 29

Notes: See notes to Table 2.
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Table 5. Estimates of persistence with actual

core US PCE data 1983-2005.

Monthly Quarterly Annual

� 0.833 0.934 0.926

lar 0.277 0.322 0.926

b
 0.705 0.923 0.954


 = 1 5.73* 0.818 0.246


 = 0:705 3.63* -2.76*

ADF -3.07* -2.15 -2.13

CIR 6 45 162

h 1 3 60

m 17 42 60

Notes: The order of the autoregressive process of the series

chosen was such that leaves no remaining autocorrelation. In

particular,we used 9, 3, and 1 lag for the monthly, quarterly,

and annual, respectively. For the rest of statistics see notes

to Table 1.
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Table 6. Monte Carlo simulations

calibrated for core US PCE 1983-2005

Quarterly Annual

� 0.789(0.10) 0.540(0.39)

lar 0.613(0.13) 0.791(0.24)

b
 0.768(0.06) 0.723(0.09)


 = 1 0.861 0.280


 = 0:705 0.171 0.050

ADF 0.625 0.358

Quarters ME Years ME

CIR 4.97 15 2.56 31

h 2.65(1.36) 8 2.20(0.95) 26

m 4.14(2.19) 12 3.27(3.08) 39

Notes: See notes to Table 2.
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