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Abstract
A recursive test procedure is suggested that provides a mechanism for testing explosive

behavior, date-stamping the origination and collapse of economic exuberance, and providing
valid con�dence intervals for explosive growth rates. The method involves the recursive im-
plementation of a right-side unit root test and a sup test, both of which are easy to use in
practical applications, and some new limit theory for mildly explosive processes. The test
procedure is shown to have discriminatory power in detecting periodically collapsing bubbles,
thereby overcoming a weakness in earlier applications of unit root tests for economic bubbles.
An empirical application to Nasdaq stock price index in the 1990s provides con�rmation of ex-
plosiveness and date-stamps the origination of �nancial exuberance to mid -1995, prior to the
famous remark in December 1996 by Alan Greenspan about irrational exuberance in �nancial
market, thereby giving the remark empirical content.
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How do we know when irrational exuberance has unduly escalated asset values?
(Alan Greenspan, 1996)
Experience can be a powerful teacher. The rise and fall of internet stocks, which

created and then destroyed $8 trillion of shareholder wealth, has led a new generation
of economists to acknowledge that bubbles can occur. (Alan Krueger, 2005)

1 Introduction

During the 1990s, led by DotCom stocks and the internet sector, the U.S. stock market experienced
a spectacular rise in all major indices, especially the Nasdaq index. Concomitant with this striking
rise in stock market indices, there was much popular talk among economists about the e¤ects of
the internet and computing technology on productivity and the emergence of a �new economy�
associated with these changes. What caused the unusual surge and fall in prices, whether there
were bubbles, and whether the bubbles were rational or behavioral are among the most actively
debated issues in macroeconomics and �nance in recent years.

Many researchers attribute the episode to �nancial bubbles. Examples include Greenspan
(1996), Thaler (1999), Shiller (2000), The Economist (2000), Cooper et al. (2001), Ritter and
Welch (2002), Ofek and Richardson (2002), Lamont and Thaler (2003), and Cunado et al. (2005).1

Among the many references, the remark by Greenspan (1996) on December 5, 1996, is the most
celebrated, involving as it did the coining of the phrase �irrational exuberance� to characterize
herd stock market behavior, a phrase which remains the most oft-quoted remark of the former
chairman of the Federal Reserve Board. The remark has been in�uential in thinking about �nancial
markets and herd behavior and it also had some short term market e¤ects. Indeed, immediately
after Greenspan coined the phrase in a dinner party speech, stock markets fell sharply worldwide
the next day.2 However, in spite of this correction, the Greenspan remark did not halt the general
upward march of the U.S. market. On the contrary, over the full decade of the 1990s, the Nasdaq
index rose to the historical high of 5,048.62 points on March 10, 2000 from 329.80 on October 31,
1990 (see Figure 1).

One purpose of the present article is to examine empirically the Nasdaq market performance in
relation to the market perceptions of exuberance by Greenspan and other commentators. In partic-
ular, it is of interest to determine whether the Greenspan perception of exuberance was supported

1Some economists have also sought to rationalize the equity boom using a variety of economic variables, including
uncertainty about �rm pro�tability (Pastor and Veronesi, 2006), declining macroeconomic risk (Lettau et al., 2008),
high and volatile revenue growth (Schwartz and Moon, 2000), learning (Pastor and Veronesi, 2007) and other
fundamentals.

2For example, the stock markets in Frankfurt, Hong Kong, London, Toyko and the U.S. fell by 4, 3, 4, 3 and 2
percent, respectively.

1



2/73 3/77 5/81 7/85 9/89 11/93 1/98 2/02
0

200

400

600

800

1000

1200

P er iod

R eal  N as daq  P r ic es

R eal  N as daq  D ividends

Figure 1: Time Series Plots of Real Nasdaq Price and Real Nasdaq Dividend from February 1973
to June 2005. Both series are normalized to 100 at the beginning of the sample.

by empirical evidence in the data or if Greenspan actually foresaw the outbreak of exuberance and
its dangers when he made the remark. To achieve this goal, we �rst de�ne �nancial exuberance
in the time series context in terms of explosive autoregressive behavior and then introduce some
new econometric methodology based on forward recursive regression tests and mildly explosive
regression asymptotics to assess the empirical evidence of exuberant behavior in the Nasdaq stock
market index. In this context, the approach is compatible with several di¤erent explanations of
this period of market activity, including the rational bubble literature, herd behavior, and exuber-
ant and rational responses to economic fundamentals. All these propagating mechanisms can lead
to explosive characteristics in the data. Hence, the empirical issue becomes one of identifying the
origination, termination and extent of the explosive behavior. While with traditional test proce-
dures �there is little evidence of explosive behavior�(Campbell, Lo and MacKinlay, 1997, p. 260),
with the recursive procedure, we successfully document explosive periods of price exuberance in
the Nasdaq.

Among the potential explanations of explosive behavior in economic variables, the most promi-
nent are perhaps models with rational bubbles. Accordingly, we relate our analysis of explosive
behavior to the rational bubble literature, where it is well known that standard econometric tests
encounter di¢ culties in identifying rational asset bubbles (Flood and Garber, 1980; Flood and
Hodrick, 1986; and Evans, 1991). The use of recursive tests enables us to locate exploding sub-

2



samples of data and detect periods of exuberance. The econometric approach utilizes some new
machinery that permits the construction of valid asymptotic con�dence intervals for explosive
autoregressive processes and tests of explosive characteristics in time series data. This approach
can detect the presence of exuberance in the data and date stamp the origination and collapse of
periods of exuberance.

We apply our econometric approach to the Nasdaq index over the full sample period from
1973 to 2005 and some sub-periods. Using the forward recursive regression technique, we date
stamp the origin and conclusion of the explosive behavior. To answer the question raised by
Greenspan in the �rst header leading this article, we match the empirical time stamp of the
origination against the dating of Greenspan�s remark. The statistical evidence from these methods
indicates that explosiveness started in 1995, thereby predating and providing empirical content
to the Greenspan remark in December 1996. The empirical evidence indicates that the explosive
environment continued until sometime between September 2000 and March 2001.

If the discount rate is time invariant, the identi�cation of explosive characteristics in the data
is equivalent to the detection of a stock bubble, as argued in Diba and Grossman (1987, 1988).
Using standard unit root tests applied to real U.S. Standard and Poor�s Composite Stock Price
Index over the period 1871-1986, Diba and Grossman (1988) tested levels and di¤erences of stock
prices for nonstationarity, �nding support in the data for nonstationarity in levels but stationarity
in di¤erences. Since di¤erences of an explosive process still manifest explosive characteristics,
these �ndings appear to reject the presence of a market bubble in the data. Although the results
were less de�nitive, further tests by Diba and Grossman (1988) provided con�rmation of cointe-
gration between stock prices and dividends over the same period, supporting the conclusion that
prices did not diverge from long run fundamentals and thereby giving additional evidence against
bubble behavior. Evans (1991) criticized this approach, showing that time series simulated from
a nonlinear model that produces periodically collapsing bubbles manifests more complex bubble
characteristics that are typically not uncoverable by standard unit root and cointegration tests.
He concluded that standard unit root and cointegration tests are inappropriate tools for detecting
bubble behavior because they cannot e¤ectively distinguish between a stationary process and a
periodically collapsing bubble model. Patterns of periodically collapsing bubbles in the data look
more like data generated from a unit-root or stationary autoregression than a potentially explosive
process. Recursive tests of the type undertaken in our paper are not subject to the same criticism
and, as demonstrated in our analysis and simulations reported below, are capable of distinguishing
periodically collapsing bubbles from pure unit root processes.

The remainder of the paper is organized as follows. Section 2 de�nes market exuberance,
discusses model speci�cation issues and relates exuberance to the earlier literature on rational
bubbles. Section 3 discusses some econometric issues, such as �nite sample estimation bias and
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the construction of valid asymptotic con�dence intervals for mildly explosive processes. Section
4 describes the data used in this study. The empirical results are reported in Section 5. Section
6 documents the �nite sample properties of our tests and develops some asymptotic properties
of the Evans (1991) model of periodically collapsing bubbles. Simulations with these models are
conducted and the �nite sample properties of the tests are analyzed. Section 7 concludes. The
appendix provides a mathematical analysis of the periodically collapsing bubble model of Evans.

2 Speci�cation Issues

When Greenspan coined �irrational exuberance�, the phrase was not de�ned �see the primary
header to this article. Instead, the appellation can be interpreted as a typically cryptic warning
that the market might be overvalued and in risk of a �nancial bubble. In the event, as the
second header leading this article indicates, the subsequent rise and fall of internet stocks to the
extent of $8 trillion of shareholder wealth renewed a long standing interest among economists in the
possibility of �nancial bubbles. Theoretical studies on rational bubbles in the stock market include
Blanchard (1979), Blanchard and Watson (1982), Shiller (1984), Tirole (1982, 1985), Evans (1989),
Evans and Honkapohja (1992), and Olivier (2000), among many others; and empirical studies
include Shiller (1981), West (1987, 1988), Campbell and Shiller (1987, 1989), Diba and Grossman
(1988), Froot and Obstfeld (1991), and Wu (1997). Flood and Hodrick (1990) and Gurkaynak
(2005) survey existing econometric methodologies and test results for �nancial bubbles.

It is well known in the rational bubble literature that bubbles, if they are present, should
manifest explosive characteristics in prices. This statistical property motivates a de�nition of
exuberance in terms of explosive autoregressive behavior propagated by a process of the form
xt = �x + �xt�1 + "x;t where for certain subperiods of the data � > 1. Figure 2 gives typical time
series plots for stationary (� = 0:9), random walk (� = 1:0) and explosive processes (� = 1:02)
with intercept �x = 0 and inputs "x;t � iid N (0; 1) : The di¤erences in the trajectories are quite
apparent.

The concept of rational bubbles can be illustrated using the present value theory of �nance
whereby fundamental asset prices are determined by the sum of the present discounted values of
expected future dividend sequence. Most tests begin with the standard no arbitrage condition
below

Pt =
1

1 +R
Et(Pt+1 +Dt+1); (1)

where Pt is the real stock price (ex-dividend) at time t, Dt is the real dividend received from the
asset for ownership between t� 1 and t, and R is the discount rate (R > 0). This section assumes
R to be time invariant. However, making the discount rate stationary and time-varying does not
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Figure 2: Typical Stationary, Random Walk and Explosive Autoregressive Trajectories

change the implication of submartingale (explosive) behavior given in (4) below, but complicates
the analysis of the rational bubble solution.

We follow Campbell and Shiller (1989) by taking a log-linear approximation of (1), which
yields the following solution through recursive substitution:3

pt = p
f
t + bt; (2)

where

pft =
�� 
1� � + (1� �)

1X
i=0

�iEtdt+1+i; (3)

bt = lim
i!1

�iEtpt+i;

Et(bt+1) =
1

�
bt =

�
1 + exp(d� p)

�
bt: (4)

with pt = log(Pt), dt = log(Dt),  = log(1 + R) � = 1=(1 + exp(d� p)), with d� p being the
average log dividend-price ratio, and

� = � log(�)� (1� �) log(1
�
� 1):

3While log linear approximations of this type about the sample mean are commonly employed in both theoretical
and empirical work, we remark that they may be less satisfactory in nonstationary contexts where the sample means
do not converge to population constants. We therefore used the series both in log levels and in levels in our empirical
work and found very similar results for both cases.
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Obviously, 0 < � < 1. Following convention, we call pft , which is exclusively determined by
expected dividends, the fundamental component of the stock price, and bt; which satis�es the
di¤erence equation (5) below, the rational bubble component. Both components are expressed in
natural logarithms. As exp(d� p) > 0, the rational bubble bt is a submartingale and is explosive
in expectation. Equation (4) implies the following process

bt =
1

�
bt�1 + "b;t � (1 + g)bt�1 + "b;t; Et�1("b;t) = 0; (5)

where g = 1
� � 1 = exp(d� p) > 0 is the growth rate of the natural logarithm of the bubble and

"b;t is a martingale di¤erence.

As evident from (2), the stochastic properties of pt are determined by those of p
f
t and bt. In

the absence of bubbles, i.e., bt = 0; 8t, we will have pt = pft ; and pt is determined solely by p
f
t

and hence by dt. In this case, from (3), we obtain

dt � pt = �
�� 
1� � �

1X
i=0

�iEt(�dt+1+i): (6)

If pt and dt are both integrated processes of order one, denoted by I(1), then (6) implies that pt
and dt are cointegrated with the cointegrating vector [1;�1].

If bubbles are present, i.e., bt 6= 0, since (5) implies explosive behavior in bt, pt will also be
explosive by equation (2), irrespective of whether dt is an integrated process, I(1), or a stationary
process, denoted by I(0). In this case, �pt is also explosive and therefore cannot be stationary.
This implication motivated Diba and Grossman (1988) to look for the presence of bubble behavior
by applying unit root tests to �pt. Finding an empirical rejection of the null of a unit root in
�pt, Diba and Grossman (1988) concluded that pt was not explosive and therefore there was no
bubble in the stock market.

In the case where dt is I(1) and hence �dt is I(0), equation (6) motivated Diba and Grossman
(1988) to look for evidence of the absence of bubbles by testing for a cointegrating relation between
pt and dt. In the presence of bubbles, pt is always explosive and hence cannot co-move or be
cointegrated with dt if dt is itself not explosive. Therefore, an empirical �nding of cointegration
between pt and dt may be taken as evidence against the presence of bubbles.

Evans (1991) questioned the validity of the empirical tests employed by Diba and Grossman
(1988) by arguing that none of these tests have much power to detect periodically collapsing bub-
bles. He demonstrated by simulation that the low power of standard unit root and cointegration
tests in this context is due to the fact that a periodically collapsing bubble process can behave
much like an I(1) process or even like a stationary linear autoregressive process provided that the
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probability of collapse of the bubble is not negligible. As a result, Evans (1991, p927) claimed
that �periodically collapsing bubbles are not detectable by using standard tests.�

Equations (5) and (2) suggest that a direct way to test for bubbles is to examine evidence
for explosive behavior in pt and dt when the discount rate is time invariant. Of course, explosive
characteristics in pt could in principle arise from dt and the two processes would then be explosively
cointegrated. However, if dt is demonstrated to be nonexplosive, then the explosive behavior in
pt will provide su¢ cient evidence for the presence of bubbles because the observed behavior may
only arise through the presence of bt. Of course, it seems likely that in practice explosive behavior
in pt may only be temporary or short-lived, as in the case of stock market bubbles that collapse
after a certain period of time. Some of these possibilities can be taken into account empirically
by looking at subsamples of the data.

Looking directly for explosive behavior in pt and non-explosive behavior in dt via right-tailed
unit root tests is one aspect of the empirical methodology of the present paper. Although this
approach is straightforward, it has received little attention in the literature. One possible explana-
tion is the consensus view that �empirically there is little evidence of explosive behavior�in stock
prices, as noted in Campbell, Lo and MacKinlay (1997, p260) for instance. However, as Evans
(1991) noted, explosive behavior is only temporary when economic bubbles periodically collapse
and in such cases the observed trajectories may appear more like an I(1) or even stationary series
than an explosive series, thereby confounding empirical evidence. He demonstrated by simulation
that standard unit root tests had di¢ culties in detecting such periodically collapsing bubbles.
In order for unit root test procedures to be powerful in detecting explosiveness, we propose the
use of recursive regression techniques and show below by analytic methods and simulations that
this approach is e¤ective in detecting periodically collapsing bubbles. Using these methods, the
present paper �nds that when recursive tests are conducted and data from the 1990s are included
in the sample, some strong evidence of explosive characteristics in pt emerges.

Our tests are implemented as follows. For each time series xt (log stock price or log dividend),
we apply the augmented Dickey-Fuller (ADF ) test for a unit root against the alternative of an
explosive root (the right-tailed). That is, we estimate the following autoregressive speci�cation
by least squares4

xt = �x + �xt�1 +
JX
j=1

�j�xt�j + "x;t; "x;t � NID (0; �2x); (7)

for some given value of the lag parameter J , where NID denotes independent and normal distri-

4We also implemented the Phillips (1987) and Phillips and Perron (1988) tests and obtained very similar results
to the ADF test.
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bution.5 In our empirical application we use signi�cance tests to determine the lag order J; as
suggested in Campbell and Perron (1991). The unit root null hypothesis is H0 : � = 1 and the
right-tailed alternative hypothesis is H1 : � > 1.

In forward recursive regressions, model (7) is estimated repeatedly, using subsets of the sample
data incremented by one observation at each pass. If the �rst regression involves �0 = [nr0]

observations, for some fraction r0 of the total sample where [ ] signi�es the integer part of its
argument, subsequent regressions employ this originating data set supplemented by successive
observations giving a sample of size � = [nr] for r0 � r � 1: Denote the corresponding t-statistic
by ADFr and hence ADF1 corresponds to the full sample. Under the null we have

ADFr )
R r
0
fWdW�R r

0
fW 2
�1=2 ;

and

sup
r2[r0;1]

ADFr ) sup
r2[r0;1]

R r
0
fWdW�R r

0
fW 2
�1=2 :

where W is the standard Brownian motion and fW (r) = W (r) �
R 1
0 W is demeaned Brownian

motion.6

Comparison of supr ADFr with the right tailed critical values from supr2[r0;1]
R r
0
fWdW=�R r0 fW 2

�1=2
makes it possible to test for a unit root against explosiveness. However, this testing procedure
cannot date stamp the emergence or collapse of exuberance. To locate the origin and the con-
clusion of exuberance, one can match the time series of the recursive test statistic ADFr, with
r 2 [r0; 1], against the right tailed critical values of the asymptotic distribution of the standard
Dickey-Fuller t-statistic. In particular, if re is the origination date and rf is the collapse date of
explosive behavior in the data, we construct estimates of these dates as follows:

r̂e = inf
s�r0

n
s : ADFs > cv

adf
�n
(s)
o
; r̂f = inf

s�r̂e

n
s : ADFs < cv

adf
�n
(s)
o
; (8)

where cvadf�n (s) is the right side critical value of ADFs corresponding to a signi�cance level of �n:
In practice, it is conventional to set the signi�cance level in the 1% to 5% range. But to achieve

5The asymptotic theory developed below does not require the normality assumption, whereas the bias correction
explained later does use the distributional assumption.

6Observe that, given the limiting Brownian motion process fW (r) : r 2 [0; 1]g ; the limiting variate � (r) =R r
0
WdW=

�R r
0
W 2

�1=2
corresponding to ADFr is a stochastic process that evolves with r: However, the �nite di-

mensional distribution of � (r) given r is the same for all r > 0 and is the usual unit root limit distributionR 1
0
WdW=

�R 1
0
W 2

�1=2
:
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consistent estimation of the date stamps fr̂e; r̂fg ; the signi�cance level �n needs to approach
zero asymptotically and correspondingly cvadf�n (s) must diverge to in�nity in order to eliminate
the type I error as n ! 1: We therefore let �n depend on n in the above formulae. In our
practical work reported below it is convenient to use a direct setting and expansion rate for
the critical value of cvadf�n (s) rather than an explicit setting for �n: The setting employed is

cvadf�n
(s) = log(log(ns))=100: For the sample sizes considered in our empirical application, this

setting leads to critical values around the 4% signi�cance level. This date stamping procedure
has some good properties and, in particular, enables the consistent estimation of origination and
collapse dates, as discussed below. In general, of course, the lower the actual p-value of the
observed ADFr, the stronger the empirical evidence for explosive behavior.

If these tests lead to a rejection of H0 in favor of H1; then we may construct a valid asymptotic
con�dence interval for � using some new econometric theory for the explosive case, as explained
in Section 3.

3 Econometric Issues

3.1 Econometric Analysis of Explosive Processes

Recent work by Phillips and Magdalinos (2007, 2008) has provided an asymptotic distribution
theory for mildly explosive processes that can be used for con�dence interval construction in the
present context. These papers deal with an explosive model of the form

xt = �nxt�1 + "x;t; t = 1; :::; n; �n = 1 +
c

kn
; c > 0 (9)

which is initialized at some x0 = op
�p
kn
�
independent of

�
"x;t; t � 1

	
, and where (kn)n�1 is a

sequence increasing to 1 such that kn = o (n) as n ! 1: The error process "x;t may comprise
either independent and identically distributed random variables or a weakly dependent time series
with E"x;t = 0 and uniform �nite second moments so that suptE"

2
x;t < 1. Model (9) does not

include an intercept in order to avoid the presence of a deterministically explosive component in
xt:

The sequence �n = 1 + c
kn
> 1 is local to the origin in the sense that �n ! 1 as n ! 1; but

for any �nite n it involves moderate deviations from a unit root, i.e., deviations that are greater
than the conventional O

�
n�1

�
deviations for which unit root tests have non trivial local power

properties (see Phillips, 1987) and unit root type distributions apply. The corresponding time
series (which is strictly speaking an array process) xt in (9) is mildly explosive. Importantly, kn
may be within a slowly varying factor of n, for instance log n, so that we may have kn = n= log n:
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Models of the form (9) seem well suited to capturing the essential features of economic and
�nancial time series that undergo mildly explosive behavior. They also seem appropriate for
capturing periodically collapsing bubble behavior where the bubble may appear over a subperiod of
length kn < n: These mildly explosive models have the very interesting and somewhat unexpected
property, established in Phillips and Magdalinos (2007, 2008), that they are amenable to central
limit theory. Moreover, the limit theory turns out to be invariant to the short memory properties
of the innovations "x;t, so that inferential procedures based on this limit theory is robust to many
di¤erent departures from simple i.i.d. errors. This means that the models and the limit theory
may be used as a basis for statistical inference with processes that manifest mildly explosive
trajectories. For economic and �nancial data, this typically means values of �n that are in the
region [1:005; 1:05]: In particular, if kn = n= log n and n = 200, we have �n = 1+ c

kn
2 [1:002; 1:053]

for c 2 [0:1; 2] :
Under some general regularity conditions, Phillips and Magdalinos show that the least squares

regression estimator �̂n =
Pn
t=1 xt�1xt=

Pn
t=1 x

2
t�1 has the following limit theory for mildly explo-

sive processes of the form (9):

kn(�n)
n

2c

�
�̂n � �n

�
=) C; and

(�n)
n

(�n)2 � 1

�
�̂n � �n

�
=) C;

where C is a standard Cauchy random variable. It follows that a 100 (1� �)% con�dence interval
for �n is given by the region  

�̂n �
(�̂n)

2 � 1
(�̂n)n

C�

!
where C� is the two tailed � percentile critical value of the standard Cauchy distribution. For 90,
95 and 99 percent con�dence intervals, these critical values are as follows:

C0:10 = 6:315; C0:05 = 12:7; C0:01 = 63:65674:

These values can be compared with the corresponding Gaussian critical values of 1.645, 1.96,
2.576.

The con�dence intervals and limit theory are invariant to the initial condition x0 being any
�xed constant value or random process of smaller asymptotic order than k1=2n . The con�dence
intervals and limit theory also remain unchanged if the data generating process is a unit root
model followed by a mildly explosive autoregression such as (9). These properties provide further
robustness to the procedure.
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3.2 Finite Sample Bias Correction via Indirect Inference Estimation

Least squares (LS) regression is well known to produce downward biased coe¢ cient estimates in
the �rst order autoregression (AR). This bias does not go to zero as the AR coe¢ cient � ! 0

and the bias increases as � gets larger. It is therefore helpful to take account of this bias in
conducting inference on autoregressive coe¢ cients such as � in (9). Several statistical procedures
are available for doing so, including the use of asymptotic expansion formulae (Kendall, 1954),
jackkni�ng (Quenouille, 1956; and Efron, 1982), median unbiased estimation (Andrews, 1993) and
indirect inference (MacKinnon and Smith, 1998, Gouriéroux et al., 2000).

Indirect inference was originally suggested and has been found to be highly useful when the
moments and the likelihood function of the true model are di¢ cult to deal with, but the true model
is amenable to data simulation (Smith, 1993, Gouriéroux et al., 1993). In fact, the procedure also
produces improved small sample properties and has the capacity to reduce autoregressive bias, as
shown by MacKinnon and Smith (1998) and Gouriéroux et al. (2000) in the time series context
and Gouriéroux et al. (2007) in the dynamic panel context. We shall use indirect inference in
the present application because of its known good performance characteristics and convenience in
autoregressive model estimation.

To illustrate, suppose we need to estimate the parameter � in the simple AR(1) model (i.e.
J = 0 in model (7)7)

xt = �x + �xt�1 + "x;t; "x;t � NID(0; �2x); (10)

from observations fxt; t � ng, where the true value of � is �0: Some autoregressive bias reduction
methods, such as Kendall�s (1954) procedure, require explicit knowledge of the �rst term of the
asymptotic expansion of the bias in powers of n�1. Such explicit knowledge of the bias is not
needed in indirect inference. Instead, indirect inference calibrates the bias function by simulation.
The idea is as follows. When applying LS to estimate the AR(1) model with the observed data,

we obtain the estimate �̂
LS

n and can think of this estimate and its properties (including bias)
as being dependent on � through the data. Given a parameter choice �, let f~xht (�) ; t � ng be
data simulated from the true model, for h = 1; � � � ;H with H being the total number of simulated
paths. These simulations rely on the distributional assumption made in (10). Let the LS estimator

based on the hth simulated path, given �, be denoted by e�hn(�).
The indirect inference estimator is de�ned as the extremum estimator

�̂
II

n;H = argmin�2� k �̂
LS

n � 1

H

HX
h=1

e�hn(�) k; (11)

7When J > 0, we need to augment model (10) accordingly.
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where k � k is some �nite dimensional distance metric, and � is the parameter space which is
compact. In the case where H tends to in�nity, the indirect inference estimator becomes

�̂
II

n = argmin�2� k �̂
LS

n � qn(�) k; (12)

where qn(�) = E(e�hn(�)) is the so-called binding function. In this case, assuming the function qn
to be invertible, the indirect inference estimator is given by

�̂
II

n = q�1n (�̂
LS

n ):

The procedure essentially builds in a small-sample bias correction to parameter estimation, with
the bias being computed directly by simulation.

It can be shown that the asymptotic distribution of �̂
II

n is the same as that of �̂
LS

n as n!1
and H !1. So the asymptotic con�dence interval derived in the previous section applies equally
well to the indirect inference estimator and will be implemented in what follows.

3.3 Estimating Origination and Collapse Dates

As explained earlier, date stamping the beginning and conclusion of explosive behavior in the
data is based on the criteria (8), leading to the point estimates fr̂e; r̂fg. It is clearly desirable for
these point estimates to be consistent for the true values as the sample size n!1: Asymptotic
analysis of fr̂e; r̂fg depends on the form of the true model under both the null and the alternative
hypothesis. Since the null is that of a unit root model with no period of explosive behavior, it is
the alternative hypothesis that is of primary interest.

Note that under the null hypothesis of no explosive behavior, if �n ! 0 as n ! 1; then
cvadf�n

!1: It follows that under that null

lim
n!1

P
�
ADFs > cv

adf
�n
(s)
�
= P

0B@ R s
0
fWdW�R s

0
fW 2
�1=2 =1

1CA = 0: (13)

Hence, in the limit as n ! 1 under the null, there will be no origination point for an explosive
period in the data.

In order to consistently estimate the origination and collapse dates of explosiveness under the
alternative, we must specify a model that allows for regimes that switch between the unit root and
mildly explosive episodes. For the purpose of the discussion that follows, we use a data generating
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mechanism that allows for the possibility of a single explosive episode, viz.,

xt = xt�11 ft < � eg+ �nxt�11 f� e � t � � fg (14)

+

0@ tX
k=�f+1

"k + x
�
�f

1A 1 ft > � fg+ "t 1 ft � � fg
�n = 1 +

c

n�
; c > 0; � 2 (0; 1) :

where "x;t is iid
�
0; �2

�
; � e = [nre] is the origination date and � f = [nrf ] is the collapse date of

the explosive episode. If there is no mildly explosive episode, then c = 0 and �n = 1: Model (14)
starts with a unit root model but allows for switches in regime at � e (to the explosive episode) and
� f (back to unit root behavior). When the explosive period comes to the end, the initial value of
the new unit root period di¤ers from the end value of the explosive period. So the speci�cation
captures both exuberance and collapse, and involves re-initialization of the process under the
collapse. With the re-initialization at � f , the process jumps to a di¤erent level x��f . The new
initial value x��f may be related to the earlier period of martingale behavior in the process, perhaps
with some random deviation, in which case we would have x��f = x�e +x

� for some Op (1) random
quantity x�. A detailed analysis of this model and the asymptotic behavior of a test procedure for
date stamping explosive behavior is given in Phillips and Yu (2009). We summarize those �ndings
in what follows here.

While the mechanism of collapse is very simple in Model (14), the speci�cation may be further
adapted to allow for a short period transitional dynamic, which could be mean reverting to the
level X�

�f
.

Recursive regressions are run with (14) using the data fxt : t = 1; 2; :::; � = [nr]g with r � r0;
so that the minimum amount of data used for the regressions is �0 = [nr0] :8 According to (8), we
date the origination of the explosive episode as �̂ e = [nr̂e] where

r̂e = inf
s�r0

n
s : ADFs > cv

adf
�n
(s)
o
; (15)

and cvadf�n (s) is the right side 100�n% critical value of the limit distribution
R s
0
fWdW=�R s0 fW 2

�1=2
of the ADFs statistic based on � s = [ns] observations, and �n is the size of the one-sided test.
For r < re it is easy to show that P fr̂e < rg ! 0; as n ! 1; just as under the null. Denote
xj�1 � ��1

P�
i=1 xi�1 by exj�1. When � = [nr] and r > re; we �nd by examining the dominant

components in the numerator and denominator of the recursive coe¢ cient estimator �̂n (�) =P�
j=1 exjexj�1=P�

j=1 ex2j�1 that
8For convenience of presentation, it is assumed in this section that the lag length J = 0.
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n(1+�)=2����en

2c

�
�̂n (�)� �n

�
=

�
�(���e)
n

n�=2+1=2

P�
j=�e

xj�1"j f1 + op (1)g
2c�

�2(���e)
n
n1+�

P�
j=�e

x2j�1 f1 + op (1)g
=) C; (16)

where the limit C is a Cauchy variate (c.f., Theorem 4.3 of Phillips and Magdalinos, 2007a). Then,
since � 2 (0; 1) and c > 0 we have

�
�
�̂n (�)� 1

�
= �

�
�̂n (�)� �n

�
+ � (�n � 1)

= � (�n � 1) + op
�

�

n(1+�)=2����en

�
= n1��rc+ op (1)!1; (17)

and the DF t statistic is

 P�
j=1 ex2j�1
�̂2�

!1=2 �
�̂n (�)� 1

�
=

 
��2

P�
j=1 ex2j�1
�̂2�

!1=2
�
�
�̂n (�)� 1

�

=

0@ n��
2(���e)
n
�22c

ex2�e
�
2(���e)
n re
�2c2r

ex2�e
1A1=2 n1��rc f1 + op (1)g

= n1��=2
c3=2r3=2

21=2r
1=2
e

f1 + op (1)g ; (18)

where �̂2� is the usual least squares residual variance estimator.
We deduce from (18) that for all � = [nr] and r > re

P
�
ADFr > cv

adf
�n
(r)
�
! 1; (19)

provided
cvadf�n

n1��=2
! 0: According to (15) we have r̂e = infs�r0

n
s : ADFs > cv

adf
�n
(s)
o
: It follows

that for any � > 0
P fr̂e > re + �g ! 0;

since P
�
ADFre+a� > cv

adf
�n
(re + a�)

�
! 1 for all 0 < a� < �: Since � > 0 is arbitrary and since

P fr̂e < reg ! 0 as shown earlier, we deduce that P fjr̂e � rej > �g ! 0 as n!1, provided

1

cvadf�n
(r)

+
cvadf�n

(r)

n1��=2
! 0; (20)
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for all r 2 [r0; 1] : Hence, as n!1

r̂e = inf
s

n
s : ADFs > cv

adf
�n
(s) ; s 2 [r0; 1]

o
!p re:

Condition (20) seems a mild condition on the critical value. In particular, cvadf�n (s) is required to
go to in�nity (to ensure the type I error is negligible asymptotically) and at a slower rate than
n1��=2 as n!1. Accordingly, any slowly varying expansion rate for cvadf�n (s) ; such as log log

2 n;

will su¢ ce, for all � 2 (0; 1) :
Conditional on �nding some originating date r̂e for explosive behavior, we date the collapse of

the explosive episode by �̂ f = [nr̂f ] where9

r̂f = inf
s�r̂e

n
s : ADFs < cv

adf
�n
(s)
o
: (21)

Using a similar analysis to that for r̂e, Phillips and Yu (2009) show that r̂f !p rf ; provided
cvadf�n

(r) ! 1 for all r 2 [r0; 1] : Hence, under some mild regularity and rate conditions, the
recursive ADF procedure consistently estimates the origination and collapse dates of explosive
behavior. This result is not surprising. The reason is that when xt collapses to a level within an
Op (1) neighborhood of x�e the signal in the data from the explosive period is strong enough to
determine the asymptotics, as shown in Phillips and Magdalinos (2009) in a similar context. In
fact, in this case �̂n (�)!p 1 when � > � f but there is a downward bias in the limiting distribution.

The formulation (14) is related to the Markov switching model of Hall, et. al. (1999). An
important di¤erence between the two approaches is that we do not specify the mechanism for
regime switching whereas in Hall, et. al., nature selects the regime (or state, as represented by
st = 0 or 1) at date t with a probability that depends on what regime the process was in at
date t � 1. Our approach allows us to estimate the origination and conclusion dates while the
Markov switching model can estimate the �ltered or smoothed probability of the state variable
st. It is reasonable to believe that the p-value of the one-sided ADFr test is negatively related to
the E(stjIt)(= Pr(st = 1jIt)), the �ltered probability of being in the explosive state in the Markov
regime switching model.

4 Data

Our data are taken from Datastream International. We collect monthly observations on the
Nasdaq composite price index (without dividends) and the Nasdaq composite dividend yields,

9 It can also be useful to impose in minimum duration requirement such as s � r̂e + log(n)
n

in condition (21), so
that only bubbles of reasonable duration (i.e., greater than a very small in�nity as n!1) are detected in the test.
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Figure 3: Time Series of ADFr t-statistic for the Logarithmic Real Nasdaq Price and the Log-
arithmic Real Nasdaq Dividend (r0 = 0:1) from April 1976 to June 2005. ADFr t-statistic is
obtained from the forward recursive regression with the �rst observation in February 1973.

and compute the Nasdaq composite dividend series from these two series. We use the Consumer
Price Index (CPI), which is obtained from the Federal Reserve Bank of St. Louis, to convert
nominal series to real series. Our sample covers the period from February 1973 to June 2005 and
comprises 389 monthly observations.

Figure 1 plots the time series trajectories of the Nasdaq real price and real dividend indices.
Both series are normalized to 100 at the beginning of the sample. As can be seen, both price and
dividend grew steadily from the beginning of the sample until the early 1990s. The price series
then began to surge and the steep upward movement in the series continued until the late 1990s
as investment in DotCom stocks grew in popularity. Early in the year 2000 the price abruptly
dropped and continued to fall to the mid 1990s level. The dividend series, on the other hand,
remained steady throughout the sample period.

5 Testing and Dating Exuberance

Table 1 reports the ADF1 and supr2[r0;1]ADFr test statistics for both the log Nasdaq real price
and log Nasdaq real dividend indices for the full sample from February 1973 to June 2005, where
r0 = 0:10 (i.e., the initial start-up sample has 39 observations). Also reported are the various
critical values for each of the two tests. For the ADF1 test, the asymptotic critical values are
obtained from Monte Carlo simulation and are consistent with those reported by Fuller (1996,
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Table 10.A.2). For supr2[r0;1]ADFr, the critical values are obtained using Monte Carlo simulation
based on 10,000 replications.

Several conclusions are drawn from the table. First, if we were to follow the convention and
apply the ADF test to the full sample (February 1973 to June 2005), the tests could not reject
the null hypothesis H0 : � = 1 in favor of the right-tailed alternative hypothesis H1 : � > 1 at the
5 percent signi�cance level for the price series, and therefore one would conclude that there were
no signi�cant evidence of exuberance in the price data. If one believes in a constant discount rate,
the result is consistent with Diba and Grossman (1988) and is subject to the criticism leveled
by Evans (1991) because standard unit root tests for the full sample naturally have di¢ culty in
detecting periodically collapsing bubbles. Second, the supr2[r0;1]ADFr test, on the other hand,
provides signi�cant evidence of explosiveness in the price data at the 1 percent level, suggesting
the presence of price exuberance, but no evidence in the dividend data. However, supr2[r0;1]ADFr
cannot reveal the location of the exuberance.

To locate the origin and the conclusion of exuberance, Figure 3 plots the recursive ADFr sta-
tistics for the log real price and the log real dividend.10 Also plotted is the curve log(log(ns))=100,
with s 2 [0:1; 1] and n = 389, that is used for the critical values cvadf�n (s). Since ns ranges between
39 and 389, log(log(ns))=100 ranges between 0.013 and 0.018. These values of cvadf�n (s) turn out
to be close to the 4% signi�cance level critical point. Obviously, these critical values go to in�nity
as a slower rate than n1�� and �nn as n ! 1. The optimal lag length is determined using the
procedure suggested by Campbell and Perron (1991).11 Starting with 12 lags in the model, coe¢ -
cients are sequentially tested for signi�cance at the 5 percent level, leading to the selection of the
model for which the coe¢ cient of the last included lag is signi�cant at the 5 percent level.12 The
initial start-up sample for the recursive regression covers the period from February 1973 to April
1976 (10 percent of the full sample).

The forward recursive regressions give some interesting new �ndings (see Figure 3). The
dividend series is always nonexplosive. The stock price series is also tested to be nonexplosive for

10We have also conducted the tests using price and dividend series in levels rather than in natural logarithms. The
results are similar and the conclusions remain qualitatively unchanged. They are not reported to conserve space
and are available upon request. The same remark applies to Figures 4-5 discussed below as well.
11The procedure of Campbell and Perron involves two steps. Following a suggestion of a referee, we estimated

the lag length and the autoregressive parameters in one step via the Lasso-type method (Knight and Fu, 2000, and
Caner and Knight, 2008) and found the point estimates of � in (7) are nearly identical by the two methods. To the
best of our knowledge, the asymptotic theory is not yet known for the Lasso estimator of � in a mixed set of unit
root and explosive variables, thereby inhibiting inference with this procedure.
12Ng and Perron (1995) demonstrate that too parsimonious a model can have large size distortions, while an

over-parameterized model may result in reduction of test power. They show that methods based on sequential tests
have an advantage over information-based rules because the former have less size distortions and have comparable
power.
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Figure 4: Time Series of ADFr t-statistic for the Logarithmic Real Nasdaq Price and the Loga-
rithmic Real Nasdaq Dividend from June 1979 to June 2005. ADFr t-statistic is obtained from
the rolling regression with the �rst sample ranging from February 1973 to June 1979 (namely, 77
observations are used in each regression).

the initial sample, which suggests no evidence of exuberance in the initial data. This feature is
maintained until June 1995. In July 1995, the test detects the presence of exuberance in the data
and the evidence in support of price exuberance becomes stronger from this point on and peaks
in February 2000. The exuberance is detected as continuing until February 2001 and by March
2001, there is little evidence of exuberance in the data. In April 2001, the evidence of exuberance
shows up again in the data and persists until July 2001. In August 2001, no further evidence of
exuberance is present in the data.

Interestingly, the �rst occurrence date for price exuberance in the data is July 1995, which
is more than one year before Greenspan�s historic remark of �irrational exuberance� made in
December 1996.

Following a suggestion of the referees, we checked the robustness of the empirical results by
running rolling regressions, in which each regression is based on a subsample of size (N) of smaller
order than n and with the initialization rolling forward. For this particular data, we choose
N = 77, which is 20% of the full sample, and hence the �rst sample period is from Feburary
1973 to June 1979.13 Figure 4 plots the rolling recursive ADFr statistic for the log real price and

13Two alternative moving window sizes, N = 60 and 120 (�ve and ten years, respectively) were tried and very
similar results were obtained.
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Figure 5: Time Series of ADFr t-statistic for the Logarithmic Real Nasdaq Price and the Log-
arithmic Real Nasdaq Dividend (r0 = 0:1) from June 1991 to June 2005. ADFr t-statistic is
obtained from the forward recursive regression with the �rst observation in January 1990.

the log real dividend. Also plotted is the 5% asymptotic critical value.14 As the test based on
forward recursive regression, the test based the rolling regressions detects explosiveness in price
in the 1990s. In particular, the test indicates that exuberance in the 1990s starts in July 1995
and ends in September 2000. The estimated origination date is the same as in Figure 3. So
the empirical identi�cation of exuberance in the 1990s and the empirically determined date of
origination of exuberance appear robust to the choice of the regression schemes. However, the
estimated collapse date is a few months earlier in the data. Interestingly, the new test also detects
some explosive behavior before the 1987 crash although this exuberance is very short-lived.15

To highlight the explosive behavior in the Nasdaq during the 1990s, we carry out the analysis
using two sub-samples. The �rst sub-sample is from January 1990 to December 1999, the 10-
year period that recent researchers have focused on (e.g., Pastor and Veronesi, 2006; Ofek and
Richardson, 2003; and Brunnermeier and Nagel, 2004). Panel A of Table 2 reports the test results.

14Although the sample size is �xed at 77 in all the rolling regressions, the asymptotic critical values are very close
to the critical values when the sample size is 77.
15Also, the non-monotonicity in ADFr for the 1990 episode in Figure 4 is more apparent than in Figure 3. For

example, we �nd weak evidence of a unit root in January 1997 and in August-October 1998, where the ADFr
statistic is slightly smaller than the corresponding critical values at these dates.
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As above, we apply the ADF1 and supr ADFr tests for a unit root against the alternative of an
explosive root to both the log real price and log real dividend series.16 We also obtain the least
squares estimate �̂

LS
, the indirect inference estimate �̂

II
, the 95 percent asymptotic con�dence

interval of � based on �̂
II
, and critical values for the unit root tests.

All the results give strong evidence of explosiveness in pt. For example, for the log real Nasdaq
price index, the ADF1 statistic for the full sample is 2.309, far exceeding the 1 percent critical value
of 0.60. Similar results occur with the supr ADFr test. We therefore reject the null hypothesis
of a unit root at the 1 percent signi�cance level in favor of explosive behavior for the Nasdaq
stock index. In contrast, there is no evidence that the log real dividend series exhibits explosive
behavior.17

Figure 5 graphs the trajectory of the ADFr statistics together with log(log(ns))=100, with
s 2 [0:1; 1] and n = 186, as the critical values for sample observations from January 1990 to the
end of the sample. As for the full sample, we choose r0 = 0:10. Similar to Figures 4 and 5, we again
date the start of price exuberance in July 1995, so the empirically determined date of origination of
the exuberance appears robust to the choice of the initial sample. The recursive regressions detect
the conclusion of exuberance in October 2000, somewhat earlier than that reported in Figure 3
but very similar to that reported in Figure 4.

The autoregression gives the AR coe¢ cient estimate �̂
LS
= 1:025 in stock price. Assuming

that the error term in the regression follows an i.i.d. normal distribution and J = 0, we obtain
the indirect inference estimate �̂

II
= 1:033 via simulation with 10,000 replications. The associated

95 percent asymptotic con�dence interval for � is [1:016; 1:050]. This implies that the log stock
price pt will grow at the explosive rate of 3.3 percent per month. Since the dividend series dt is
not explosive, with a constant discount rate the fundamental price pft is also not explosive, being
determined exclusively by dividends according to (3). Therefore, from (2), bt (the log bubble) must
also be explosive with a growth rate at least as high as the growth rate of stock price, g = 3:3

percent per month. With 95 percent con�dence, the true growth rate g lies in the range between
1:6 and 5 percent per month. Under the assumption of constant discount rate, this provides
su¢ cient conditions for the presence of bubble.

To understand the implication of the estimated explosive rate for stock price, suppose that
the Nasdaq index were over-valued by around 10 percent when Greenspan made his �irrational
exuberance�comment in December 1996. Then the initial size of the log bubble would be b0 =
log(P0=P

f
0 ) = log(1:10) = 0:0953 in December 1996. Using the indirect inference estimate of the

16The lag length J chosen by sequential testing for ADF1 is J = 0 for both the log price and log dividend series.
17The 5 and 1 percent critical values for a unit root against the stationary alternative are -2.86 and -3.42,

respectively. Based on these critical values, the ADF1 test will indeed reject the null hypothesis of a unit root in
favor of the alternative of stationarity for the dividend series.
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growth rate g = 0:033; we may calculate that, by March 2000 when the Nasdaq index reached
its historic high (39 months later), the expected log level of the price bubble would have risen to
bt = (1+0:033)

39�0:0953 = 0:338, and the ratio of the expected Nasdaq price to its fundamental
value would have been Pt=P

f
t = exp(bt) = exp(0:338) = 1:40. In other words, after 39 months,

the expected Nasdaq index would have become around 40 percent over-valued relative to its
fundamental.

Notice that �̂
II
= 1:033 reported in Panel A of Table 2 gives an unbiased estimate of the

explosive root for the stock price process pt, which can be considered a lower bound of the explosive
root of the unobservable bubble process bt. The reason is as follows. From (2), we know that
the actual stock price consists of the fundamental component and the bubble component. Under
the assumption that the fundamental component is either I(1) or I(0) and the bubble component
is explosive, if a bubble lasts for a su¢ ciently long period of time, the bubble component will
dominate the fundamental component and the actual stock price will grow at around the same
speed as the bubble component does. However, within a limited time period when a bubble is
�rst developing, the magnitude of the bubble component may be small relative to the fundamental
component even though the process is explosive, and therefore employing the stock price series
for estimation will under-estimate the true growth rate of the bubble.

To provide a more realistic estimate of the growth rate of the bubble, since the Nasdaq index
kept rising after December 1999, we implement the ADF1 test by extending the �rst sub-sample
to June 2000 when the test detects explosive price behavior with the most signi�cant ADF test
statistic. Panel B of Table 2 reports the least squares estimate for this sample, �̂

LS
= 1:036, which

yields the indirect inference estimate �̂
II
= 1:040.18 This implies a growth rate g = 4 percent per

month. While this is still a lower bound estimate of the growth rate of the bubble process, it is
plausible to think of it as the closest to the true growth rate.

Suppose that the Nasdaq index were over-valued by 10 percent when our test �rst detected the
bubble to start in June 1995, then the initial size of the bubble is b0 = log(P0=P

f
0 ) = log(1:10) =

0:0953: Using the above unbiased estimate of the speed of bubble, by June 2000 (60 months later)
when our test detected the bubble to be the strongest, the expected size of the bubble would have
become bt = (1 + 0:04)60 � 0:0953 =1.0025. This implies that the ratio of the expected Nasdaq
price to its fundamental value would have been Pt=P

f
t = exp(bt) = exp(1:0025) = 2:73: In other

words, the expected value of the Nasdaq index would have been 173 percent over-priced relative
to its fundamental value after 60 months.19 The actual Nasdaq index peaked at 5,048.62 points

18The lag length J chosen by sequential testing for ADF1 is J = 5 for the log price series and J = 0 for the log
dividend series.
19The OLS estimate, 1.036, implies only 121 percent over-priced index level. Hence, the compounding e¤ect

arisen from the estimation bias is economically signi�cant.
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on March 10, 2000, then dropped to 1,950.4 by December 31, 2001 and to 1,335.31 by December
31, 2002. If the year 2001 end value is considered close to the �fundamental� value, then the
Nasdaq index would be 159 percent over-priced at the peak (5049/1950 = 2.59). On the other
hand, if the year 2002 end value is considered the �fundamental�value, the peak value would be
278 percent over-priced (5049/1335 = 3.78). Therefore, the above estimate of the growth rate of
the bubble matches the actual Nasdaq price dynamics reasonably well.

6 Finite Sample Properties

6.1 Unit Root Tests for an Explosive Bubble

While standard unit root tests have been applied to test for unit roots against explosiveness in
the price series pt in Diba and Grossman (1988) and Evans (1991), both papers only examined
the �nite sample performance of the standard unit root tests for the bubble bt (see Section VI in
Diba and Grossman and Section III in Evans). Naturally, however, it is more informative to verify
the �nite sample performance of the standard unit root tests in the price series itself pt because
in practice the price series is observed but the bubble series is not.

Consider the following data generating process, where the fundamental price follows a random
walk with drift and the bubble process is a linear explosive process without collapsing:

pt = p
f
t + bt; p

f
t = �f + p

f
t�1 + "f;t; (22)

bt = (1 + g)bt�1 + "b;t; (23)

where "f;t � NID(0; �2f ) and "b;t � NID(0; �2b ). We use Nasdaq price index data from February
1973 to December 1989 (i.e., before the 1990s explosive price period started) to estimate the
fundamental process, assuming that there was no bubble during this period so that pt = p

f
t . This

estimation yields the values �f = 0:00227 and �f = 0:05403. We then use these two parameter
values along with g = 0:04 (based on the indirect inference estimate of � in Panel B of Table 2)
to obtain the estimate of the bubble innovation �b = 0:0324 by employing data for the explosive
period January 1990 to June 2000 via the Kalman �lter, as in Wu (1997). These parameters
�f , �f , and �b are used to conduct simulations under di¤erent assumptions about the speed
parameter g and the initial level of the bubble b0 with 120 observations and 10,000 replications.
The simulation results are reported in Panel A of Table 3. Panel B displays the results for di¤erent
values for the bubble innovation standard deviation �b; while the speed parameter g is set to 0.04,
which is the indirect inference estimate of � � 1 reported in Panel B of Table 2.

It is known from Diba and Grossman (1988) that standard unit tests can detect explosive
characteristics in bt. Our simulation results suggest that the standard unit root tests can also

22



detect the explosive characteristics in pt when bubbles appear in the empirically realistic settings
as long as the bubbles are not periodically collapsing. Panel A of Table 3 clearly demonstrates that
the test power is higher, the larger is the growth rate g and/or the larger is the initialization b0:
When the growth rate g is larger than 0.01, the test has substantial power against the explosive
alternative and when g = 0:04 (the indirect inference estimate using the Nasdaq stock index
during the bubbly period), the test has nearly perfect power against the explosiveness alternative
regardless of the initial level of the bubble b0: Panel B of Table 3 shows that smaller values of
the standard deviation �b lead to greater test power provided the initial value b0 is not too small
(here b0 > 0:03). Overall, the power is not very sensitive to the innovation standard deviation �b
or to the initial value of the bubble b0 and is quite high with the growth rate g = 0:04.

6.2 Recursive Unit Root Tests and Periodically Collapsing Bubbles

The above simulation design does not allow for the possibility of periodically collapsing bubbles,
an important class of bubbles that seem more relevant in practical economic and �nancial ap-
plications. Evans (1991) proposed a model to simulate such collapsing bubbles and showed that
standard unit root tests had little power to detect this type of bubbles. In this section, we �rst
design a simulation experiment to assess the capacity of our recursive regression tests to detect
this type of periodically collapsing bubbles. We show that although the tests are inconsistent in
the context, in �nite samples the tests have good power.

Evans (1991) suggested the following model for a bubble process Bt that collapses periodi-
cally:20

Bt+1 = (1 + g)Bt"b;t+1; if Bt � �; (24)

Bt+1 = [� + ��1(1 + g)�t+1
�
Bt � (1 + g)�1�

�
]"b;t+1; if Bt > �; (25)

where g > 0; "b;t = exp(yt � �2=2) with yt � NID(0; �2), �t is an exogenous Bernoulli process
which takes the value 1 with probability � and 0 with probability 1 � �. Evans (1991) speci�es
his model in levels and so price, dividend and bubble are in levels and are expressed in upper-case
letters. This model has the property that Bt+1 satis�es Et(Bt+1) = (1 + g)Bt; analogous to (4).
The model generates bubbles that survive as long as the initial bounding condition Bt � � applies
(say t � T�) and thereafter only as long as the succession of identical realizations �T�+k = 1;

k = 1; 2; ::: hold. The bubble bursts when �t = 0:
To facilitate comparisons between our simulation results with those of Evans (1991), we use

the same simulation design and parameter settings as his. In particular, a bubble process Bt of
20Blanchard (1979), Flood and Garber (1980), and Blanchard and Watson (1982) �rst propose stochastic bubbles

that can burst with a �xed probability. Burmeister, Flood and Garber (1983) show the equivalence of a class of
di¤erent-looking stochastic bubble processes.
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100 observations is simulated from the model (24) and (25) with the parameter settings g = 0:05,
� = 1, � = 0:5, B0 = 0:5, and � = 0:05, and �t is a Bernoulli process which takes the value 1
with probability � and 0 with probability 1� �. When �t = 0, the bubble bursts. We choose the
value � =0.999, 0.99, 0.95, 0.85, 0.75, 0.5, 0.25. In addition, a dividend series (in levels) of 100
observations is simulated from the following random walk model with drift:

Dt = �D +Dt�1 + "d;t; "b;t � NID(0; �2d ):

where �D = 0:0373, �2d = 0:1574, D0 = 1:3. Consequently, the fundamental price is generated
from

P ft = �D(1 + g)g
�2 +Dt=g;

and the simulated price series follows as Pt = P
f
t + Bt. In the simulations reported, Bt is scaled

upwards by a factor of 20, as suggested in Evans (1991).
Table 4 reports the empirical power of the ADF1 and supr ADFr statistics for testing an

explosive bubble based on the 5 percent critical value reported in Table 1 and 10,000 replications.
We should emphasize that, unlike Evans (1991) who assumed that Bt is observed and tested
the explosiveness in Bt, we apply the ADF1 test to the price series itself Pt. Several interesting
results emerge from the table. First, the power of the ADF1 test depends critically on �. When
� = 0:999 or 0:99, the ADF1 test has considerably good power (0.914 and 0.460 respectively).
When � � 0:95, the ADF1 test has essentially no power. These results are consistent with those
reported in Evans (1991, Table 1). Second, the power of the supr ADFr statistic also depends on
�, but in a much less drastic way. For example, when � = 0:25, it still has considerable power
(0.340). For empirically more relevant cases, say when � = 0:95, the power of supr ADFr becomes
much higher (0.714).

Clearly the performance of the tests is determined by the time span of a bubble. In Appendix,
we formally show that the maximum time span of a collapsing bubble in Evans�s (1991) model
is Op (log n) ; which is very short relative to the full sample size n; so that standard unit root
tests cannot be expected to perform very well. This Appendix further shows that in a regression
of Bt+1 on Bt with Op (log n) observations from an explosive period, the signal in the regression

has the maximum order of Op

�
n2 log(

1+g
� )�

�2

2

�
. When log

�
1+g
�

�
< 1 + �2

4 , this signal is smaller

than that of an integrated process, whose signal is Op
�
n2
�
; and signi�cantly less than that of

an explosive process. These �ndings explain the failure of conventional unit root tests to detect
bubbles of this type, con�rming the simulations in Evans (1991) and in our Table 4.

In recursive regressions, the signal will be comparatively stronger because the data set is
shorter and it will be emphasized when the end point in the recursion occurs toward the end
of a bubble. This argument suggests that there will be some statistical advantage to the use of
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recursive regression techniques and the use of a sup test in assessing the evidence for periodically
collapsing bubbles, as con�rmed in Table 4. However, in a recursive regression using samples of
size � = [nr] for r > 0; the maximum length of the bubble is still Op (log n) and this is still not
long enough relative to nr for a recursive test to be consistent essentially because the signal is
not strong enough. This limitation shows up in the simulations as the test performs worse when
� gets smaller, although the power for the sup test is clearly non trivial and substantially better
than that of conventional tests. We might expect some additional gain from the use of a rolling
regression in conducting the test, where the sample size (N) used for the regression has smaller
order than n; for instance, N = [n�] for some  < 1; or even N = O (log n). When N = [n�] ; for
instance, the signal from the explosive part of the data, which still has the time span of Op (log n),

will dominate provided that � < 2 log
�
1+g
�

�
� �2

2 . However, in the case of rolling regressions
of this type, tests generally have di¤erent limit distributions from those studied already in the
unit root and structural break literature, for example by Banerjee et al. (1993), where rolling
regressions of length proportional to the sample size n are used.

7 Conclusion

This paper has proposed a new approach to testing for explosive behavior in stock prices that
makes use of recursive regression, right-sided unit root tests and a new method of con�dence
interval construction for the growth parameter in stock market exuberance. Simulations reveal
that the approach works well in �nite samples and has discriminatory power to detect explosive
processes and periodically collapsing bubbles when the discount rate is time invariant.

The empirical application of these methods to the Nasdaq experience in the 1990s con�rms the
existence of exuberance and date stamps its origination and collapse. As the second quotation that
heads this article indicates, the existence of exuberance or �bubble�activity may be self evident
to some economists in view of the sheer size of the wealth created and subsequently destroyed in
the Nasdaq market. Of primary interest therefore are its particular characteristics such as the
origination date, which we �nd to be mid-1995, the peak in February 2000, and the conclusion
sometime between September 200 and March 2001. Comparison of this statistical origination
to the timing of the famous remark by Greenspan in December 1996 a¢ rms that Greenspan�s
perceptions were actually supported by empirical evidence of exuberance in the data at that time.

Greenspan�s remarks are often taken to indicate foresight concerning the subsequent path of
Nasdaq stocks. The present �ndings indicate that his remarks were also supported in some measure
by the track record of empirical experience up to that time. Thus, Greenspan�s perspective
concerning irrational exuberance in stock prices and future pro�tability in December 1996 showed
hindsight as well as foresight concerning the impending escalation in technology asset values.
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This paper has not attempted to identify explicit sources of the 1990s exuberance in internet
stocks. Several possibilities exist, including the presence of a rational bubble, herd behavior, or
explosive e¤ects on economic fundamentals arising from time variation in discount rates. Iden-
ti�cation of the explicit economic source or sources will involve more explicit formulation of the
alternative models and suitable model determination techniques to empirically distinguish be-
tween such models. The present econometric methodology shows how the data may be studied
as a mildly explosive propagating mechanism. The results con�rm strong empirical support for
such activity in the Nasdaq data over the 1990s. The methodology can also be applied to study
recent phenomena in real estate, commodity and equity markets which have attracted attention.
The results will be reported in future work.

8 Appendix: Properties of Evans�s (1991) Model

We may write the initial stopping time T� for which the boundary value � is attained as

T� = inf
t
ft : Bt � �g :

Subsequent stopping times are determined in the same way after the initial bubble collapses.
The duration of each of the bubbles depends on these stopping times plus the number of re-
peated subsequent draws of �T�+1 = 1: It is known (e.g., Schilling, 1990) that the maximum run
time, Rn; for a sequence of identical Bernoulli draws in a sample of size n has mean E (Rn) =

O
�
log1=� fn (1� �)g

�
= O

�
logfn(1��)g

log 1
�

�
and variance Var (Rn) = �2

6 log2( 1� )
: It follows that Rn =

Op (log n) : Hence, the maximum time span of a collapsing bubble over the full sample will be
T� + Rn = T� + Op (log n) : To determine the length of the stopping time T�; observe that the
condition in (24) requires

BT� = (1 + g)
T� B0

T�Q
s=1

us = (1 + g)
T� B0

T�Q
s=1

eys�
1
2
�2 � �;

which holds if

T� log (1 + g) + logB0 +

T�X
s=1

�
ys �

1

2
�2
�
� log�;

or

T�

�
log (1 + g)� �

2

2

�
+

T�X
s=1

ys � log�� logB0:

Writing
PT�
s=1 ys = �W (T�) where W is a standard Brownian motion, this condition can be

rewritten as
W (T�) + �T� � A; (26)
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where
� =

1

�
log (1 + g)� �

2
; A =

1

�
flog�� logB0g :

The time span T� of the �rst component in the bubble (24) is therefore the passage time until a
standard Brownian motion W (t) with drift � hits the boundary value A: That is

T� = inf
s
fW (s) + �s � Ag : (27)

It is well known (e.g., Borodin and Salminen, 1996, p223) that this passage time satis�es

P (T� =1) = 1� e�A�j�Aj;

and, since for small values of � and with B0 < 1 we have �;A > 0; it follows that P (T� =1) = 0:
Also, T� has moment generating function (Borodin and Salminen, 1996, p223)

E
�
e�gT�

�
= e�A�jAjf2g+�2g

1=2

;

so that the expected hitting time

E (T�) = jA�j e�A�jA�j = A� = A
�
1

�
log (1 + g)� �

2

�
is �nite, as is the variance. It follows that the maximum time span of a collapsing bubble generated
by (24) and (25) over the full sample is T� + Rn = Op (log n) and, in general, the time span will
be shorter than T� +Rn because the maximum run time Rn will not usually be attained.

This �nding explains the failure of conventional unit root tests to detect bubbles of this type,
con�rming the simulations in Evans (1991). In e¤ect, even the maximum time span of Op (log n)
for these collapsing bubbles is so short relative to the full sample size n that full sample tests for
explosive behavior are inconsistent. Heuristically, this is because the signal from the explosive
part of the trajectory is generally not strong enough to dominate the regression before the bub-
ble collapses. In particular, if data fBtgnt=1 were available, the signal from an explosive period
initialized at T0 and of duration T� +Rn in the regression of Bt+1 on Bt has order

Op

0@T�+Rn+T0X
t=T0

B2t

1A
= Op

0@T��2 + Rn+T0X
t=T0+T�+1

B2t

1A = Op

0@ Rn+T0X
t=T0+T�+1

(�
1 + g

�

�2t
�2

T0+T�+RnQ
s=T0+T�+1

us

)1A
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= Op

0@Rn+T0+T�X
t=T0+T�+1

(�
1 + g

�

�2t
�2

T0+T�+RnQ
s=T0+T�+1

us

)1A
= Op

0@Rn+T0+T�X
t=T0+T�+1

8<:
�
1 + g

�

�2t
�2 exp

24 T0+T�+RnX
s=T0+T�+1

ys �Rn
�2

2

359=;
1A

= Op

0@Rn+T0+T�X
t=T0+T�+1

8<:
�
1 + g

�

�2t
�2 exp

24 T0+T�+RnX
s=T0+T�+1

ys �Rn
�2

2

359=;
1A

= Op

0@Rn+T0+T�X
t=T0+T�+1

(�
1 + g

�

�2t
�2 exp

�
� fW (T0 + T� +Rn)�W (T0 + T�)g �Rn

�2

2

�)1A
= Op

0@Rn+T0+T�X
t=T0+T�+1

(�
1 + g

�

�2t
�2 exp

�
Op

�p
Rn

�
�Rn

�2

2

�)1A

= Op

0@Rn+T0+T�X
t=T0+T�+1

(�
1 + g

�

�2t
�2 exp

�
��

2

2
log n

�)1A
= Op

0@Rn+T0+T�X
t=T0+T�+1

�
1 + g

�

�2t1A�Op�e� �2

2
logn

�
= Op

 �
1 + g

�

�2Rn!
�Op

�
e�

�2

2
logn

�

= Op

�
n2 log(

1+g
� )�

�2

2

�
; (28)

since Rn = Op (log n) : The signal from a stationary autoregression is Op (n) and from a unit
root autoregression is Op

�
n2
�
so that the signal from the explosive component above will be of

maximal order Op

�
n2 log(

1+g
� )�

�2

2

�
; which is still a power law in n and no greater than that of

an integrated process, whose signal is Op
�
n2
�
; when

log

�
1 + g

�

�
<
1

2
+
�2

4
;

and no greater than that of a polynomial in an integrated process in general, thereby excluding
explosive behavior.
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Table 1. Testing for Explosive Behavior in the Nasdaq Index from February 1973 to
June 2005

This table reports ADF1 and supr2[r0;1]ADFr tests of the null hypothesis of a unit root against
the alternative of an explosive root, where r0 = 0:10. The optimal lag length for the ADF test
is selected according to top-down sequential signi�cance testing, as suggested by Campbell and
Perron (1991), with the maximum lag set to 12 and the signi�cant level set to 5 percent. The series
are the log real Nasdaq price index and log real Nasdaq dividend. The sample period is February
1973 to June 2005 with 389 monthly observations. The critical values for the ADF statistic and
supr2[r0;1]ADFr are obtained by Monte-Carlo simulation with 10,000 replications.

ADF1 supr2[r0;1]ADFr

log price pt -0.826 2.894
log dividend dt -1.348 -1.018

Critical Values for the Explosive Alternative
1 percent 0.60 2.094
4 percent 0.01 1.552
5 percent -0.08 1.468
10 percent -0.44 1.184
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Table 2. Testing for Explosive Behavior in the Nasdaq Index in the 1990s

This table reports ADF1 and supr2[r0;1]ADFr tests of the null hypothesis of a unit root against
the alternative of an explosive root, where r0 = 0:10. The optimal lag length for the ADF test
is selected according to top-down sequential signi�cance testing, as suggested by Campbell and
Perron (1991), with the maximum lag set to 12 and the signi�cant level set to 5 percent. The
series are the log real Nasdaq price index and log real Nasdaq dividend. Panel A reports the
results for the period January 1990 to December 1999; Panel B reports the results for the period
January 1990 to June 2000 when explosive behavior is detected to be the strongest. The critical
values for the ADF statistic and supr2[r0;1]ADFr are obtained by Monte-Carlo simulation with
10,000 replications.

ADF1 supr2[r0;1]ADFr �̂
LS

�̂
II

95% Con�dence Interval

Panel A. Sample Period: January 1990 to December 1999
log price pt 2.309 2.894 1.025 1.033 [1.016,1.050]

log dividend dt -8.140 -1.626 0.258

Panel B. Sample Period: January 1990 to June 2000
log price pt 2.975 2.975 1.036 1.040 [1.033,1.047]

log dividend dt -8.600 -1.626 0.204

Critical Values for the Explosive Alternative
1 percent 0.60 2.094
4 percent 0.01 1.552
5 percent -0.08 1.468
10 percent -0.44 1.184
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Table 3. Power of the ADF1 Test

This table reports the empirical power of the ADF test for an explosive stock market bubble
at the 5 percent nominal size level with 120 observations and 10,000 Monte-Carlo replications.
The model used for the experiment is pt = p

f
t +bt; p

f
t = �+p

f
t�1+"f;t; bt = (1+g)bt�1+"b;t; with

parameter values � = 0:00227; �f = 0:05403; �b = 0:0324; estimated based on the Nasdaq price
index data as described in the text. These parameter values are used to conduct simulations under
di¤erent assumptions about the speed parameter g and the initial level of the bubble process b0.
Results are reported in Panel A. Panel B displays results with di¤erent values assigned to b0 and
the bubble innovation standard deviation �b when the speed parameter g is set to its empirically
�tted value of 0:04.

Panel A
Initial Value b0 g = 0.00 (size) g = 0.01 g = 0.02 g = 0.03 g=0.04

0.00 0.049 0.107 0.458 0.806 0.934
0.02 0.049 0.111 0.464 0.810 0.937
0.04 0.049 0.115 0.476 0.818 0.935
0.06 0.049 0.119 0.495 0.828 0.951
0.08 0.049 0.125 0.522 0.848 0.954
0.10 0.049 0.134 0.550 0.866 0.961

Panel B
Initial Value b0 �b = 0:005 �b = 0:01 �b = 0:02 �b = 0:03 �b = 0:04

0.00 0.652 0.817 0.901 0.930 0.942
0.02 0.822 0.851 0.905 0.933 0.944
0.04 0.972 0.911 0.924 0.934 0.948
0.06 0.999 0.962 0.936 0.945 0.950
0.08 1.000 0.988 0.953 0.952 0.955
0.10 1.000 0.998 0.968 0.961 0.961
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Table 4. Power of the ADF1 and supr2[r0;1]ADFr Tests under the Evans (1991) Model

This table reports the empirical power of the ADF test for an explosive bubble at the 5 percent
nominal size level with 100 observations and 10,000 Monte-Carlo replications. The model used for
the experiment is Pt = P

f
t +20Bt where P

f
t = �(1+g)g�2+Dt=g with Dt = �+Dt�1+"d;t; "b;t �

NID(0; �2d ) and Bt collapses periodically according to

Bt+1 = (1 + g)Bt"b;t+1; if Bt � �;
Bt+1 = [� + ��1(1 + g)�t+1

�
Bt � (1 + g)�1�

�
]"b;t+1; if Bt > �;

with g > 0; "b;t = exp(yt � �2=2), yt � NID(0; �2), �t being a Bernoulli process which takes the
value 1 with probability � and 0 with probability 1��. We set g = 0:05, � = 1, � = 0:5, B0 = 0:5,
� = 0:05, � = 0:0373, �2d = 0:1574, D0 = 1:3. We choose di¤erent values for �.

� 0.999 0.99 0.95 0.85 0.75 0.50 0.25
ADF1 0.914 0.460 0.069 0.022 0.016 0.026 0.044
supr2[r0;1]ADFr 0.992 0.927 0.714 0.432 0.351 0.342 0.340
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