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Abstract 
 
Recent empirical studies of firm-level performance have been concerned with establishing potential 

complementarity between more than two organizational practices. These papers have drawn 

conclusions on the basis of potentially biased estimates of pair-wise interaction effects between such 

practices. In this paper we develop a consistent testing framework based on multiple inequality 

constraints that derives from the definition of (strict) supermodularity as suggested by Athey and Stern 

(1998). Monte Carlo results show that the multiple restrictions test is superior for performance models 

with high explanatory power. If practices explain only a minor part of organizational performance no 

test is able to identify complementarity or substitutability in a satisfactory manner. 
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1. Introduction 

 

Researchers in the fields of industrial organization and management have long been interested in 

investigating complementary relations between various organizational practices of a firm. 

Complementarity is understood in this context to exist if the implementation of one practice increases 

the marginal or incremental return to other practices. Thus a joint implementation of several practices 

may result in economies of scope in a sense proposed by Baumol et al. (1988).1 By the same token the 

implementation of one practice can decrease the marginal or incremental return to other practices. This 

is the case of substitutability (or subadditivity). Examples of studies of complementarity in the 

economics and management literature are the relationships between human resource practices and firm 

strategy (Ichniowski et al., 1997), firms’ internal R&D and external technology sourcing (Arora and 

Gambardella, 1994), process and product innovation (Miravete and Pernias, 2004), labour skill and 

innovation strategies (Leiponen, 2005), different government innovation policies (Mohnen and Röller, 

2005), information technology, workplace reorganization, and new product and service innovations 

(Black and Lynch, 2001; Bresnahan et al, 2002; Caroli and Van Reenen, 2001), the adoption of 

different information technologies in emergency health care (Athey and Stern, 2002), and between 

different types of labor in the determination of trade patterns (Grossman and Maggi, 2000). Siggelkow 

(2002) presents a theoretical model on the organizational consequences of the importance of 

nonsimple interactions among complementary and substitute activities. 

 

There are two econometric approaches that can be used to test for complementarity: the “adoption’ or 

correlation approach and the “production function” approach (e.g. Athey and Stern, 1998). The former 

has been popular among empirical researchers due to its simplicity (Arora, 1996). The adoption 

approach tests conditional correlations based on the residuals of reduced form regressions of the 

practices of interest on all observable exogenous variables. However, although this test can serve as 

supportive evidence of complementarity if practices are adopted simultaneously, it cannot serve as a 

definitive test. Estimated correlations between residual terms may be the result of common omitted 

exogenous variables or measurement errors. Even in the case of well-measured correlation between 

practices, there is no guarantee that decision markers were sufficiently well informed such that they 

indeed chose efficiency or output enhancing combinations of practices.  

 

The ‘production function’ approach, in which organizational performance is related to combinations of 

organizational practices, does not have these drawbacks and can serve as a direct test for 

                                                 
1 The related definition of supermodularity in Milgrom and Roberts (1990) is broader, as it only requires a non-
negative (rather than a positive) impact of one practice on the marginal return to another practice.  

 2



complementarity or substitutability.2 Complementarity can be investigated by examination of the cross 

derivative of two practices. This approach has been used in recent empirical work testing for 

complementarity between two practices (e.g. Veugelers and Cassiman, 2006), in which case a 

complementarity or substitutability test is a simple one-tailed t-test on the interaction term of the two 

practices. However, no robust testing procedure has been available to test for complementarity or 

substitutability with more than two practices, which has prevented a wide use of the production 

function approach in applied empirical work.3 Studies that did adopt the production function approach 

have limited analysis to the estimation and examination of pair-wise interaction effects, either 

including all pair-wise terms (e.g. Black and Lynch, 2001; Bresnahan et al, 2002), or estimating 

alternating pair-wise interactions (Caroli and Van Reenen, 2001). This approach is potentially 

problematic. Since it ignores the impact of additional cross-terms (e.g. a triple term in case of three 

practices), it examines only a partial expression for the cross derivative and is prone to an omitted 

variable bias that affects all coefficients. As noted by Athey and Stern (1998), a proper 

complementarity or substitutability test requires a testing framework that considers the complete set of 

organizational practices. In this paper we develop such a test based on a multiple inequality 

restrictions framework (e.g. Kudô, 1963; Wolak, 1989) corresponding to a definition of strict 

supermodularity (Milgrom and Roberts, 1990). We provide Monte Carlo results comparing the power 

of this test with the performance of the two pair-wise tests.  

 

The remainder of this paper is organized as follows. In the next section we review the definitions of 

complementarity and substitutability. Section three details the testing procedure in the case of more 

than two (continuous or dichotomous) practices. The Monte Carlo evidence is discussed in section 

four and section five concludes. 

 

 

2. Complementarity and substitutability 

 

We describe the definitions and conditions concerning complementarity and substitutability both for 

the case of continuously measured practices and the case of dichotomous practices. Consider an 

objective function4 f of which the value is determined by the practices xp (p=1,...,n). In case the 

                                                 
2 That is, as long as the population of organizations includes a reasonable number of organizations that take non-
optimal combinations of practices, e.g. because they are not well informed or face high adaptation costs. In 
addition, the production function approach is only reliable if there are no important performance enhancing 
variable omitted from the model that are positively correlated to the adoption of two or more practices.  
3 Mohnen and Roller (2005) and Leiponen (2005) do adopt a multiple inequality restrictions framework, but their 
testing framework does not allow for confirmation or rejection of hypotheses for the complete range of possible 
outcomes.  
4 The proposed framework assumes that the function ),( εxf is correctly specified and that the distributional 
assumptions for the error term ε  are satisfied.  
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practices are measured continuously the following definition of complementarity holds (e.g. Baumol et 

al., 1988): 

 

Definition 1 (continuous practices) 

Practices xi and xj are considered complementary in the function f if and only if  for 

all values of  with the inequality holding strictly for at least one value. 

0/2 ≥∂∂∂ ji xxf

)x,...,x( n1

 

The second part of the definition, requiring the cross derivative to be positive for at least one value of 

the other practices, makes the definition more stringent than the definition of superrmodularity 

proposed in Milgrom and Roberts (1990), but is arguably the most relevant (economic) definition of 

complementarity.5 The definition for substitutability is identical as definition 1 except that ‘larger’ is 

replaced by ‘smaller’. We use a cross-term specification of the objective function f to test for 

complementarity or substitutability. The expressions for n equal to 2, 3 and 4 are: 

 

21122211021 xxxx)x,x(f αααα +++=        (1) 

321123322331133321321 xxxxxxxx)x,x(f)x,x,x(f αααα ++++=     (2) 

+++++= 433442244114443214321 xxxxxxx)x,x,x(f)x,x,x,x(f αααα  

   43211234432234421124 xxxxxxxxxx ααα +++     (3) 

 

The cross-derivatives  are equal to 21
2 xx/f ∂∂∂ 12α  for equation (1), 312312 xαα +  for equation (2) 

and 4312344124312312 xxxx αααα +++  for equation (3), respectively. This implies that there is 

complementarity for the case of practices 1 and 2 if 012 >α . In case of three practices, 

0312312 ≥+ )xmin(αα  and 0312312 ≥+ )xmax(αα  with at least one of the inequalities holding. In 

case of four practices there are four inequalities of which at least one should hold strictly: 

 

                                                 
5 This definition is also referred to as ‘strict supermodularity’ (e.g. Leiponen, 2005). Since the test is based on a 

supermodularity framework, it can easily be applied to determine the existence of strict super- and 

submodularity of the objective function in organizational design practices (e.g. Milgrom and Roberts, 1990). In 

case all bilateral combinations of practices satisfy complementarity, the objective function is strictly 

supermodular.  
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04312344124312312 ≥+++ )xmin()xmin()xmin()xmin( αααα , 

04312344124312312 ≥+++ )xmax()xmin()xmax()xmin( αααα , 

04312344124312312 ≥+++ )xmin()xmax()xmin()xmax( αααα ,  

04312344124312312 ≥+++ )xmax()xmax()xmax()xmax( αααα   

 

In case the practices take on discrete values variables (step size chosen equal to one) we replace the 

derivative in definition 1 by a difference. If we consider the first two practices, without loss of 

generality, the following definition holds: 

 

Definition 2 (discrete practices) 

Practices x1 and x2 are considered complementary in the function f if and only if 

)x,...,x,x,x(f)x,...,x,x,x(f)x,...,x,x,x(f)x,...,x,x,x(f nnnn 321321321321 1111 +++≥+++  

for all values of  with the inequality holding strictly for at least one value. )x,...,x( n1

 

The case of dichotomously measured practices (practice is used or not) is a special case of this 

definition. In that case functions (1), (2), and (3) can also be conveniently rewritten in terms of the 

possible combinations of practices (cf. Mohnen and Röller, 2005). With two practices the collection of 

possible combinations is defined in the usual binary order as }),(),,(),,(),,({D 11011000= . We 

introduce the indicator function , equal to one when the combination is , else zero. 

Similar collections of D with corresponding indicators functions  and  are 

introduced for the case of three and four practices. The functions f are rewritten as: 

)s,r(DI = )s,r(

)t,s,r(DI = )u,t,s,r(DI =

 

∑∑
= =

==
1

0

1

0
21 21

r s
)s,r()x,x(rs I)x,x(f β         (4) 

∑∑∑
= = =

==
1

0

1

0

1

0
321 321

r s t
)t,s,r()x,x,x(rst I)x,x,x(f β        (5) 

∑∑∑∑
= = = =

==
1

0

1

0

1

0

1

0
4321 4321

r s t u
)u,t,s,r()x,x,x,x(rstu I)x,x,x,x(f β       (6) 

 

The conditions of complementarity now correspond to 00110001112 >−−+= ββββα  for two 

practices, 001010000011012 ≥−−+= ββββα  and 001110100111112312 ≥−−+=+ ββββαα  for 

three practices and the following four inequalities for four practices: 
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0010010000000110012 ≥−−+= ββββα  

0011010100010111012312 ≥−−+=+ ββββαα  

0010110010001110112412 ≥−−+=+ ββββαα  

00111101100111111123412412312 ≥−−+=+++ ββββαααα . 

 

 

3. The testing procedure 

 

In case of two practices the test for global complementarity is a one-sided t-test of the null hypothesis 

of 012 =α  in equation (1). However, in case of more than two practices, the number of inequality 

constraints that have to be tested simultaneously is . Statistical tests of 22 −n rR:H =β0  versus 

rR:H a ≥β  with R having rank k in the standard linear model εβ += Xy  with one of the 

inequalities holding strictly have been considered in Gouriéroux, Holly, and Monfort (1982). Kudô 

(1963, p.414) derived the theorem underlying this test. The so-called normal orthant probability, 

, being the probability that the variables with a multivariate normal distribution with mean zero 

and variance-covariance matrix 

}{P Ω
1( ' ) 'R X X R−Ω =  are all positive, plays a central role in this theorem:  

 

 

Theorem 1 (the Kudô theorem): 

Let  have a multivariate normal distribution with mean zero and known variance-

covariance matrix  and let 

)x,...,x( k1

Σ λlnLR 2−=  where λ  is the likelihood ratio test statistic of 

 for i=1,...,k versus  for i=1,...,k where the inequality is strict for at 

least one value of i. Then 

00 =)x(E:H i 0≥)x(E:H iA

∑
⊆

− ΣΣ≥=≥
KM

B:MB)M(n }{P}{P)cPr()cLRPr( 12χ  where the summation 

runs over all the subsets M of  including ø, n(M) is the number of elements in M, B is 

the complement of M, so that 

}k,...,{K 1=

=∩ BM ø  and KBM =∪ , BΣ  is the variance-covariance matrix of 

 with ,  is the same for  with ix Bi∈ B:MΣ ix Mi∈  but under the condition that  for .0=ix Bi∈ 6  

 

From this theorem it follows that in case of p inequality restrictions we have that the probability of LR 

exceeding c under the null hypothesis equals a mixed chi-square distribution of  ∑
=

≥
p

i
ipi w}cPr{

0

2χ

                                                 
6 For the empty set M=ø we have that  is a constant zero and  2

0
2 χχ =)M(n 11 =Σ=Σ− }{P}{P K:MM
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(see also Shapiro, 1985, p.138 and Wolak, 1989, p.214).7 Therefore, the p-value equals 

. The statistic can be compared to Table 1 from Kodde and Palm (1986) who 

provide critical values (  and ) for significance levels ranging in size from 0.25 to 0.001 and 

degrees of freedom from 1 to 40. In case the computed value falls in the indecision region, an exact p-

value must be computed. The weights for two restrictions (n = 3) are 

∑
=

≥−
p

i
ipi w}LRPr{

0

21 χ

lc uc

π2221112
1

02 /)/(cosw ΩΩΩ= −  where  with  being the jth row of jiij 'R)X'X(R 1−=Ω jR R , 

w12= ½ and w22 = ½ - w02 (Shapiro, 1985).  

 

For four (n = 4) or more restrictions, computation of weights requires some more work. The normal 

orthant probability plays a central role in this computation.8 The weights  and  are equal to 

 and , respectively, where 

ppw pw0

}{P Ω }{P 1−Ω Ω  is the positive-definite covariance matrix of 

. Define )x,...,x( p1 }p,...,{P 1=  and  the subsets of P of exactly k elements (  in 

number). The weights  where 

)k(M ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
k
p

kpw 11 −= p,...,k  are then as follows: 

 

}{P}{Pw ),k(M),k(M),k(M),k(M
P)k(M

),k(Mkp
1

2221
1

221211
−−

⊆

ΩΩΩΩ−Ω= ∑     (7) 

 

where  is the kxk-matrix obtained from 11),k(MΩ Ω  after only keeping the rows and columns 

corresponding to the elements of , )k(M 12),k(MΩ  is the kx(p-k)-matrix obtained from Ω  after 

keeping the rows corresponding to the elements of  and the columns corresponding to all the 

elements of P that are not in ,  is the (p-k)xk-matrix obtained from Ω  after keeping 

the rows corresponding to all the elements of P that are not in  and the columns corresponding 

to the elements of , and  is the (p-k)x(p-k)-matrix obtained from Ω  after keeping the 

rows and columns corresponding to all the elements of P that are not in . 

)k(M

)k(M 21),k(MΩ

)k(M

)k(M 22),k(MΩ

)k(M

 

                                                 
7 Because  for all a, the summation could also run from 1 up till p. In empirical applications 
the variance-covariance matrix has to be estimated and the mixed chi-square distribution only holds 
asymptotically. 

02
0 =≥ }aPr{ χ

8 Several methods are available for numerical computation of the multivariate normal integral, see e.g. Sun 
(1988), Genz (1993) and Hajivassiliou et al. (1996). 
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We illustrate (7) for the case of four practices and, hence, p equal to 4. For four practices we have that 

w24 = 1- w04 - w14 - w34 - w44 where w14 and w34 are as follows:9

 
1 1

22 23 24 11 13 14

14 11 23 33 34 22 31 33 34

24 34 44 41 43 44

{ } { }w P P P P
σ σ σ σ σ σ

σ σ σ σ σ σ σ σ
σ σ σ σ σ σ

− −⎧ ⎫ ⎧⎛ ⎞ ⎛
⎪ ⎪ ⎪⎜ ⎟ ⎜= +⎨ ⎬ ⎨⎜ ⎟ ⎜
⎪ ⎪ ⎪⎜ ⎟ ⎜
⎝ ⎠ ⎝⎩ ⎭ ⎩

⎫⎞
⎪⎟
⎬⎟
⎪⎟

⎠ ⎭
⎫⎞
⎪⎟
⎬⎟
⎪⎟

⎠ ⎭

⎫
⎪
⎬
⎪
⎭

P

      

1 1
11 12 14 11 12 13

33 21 22 24 44 21 22 23

41 42 44 31 32 33

{ } { }P P P P
σ σ σ σ σ σ

σ σ σ σ σ σ σ σ
σ σ σ σ σ σ

− −⎧ ⎫ ⎧⎛ ⎞ ⎛
⎪ ⎪ ⎪⎜ ⎟ ⎜+ +⎨ ⎬ ⎨⎜ ⎟ ⎜
⎪ ⎪ ⎪⎜ ⎟ ⎜
⎝ ⎠ ⎝⎩ ⎭ ⎩

   

11 12 13 14 14 11 12 13 14 41
1

34 21 22 23 24 24 44 44 21 22 23 24 42 33

41 32 33 34 34 41 32 33 34 43

/ { } / {w P P P P
σ σ σ σ σ σ σ σ σ σ
σ σ σ σ σ σ σ σ σ σ σ σ σ σ
σ σ σ σ σ σ σ σ σ σ

Τ Τ

−

⎧ ⎫ ⎧⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞
⎪ ⎪ ⎪⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟= − + −⎨ ⎬ ⎨⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎪ ⎪ ⎪⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎩ ⎭ ⎩

1
33 }−  

      
11 13 14 21 12 22 23 24 21 12

1
31 33 34 32 23 22 22 32 33 34 31 13 11 1

41 43 44 42 24 42 43 44 41 14

/ { } / {P P P
σ σ σ σ σ σ σ σ σ σ
σ σ σ σ σ σ σ σ σ σ σ σ σ σ
σ σ σ σ σ σ σ σ σ σ

Τ Τ

−

⎧ ⎫ ⎧⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞
⎪ ⎪ ⎪⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟+ − + −⎨ ⎬ ⎨⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎪ ⎪ ⎪⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎩ ⎭ ⎩

  1
1 }−

⎫
⎪
⎬
⎪
⎭

  

 
 
4. Monte Carlo Experiments 
 

We compare the performance of the multiple-restrictions test with two alternative pair-wise test 

procedures used in recent empirical work. The alternating “single cross-term” test only incorporates 

the cross term of two practices at a time in the estimated equation, and infers complementarity from 

the estimated coefficient of the cross-term (e.g. Bresnahan et al., 2002; and Black and Lynch, 2001). 

The “all cross-term” test follows the same procedure but incorporates all pair-wise cross-terms xixj i≠j 

in one equation (e.g. Caroli and Van Reenen, 2001). We devise a Monte Carlo experiment to compare 

the power of the three test procedures. Since almost all empirical studies of complementarity in the 

literature examine the impact of discrete practices, we focus the experiment on the case of 

dichotomous variables (variables taking the values 0 or 1). We consider a performance function in the 

case of three practices x1, x2, x3 as in equation (5); for the purpose of comparing tests we write this 

function in its cross-term specification: 

 
εααααααα +++++++= 321123322331132112332211 xxxxxxxxxxxxy      (8) 

 

                                                 
{ }9 In practice w24 is computed as w24 =  where  

3 4

1 1
ij

i j i
q

= = +
∑ ∑ 1 1

( ), ( ), ( ), ( ), ( ),{ }ij M k ii M k ij M k jj M k ji M k jjq P P− −= Ω −Ω Ω Ω Ω

and then using the summation of all weights to unity as a check of correct computation. 
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where . There is complementarity between practices 1 and 2 if ),(N~ 20 εσε 012 ≥α  and 

012312 ≥+αα  with at least one of the two inequalities holding strictly. The multiple restriction 

specifically tests for this. The single cross term test, on the other hand, imposes 01232313 === ααα  

and judges complementarity to exist if 012 >α . The multiple cross-term test applies the same 

criterion but only imposes 0123 =α . 

 

The data for our experiments are generated for a sample of 1000 observations. In the first step the 

coefficients 1α  through 123α  are randomly and independently drawn from the standard normal 

distribution. In the second step, variables z1, z2, z3 are drawn from the multivariate standard normal 

distribution. Variables x1, x2, x3 are equal to one when z1>0, z2>0 and z3>0, respectively, else zero. In 

order to mimic empirical research settings, the correlation structure between the practices is allowed to 

depend on the presence of complementarity or substitutability. If organizations possess (imperfect) 

information on the true state of the performance relationships between the practices and face moderate 

adoption costs, they are more likely to simultaneously adopt two practices if these are complementary. 

In case the draws of  1α  through 123α  indicate complementarity, the correlation coefficient between x1 

and x2  is set at 0.5 and in case of substitutability at -0.5. The correlation coefficient is set at zero if the 

draw indicates no complementarity or substitutability.10 The remaining correlations are selected to 

make the matrix positive-definite. Their magnitudes have little effect on the test outcome. Equation (8) 

is used to generate data for y, with the relevant restrictions on parameters imposed in case of the pair-

wise tests.  

 

The outcome of the multiple-restrictions test is established by determining the log-likelihood of the 

unrestricted model (LLU), the model under the complementarity constraints 012 ≥α  and 

012312 ≥+αα  (LLC), the model under the substitutability constraints 012 ≤α  and 012312 ≤+αα  

(LLS), and the model with the restriction of 012312 == αα  (LL0). The test outcomes are 

complementarity, substitutability, or neither. The multiple restrictions test entails first considering 

whether LLC is higher than LLS or vice versa and, depending on this comparison, testing whether LL0 

is significantly higher than LLC or LLS at the 5% significance level (one-sided test). The pair-wise 

tests consider the sign and t-statistic for 12α̂ , with complementarity or substitutability determined to 

exist by a one sided test on the coefficient at the 5% significance level (t-statistic > 1.65). 

 

                                                 
10 For comparison, we executed similar Monte Carlo simulations with correlation coefficients set at 0.8, -0.8 and 
0, respectively and without systematic correlation between the practices. We found only limited changes in the 
accuracy of the tests. The simulations can be obtained from the authors upon request.  
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The above procedure has been repeated 10,000 times for models with different explanatory power. 

Tables 1-3 present the results of the Monte Carlo experiments for models with R2 of approximately 

10%, 50% and 90%.11 In each of the experiments we compare the results of the three tests with the 

true states of complementarity and substitutability. The multiple-restrictions test generates correct 

predictions in 94 percent of cases and clearly outperforms both other tests for models with high 

explanatory power (R2=90%). The percentage of correct predictions reduces to 83 percent for models 

with medium explanatory power (R2=50%) and further to 63 percent for models with poor explanatory 

power (R2=10%). The number of ‘reverse’ predictions is negligible in the model with high explanatory 

power and remains very small throughout. The results for the pair-wise tests do not show a similar 

increase in predictive power alongside an increase in explanatory power of the model, and perform 

relatively poorly in the high explanatory power model (78.9 and 73.5 percent correct predictions, 

respectively). In models with medium or poor explanatory power, on the other hand, the performance 

of the all pair-wise test is by and large equal to the multiple restrictions test. The single pair-wise test 

only reaches a performance comparable to the other two tests in the model with poor explanatory 

power, while the test also exhibits non-negligible percentage of reverse predictions in the case of 

models with the best fit.12 The simulations show a changing distribution of error types if the 

explanatory power of the model decreases. In models with high explanatory power most errors are of 

type II: the tests indicate complementarity or substitutability while there is none. This occurs very 

often in the pair-wise tests (in more than 20 percent of all cases). For models with intermediate 

explanatory power type II errors are still most frequent, although the frequency of type I errors (the 

tests fail to confirm complementarity or substitutability) increases. For models with poor explanatory 

power the pattern reverses: the frequency of type II errors is relatively low but none of the tests is able 

to identify complementarity of substitutability in a satisfactory manner. 

 

We conclude that the multiple restrictions test is the superior testing framework for complementarity 

but conditional on the presence of well specified models in which the practices of interest have a 

strong impact on this performance. In case of less discerning models, the simultaneous pair-wise test 

appears as an easily executed alternative test with similar predictive power. The single pair-wise test 

has the least satisfactory properties. If the practices of interest explain only a minor part of 

organizational performance, the results suggest that no test method is able to provide reliable 

predictions. 

 

                                                 
11 The values of εσ = 2.4, 0.4, 0.07 are selected in order to achieve the desired R2.  
12 We have also run experiments for continuously measured practices under identical conditions. Monte Carlo 
results were qualitatively similar to the dichotomous case but with smaller differences between the multiple 
restrictions test and the simultaneous pair-wise test. Test results as well as the Monte-Carlo programs are 
available from the authors upon request. 
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5. Conclusion 

 

Recent empirical studies of organizational performance have been concerned with establishing 

potential complementarity between more than two organizational practices. These papers have drawn 

conclusions on the basis of potentially biased estimates of pair-wise interaction effects between such 

practices. This paper developed a consistent testing framework based on multiple inequality 

constraints that derives from the definition of (strict) supermodularity as suggested by Athey and Stern 

(1998), and compares the performance of this test with previously used testing methods. Monte Carlo 

results show that the multiple restrictions test is clearly superior for performance models with high 

explanatory power. A test based on estimating all pair-wise interaction terms is good alternative for 

empirical models with less explanatory power, while single (alternating) pair-wise complementarity 

tests perform less well. The accuracy of all tests for applications where the practices of interest explain 

only a minor part of performance is less than satisfactory as none of the tests appear to be able to 

identify true complementarity or substitutability well. The results may raise questions concerning the 

accuracy of previous empirical studies of complementarity in a multiple practices setting, and 

generally suggest caution in the application and interpretation of complementarity and substitutability 

tests in empirical research.  
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Table 1 Monte Carlo experiment, multiple restrictions test (n=1000, draws=10000) 

  Multiple restrictions test 
R2=90% R2=50% R2=10%  

Compl Nothing Subs Compl Nothing Subs Compl Nothing Subs 

Complements 3714 14 0 3517 209 2 2205 1504 19 

Nothing 264 1934 265 657 1177 629 341 1770 352 

Substitutes 0 19 3790 5 206 3598 28 1501 2280 

Tr
ue

 e
ff

ec
t 

Correct, % 94.38 82.92 62.55 

 Reverse outcome  0.0 0.07 0.47 
 Type I error, % 0.33 4.22 30.52 

 Type II error, % 5.29 12.86 6.93 
 
 

Table 2 Monte Carlo experiment, all cross-term test (n=1000, draws=10000)     

  All cross-term test, all double cross terms included 
R2=90% R2=50% R2=10%  

Compl Nothing Subs Compl Nothing Subs Compl Nothing Subs 

Complements 3714 14 0 3500 227 1 2251 1469 8 

Nothing 1047 389 1027 666 1181 616 224 2005 234 

Tr
ue

 e
ff

ec
t 

Substitutes 0 19 3790 1 219 3589 13 1477 2319 

 Correct, % 78.93 82.70 65.75 
 Reverse outcome  

error, % 
0.0 0.02 0.21 

 Type I error, % 0.33 4.48 14.90 
 Type II error, % 20.74 12.82 4.58 
 
 

Table 3, Monte Carlo experiment, single cross-term test (n=1000, draws=10000)    

  Single cross-term test, x1*x2 only  
R2=90% R2=50% R2=10%  

Compl Nothing Subs Compl Nothing Subs Compl Nothing Subs 

Complements 3480 152 96 3320 341 67 2359 1335 34 

Nothing 1074 305 1084 847 766 850 403 1651 409 

Tr
ue

 e
ff

ec
t 

Substitutes 117 126 3566 63 358 3388 25 1367 2417 

 Correct, % 73.51 74.74 64.27 

 Reverse outcome 
error, % 

2.13 1.30 0.59 

 Type I error, % 4.91 8.29 27.61 
 Type II error, % 21.58 16.97 8.12 
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