
A pattern language for service input data provisioning

Geert Monsieur, Monique Snoeck, Wilfried Lemahieu
Katholieke Universiteit Leuven

Faculty of Business and Economics
The Leuven Institute for Research on Information Systems (LIRIS)

firstname.lastname@econ.kuleuven.be

ABSTRACT
A common practice in service-orientation is the creation of
a composite service by combining a set of other services.
As discussed in this article, the orchestration of services to
construct a new service requires several service interactions.
This is why the construction of a composite service can be
a complex and time-consuming task. Some services in a
service composition can have the role of providing other ser-
vices with (additional) input data. The pattern language in
this article can help to design the service interactions that
are needed for provisioning input data.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—
Patterns

General Terms
Design, Management, Languages

Keywords
Service composition, service input data, patterns, coordina-
tion, data flow, data dependencies

1. INTRODUCTION

1.1 Service-orientation
In modern software engineering service-orientation is about

grouping a company’s capabilities into well-defined and scoped
services. A service should consist of a collection of capa-
bilities that are grouped together because they relate to
a functional context established by the service [2]. A fi-
nance service provides finance-related capabilities, e.g. in-
voice creation or invoice payment status monitoring. In
that way, services become independent entities which hold
solutions that are valuable for the business. This should
promote reuse of solutions and increase flexibility. In the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission. Preliminary versions of these papers were presented
in a writers’ workshop at the 16th Conference on Pattern Languages of
Programs (PLoP).
16th Conference on Pattern Languages of Programs (PLoP). PLoP’09 Au-
gust 28-30, Chicago, IL, USA
Copyright 2009 is held by the author(s). ACM 978-1-60558-873-5.

ideal service-oriented world, changes in business processes
are carried out by changing the way the company’s busi-
ness services are combined to support the business process.
By clustering solution logic into services, the building blocks
for business processes become less dependent on and more
agnostic to any business process. The end idea is that all
business services can be combined to fulfill the customer’s
needs and requests. It is assumed that when a company’s
business services are constructed in a proper way, an activity
in a business process can be executed by consuming a ser-
vice and accessing a capability provided by that service. In
summary, the service-oriented architecture is an organizing
paradigm that enables one to get more value from the use
of both capabilities that are locally ’owned’ and those under
the control of others that are exposed as business services.
The concept ”service” refers to the enabling mechanism that
provides access to a set of capabilities. Service implementa-
tion details are considered as less important when specifying
and communicating service descriptions to potential con-
sumers, which are only interested in the valuable use of the
service, instead of the way the service is provided. Never-
theless, providing and composing new services by combining
capabilities and services of other services is one of the key
principles behind service-orientation. Therefore, the way a
service is provided or implemented is sometimes specified
using a set of supporting services, possibly complemented
with some kind of process logic which describes how the
supporting service should be combined to provide the new
service. The resulting service is a composite service.
In this article the main focus is on the provisioning of a com-
posite service. As we will discuss in the next subsection the
orchestration of services to construct a new service requires
several service interactions. This is why service composition
can be a complex and time-consuming task. The pattern
language presented in this article can support the process of
designing the required service interactions.

1.2 Service interactions
As described in the previous subsection, a service imple-

mentation can be specified in terms of a set of supporting
services which are combined in a certain way to provide the
new composite service. In figure 1 a composite service is
represented. Services A to F form the set of supporting
services. Combining this set of services requires precise co-
ordination. The exact service interactions that are needed
strongly depend on the role each service plays in the overall
orchestration. Therefore we propose to make a distinction
between two roles a supporting service can have:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6469095?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Composite Service

Service A Service B

Service D

Service C

provides input for

Service E

Service F

provides input for

provides input for

Figure 1: Six supporting services that together form
a composite service

• Service providers contribute in a direct way to the re-
alistion of a capability. The idea is that each service
provider involved should be consumed in order to pro-
vide the capabilities of the composite service. A ser-
vice provider provides a service that is crucial to the
provisioning of the composite service. It is possible to
consider two kinds of service providers. A first kind
refers to service providers that should do some pro-
cessing and the result of this processing is relevant for
the successful provisioning of the composite service.
As a consequence the service provider should return
some kind of an output. This can be either a simple
confirmation that the processing went well or it can
be some specific data. A second type refers to service
providers that simply need to be notified. This interac-
tion can be considered as an application of the fire and
forget pattern [5]. In delivering the composite service,
it is important that this service provider is notified.
However, how this service provider processes this no-
tification is not relevant for the successful provisioning
of the composite service.

• Data holders can be another type of supporting ser-
vices. Services of this type only contribute in an indi-
rect way to the provisioning of the composite service.
Consumption of these services is only needed because
they can provide input data that service providers need
to contribute to the composite service. Per definition,
the data provided by a data holder is only needed by a
service provider. Services that provide data that is not
used as input data for service providers, are considered
to be service providers. Such a service provider only
provides data to the composite service.

In figure 1 services A,B,D and E have the role of service
providers. Services C and F are data holders, which means
that these services provide input data for some service providers.
Note that in reality, a service can have both roles, but in or-
der not to overload the analysis a strict distinction is made
in the rest of the paper.
If more than one service provider is involved in a service
composition many service interactions can be required. Not
only should each service provider be triggered, which re-
quires service interactions, but possibly also every service
provider returns some kind of answer. Furthermore, it can

become even more complex when additional interactions are
required for transactional purposes. Coordinating service
providers to construct transactional (business) services is
out of scope of this paper, but for a detailed discussion the
reader is referred to [3].
The use of data holders in a service composition is another
challenge. As defined above, data holders provide data that
is required as input data for service providers. This implies
that interactions are required to transmit the data between
the data holder and the service provider. As we will discuss
in the next section, the pattern language presented in this
article is about designing the service interactions that are
needed for providing the service provider with (additional)
input data that is available at the data holder.
In section 5 a concrete example is presented, describing a
service composition case in a hospital.

2. THE PATTERN LANGUAGE

2.1 Context
As described in the introduction, a service provider should

do some sort of processing in order to contribute to the pro-
visioning of a new composite service. In that way the service
provider provides some kind of a service to the composite
service or the entity that is responsible for composing the
new composite service. In the rest of this article the en-
tity that consumes that service (by sending a request for
processing to the service provider) is referred as the service
requestor. In order to process the request and provide the re-
quired service, the service provider possibly needs a certain
amount of input data. We refer to such services as needy
service providers. In some cases all input data is available
at the service requestor and can be sent together with the
request to the service provider (see figure 2(a)). In other
cases, it is possible that the data is not available at the
service requestor, but can be retrieved in advance from an
external party called a data holder (see figure 2(b)). It is
assumed that data holders only provide data after requests
are sent to them. In both cases all input data is available
just before the service requestor triggers the service provider,
which makes it quite straightforward to manage and coordi-
nate the necessary interactions. However, in other situations
it is desirable to trigger the service provider as soon as pos-
sible. As a result it can occur that (part of) the input data
is only available after the service provider is triggered and
should still be provided by a data holder. As discussed in the
next subsection these situations can lead to complex service
interactions and any guidance when designing the interac-
tions can be very valuable. The pattern language in this
article is applicable and supportive in such situations where
(part of) the input data is only available some time after the
moment the service requestor sent a request for processing
to the service provider.

2.2 Problem
A service provider needs certain input data in order to

process a request of the service requestor. Some part of the
input data matches data that is available just before trig-
gering and is sent together with the request to the service
provider. Other parts of the input data can only be pro-
vided by one or more data holders later on. This raises
the question what would be the best solution to de-
liver missing input data, that is available at the data



Service 
Requestor

Service 
Provider

Trigger + data

1

(a) All
input data
available
at the
service
requestor

Service 
Provider

Data 
Holder

Data request

data

Service 
Requestor

Trigger + data

1

2
3

(b) Input data available at
data holder is retrieved in
advance

Figure 2: All input data available just before trig-
gering the service provider

holder, to the service provider. Many scenarios are pos-
sible. For example, the responsibility of collecting missing
input data can be assigned to either the service requestor or
the service provider. In the first case data provided by the
input data can easily be reused for triggering other service
providers, while the second case is perhaps more preferable
when the input data provided by the data holder is confiden-
tial and can not be shared with a central service requestor.
Another scenario could consist of the service requestor in-
structing the data holder to send the required data to the
service provider.
Given the fact that more than one data holder can be in-
volved in providing the required input data for a service
provider, and the fact that a data holder can possibly pro-
vide data to more than one service provider, it is important
to know how to evaluate each scenario in order to figure out
which scenario is preferable in which business case and for
which data.

2.3 Solution and overview of the pattern lan-
guage

To solve the problem of providing the missing input data,
we propose a pattern language that consists of three basic
patterns: active-passive service provider (see subsec-
tion 3.1), direct-indirect request (see subsection 3.2)
and direct-indirect reply (see subsection 3.3). The con-
text as described above (see subsection 2.1) is closely related
to the context of the active-passive service provider
pattern. An application of this pattern can function as a
first necessary step in solving the problem of providing miss-
ing input data. The next steps towards a solution can be
derived from figure 3, which gives an overview of the com-
plete pattern language. Each pattern is visualized in a box
containing both the pattern name and sub-boxes referring to
possible solutions in that pattern. The arrows show the re-
lationships between the patterns (based on the context and
resulting context decriptions of the patterns). In particular,
an arrow pointing from a pattern sub-box A to a pattern box
B indicates that the pattern represented by B should be ap-
plied next when a pattern is applied in the way represented
by sub-box A. For example, there is an arrow that indicates
that the direct-indirect request pattern should be ap-

plied when an active service provider is chosen by applying
the active-passive service provider pattern.

3. PATTERNS FOR INPUT DATA PROVI-
SIONING

3.1 Active-Passive Service Provider

Context
A service provider is triggered by a service requestor. At
the moment of triggering the service requestor did not send
sufficient data to the service provider for completing its in-
ternal processes. Therefore additional input data should be
collected. In the rest of this pattern this task is referred to
as the data collection process.

Problem
How can the data collection process be initated?

Forces
• Interface modification: In a service-oriented environ-

ment it is critical that the propagation of modifications
due to the modification of the interface of a service
provider is minimized. Consumers prefer to rely on a
service provider that only rarely changes its interface.
A change in the data requirements should minimally
change the way the service provider is consumed.

• Handling staged data provisioning : Providing input
data in several stages can have substantial impact on
the service provider’s internal working. The service
provider should have a mechanism to correlate each
incoming part of the input data. In other words, all
data received by the service provider should be linked
to the right request.

• Loose coupling : Service-orientation is often related to
a loosely coupled world. This means that preferably a
service provider’s implementation does not have to rely
on several other services. As such, in order to loosen
the coupling between a service provider and a data
holder it can be desirable that the service provider is
not responsible for collecting all data that is required.

Solution
In general a service provider can be considered either active
or passive, which results in two possible solutions for iniat-
ing the data collection process (see figures 4(a) and 4(b)).
In cases a service provider does not wait for additional input
data, but starts requesting additional data it can be consid-
ered an active service provider. An active service provider
iniates the data collection process by sending out a data
request (see step two in figure 4(a)). It is not specified to
which entity the service provider sends out its data requests.
This problem is discussed in an other pattern (see direct-
indirect request in subsection 3.2).
In cases the service provider simply waits for the missing
input data it can be considered a passive service provider.
After the service provider is triggered, the service requestor
iniates the data collection process by sending a data request
(to the data holder) (see step two in figure 4(b)).
In summary the main difference is in step two. In the ac-
tive service provider scenario the service provider iniates the



ACTIVE-PASSIVE SERVICE PROVIDER

Active Service Provider Passive Service Provider

DIRECT-INDIRECT REPLY

Direct reply Indirect reply

DIRECT-INDIRECT REQUEST

Direct request Indirect request

Requires the application of

Figure 3: Overview of the pattern language

3

Needy 
Service 
Provider

Trigger
(+ data)

1

Data

2

Service 
Requestor

Data
request

(a) Active SP

Needy 
Service 
Provider

Trigger
(+ data)

1

Data

3

Service 
Requestor

2
Data request

Data 
Holder

(b) Passive SP

Figure 4: Active versus passive Service Provider
(SP)

data collection process by sending out a data request, while
in the passive service provider scenario the service requestor
iniates the data collection process by sending a data request
to the data holder.
Selecting an appropriate scenario is about balancing the
forces. Each scenario deals in its own way with the forces
that are relevant in this pattern:

• Interface modification: In the passive scenario every
change in data requirements results in a change in the
implementation of the service requestor. In contrast,
in the active scenario theses changes are only reflected
in modified data requests sent by the service provider
itself. Consumption of active service providers is con-
sidered to be rather stable.

• Handling staged data provisioning : Clearly, a passive
service provider must be able to handle data provision-
ing in several stages. As a consequence it should have
a mechanism to correlate each incoming part of the
input data. For an active service provider things are
easier, because additional input data is only received
as an answer to requests that the service provider itself
sent out.

• Loose coupling : It is clear that an active service provider
is more coupled with the external world, because it
needs to send out data requests to known external

parties. In contrast, a passive service provider sim-
ply expects that the data is provided at some point
in time. Passive service providers do not have to ini-
ate interactions with external parties (for input data
purposes).

Resulting context
An active service provider sends out data requests in or-
der to receive the missing input data (see step two in figure
4(a)). As such, the resulting context when using an active
service provider can be linked to the context of the direct-
indirect request pattern.
The passive service provider scenario implies that the ser-
vice requestor sends data requests to the data holder (see
step two in figure 4(b)). As a consequence the data holder
receives data requests, which corresponds to the context of
the direct-indirect reply pattern.

3.2 Direct-Indirect request

Context
A service provider is triggered by a service requestor. The
service provider is active, which means that it sends out data
requests in order to receive the missing input data.

Problem
Where can the service provider send its data requests to?

Forces
• Is the data holder known by the service provider? Some-

times it is possible that the service provider does not
know which service holds the required data. Then the
service provider can not send its data requests directly
to the data holder.

• Does the service provider have access to the data holder?
Sometimes it is possible that the service provider does
not have access to the specific data holder. Then the
service provider can not send its data requests directly
to the data holder.

• Coupling between data holder and its requesting party :
how long has a specific service the role of data holder?
Each time a service takes over the role of data holder



Needy 
Service 
Provider

Data request

Service 
Requestor

Data 
Holder

Trigger
(+ data)

1

2

(a) Direct request

Needy 
Service 
Provider

1

Service 
Requestor

Data
request

Data request

2

Data 
Holder

Trigger
(+ data)

3

(b) Indirect request

Figure 5: Direct versus indirect requests

the party that is sending data requests to the data
holder needs to be notified and modified properly. How
often is the interface of the data holder modified? Each
change in the interface of the data holder, requires
a change in the implementation of the party that is
interacting with the data holder.

• Is data holder known by the service requestor? If only
the service provider knows the data holder, while the
service requestor does not, the service requestor can
not send out data requests to the data holder.

• Does the service requestor have access to the data holder?
If only the service provider has access to the data
holder, while the service requestor does not, the ser-
vice requestor can not send out data requests to the
data holder.

Solution
An active service provider can send its data requests to two
entities, as shown in figures 5(a) and 5(b). Firstly, an active
service can send a direct request, which means that the data
request is sent directly to the data holder. Secondly, an ac-
tive service provider can send its data request to the service
requestor (see step two in figure 5(b)), which is supposed to
forward the data request to the appropriate data holder (see
step three in figure 5(b)). This alternative is referred as an
indirect request.
By taking the different forces into account, an appropriate
solution can be chosen:

• Is the data holder known by the service provider? : The
direct request scenario requires that the data holder is
known by the service provider, while in the indirect
request scenario only the service requestor needs to
know which service plays the role of data holder.

• Does the service provider have access to the data holder? :
The direct request scenario requires that the data holder
can be accessed by the service provider, while in the in-
direct request scenario only the service requestor needs
to have access to the data holder.

• Coupling between data holder and its requesting party :
In the direct request scenario there is a strong cou-
pling between the service provider and the data holder.
Sending data requests to the service requestor, as in
the indirect request scenario, removes this coupling.

However, note that in the indirect request scenario
there is a coupling between the service requestor and
the data holder. Perhaps this can be considered more
acceptable because service requestors are also strongly
coupled with service providers that need to be trig-
gered.

• Is data holder known by the service requestor? : In the
direct request scenario only the service provider needs
to know which service plays the role of data holder,
while the indirect request scenario requires that the
data holder is known by the service requestor.

• Does the service requestor have access to the data holder? :
In the direct request scenario only the service provider
needs to have access to the data holder, while the indi-
rect request scenario requires that the data holder can
be accessed by the service requestor.

Resulting context
In both scenarios the data holder receives a data request
(see step two in figure 5(a) and step three in figure 5(b)).
As such, the resulting context of this pattern can be linked
to the context of the direct-indirect reply pattern.

3.3 Direct-Indirect reply

Context
The data holder received a data request. The service provider
needs the requested data.

Problem
How can the data be transmitted from the data holder to
the service provider?

Forces
• Confidentiality of data: When requesting a data holder

to send the required data to an entity, it is important
to realize that the provided data can be confidential
and therefore the data holder can limit the entities
with which it is willing to share the data. For example,
a data holder can demand that the provided data is
only sent to the service provider that needs the data
and that it is can not be shared with other service
providers or stored by a service requestor.

• Reuse of retrieved data: In some business cases data
provided by a data holder is used by more than one ser-
vice provider. In such situations you can either request
the same data several times, for each service provider
that needs the data as input, or you can request the
data only once and store it for reuse with other ser-
vice providers. The latter approach sets restrictions
on the solution for transmitting the data to the ser-
vice provider.

• Data transformations: When the data holder replies,
the data that is provided is possibly not in a form that
is expected by the service provider. For example, the
data format needs to be adapted, or the data should
be made anonymous. In summary, in some cases data
transformations are needed before the data is received
by the service provider.



Needy 
Service 
Provider

Data 
Holder1

Data
request

2
Data

(a) Direct reply

Needy 
Service 
Provider

Data 
Holder

2
3

Data

Data

Service 
Requestor

1

Data
request

(b) Indirect reply

Figure 6: Replying

Solution
After a data holder receives a data request (see step one in
figures 6(a) and 6(b)), its reply can be transmitted in two
ways. Firstly, the data holder can send a direct reply, which
means that the data is sent directly to the service provider
(see step two in figure 6(a)). Secondly, the data can be
transmitted from the data holder to the service requestor
(see step two in figure 6(b)) and subsequently to the data
holder (see step three in figure 6(b)). This alternative is
referred to as an indirect reply (see figure 6(b)).
Based on an evaluation of all forces, an appropriate scenario
can be chosen:

• Confidentiality of data: When the provided data is
confidential, a direct reply is the best scenario, since an
indirect reply implies that the data is passed through
the service requestor before it is received by the service
provider.

• Reuse of retrieved data: An indirect reply could facil-
itate the reuse of the provided data. For example, the
service requestor only receives the specific data once,
before distributing the same data to several service
providers.

• Data transformations: An indirect reply allows data
transformations, since all data that needs to be trans-
mitted to the data holder is passed through the ser-
vice requestor. As such, the service requestor can be
responsible for data transformations. However, in a di-
rect reply scenario the service requestor is not involved
when the data needs to be transmitted from the data
holder to the service provider. As a consequence, data
transformations are not possible.

Resulting context
The service provider received the additional input data.

4. COMBINING THE PATTERNS
As described in subsection 2.3 clear relationships between

the patterns exist, which shows how the patterns can be
combined to construct a proper solution for providing a ser-
vice provider with additional input data. In total, one can
come up with six possible combinations that form a solu-
tion. In figures 7(a) to 7(f) the solutions are represented.
Underlined words in the figures’ captions indicate how the
patterns are applied.

5. EXAMPLE
This pattern language is intended as a tool for service

composition. In particular it helps to design service inter-
actions that are required for transmitting additional input
data from the data holder to the service provider. Although
the concept of a service is often related to a pure software
service, every single idea in this pattern language can also
be applied to pure business services. In this section we give
a small example that shows how the pattern language can
be applied in a hospital.
In a hospital nurses provide several (business) services to
patients. One of these services could be lowering a patient’s
fever. In order to compose this service the nurse needs to
consume another service. In particular the nurse should re-
quest a febrifuge from the pharmacist. Hence, the nurse can
be considered as a service requestor, while the pharmacist
plays the role of service provider. Both aspirin and paraceta-
mol are fever reducers. However, aspirin has the unpleasant
side effect that it can cause stomach bleeding in certain cir-
cumstances. Therefore, it is supposed that the pharmacist
needs information concerning the risk for stomach bleeding,
before he or she can deliver an appropriate febrifuge. The
risk for stomach bleeding is known by the patient’s doctor.
As such, the doctor can be considered as the data holder.
Below you can find an overview how the patterns can be
applied to this example:

• Active-passive service provider: Since nurses do
probably not want to understand which input data is
required by the pharmacist, it is probably more desir-
able to choose an active pharmacist. Nurses simply
want to use some services provided by the pharma-
cist, and it is not preferred that changes in data re-
quirements result in changes how the nurses work (or
consume the pharmacist’s services).

• Direct-indirect request: This pattern needs to be
applied, because pharmacists are considered as active
service providers. Since the pharmacists do not know
which doctor is treating the patient, it is preferred that
the pharmacist asks the nurse for more information
concerning the risk for stomach bleeding (see step two
in figure 8). Subsequently, the nurse can forward the
request to the right doctor (see step three in figure 8).

• Direct-indirect reply: Suppose the risk for stom-
ach bleeding is quite confidential data and can not be
shared with the nurse. Then, the indirect reply sce-
nario is the best solution. Hence, the doctor should
send the information concerning the risk for stomach
bleeding directly to the pharmacist (see step four in
figure 8).

The complete solution for this example is shown in figure 8.

6. RELATED WORK
One of the first papers that discussed the use of patterns

in service composition is [4]. In that paper it is investigated
how patterns can be used in service composition to help in
the development of business applications based on e-services.
In particular, they presented payment mechanism patterns,
which can be applied quite often in e-services. Payment
mechanisms can be seen as interactions between three dif-
ferent processes: billing, payment and execution of service.



2

Data 
Holder

Needy 
Service 
Provider

Service 
Requestor

Trigger
(+data)

Data request

data

1

3

(a) Active SP with direct
request and direct reply

2

Data 
Holder

Needy 
Service 
Provider

Service 
Requestor

Trigger
(+data)

Data request
with referral

1
3

Data

Data

4

(b) Active SP with direct
request and indirect reply

Needy 
Service 
Provider

Service 
Requestor

Trigger
(+data)

data

Data
request

Data 
Holder

Data request

data

1

2

3

4
5

(c) Active SP with indirect
request and indirect reply

Needy 
Service 
Provider

Service 
Requestor

Trigger
(+data)

data

Data
request

Data 
Holder

Data request
with referral

1

2

3

4

(d) Active SP with
indirect request and
direct reply

Needy 
Service 
Provider

Service 
Requestor

Trigger
(+data) data

Data 
Holder

Data request

data

1

2

3
4

(e) Passive SP with indirect
reply

Data 
Holder

Needy 
Service 
Provider

Service 
Requestor

Trigger
(+data)

Data request
with referral

data

1

2

3

(f) Passive SP with direct
reply

Figure 7: Six possible solutions (SP = Service Provider)

Pharmacist

Nurse

Request for
a medicine for
reducing fever

The risk for
stomach bleeding

Risk for
stomach bleeding?

Doctor

Request for
notifying the pharmacist
of the risk for stomach bleeding

1

2

3

4

Figure 8: Active pharmacist with indirect request and direct reply



Subsequently, the authors present several patterns for the
payment composition (e.g. payment in advance or after-
wards). It should be clear that these kinds of patterns are
only useful in a limited set of service composition problems.
By discussing more generic service and data holders, the
pattern language presented in this article is intended for a
much broader use.
As described in the introduction (see subsection 1.2) our
pattern language can support the process of designing the
service interactions that are needed to combine services into
a new composite service. In particular, we presented three
kinds of service interaction patterns for requesting the data
holder and subsequently transmitting the data from the data
holder to the service provider. In that context the research
in this article can be related to the often-cited work of Bar-
ros, Dimas and Ter Hofstede [1]. In their work they present
about thirteen service interaction patterns. A large part of
the set of patterns correspond to elemantary interactions
where a party sends a message (a request) to another party,
and as a result a reply is expected. The receiver of this reply
can be the same as the sender of the request or not. The
first group of interactions is referred to as round-trip inter-
actions, while the latter type is named routed interactions.
As mentioned in the context description of this pattern lan-
guage (see subsection 2.1), a request should be sent to the
data holder, before any data can be provided. As such, the
round-trip and routed interactions can be part of a solution
to the problem of input data provisioning. When considering
a direct request and direct reply, part of the solution matches
the send/receive pattern as described in [1] (see figure 7(a)).
The same service interaction pattern can also be found in
the scenario represented in figure 7(e). Clearly, in the so-
lutions represented in figures 7(d) and 7(e) the request with
referral pattern is applied, because the service requestor re-
quests the data holder to send the response to the service
provider. Scenarios that contain an indirect request (see
figures 7(c) and 7(d)) can be related to the relayed request
pattern, since the data request sent to the service requestor
is relayed to the data holder. While the pattern described in
[1] can be very valuable for constructing choreographies and
evaluating service composition languages, there are no spe-
cific guidelines mentioned for when to use a specific service
interaction pattern. In this paper, several service interac-
tion patterns as described in [1] are applied in the context
of input data provisioning. Furthermore, each pattern in the
pattern language discusses some forces that are taken into
account for constructing the most appropriate solution.
The results of this article can be considered as an extension
of the work presented in [6]. The authors of that article pro-
pose to make a distinction between the logical dependencies
that are modelled by the interaction logic from the opera-
tional coordination that refers to the procedure or method
that is utilised to enforce the logical dependencies. There-
fore the authors suggest that a technical solution for service
composition should consist of a combination of design- and
implementation patterns. A design pattern corresponds to
the interaction logic that only specifies the generic process
characteristics, while an implementation pattern refers to
the the refinement of the interaction logic that is needed for
the concrete coordination of services. In the context of this
article, the design pattern consists of triggering the service
provider, requesting the data holder and sending the data to
the service provider. These different steps are needed to pro-

vide the composite service. In [6] it is said that the criteria
for the choice of the most appropriate coordination pattern
must be specified by so called coordination policies. A coor-
dination policy describes the effect of a coordination variant
in terms of specific (non-functional) service properties and
thereby controls the choice of alternatives. In that way,
the different patterns presented in this article, including the
forces and the several combinations that can be made by the
patterns, can be considered as coordination policies. They
support the transformation of the interaction logic needed
for input data provisioning into concrete coordination pro-
cesses. In summary, one can state that our pattern language
extends the work presented in [6] by proposing some con-
crete coordination policies (for input data provisinoning).

Acknowledgements
The authors would like to thank Pam Rostal for her many
constructive and valuable remarks during the shepherding
process. Furthermore the quality of this article has increased
substantially after the conference’s writers’ workshop. The
authors thank the workshop participants for their extensive,
constructive and helpful discussion of a previous version of
this article. In completing this paper, the authors benefited
from the comments of several colleagues: Lotte De Rore, Raf
Haesen and Pieter Hens. We also thank Marijke Braeken for
her inspiring suggestions. This article has been written as
part of a project funded by the Research Fund K.U.Leuven
(OT 05/07 and IOF HB/07/022), whose support is grate-
fully acknowledged.

7. REFERENCES
[1] A. Barros, M. Dumas, and A.H.M. Hofstede. Service

interaction patterns. Lecture notes in computer science,
3649:302, 2005.

[2] T. Erl. Service Oriented Architecture: Principles of
Service Design. Prentice Hall, Boston, 2008.

[3] G. Monsieur, L. De Rore, M. Snoeck, and
W. Lemahieu. Handling Transactional Business.
Proceedings of the 15th Conference on Pattern
Languages of Programs (PLoP), 2008.

[4] M.T. Tut and D. Edmond. The use of patterns in
service composition. Lecture notes in computer science,
pages 28–40, 2002.

[5] U. Zdun, M. Voelter, and M. Kircher. Design and
implementation of an asynchronous invocation
framework for web services. Lecture notes in computer
science, pages 64–78, 2003.

[6] C. Zirpins, W. Lamersdorf, and T. Baier. Flexible
coordination of service interaction patterns. In
Proceedings of the 2nd international conference on
Service oriented computing, pages 49–56. ACM New
York, NY, USA, 2004.


