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ABSTRACT 

In the present paper we consider several measures Ior the risk that is present in 
ai1 iiisurance environmeiit. We looi< for clesirable properties for two types of risk 
ineasures, the olies reflectiiig both negative and positive results, and the inea- 
sures for insolvency risks dealing with aspects of niin, as wel1 as their relatioii 
to the allocation of ecoiioiiiic capita1 to different brisiness liiies or to the differ- 
eiit subcompanies constituting a financial conglomerate. The main probleili for 
both types of measureii~ents is that the dependence structure that exists betweeii 
tlie different units involved is uilknown. 



I. INTRODUCTION 

Botli an iiisuïance premium aiid the price of a finaiicial prod~lct cail be 
regasded as a ilieasure of the risk involved in the fiiiancial traiisaction 
betweeii the b~iyer of tlie product aiid tlie seller in the market. Tlie 
insurance premium os the price as a risk ineasure is expressed in tlie 
riglit units, liaving the dimension of the traiisaction (money). Iii the 
actuarial literature, insurance premium priiiciples have been studied 
extensively, see e.g. Biililniaiii (1970), Gerber (1979) aiid Goovaerts 
et al. (1984). The pricing of finaiicial rislts is a key topic in finance, 
see e.g. Gerber and Shiii ( l  994)" 111 section TII. a link between actuar- 
ia1 priciiig (by a premium principle) and finaiicial pricing (by meaiis of 
expectation) is given. It is argued that iii genera1 for risks, the corre- 
sponding insuraiice preiiiium principle (and lieiice also the risk inea- 
sure) cannot he assuiiied to be additive, subadditive or superadditive in 
al1 situations. Indeed, a sihiation in which superadditivity is preferable 
is when a risk 2x is to be insured. For any risk averse insuser, the pre- 
iniuin for 2x, and hence the 'risk' associated with this random variable, 
will be strictly more than twice the one for x. For an econoinic priiici- 
ple, it seeins better to require s~ibadditivity for independent rislts (inore 
is better and safer because of the law of large iiumbers, and because of 
possible hedging), but this is not the case for dependent risks which 
are a coinmon phenomeiion in an inswance context. Tlie two sihia- 
tions, dependeiit risks oii the one hand and independent risks on the 
other, should be approached in quite different ways. 

11. DISCUSSION OF DESIRABLE PROPERTIES 

111 what follows, we will develop arguineiits indicating that iinposing 
geiieral axioms valid for al1 risky sit~iations conflicts with generally 
accepted properties for dealing with particular sets of risks, based on 
what could be called as 'best practice' iules. We will show that pure 
risk measures should possess other properties than ineasures devel- 
oped for solvency purposes. 

Some exaiiiples are examined to support this assertion. 

In earthquake risk inszlrance, it is better (hence a lower price results) 
to imzrre &)o independent risla than two positively dependent risks 



(two bziildirigs in the sarwe area). For inszlring a risk fully, tthe pre- 
mium shozild be 117or-e than tivice tlze prernizmz for insur.ing on!y half 
of the risk. Tlze exchange of portions of life por.tjolios between differ- 
ent continents is an ex3~~11npIe illz~stratilig the irnportauzce of a geo- 
gl~aphical spread of  isli lis (i11 order to n~nkce them more independent). 
As a consequente, we see that imposing szibadditivify for al/ risls 
(iricluding dependent I-is14 is /zot in line wit11 i.i~lzat cozild De called 
'best practice '. In Secfion III we wil1 indicate the daiiger of imposing 

p~*olierties to al/ risks in a given set. 

Ii-i the frainework of risk iiieasures, it is also clear that percei-itiles 
or related ineasures do not catch the rislcy character ot a risk in an 
economically sensible way. This simply ineai-is that when the Value 
At Risk (VAR) is used to iiieasure risk, it iiiakes for instance i10 sense 
to coiisider subadditivity. This iiotioi-i arises from tlie contamination 
witli thc probleili of supci-visioi~, whcre thc supcr;iisor or a rating 
ageilcy wants to end up with ai1 upper bound for the integrated risk 
of the sum of several portfolios. In that situatioii it would be ilice to 
have a measure for insolvency risk that can be obtained by adding the 
measures for eacli of the portfolios, or merely an upper bound for it. 
Section V wil1 give one possible ailswer. 

Example 2 

Consider a combined risk Oayments) distributed unifor~nly on 0,0. 9 
with probabilip mass 0.9 and uniformly distributed in 0.9,l with 
prohability mass 0.1. The risk is unifor.rn(0, I ) ,  and the 0. I per~centile 
equals 0.9. According to the percentile criterion at the level 0.1, this 
I-andom variable is as dungerous as the one with mass 0.9 in 0,0.9 
unìforrnly distributed but combined with an additional mass in 
1000,1000.05 uniformly distributed with total mass 0.05 and an addi- 
tional mass (also z1niformly distr*ibzrted) in 0.9,1 with total mass 0.05. 

So a tail cl-iaracteristic like the VAR on its own is not a good risk 
measure and is i-iot in liiie with best practice rules. By using the VAR 
as a criterion, olie iinplicitly assuines that the distributioi-is that are 
coinpared are of a similar type, for instance a nonna1 distributioii. 

It should be reniarked that the conditional expectation, e.g. above 
the 0.9 percentile, does inake a distinction betweeii the two situations 
in Example 2. Exainple 1 indicates that serious problems may arise 
froin assuming subadditivity. 



Clearly, subadditivity is not desirable in case dependence aspects 
of the risks are important. Preiniuiii priilciples satisfying the proper- 
ties of (sub-)additivity were restricted to independent risks. Risk 
ineasures should cope wit11 dependencies as wel1 as witli tails. 

A problem not to be confused with tlie probleni of defining a risk 
measure for a set of risks coiisists in the deteimiiiation of a measure 
for insolveiicy risk. Tliis problein originates froiii a very practica1 sit- 
uation where within a fiiiancial conglomerate one wants one figure to 
summarize the risks of a set of different (possibly) dependent sub- 
conlpanies. The sairie problem arises in case we coilsider one fïnan- 
cial andlor iiisuraiice institution with different postfolios os business 
lines. Here tlie fiiial ailil is related but different froiii the aiiil of deter- 
mining a risk measure. For each of Ihe separate subcoinpanies 
(dependent os not) one can derive a measure for the insolvency risk 
based on the relevant statistica1 inaterial that coiiies frorn witliin tlie 
subcoinpany (hence only inarginal statistica1 data are used). Here the 
questioil arises whether the suin of the ineasures of insolvency for the 
individual subcompanies gives an zqper bound of the risk lileasure 
for the sum of risks contained in the financial conglomerate. This 
may resemble the concept of subadditivity but in reality it is not the 
Same. It is a probleni of finding tlie best upper bound for tlie measure 
of insolvency of the suin of risks for which we know a measure of 
insolveiicy for each of the iiidividual coinpanies (iiiarginally). This is 
directly related to the following question: if a financial coiiglomerate 
has a risk based capital available that ainounts to d, theii liow can one 
distribute this ainouiit in d,  + d, +. . .+ d, = d betweeil the subconipa- 
nies in such a way that tlie total nieasure of insolveiicy is l<nowii, 
only based on the ineasures of insolvency risk of each of the separate 
coinpanies. Tliis question wil1 be dealt with in Sectioii IV. 

We consider another example indicating the danger of imposing a 
general property for nieasures of insolveiicy risk: 

Consider a unijorm rislc X irz tlze interval [9,10] and cor?zpa~e it ivith 
a rislc Y that is a certuinty risk of 1000. Cleavly Pv[X<Y]=I hut irz 
X-E[X] theve miglqt be a risk o j  insolvency, while Y-E[Y] presents no 
risk at all. 

Hence, a risk measure should incosporate a component reflecting 
the mean of the risk. 



111. INSURANCE PREMIUMS VERSUS PRICING IN FINANCE 

In Goovaerts et al. (1984) it is shown how the Esscher transfonn 
einerges froin the utility theory in ineasuring tlie price of a random 
variable. Indeed, one has the followiiig theorein: 

Theorern l 

Assume al1 irzszl;*er has an exponential z~tili@fLlnctiorz with risk over- 
siorz a. I f  1he charges a pr*emiu;~z ofthe foi7~z E[q(JJX] where q(.) is a 
continuous ijqcreasing filnction ivith E[p(X)] = l ,  his utiliq is maxi- 
mized !f q(x) a e", i.e. if he mes the Esscher prerniunl priuzciyle with 
parameter d. 

For a proof of this theorein, we refer to Goovaei-ts et al. (1984). If the 
utility function u is exponential, e.g. u(x)= l - e-"" , then 

wliich leads to the Esscher transform of the risk X. If u(x) is qua- 
dratic, hence e.g. z/(x) = ax2 + bx, using the same arguments we 
gel p(x) a 2ax + b, and E[q(X)] = l gives 

which is a variailce premium principle wliere the variance loading 
paraineter depends on the mean risk. This is no restrictioii if oniy 
rislts with a given expectation are coiisidered. 

It has been argued that the variance premium principle is point- 
less because it might be that a larger risk (with probability 1) 
requires a lower premium, (see Kaas et al. (2001), Example 10.4.5). 
But for risks with the Same expectation, the variance is a reliable 
risk measure. In the sequel, we wil1 often consider normalized risks 
X-E[X]. In that case it iminediately follows that, taking into account 
the dependence structure oile gets the three types of additivity as it 



should be. See also tlie draft report of the solvency working party of 
the IAA, October 2001. 

We would like to note that if one uses the variance as a iiieasme of 
insolvency, wliich according to utility theory is an adequate measure, 
adding risk measures and iniposiiig risk properties such as subaddi- 
tivity does not make any sense. Indeed if /Y,, ..., X,, are identically dis- 
tributed with zero iiiean and iioii-degenerate, of which &', . . . ,X,,' are 
tlie comonotonic versions (haviiig the saine marginal cdf's, but max- 
imal depeiideiice), theii 

This iiidicates that for coinonotonic rislts, superadditivity seeins to 
be desirable. As we wil1 explaiii, additioii of insolvency nieasures 
makes only sense in relation to the distribiition of econonlic capital. 
In addition additivity is usefùl in case of the repartition on tlie down 
level of a premiuii? incoiile, determiiied oii tlie top level. 

In discussions concerning the subadditivity of rislts ineasures the 
arguments used are often far from realistic. Iiideed it is said that addi- 
tivity is the worst that can be obtained in case of standard deviation 
o [ X ,  + X , ]  I o [ X , ]  + o [ X , ]  (eqiiality holds only in case of a corre- 
lation +l) .  This is the argu~inent used for subadditivity, even though 
the standard deviation preiniuin must be ruled out as a risk measure 
because even though X  is smaller than Y with probability 1, it inight 
happen that its standard deviation premium is larger. The standard 
deviation principle should indeed be used as a risk ineasure only for 
randoiii variables with uiiequal expectations. It is important to note 
the distiiiction betweeii tlie collective premium E [ X ]  + aVar[X]  witli 

a = Iln ~1/2u , where E denotes the ruin probability in an infinite time 

horizon and u the initia1 surplus in a ruin process, (see Buhlinann 
(1985) or Kaas et al. (2001), Chapter 5)), aiid the distribution 
between individual contracts of this preiniuin volume by means of an 
additive premium principle. In this context also tlie difference 
between pure risk measures and measures for insolvency risk have to 
be seeil. A risk ineasure serves the pui-pose of a collective ineasure 
for risk of a surn of risks, while a ineasure of insolvency risk has to 
do with addition of marginal risk measures. 

Meaii value principles rely heavily o11 mixing distributions, as is 
demonstrated in tlie following theorem: 



S~qpose tlzat msociated ~vith ever31 random variahle X there is n ziiziqzle 
ren1 r~zirnbev p [ X ] ,  the risk mensure, with the fo l lo~~i~ig  properties: 

I .  p[c] = c for cr degener-ate risk c 

2. X s ,  Y p [ X ]  5 p[Y] with sttict ineqz~ulrty I?olditig zlnless 

X = ,  Y .  

3. If p [ X ]  = p [ X 1 ] ,  Y is n random vnrinble, and I is nn inde- 

pendent Betwoulli(t) random vclriable,  hen p[IX + ( l  - I )Y]  = 

p[IXT+(l - I ) Y ] .  

Then the1.e is a jìlnction .f; continuozrs and strictly inc~*easing, szrch 
that 

In this situation the assumption 2) of this theorem results in functions 
f that are strictly increasing. This inakes the resiilt less attractive 
for measurement of insolveiicy. More attractive tlien becoine the 
assuinptioiis 

E [ X ]  = E[Y] and E [ ( X  - d )  + ] i; E[(Y - d )  + ] b'd 
whicli iiieans that these is convex order between X arid Y, written 

X r', Y .  

As in Kaas et al. (2001, Defiiiition 10.6.1) it follows that 

X r(,  Y * E [ ( d -  X ) , ]  r E [ ( d -  Y ) , ]  'dd 

such that in addition unifornily heavier lower tails result. 

It can be proven that X si, Y if and only if E [ j  ( X ) ]  s E [ j  ( Y ) ]  for 
al1 convex fuiictions.f, provided tlie expectations exist. 

An iniporlant special case is the following: E [ X ]  r. X for every 

random variable X. Therefore, we have ~ [ f  ( X ) ] >  f [E(x)]  for 
every convex function f (Jensen's inequality). 



1 X ,  a=, 1 X :  ivhen X;  is the comoiiotoiiic version of /y. J = 

1, ..., n. 

P7~00f 

(See Kaas et al. ((2001), Tlieorein 10.6.4)). 

Tliis result is in line wit11 a 'best practice' approach. Indeed, for a 
pure risk measure the conionotonic suin is the 'inost daiigerous' sum. 
The suin of random variables with an arbitrary dependence sti-uchire 
is less dangerous than the suin of the most dependent variables. This 
is because in the comonotonic versions of the raiidom variables, al1 
possibilities of hedging have been eliminated. 
In addition, for ineasures of insolvency risk we have that the fatter 
the tails are, the higher the risk ineasure. It remains a open question 
how to define addition of ineasures. A characterization wil1 be given 
in the last paragraph. 

IV. THE IMPLICATIONS OF IMPOSING GENERAL PROPER- 
TIES FOR ALL RISKS 

Let us recall the properties leadiiig to Wang's class of premium prin- 
ciple~, (see Wang et nl. (1997)). 

Property 1 

For any two risks (non-negative random variables) X and Y we have 
that F,y (x) r F, (x) for al1 x > O iinplies p[X] r p[Y]. 

Property 2 

If risks Xand Y are comonotonic, then we have p[X+Y] = p[X] + p[Y]. 

If X is the degenerate risk which equals 1 with probability 1, then 
p[X]= l .  



Property 1 caii be wealteiied to: if X I Y with probability olie, tlien 
p[X] I p[Y]. (See Kaas et al. (2001), Reinark 10.2.4). Properties 2-3 
imply that p[~l~Y+b] = a/)[X/tb. We recall tlie following leinnia: 

Ass~llne tbzat a risk measure hns the properties 1-3. Then ther-e exists 
ar1 zrriiqwe distortion fi~ucfion g, ~tihich is non-ci'ecreasing and has 
g(O)=O and g ( l )= / ,  szrch fhai for al1 discrete rrs1r.s Xwith or~ly~finrtely 

many rnass points, we have & X ]  = s  g ( I  - F, (x))& . 

We give a rather simpler proof than Wang et al. Consider a discrete 
distributioii whicli assigns probability p, to x, for j=l ,  ..., n. For the 
inverse distribution functioii one has 

Next we consider tlie ho-point inverse distributioii: 

Hence, if U is a uniform randoin variable, we have 

Froni Propei-ty 1-2 it is clear tliat for a ho-point risk X with Pr[X = 

n] = q and Pr[X = O] = l-q, we have pJX] = av(q) where \)(q) is a dis- 
tortioil functioii. 011 the other hand tlie right liand side of tlie above 
equality i11 distribution gives: 

This coinpletes the proof. 

Next let us additionally require additivity of the rislt ineasures (insur- 
ance preiniunis) for sunis of independent risks. 



If the rislts X and I' are independent, tlleii we have p/X+ Y] = p/X] + 
P/Y/. 

In case properties 1-4 hold, the risk measure reduces to the expecta- 
tion. 

Considel two indepericlent risks X and V with Pr[X=l j = l - Pr[X=Oj 
= y  aiid Pr[Y=l] = 1 - Pr[Y=O] = q. It is easy to show that for instance 
p[X+Y] = g@+q-pq) + +()q). Property 4 tlien implies: 

Taking the derivative with respect t o p  gives: 

Next let p -+ û, then we get g '(O) = g '(q)(l-q) + g '(O)q, and Iience g '(q) 
= g'(0). This, togetlier with g(l)=l, iinplies g(q) = q for al1 q. This proves 

m 

the stated result, since as is well-luiown, E [ X ]  = J[l - F ,  (x)]dx . 
O 

V. SOLVENCY RISK MEASURES 

Here the probleiîî is coinpletely different fsom the problem oC risk 
ineasures. We have the situatioii tliat one cornpany (os portfolio) A 
has to be considered einbedded int0 n-l other companies (or portfo- 
lios). In case the coilipany A is embedded into n-l very dangerous 
companies with a very liigli solvency risk ineasure, the individual 
risk ii~easure does nol coiitribute to tlie Same degree to tlie total sol- 
vency requirements as in the case where A is einbedded iilto n-l 
other coinpanies having almost no solvency requireinents calculated 
on individual basis. It might be that enibedding one coinpany into a 
set of n-l other companies will disturb the solvency requireineiits, 
because the global solvency requireinents are the constraint. We will 



foriiulate the problem as follows by means of ai1 optimization prob- 
lem. 

Assume that tlie total solvency risk of a conglomerate X, + X, t.. .+ X,, 
with n subcompanies is ~neasured by E((X, + X, +. . .X,, - d),), where in 
principle al1 depeildencies are possible. The total risk based capital d, + 
d2 +...+ d,, has to be distributed ainong the daughter companies. 
Company i has a solvency risk also ineasured by a stop-loss premium 
E((X, - dl)+). The ith s~ibconlpany only uses the marginal distributioii of 
the risk variable X,. It is clear that the fcllowing subadditivity property 
holds with probability one (see Kaas et al. (2001), Theorein 10.6.4): 

(X, + .... +X,, -d)+ c; (Xl - d , ) +  2 
where d=d,+d2+ ...+ d,. Because the leA hand side oniy depends on 
d,, ..., d, through the suin d, one is of course interested in determining 
the risk capital in such a way that 

Problem A: 

O11 the other hand the congloinerate measures the risk by 

Problem B: 

~ a x E ( ( x ,  + X ,  + ....+ X,, - d ) +  ) 
FEI* 

Here I' is tlie set of random vectors with the Same marginal distribu- 
tions as (X,, X-,. . ., X,,). 

The followiilg theorem indicates that using a stop-loss retention 
determined by a VAR approach is the optimal solution to deal with 
the problem of solvency ineasurement in coilnection with the alloca- 
tion of econoinic capital. 



~17ei.e d ,  = F\' (F,,, t d ) ) ,  with W = F\,' ( U )  + . .. + F\' (U ) for some 
z111iforri7 iiarinble U. 

Tlie value ofpr,obleni A is determined in the folloiiiir~g wny 611 mearils 
of' a Lagrar~ge nzzll f &lier: 

Takiiig the derivative with respect to each d, gives that for some coii- 
stailt c: 

F,, ( d ,  ) = c =+ d ,  = F,;,' (c)  

Because d = 7 dl 011e p t s  d ,  = F,,' (F,,(d)). 
I= 

The maxiriiun~ in the theoreil~ is obtained by ineans of the theory of 
conionotonic risks as is showii e.g. in Kaas et al. ((2001), Theorein 
10.6.4). 

1. lil case eveiywlsere use is isiade of the stop-loss expression both 
for al1 subcoinpanies and o11 the congloinerate level, a safe best 
upper bound is obtaiiied. 

2. The VAR plays a very important role, because based on the over- 
all level d the level d, is determined by iiieails of tlie VAR. 

3. It is clear tliat direct addition of risk ineasures, without taking tlle 
sum of the characteristics of tlie total portfolio into account for the 
subpoitfolios, is iiot very realistic. 

4. Supervisory authorities, liaving only the marginal distributioiis 
as data, can of course calculate the individual risk measures by 
using slop-loss preiniums. This allows US to compare different 
coinpanies. 

5 .  Another iilterpretatioii is tl-iat when a joint treatnient of the risk 
coinpensation is possible, in case of spreading tlie risk in different 



coiiipanies tlie sum of tlie risk for iiisolveiicy is lasger. So oile 
should minimize it. 

I11 convex order al1 of the possible choices of convex f~iilctions v pro- 
vide the saine osdering of risla. In this fraii7ework we would like to char- 
acterize one special choice of v based oii rational allocation of economic 
capital. For tliat purpose we coilsider ai1 exteiided problem A and B. 

Theorem 5 

The only convex,fimcfions v fou which eqzra1it.y 11olds betweel7 

A = M ~ ~ E ( I J ( ( ~ ,  + X z  + ... + X',, - U'),) uv/d 
Xti- 

B = Min Z E ( ~ ) ( X ,  - d, l + )  
'i, + + < I , ,  =<i , 

are given by V ( X )  = B(x) jou some >O. 

Let us consider a uniform distribution o11 [a, b] for X,, i = 1,. . . , n. 

Then F -' (u) = n + (b - a)u . Because v is a convex fi~nction, problein 
,y, 

A can be solved iinmediately, (see Kaas et nl. (2001), Theoreiil 
10.6.4), giving 

On the other hand, problem B can again be solved by ineails of a 
Lagrange inultiplier, giving E(vl(X, - d, )) = h for al1 j, 

1 l 
os -v(a + (b - a ) ~  - d,  )+ I = h 

b - a  O 

1 
OS - 

b - a  ((b-dl~+kv((a-dl)+% ,x 

d 
Hence d, = d, for al1 i andj, and because d = Z d, one finds d ,  = -. 
The value of problem B then equals n 



Hence ,4=B gives: 

for every choice na I d I Dn. Taking the derivative on botli sides wit11 
respect to d and working out the integration over zr gives 

d 
Now choose b = -i- a , then v(12u) = ni~(a) ,  and hence v((n + 1)a) 

n 
- v(na) = v(aj. 
Taltitig the derivative with respect to a gives 11'(7~a) = ~'(a) .  

Hence ,,.(a) = $(n) = v>(%) = . V(.) , sucli that vl(a) is a con- 

stant, and theref~re v(a)  = ap. This proves the stated result. 

VI. CONCLUSION 

In this paper, we have argued that inaltiilg use of convexity order 
leads to a very attractive inethodology for determiiiing a risk nieasure 
for a cluster of portfolios. As a by-prod~ict, we Cound a coi~sistent cri- 
terion for distributing the econornic capita1 between subportfolios. 
This criterion takes iilto account dependencies between the risla 
associated witli these subportfolios, without having to specify these 
dependencies. 
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