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ABSTRACT

In the present paper we consider several measures for the risk that is present in
an insurance environment. We look for desirable properties for two types of risk
measures, the ones reflecting both negative and positive results, and the mea-
sures for insolvency risks dealing with aspects of ruin, as well as their relation
to the allocation of economic capital to different business lines or to the differ-
ent subcompanies constituting a financial conglomerate. The main problem for
both types of measurements is that the dependence structure that exists between
the different units involved is unknown.,
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I. INTRODUCTION

Both an insurance premium and the price of a financial product can be
regarded as a measure of the risk involved in the financial transaction
between the buyer of the product and the seller in the market. The
insurance premium or the price as a risk measure is expressed in the
right units, having the dimension of the transaction (money). In the
actuarial literature, insurance premium principles have been studied
extensively, see e¢.g. Blihlmann (1970), Gerber (1979) and Goovaerts
et al. (1984). The pricing of financial risks is a key topic in finance,
see e.g. Gerber and Shiu (1994). In section 11, a link between actuar-
ial pricing (by a premium principle) and financial pricing (by means of
expectation) is given. It is argued that in general for risks, the corre-
sponding insurance premium principle (and hence also the risk mea-
sure) cannot be assumed to be additive, subadditive or superadditive in
all situations. Indeed, a situation in which superadditivity is preferable
1s when a risk 2x is to be insured. For any risk averse insurer, the pre-
mium for 2x, and hence the ‘risk’ associated with this random variable,
will be strictly more than twice the one for x. For an economic princi-
ple, it seems better to require subadditivity for independent risks (more
is better and safer because of the law of large numbers, and because of
possible hedging), but this is not the case for dependent risks which
are a common phenomenon in an insurance context. The two situa-
tions, dependent risks on the one hand and independent risks on the
other, should be approached in quite different ways.

II. DISCUSSION OF DESIRABLE PROPERTIES

In what follows, we will develop arguments indicating that imposing
general axioms valid for all risky situations conflicts with generally
accepted properties for dealing with particular sets of risks, based on
what could be called as ‘best practice’ rules. We will show that pure
risk measures should possess other properties than measures devel-
oped for solvency purposes.

Some examples are examined to support this assertion.

Example 1

In earthquake risk insurance, it is better (hence a lower price results)
to insure two independent risks than two positively dependent risks
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(two buildings in the same area). For insuring a risk fully, the pre-
mium should be more than twice the premium for insuring only half
of the risk. The exchange of portions of life portfolios between differ-
ent continents is an example illustrating the importance of a geo-
graphical spread of risks (in order to make them more independent).
As a consequence, we see that imposing subadditivity for all risks
(including dependent risks) is not in line with what could be called
‘best practice’. In Section III we will indicate the danger of imposing
properties to all risks in a given set.

In the framework of risk measures, 1t 1s also clear that percentiles
or related measures do not catch the risky character ot a risk 1n an
economically sensible way. This simply means that when the Value
At Risk (VAR) is used to measure risk, it makes for instance no sense
to consider subadditivity. This notion arises from the contamination
with the problem of supervision, where the supervisor or a rating
agency wants to end up with an upper bound for the integrated risk
of the sum of several portfolios. In that situation it would be nice to
have a measure for insolvency risk that can be obtained by adding the
measures for each of the portfolios, or merely an upper bound for it.
Section V will give one possible answer.

Example 2

Consider a combined risk (payments) distributed uniformly on 0,0.9
with probability mass 0.9 and uniformly distributed in 0.9,1 with
probability mass 0.1. The risk is uniform(0,1), and the 0.1 percentile
equals 0.9. According to the percentile criterion at the level 0.1, this
random variable is as dangerous as the one with mass 0.9 in 0,0.9
uniformly distributed but combined with an additional mass in
1000,1000.05 uniformly distributed with total mass 0.05 and an addi-
tional mass (also uniformly distributed ) in 0.9,1 with total mass 0.05.

So a tail characteristic like the VAR on its own is not a good risk
measure and is not in line with best practice rules. By using the VAR
as a criterion, one implicitly assumes that the distributions that are
compared are of a similar type, for instance a normal distribution.

It should be remarked that the conditional expectation, e.g. above
the 0.9 percentile, does make a distinction between the two situations
in Example 2. Example 1 indicates that serious problems may arise
from assuming subadditivity.
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Clearly, subadditivity is not desirable in case dependence aspects
of the risks are important. Premium principles satisfying the proper-
ties of (sub-)additivity were restricted to independent risks. Risk
measures should cope with dependencies as well as with tails.

A problem not to be confused with the problem of defining a risk
measure for a set of risks consists in the determination of a measure
for insolvency risk. This problem originates from a very practical sit-
uation where within a financial conglomerate one wants one figure to
summarize the risks of a set of different (possibly) dependent sub-
companies. The same problem arises in case we consider one finan-
cial and/or insurance institution with different portfolios or business
lines. Here the final aim is related but different from the aim of deter-
mining a risk measure. For each of the separate subcompanies
(dependent or not) one can derive a measure for the insolvency risk
based on the relevant statistical material that comes from within the
subcompany (hence only marginal statistical data are used). Here the
question arises whether the sum of the measures of insolvency for the
individual subcompanies gives an upper bound of the risk measure
for the sum of risks contained in the financial conglomerate. This
may resemble the concept of subadditivity but in reality it is not the
same. It is a problem of finding the best upper bound for the measure
of insolvency of the sum of risks for which we know a measure of
insolvency for each of the individual companies (marginally). This is
directly related to the following question: if a financial conglomerate
has a risk based capital available that amounts to o, then how can one
distribute this amount in d; + d, +...+ d, = d between the subcompa-
nies in such a way that the total measure of insolvency is known,
only based on the measures of insolvency risk of each of the separate
companies. This question will be dealt with in Section IV.

We consider another example indicating the danger of imposing a
general property for measures of insolvency risk:

Example 3

Consider a uniform risk X in the interval [9,10] and compare it with
a risk Y that is a certainty risk of 1000. Clearly Pr[X<Y]=1 but in
X-E[X] there might be a risk of insolvency, while Y-E[Y] presents no
risk at all.

Hence, a risk measure should incorporate a component reflecting
the mean of the risk.
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III. INSURANCE PREMIUMS VERSUS PRICING IN FINANCE

In Goovaerts er al. (1984) it is shown how the Esscher transform
emerges from the utility theory in measuring the price of a random
variable. Indeed, one has the following theorem:

Theorem 1

Assume an insurer has an exponential utility function with risk aver-
sion a. If he charges a premium of the form E[p(X)X] where ¢(.) is a
continuous increasing function with E[p(X)] = 1, his utility is maxi-
mized if p(x) a ™, i.e. if he uses the Esscher premium principle with
parameter 4.

For a proof of this theorem, we refer to Goovaerts ez al. (1984). If the
utility function u is exponential, e.g. u(x)=l —e™, then

w(ﬂ=i—@=

which leads to the Esscher transform of the risk X. If u(x) is qua-
dratic, hence e.g. u(x) = ax?* + bx, using the same arguments we
get o(x) a 2ax + b, and E[p(X)] = I gives

2aE[X2)+bE[X ]
2aE[X }+b

E[Xp(X)] =E[XQaX +b) E[2aX +b] =

—E[X

—var [X ]

E[ ]+/

which is a variance premium principle where the variance loading
parameter depends on the mean risk. This is no restriction if only
risks with a given expectation are considered.

It has been argued that the variance premium principle is point-
less because it might be that a larger risk (with probability 1)
requires a lower premium, (see Kaas ef al. (2001), Example 10.4.5).
But for risks with the same expectation, the variance is a reliable
risk measure. In the sequel, we will often consider normalized risks
X-E[X]. In that case it immediately follows that, taking into account
the dependence structure one gets the three types of additivity as it

549



should be. See also the draft report of the solvency working party of
the IAA, October 2001.

We would like to note that if one uses the variance as a measure of
insolvency, which according to utility theory is an adequate measure,
adding risk measures and imposing risk properties such as subaddi-
tivity does not make any sense. Indeed if X, ...,.X,, are identically dis-
tributed with zero mean and non-degenerate, of which X5, ..., X,° are
the comonotonic versions (having the same marginal cdf’s, but max-
imal dependence), then

Var[X¢ +...+ XE1 = n*Var[X,]> nVar{ X,] = EVar[X,].

This indicates that for comonotonic risks, superadditivity seems to
be desirable. As we will explain, addition of insolvency measures
makes only sense in relation to the distribution of economic capital.
In addition additivity is useful in case of the repartition on the down
level of a premium income, determined on the top level.

In discussions concerning the subadditivity of risks measures the
arguments used are often far from realistic. Indeed it is said that addi-
tivity is the worst that can be obtained in case of standard deviation
o[ X, + X,]=0[X,]+0[X,] (equality holds only in case of a corre-
lation +1). This is the argument used for subadditivity, even though
the standard deviation premium must be ruled out as a risk measure
because even though X is smaller than Y with probability 1, it might
happen that its standard deviation premium is larger. The standard
deviation principle should indeed be used as a risk measure only for
random variables with unequal expectations. It is important to note
the distinction between the collective premium E[X] + aVar[ X] with

a= |1n £| /Zu , wheree denotes the ruin probability in an infinite time

horizon and u the initial surplus in a ruin process, (see Bithlmann
(1985) or Kaas et al. (2001), Chapter 5)), and the distribution
between individual contracts of this premium volume by means of an
additive premium principle. In this context also the difference
between pure risk measures and measures for insolvency risk have to
be seen. A risk measure serves the purpose of a collective measure
for risk of a sum of risks, while a measure of insolvency risk has to
do with addition of marginal risk measures.

Mean value principles rely heavily on mixing distributions, as is
demonstrated in the following theorem:
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Theorem 2

Suppose that associated with every random variable X there is a unique
real number p[X], the risk measure, with the following properties:
1. plcl=c for a degenerate risk ¢
2. X =, Y= p[X]=p[Y] with strict inequality holding unless
X=7.
3.If p[X]=p[X'], Y is a random variable, and I is an inde-
pendent Bernoulli(t) random variable, then p[IX +(1- Y] =
plIX'+(1- DY].

Then there is a function f, continuous and strictly increasing, such
that

pLx]= 1! ( [/ (x)dF(x)]

Proof:
(See Goovaerts et al. (1984)).

In this situation the assumption 2) of this theorem results in functions
f that are strictly increasing. This makes the result less attractive
for measurement of insolvency. More attractive then become the
assumptions
E[X]=E[Y] and E[(X~-d), < E[(Y -d),] ¥Yd
which means that there is convex order between X and Y, written
X S(,’,\' Y'
As in Kaas et al. (2001, Definition 10.6.1) it follows that
X= Y=FE[d-X)1=sE[d-Y),] Vd

such that in addition uniformly heavier lower tails result.
It can be proven that X = Y if and only if E[f(X)]=< E[f(Y)] for
all convex functions f, provided the expectations exist.

An important special case is the following: E[X]=<_ X for every

random variable X. Therefore, we have E[f(X) ]2 f[E(X)] for
every convex function f (Jensen’s inequality).
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Theorem 3
EX/ <. EXj when X is the comonotonic version of X, J =
1,...

, M.

Proof
(See Kaas et al. ((2001), Theorem 10.6.4)).

Remarks

This result is in line with a ‘best practice’ approach. Indeed, for a
pure risk measure the comonotonic sum is the ‘most dangerous’ sum.
The sum of random variables with an arbitrary dependence structure
is less dangerous than the sum of the most dependent variables. This
is because in the comonotonic versions of the random variables, all
possibilities of hedging have been eliminated.

In addition, for measures of insolvency risk we have that the fatter
the tails are, the higher the risk measure. It remains a open question
how to define addition of measures. A characterization will be given
in the last paragraph.

IV. THE IMPLICATIONS OF IMPOSING GENERAL PROPER-
TIES FOR ALL RISKS

Let us recall the properties leading to Wang’s class of premium prin-
ciples, (see Wang et al. (1997)).

Property 1

For any two risks (non-negative random variables) X and Y we have
that F'y (x) = Fy (x) for all x > 0 implies p/X] < p[Y].

Property 2

If risks X and Y are comonotonic, then we have p/X+Y] = p/X] + p[Y].

Property 3

If X is the degenerate risk which equals 1 with probability 1, then
pIX]=1.
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Property 1 can be weakened to: if X = ¥ with probability one, then
p[X] = p[Y]. (See Kaas et al. (2001), Remark 10.2.4). Properties 2-3
imply that p/aX+b] = ap/X]+b. We recall the following lemma:

Lemma 1

Assume that a risk measure has the properties 1-3. Then there exists
an unique distortion function g, which is non-decreasing and has
2(0)=0 and g(1)=1, such that for all discrete risks X with only finitely

many mass points, we have p[X]=j: g(I -F, (x))dx .
Proof

We give a rather simpler proof than Wang er al. Consider a discrete
distribution which assigns probability p; to x; for j=/,...,n. For the
inverse distribution function one has

F;l (p):xj for p, +p, totp L <p<ptp,t..tp;
Next we consider the two-point inverse distribution:
F,\j,1 (p)= X=X P>Py +-~-+P_/-_1
= 0 P<Pytetp;,
Hence, if U 1s a uniform random variable, we have
d n
Fy (U)=2 F'(U).
J=
From Property 1-2 it is clear that for a two-point risk X with Pr{X =
a] =g and Pr[X = 0] = J—q, we have p/X] = av(q) where v(g) is a dis-

tortion function. On the other hand the right hand side of the above
equality in distribution gives:

0 [FAT1 (u )]= i 0 [‘{;: ( )]: E (xj -X; )g (1 ~F, (XH ))=
J=t J=l
| 1-F, d
[ gl = Iy (x))dx
This completes the proof.

Next let us additionally require additivity of the risk measures (insur-
ance premiums) for sums of independent risks.

553



Property 4

If the risks X and Y are independent, then we have p/X+Y] = p/X] +
plY].

Lemma 2

In case properties 1-4 hold, the risk measure reduces to the expecta-
tion.

Proof

Consider two independent risks X and Y with Prix=1] =1 — Pr{X=0]
= p and Pr[Y=1] =1 — Pr[ Y=0] = ¢. It is easy to show that for instance
plX+Y] = g(p+g—pg) + g(pq). Property 4 then implies:

plX] + plY] = glq) + glp) = p[X+Y] = gp+q-pqg) + glpq)

Taking the derivative with respect to p gives:
g'p) =¢g'ptapq) (1-9) + g'(pa)q

Next let p — 0, then we get g'(0) = g°(q)(1—-q) + g’(0)g, and hence g’(g)
= g’(0). This, together with g(/)=1, implies g(q) = ¢ for all g. This proves

the stated result, since as is well-known, E[X] =f[l -F,(x)]dx .
0

V. SOLVENCY RISK MEASURES

Here the problem is completely different from the problem of risk
measures. We have the situation that one company (or portfolio) 4
has to be considered embedded into #»—1 other companies (or portfo-
lios). In case the company A4 is embedded into »—1 very dangerous
companies with a very high solvency risk measure, the individual
risk measure does not contribute to the same degree to the total sol-
vency requirements as in the case where 4 is embedded into -1
other companies having almost no solvency requirements calculated
on individual basis. It might be that embedding one company into a
set of n—1 other companies will disturb the solvency requirements,
because the global solvency requirements are the constraint. We will
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formulate the problem as follows by means of an optimization prob-
lem.

Practical problem

Assume that the total solvency risk of a conglomerate X, + X, +...+ X,
with n subcompanies is measured by E((X, + X; +...X, — d),), where in
principle all dependencies are possible. The total risk based capital d; +
d, +...+ d, has to be distributed among the daughter companies.
Company i has a solvency risk also measured by a stop-loss premium
E((X; — d),). The ith subcompany only uses the marginal distribution of
the risk variable X,. It is clear that the following subadditivity property
holds with probability one (see Kaas et al. (2001), Theorem 10.6.4):

(X, +...+X, -d), = 2 (X, -d.),

where d=d,+d,+...+d,. Because the left hand side only depends on
d,, ...,d, through the sum d, one is of course interested in determining
the risk capital in such a way that

Problem A:

MiniE((X; ~d),).

Yd;

On the other hand the conglomerate measures the risk by

Problem B:

Max E((X, + X, +..+ X, ~d),)

Xxer
Here I' is the set of random vectors with the same marginal distribu-
tions as (X}, X,,..., X,).

The following theorem indicates that using a stop-loss retention
determined by a VAR approach is the optimal solution to deal with
the problem of solvency measurement in connection with the alloca-
tion of economic capital.

Theorem 4

%/ﬁn E((X,—d,)+)=1\/é[€dlz(E((X1++ X”'—d)Jr),

i =d 42
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where d, = F;l (Fy{d)), with W = F;}‘ (U)+...+ F;'U) for some

uniform variable U.

Proof

The value of problem A is determined in the following way by means
of a Lagrange multiplier:

Min E(X,-d), -Md +..+d,).

Aclyydly £

Taking the derivative with respect to each d; gives that for some con-
stant ¢:

Fo(d)=c=d =F; ()

Because d = Ed, one gets d, = F'(F, (d)).

Hence%{ N E((X -d).) EE((F )= 7 (Fy () )

The maximum in the theorem is obtained by means of the theory of
comonotonic risks as is shown e.g. in Kaas et a/. ((2001), Theorem
10.6.4).

Remarks

I.

In case everywhere use is made of the stop-loss expression both
for all subcompanies and on the conglomerate level, a safe best
upper bound is obtained.

. The VAR plays a very important role, because based on the over-

all level d the level d; is determined by means of the VAR.

. It 1s clear that direct addition of risk measures, without taking the

sum of the characteristics of the total portfolio into account for the
subportfolios, is not very realistic.

. Supervisory authorities, having only the marginal distributions

as data, can of course calculate the individual risk measures by
using stop-loss premiums. This allows us to compare different
companies.

. Another interpretation is that when a joint treatment of the risk

compensation is possible, in case of spreading the risk in different
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companies the sum of the risk for insolvency is larger. So one

should minimize it.

In convex order all of the possible choices of convex functions v pro-
vide the same ordering of risks. In this framework we would like to char-
acterize one special choice of v based on rational allocation of economic
capital. For that purpose we consider an extended problem 4 and B.

Theorem 5

The onlv convex functions v for which equality holds between

A=Max E0((X, + Xy +..+ X, =d),) and

Xer

B = Min {EE(V()(/» _dj)+)

dy +.Ady=a

are given by v(y) = p(y) for some >0.

Proof

Let us consider a uniform distribution on [a,b] for X, i = 1,..., n.
Then F ' (u)=a+(b-a)u . Because v is a convex function, problem

A can be solved immediately, (see Kaas er al. (2001), Theorem
10.6.4), giving

A= E[v(na+ nb-a) - d)*]

On the other hand, problem B can again be solved by means of a
Lagrange multiplier, giving E(V'(X, -d ) =2 for all j,

or

Wa+ (b -ap-d,) L )

or L4 )= ) b4

Hence d, = d, for all i and /, and because d = Edj one finds d, = —.
The value of problem B then equals n

B = nE[v(cH(b —a)u—iﬂ.

n
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Hence 4A=B gives:

1 1

)

J v(na +nlb—a)u— d))a’u = njv(a +(b—-a)u— c—)a’u
0 o n

for every choice na = d =< bn. Taking the derivative on both sides with

respect to d and working out the integration over u gives

vinb—d)~v(na—d)= nv[b——~d—}~ v(a —i]
n n

, d d
Choosing a=— leads to v(nb—d)=nv{b—— |.
n

n

Now choose b = f’1—+oz , then v(na) = nv(a), and hence v((n + l)a)
n

—v(na) = v(a).
Taking the derivative with respect to a gives v'(na) = v'(a).

n

Hence v’() = v’(ﬁ): v’(ﬁJ:m: v’(0), such that v'(a) is a con-
n

stant, and therefore v(a) = af. This proves the stated result.

VI. CONCLUSION

In this paper, we have argued that making use of convexity order
leads to a very attractive methodology for determining a risk measure
for a cluster of portfolios. As a by-product, we found a consistent cri-
terion for distributing the economic capital between subportfolios.
This criterion takes into account dependencies between the risks
associated with these subportfolios, without having to specify these
dependencies.
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