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Using a systematic run order can be the proper way to conduct an experiment when a temporal 
trend is present. The construction of run orders that are optimally balanced for time trend 
effects is based on the maximization of the information on the important parameters whereas 
the parameters of the postulated time trend are treated as nuisance parameters. In this paper, 
an adjustment algorithm is presented to improve the efficiency of the run orders obtained 
from a search over a predefined set of candidate points. This is done by repeatedly moving 
the design points or the time points of the candidate list a small amount along their axes 
as long as an improvement in the efficiency is obtained. It is illustrated that the adjustment 
algorithm involves substantial increases in the efficiency of the run orders. The use of the 
adjustment algorithm in addition to a search over a coarse grid of candidate points is especially 
recommended in situations where the computation time has to be kept within reasonable limits. 
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1 Introduction 

Performing a series of measurements in a time sequence possibly creates time order de­
pendence in the results. For example, when a batch of material is created at the beginning 
of an experiment and the treatments are to be applied to the experimental units formed 
from the material over time, there could be an unknown effect due to aging of the mate­
rial. Unwanted time trend effects can also be caused by poisoning of a catalyst, steady 
build-up of deposits in a test engine, equipment wear-out, analyst fatigue, warm-up in 
laboratories, etc. For instance, Freeny and Lai (1997) mention an experiment taken from 
the electronics industry in which a photolithographic polisher shows the tendency to drift 
lower through time. Another example comes from Joiner and Campbell (1976) who de­
scribe an experiment in which the measurements drift with time due to the build-up of 
carbon in a spectrophotometer. 

The next section shortly reviews the literature on the existence and the construction of 
run orders that are optimally balanced for time trend effects. Section 3 considers the 
problem in light of optimal design theory. Section 4 presents the adjustment algorithm 
and in section 5 some examples are given to illustrate the use of the algorithm. 

2 Trend-free run orders 

When the experimenter has knowledge about the nature of the time trend it is recom­
mended to construct a run order in which the estimates of the treatment differences or the 
factorial effects are little disturbed by the presence of the time trend. This time depen­
dence is usually approximated by a polynomial function of order q. Let g(t) be the q x 1 
vector representing the polynomial expansion for the time trend, expressed as a function 
of time t E [-1,1]. With f3 the q x 1 vector of parameters of the polynomial time trend, 
f(x) the p x 1 vector representing the polynomial expansion of x = [Xl,'" ,xf]' for the 
response and a the p x 1 vector of important parameters, let the statistical model be 

y = f'(x)a + g'(t)(3 + E. (1) 

The error terms are assumed to be independent and identically distributed with mean zero 
and constant variance (J;. Contrary to simply observing the system twice for successive 
replicate points, it is understood that the transition from one run to the next one involves 
some intervention. As a result, two observations on the same design point are clearly 
subject to different errors from two runs and the assumption of uncorrelated error terms 
is justified. The fact that there is no interaction between the controllable variables Xi, with 
i E {I, ... ,j}, and time t usually holds in practice. For n observations, it is convenient 
to rewrite (1) as 

y = Fa + Gf3 + c, (2) 
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where F and G represent the n x p and the n x q design matrices respectively. The 
least-squares estimators Ii are given by 

(3) 

where In is the n-dimensional unity matrix. The factorial effects are now said to be 
q-trend-free if the least-squares estimator Ii is the same as when the time trend of qth 
order is not present. It is easy to verify that the least-squares estimator (3) is equal to 
the estimator Ii = (F/F)-lF/y in the absence of trend effects if and only if F'G = O. 
Consequently, a run order is called q-trend-free if the columns of F are orthogonal to the 
columns of G. 

Cox (1951) was the first to study the construction of run orders for the estimation of 
treatment effects in the presence of a polynomial time trend. He presents trend-free 
run orders for a number of simple design problems for categorical variables. The most 
important contributions to trend-resistant experimental design for quantitative variables 
come from Cheng (1985) and Daniel and Wilcoxon (1966). Cheng (1985) formulates the 
Generalized Foldover Scheme with which generator sets can be created to construct trend­
free run orders of full or fractional factorial designs. Based on the trend-free properties of 
the standard run order of factorial designs, Daniel and Wilcoxon (1966) develop another 
method for the construction of trend-free run orders but every run order derived with 
their method can also be obtained by applying the Generalized Foldover Scheme. A more 
extensive survey of the literature on trend-resistant design of experiments is given in Tack 
and Vandebroek (2001). 

3 Vt-optimal run orders 

Although the above references on the existence and the construction of trend-free run 
orders are of great use to the practitioner, they all have a number of important short­
comings. Firstly, none of the references deals with the numerous situations in which the 
required orthogonality cannot be attained. Secondly, there is no consideration of the 
connection between trend-resistance and the generalized variance or the precision of the 
parameter estimates. Thirdly, all approaches assume that the treatments or factor level 
combinations have already been chosen. Finally, the approaches rely on assumptions that 
simplify reality too much. For instance, it is assumed that the number of time points is 
equal to the number of observations and that the time points are equally spaced. Be­
sides, only 2- and 3-level factorial designs are considered, interactions of higher order are 
assumed to be negligible and constrained experimental regions cannot be dealt with. 

To fill these gaps, Atkinson and Donev (1996) present a generic exchange algorithm to 
compute run orders that are optimally balanced for time trends. Tack and Vandebroek 
(2001) extend the exchange algorithm to allow for cost considerations and they develop 
a methodology to construct run orders that maximize the experimental efficiency defined 
as the amount of information obtained per unit cost, rather than focusing too much on 
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a purely statistical efficiency. Contrary to offering a catalogue of specific solutions to 
design problems with a special structure, they provide the experimenter with a broadly 
applicable method to tackle a wide range of practical design problems. 

When primary interest is in the precision of the parameter estimates, the algorithm com­
putes optimal run orders by maximizing the information on the important parameters a 
whereas the parameters f3 of the time trend are treated as nuisance parameters. The re­
sulting run order is referred to as the Vcoptimal run order 8vt and the optimality criterion 
equals 

I 
F'F F'G I 
G'F G'G 

V = = IF'F - F'G(G'G)-lG'FI 
t IG'GI . 

(4) 

In the absence of time trend effects, the V-optimal design 8v maximizes the determinant 
of the information matrix, i.e. V = IF'FI. The V-optimal design and the Vroptimal run 
order are then compared to each other through the trend factor 

TF(8 ) = {Vt(8v ,) } lip 
v, V(8v ) (5) 

The power lip assures that the trend factor is independent of the dimension of the model. 
This means for instance that a run order 8v , with trend factor 0.5 has to be replicated 
twice in order to be equally informative as the V-optimal design 8v . It follows readily 
that a trend-free run order, i.e. a run order with F'G = 0, attains the maximum value 
TF(8v,) = 1. In situations where it is impossible to obtain completely trend-free run 
orders, TF(8vt ) will be less than 1. 

4 An adjustment algorithm 

The exchange algorithm of Tack and Vandebroek (2001) computes 'Dcoptimal run orders 
by the allocation of n observations selected from a candidate list of d distinct design points 
to n out of h available time points in such a way as to maximize optimality criterion 
(4). The number n and the list of time points are user-specified. The candidate set of 
design points is also user-specified or can be computed as follows: the number of equally 
spaced levels per factor equals two, three, four or more depending on the fact whether 
the polynomial expansion f(x) is of first, second, third or higher order respectively. For 
instance, for a second-order polynomial the three factor levels under study are -1, 0 and 
1. These three factor levels are commonly encountered in response surface methodology. 
This is due to two main reasons. Firstly, Farell et al. (1967) demonstrate that the factor 
levels of the optimal continuous design for a second-order polynomial over a hypercubic 
experimental region are -1, 0 and 1. Secondly, many practitioners prefer to use only 
a small number of distinct factor levels in order to keep the experimental effort within 
reasonable limits. 
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However, optimal design theory has shown that exact optimal designs found by searching 
over a continuous experimental region often contain other factor levels than -1, 0 and 
1. For instance, in the absence of trend effects, Box and Draper (1971) and Donev and 
Atkinson (1988) show that for some factors other levels than -1, 0 and 1 lead to more 
efficient exact designs. Box and Draper (1971) analytically compute exact V-optimal 
designs for second-order response models whereas Donev and Atkinson (1988) present 
an adjustment algorithm to improve the efficiency of V-optimal designs with or without 
fixed block effects. This is done by moving the design points along their factor axes as 
long as an increase in the V-efficiency is achieved. For a second-order polynomial model 
with uncorrelated observations and the number of factors up to five, Donev and Atkinson 
(1988) and Atkinson and Donev (1992) show that the effect of their adjustment algorithm 
is largest when the number of observations is equal to or just larger than the number of 
parameters p. For instance, for a second-order polynomial in three factors and n = p = 10, 
they obtain improvements in the V-efficiency of about 3%. For a second-order model with 
fixed block effects and one or two factors, they show that substantial gains can be realized 
when there are only a few observations per block. 

Goos (2001) investigates the gains obtained by using an adjustment algorithm to improve 
the V-efficiency of a number of different designs with fixed or random block effects. For 
a full second-order response model, improvements of up to 10% are obtained. On the 
whole, the efficiency gains of his adjustment algorithm are superior to those obtained by 
searching over a fine hypercubic grid with 11 equally spaced levels for each factor. The 
best efficiencies are achieved by using both a fine grid and the adjustment algorithm. 
Generally speaking, the combined approach gives the best results for small n, small block 
sizes and highly correlated observations. 

The previous references have clearly illustrated the large efficiency gains that result from 
using an adjustment algorithm. For that reason, the next section will present an adjust­
ment algorithm to improve the trend factors of the VI-optimal run orders computed with 
the exchange algorithm of Tack and Vandebroek (2001). 

4.1 Description of the algorithm 

It is important to point out that the adjustment algorithm to be outlined in this section 
is a generalization of the adjustment algorithms of Donev and Atkinson (1988) and Goos 
(2001) because the time points can be adjusted too. The adjustment algorithm computes 
the effect on the Vcoptimality criterion of moving any design point a small amount­
henceforth referred to as the step length-along its factor axes and of moving any time 
point a small step along the time axis. As a matter of fact, interest is only in design 
changes that lead to design points still lying within the experimental region and time 
points still belonging to [-1,1]. This means that at most 2nf modifications for the design 
points and 2n changes for the time points have to be investigated. The design modification 
that leads to the largest increase in the criterion value is carried out and the process is 
repeated until no further progress can be made. The step length is then halved and the 
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improvement process starts again. The algorithm attains its final iteration when the step 
lengths for the design points and the time points become smaller than their user-specified 
Illinimum value. 

The input to the algorithm consists of the number of factors f, the order and the number of 
parameters p of the response model, the polynomial expansion for the response model f (x), 
the order and the number of parameters q of the time trend, the polynomial expansion 
for the time trend g(t) and the number of observations n. The initial step length for the 
design points and the initial step length for the time points, henceforth denoted as 51 
and 52 respectively, have to be supplied too. The minimum step length for the design 
points and the minimum step length for the time points, referred to as 51,min and 52,min 

respectively, are also user-specified. Another input parameter specifies the design changes 
to be evaluated: only design points considered to be moved, only time points to be moved 
or both design points and time points allowed to be changed. The first option is chosen 
when the time points are fixed by the design problem at hand whereas the second option 
refers to the situation in which the different factor level combinations have already been 
chosen. The experimenter has the additional possibility to impose a minimum distance­
in the sequel of this paper denoted as MD-to be maintained between two successive 
time points. Such a situation occurs when a fixed measurement time has to be taken 
into account. Finally, the input also contains the Vcoptimal run order to be used as the 
starting run order in the adjustment algorithm. The appendix gives a formal outline of 
the adjustment algorithm. 

4.2 Update formulae 

A considerable reduction in the computation time is achieved when powerful update 
formulae are used to evaluate the effect of moving a time point or a co-ordinate of a 
design point along its axis. This is thanks to the fact that the matrices in the numerator 
and the denominator of optimality criterion (4) can be written as a sum of outer products 

H'H = L h(Xi' tk)h'(Xi' tk), 
'o'(x;.tkl 

(6) 

where h(Xi, tk) = [f'(Xi) g'(tk)l' or h(Xi' tk) = g(tk) for the numerator or the denominator 
of (4) respectively. Let the current step length for the design points and the time points 
be written as 51 and 52 respectively. After moving the rth factor of design point Xj from 
level Xj,. to level Xj,. ± 51 and time point tl to t/ ± 52, (6) becomes 

where the f-dimensional column vector e,. contains element 1 at position T and zeros 
elsewhere. According to theorem 18.1.1 of Harville (1997), the determinant of (7) can be 

6 



written as 

!H'H![{l- h'(xj, tz)(H'H)-lh(Xj, tl)} 
x {I + h' (Xj ± 81 e r , tl ± 82)(H'H)-1 h(Xj ± 81 en tl ± 82)} 

+{h'(Xj ± 81er, tz ± 82)(H'H)-lh(Xj, tl)}2]. (8) 

Based on (8), the effect on the criterion value (4) of adjusting a design point or a time point 
can readily be calculated without the need for computationally intensive determinant 
operations. 

5 Illustrative examples 

This section illustrates the utility of the adjustment algorithm described in section 4. The 
first example concerns quadratic regression in one explanatory variable. In the second 
example, adjusted run sequences for the 24 full factorial design are constructed. The 
full second-order polynomial in three factors is investigated in the third example. The 
final example traces whether the adjustment algorithm serves as a valid alternative to the 
exchange algorithm of Tack and Vandebroek (2001) when the total computation time has 
to be kept low. 

5.1 Quadratic regression III one variable 

Consider the problem of designing an experiment for the estimation of a quadratic model 
f(x) = [1, X, x 2]' and coded factor levels -1, 0 and 1. Use is made ofthe exchange algorithm 
of Tack and Vandebroek (2001) to compute Vt-optimal run orders for postulated time 
trends of first, second, third and fourth order, denoted as gl(t), g2(t), g3(t) and g4(t) 
respectively. The design sizes equal n = 7, n = 8, n = 9 or n = 10 and there are as 
much equally spaced time points between -1 and 1. The trend factors of the computed 
Vt-optimal run orders bVt are given in table 1 in the columns with label TF(5v ,). For 
instance, for n = 7 and n = 9 the Vroptimal run orders are completely trend-free for 
a linear time trend gl(t). However, the Vroptimal run orders are poorly balanced for 
higher-order time trends. 

It will now be investigated whether an adjustment of the time points leads to an increase 
in the trend factors of the VI-optimal run orders or not. Therefore, the adjustment 
algorithm is used with the initial step length for the time points S2 = 2, the minimum 
step length S2,min = 10-5 and the minimum distance MD = 10-5 . The trend factors of the 
adjusted run orders badj are also given in table 1. It can easily be seen that considerable 
increases in the trend factors are achieved. For instance, adjusting the time points of 
the Vt-optimal run order for 17, = 7 and time trend g2(t) augments the trend factor from 
0.712 to 0.752. This is an improvement of about 5.6%. The increase in the trend factor 
is largest for the run orders computed with time trend g4(t). In that case improvements 
of up to 30% are observed. 
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Table 1: Trend factors of the 'Droptimal run orders and the adjusted run orders for 
quadratic regression in one variable and different numbers of observations 

n=7 n=8 n=9 n = 10 
TF(ov,) TF(oadj) TF(ov,) TF(oadj) TF(ov,) TF(oadj) TF(ov,) TF(oadj) 

gl (t) 1.000 1.000 0.999 1.000 1.000 1.000 0.999 1.000 
g2(t) 0.712 0.752 0.743 0.817 0.753 0.818 0.754 0.846 
g3(t) 0.677 0.689 0.706 0.763 0.705 0.763 0.731 0.793 
g4(t) 0.451 0.591 0.545 0.688 0.559 0.689 0.579 0.725 

As an illustration, the time points of the adjusted run orders for n = 7, n = 8, n = 9 
and n = 10 are given in figure 1 to figure 4 respectively. The adjusted time points are 
indicated by means of small vertical dashes. For a linear time trend gl(t) and any number 
of observations n, the time points are approximately uniformly spread over the entire time 
range [-1,1]. This observation closely resembles the usual assumption of equally spaced 
time points between -1 and 1. However, the figures reveal that this assumption is no 
longer optimal for higher-order time trends. For instance, it can clearly be seen that for 
time trend g4(t) the time points are more concentrated around t = 0 and the boundaries 
t = -1 and t = 1. 

(a) gl(t) 
-1 

(b) g2(t) I I 
-1 0 

(c) g3(t) ! 
-1 0 

(d) g4(t) ! I II I! 
-1 0 

Figure 1: Time points of the adjusted run orders for quadratic regression in one variable 
and n = 7 
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(a) gl(t) 
-1 0 

(b) g2(t) II II 
-1 0 

(c) g3(t) ! 
-1 0 

(d) g4(t) !I I! 
-1 0 

Figure 2: Time points of the adjusted run orders for quadratic regression in one variable 
and n = 8 

(a) gl(t) ! 
-1 0 

(b) g2(t) II 
-1 0 

(c) g3(t) II II 
-1 0 

(d) g4(i) !I I! I I! 
-1 0 

Figure 3: Time points of the adjusted run orders for quadratic regression in one variable 
and n = 9 
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(a) gl(t) 
-1 0 

(b) g2(t) II 
-1 0 

(c) g3(t) 
-1 0 

(d) g4(t) 
-1 0 

Figure 4: Time points of the adjusted run orders for quadratic regression in one variable 
and n = 10 

It is interesting to note that in almost every case an adjustment of the design points -1, 
o and 1 of the 1\-optimal run orders also has a positive effect on the criterion value. 
For instance, whereas the V-optimal design for a quadratic regression in one variable 
and n = 9 observations has three observations at each of the levels -1, 0 and 1, the 
corresponding adjusted run order for time trend g4(t) possesses the levels -1, -0.297, -
0.016, 0.063 and 1. As compared to the Vcoptimal run order for the candidate set -1, 0 
and 1, the improvement in the trend factor amounts to 0.7%. Although the improvements 
are very small, the important conclusion is that trend-robust run orders do not necessarily 
have the same support as their V-optimal counterparts. 

5.2 The 24 factorial design 

The aim of this example is to verify whether the benefit of the adjustment algorithm can 
be generalized to any initial step length 52 and minimum distance MD. This example 
starts with the computation of Vcoptimal run orders for the 24 full factorial design with 
polynomial expansion 

24 = 16 observations, as much equally spaced time points between -1 and 1 and postulated 
time trends gl (t), g2 (t), g3 (t) and g4 (t). The trend factors of the Vcoptimal run orders 
are 1, 0.900, 0.849 and 0.758 respectively. It follows that for time trends of order two or 
higher complete trend-resistance cannot be attained. 

The adjustment algorithm is again used to trace whether improvements in the trend 
factors of the Vt-optimal run orders for time trends g2(t), g3(t) and g4(i) can be obtained. 
When only the design points of the Vt-optimal run orders are subject to adjustment, no 
improvements in the trend factors could be achieved. This result does not come as a 
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surprise since the 24 full factorial design is a 'V-optimal design. An adjustment of the 
time points is also investigated and the results are shown in table 2. 

Table 2: Trend factors of the 'Vcoptimal run orders and the adjusted run orders for the 
24 full factorial design and initial step length S2 = 0.10 

TF(c5adj ); MD = 
TF( c5v ,) 0.00 0.02 0.04 0.06 0.08 0.10 

g2(t) 0.900 0.903 0.903 0.903 0.903 0.903 0.902 
g3(t) 0.849 0.871 0.868 0.865 0.863 0.861 0.858 
g4(t) 0.758 0.808 0.803 0.794 0.790 0.786 0.778 

Each row refers to the adjusted run orders for a particular time trend and displays the 
trend factors for several minimum distances MD and initial step lengths S2 = 0.10. It 
is important to note that the results are independent of the initial step length S2' The 
minimum step length for the time points was set equal to S2,min = 10-5 . The table shows 
that for all cases investigated an adjustment of the time points leads to an improvement 
in the trend factor. Consequently, it again follows that the usual assumption of equally 
spaced time points is not always the best one. For instance, for a second-order time trend 
g2(t) and minimum distance MD equal to 0.00, the upper left cell shows that the trend 
factor of the adjusted run order is 0.903. As compared to the trend factor 0.900 of the 
corresponding 'Vcoptimal run order, this is only a small improvement. The increases in the 
trend factor are more pronounced as the order of the postulated time trend grows larger. 
For instance, for time trend g4(t) and minimum distance MD = 0.00, improvements of 
more than 6.5% are achieved. As a matter of fact, the smaller the minimum distance 
to be maintained between two successive time points, the larger the improvement in the 
trend factor. 

As an illustration, for the postulated time trends g2(t), g3(t) and g4(t), the time points of 
the adjusted run orders are displayed in figure 5, figure 6 and figure 7 respectively. The 
adjusted time points are again indicated by means of small vertical dashes. As a matter of 
fact, the smaller the minimum distance to be maintained between successive time points, 
the less the adjusted time points are equally spaced. 

5.3 The 33 factorial design 

In this section the effect of adjusting the design points will be investigated. Attention is 
restricted to experiments in which three factors are presumed to influence the response 
of interest, the polynomial expansion 
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1_ \ 10. Jfl\ n nn 
\ eL) lV1V = V.VV Ii i i i 

-1 0 

(b) MD = 0.02 = H II II I I II II 
-1 

(C) MD = 0.04 = H II I II II I I I 
-1 0 

(d) MD = 0.06 = H I I I I I I I I I I 
-1 

(e) MD = 0.08 = H I I I I I I I I I I 
-1 0 

(f) MD = 0.10 = f----l 
-1 

Figure 5: Time points of the adjusted run orders for the 24 full factorial design, time 
trend g2(t) and initial step length 0.10 

(a) MD = 0.00 
-1 

(b) MD = 0.02 = H III IIII IIII III 
-1 0 

(c) MD = 0.04 = H III III I IIII III 
-1 0 

(d) MD = 0.06 =H I I I I I I I I I I I I I I 
-1 0 

(e) MD = 0.08 = H I I I I I I I I I I I I I I 
-1 0 

(f) MD = 0.10 = f----l 
-1 

Figure 6: Time points of the adjusted run orders for the 24 full factorial design, time 
trend g3(t) and initial step length 0.10 
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(a) MD = 0.00 II II II I 
-1 0 

(b) MD = 0.02 = H ! II I I I I II II 
-1 

(c) MD = 0.04 = H II I I I I I, I I I II 
-1 0 

(d) MD = 0.06 = H I I I I I I I I I I I I 
-1 0 

(e) MD = 0.08 = H I I I I I I I I I I I 
-1 0 

(f) MD = 0.10 = I-l 
-1 0 

Figure 7: Time points of the adjusted run orders for the 24 full factorial design, time 
trend g4(t) and initial step length 0.10 

33 = 27 observations and h = 27 equally spaced time points between -1 and l. The 
postulated time trends are again written as gl(t), g2(t), g3(t) and g4(t). The trend 
factors of the Vt-optimal run orders for the full 33 factorial design equal 0.9413, 0.8677, 
0.8663 and 0.8230 for the respective time trends. 

In the sequel of this example, three different approaches will be investigated to improve 
the trend-resistance of the Vt-optimal run orders of the 33 full factorial design. Firstly, 
the adjustment algorithm is applied to the Vcoptimal run orders computed with d = 27 
and h = 27. The initial step lengths for the design points and the time points are set 
equal to SI = 0.5 and S2 = 0.05 respectively. Since the design points of the 33 factorial 
design do not constitute a V-optimal design, improvements in the trend factor can be 
expected if the design points are considered to be adjusted. The results are given in table 
3. Each panel refers to the run orders for a particular time trend. The last three lines of 
each panel are related to the adjusted run orders. The table shows that for a linear time 
trend gl(t) the adjustment algorithm does not lead to an improvement in the trend factor 
of the Vt-optimal run order with d = 27 and h = 27. For higher-order time trends, the 
adjustment algorithm yields an improvement. For instance, adjusting the time points of 
the Vt-optimal run order for time trend g2(t), d = 27 and h = 27 gives a run order with 
trend factor 0.9004. The best results are obtained when both the time points and the 
design points are considered to be adjusted. In that case, improvements of up to 7% are 
achieved. This once more demonstrates that the Vcoptimal run orders are in fact only 
optimal for the specified set of design points and time points. 
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Secondly, the use of a finer grid for the design points or the time points in the exchange 
algorithm is also studied. Three fine grids are investigated: one with d = 27 design points 
and h = 41 equally spaced time points between -1 and 1, one with d = 125 design points 
on a regular 5 x 5 x 5 grid and h = 27 time points and one with d = 125 design points and 
h = 41 equally spaced time points. The trend factors of the corresponding 'Dcoptimal run 
orders are given by the last three numbers in the fourth row of each panel. The largest 
improvement occurs for time trend g4(t), d = 125 and h = 41 and is slightly more than 
5%. 

Finally, the best results are obtained when a search over a fine grid is combined with 
the adjustment algorithm. This is illustrated in the last three rows and columns of each 
panel. The most striking improvement is when both the time points and the design points 
are considered for adjustment. As compared to the trend factors of the 'Dcoptimal run 
orders computed over the coarse grid with d = 27 and h = 27, improvements of up to 
13% are observed. 

5.4 Computational aspects of the adjustment algorithm 

In this example focus is again on design problems for the second-order response function 
in three factors 

time trends gl(t), g2(t), g3(t) and g4(t), n = 27 observations and h = 27 equally spaced 
time points between -1 and 1. The design points are taken from the regular 3 x 3 x 3 
grid or from the regular 5 x 5 x 5 grid. The number of different design points then 
equals d = 33 = 27 or d = 53 = 125 respectively. The exchange algorithm of Tack and 
Vandebroek (2001) is used to compute 'Dcoptimal run orders OVt for both grids and the 
results are given in table 4. The first panel of the table shows the trend factors of the 
computed run orders, whereas the second panel displays the average computation times 
per try. The best protection against time trend effects is obtained when a fine grid for the 
candidate points is used (i.e. d = 125 instead of d = 27). For instance, the 'Dcoptimal 
run order for a second-order time trend and d = 27 has trend factor 0.9217, whereas the 
trend factor of the corresponding run order for d = 125 has trend factor 0.9637. However, 
this increase in the protection against temporal dependence goes at the expense of the 
computation time; the computation of the 'Dt-optimal run order with d = 27 takes on 
the average 6.2 seconds, whereas the computation time of the 'Dcoptimal run order for d 
= 125 is about 100 times larger. It follows that for a fine grid of the design points (Le. 
for large values of d) the exchange algorithm becomes very slow. Consequently, when the 
total computation time is an important issue to be considered, there is a strong need for a 
worthy alternative to compute trend-robust run orders within a reasonable computation 
time. It is now interesting to investigate whether the adjustment algorithm can be used 
for that purpose or not. The 'Dt-optimal run orders for d = 27 are therefore used as the 
starting run orders in the adjustment algorithm. Only the design points can be adjusted 
and their initial step and minimum step are specified large enough to assure that the 
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Table 3: Trend factors of the Vroptimal run orders and the adjusted run orders for the 
full second-order response model in three factors and n = 27 and for different numbers of 
design points and time points 

gl (t) 
d 27 27 125 125 
h 27 41 27 41 
Vroptimal run order 0.9413 0.9413 0.9519 0.9519 
adjustment of time points 0.9413 0.9413 0.9519 0.9519 
adjustment of design points 0.9413 0.9413 0.9964 0.9956 
adjustment of time points and design points 0.9413 0.9413 0.9969 0.9967 

g2(t) 
d 27 27 125 125 
h 27 41 27 41 
Vt-optimal run order 0.8677 0.8992 0.8773 0.9097 
adjustment of time points 0.9004 0.9109 0.9121 0.9213 
adjustment of design points 0.8677 0.8993 0.9139 0.9461 
adjustment of time points and design points 0.9275 0.9370 0.9600 0.9580 

g3(t) 
d 27 27 125 125 
h 27 41 27 41 
Vroptimal run order 0.8663 0.8895 0.8765 0.9005 
adjustment of time points 0.8922 0.9005 0.9116 0.9139 
adjustment of design points 0.8667 0.8899 0.9053 0.9402 
adjustment of time points and design points 0.9172 0.9012 0.9390 0.9562 

g4(t) 
d 27 27 125 125 
h 27 41 27 41 
Vt-optimal run order 0.8230 0.8552 0.8317 0.8652 
adjustment of time points 0.8756 0.8797 0.8855 0.8924 
adjustment of design points 0.8238 0.8561 0.8575 0.8919 
adjustment of time points and design points 0.8776 0.8810 0.9159 0.9283 
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support points of the adjusted run orders form part of the regular 5 x 5 x 5 grid. This 
assures a valid comparison between the adjusted run orders and the Vroptimal run orders 
for d = 125. The trend factors of the adjusted run order::; Dadj are shown in the last column 
of the first panel. For instance, the adjusted run order for g2(t) has trend factor 0.9536, 
which is very close to trend factor 0.9637 of the Vroptimal run order computed with 
d = 125. Since the computation time for the adjustment algorithm is negligible to that of 
the exchange algorithm for large numbers of tries, the computation time of the adjusted 
run order is only a negligible amount larger than 6.2 seconds. This is much less than the 
60l.2 seconds needed for the corresponding Vt-optimal run order. It follows that at least 
for h = 27 and a second-order time trend, the adjustment algorithm is very suitable to 
compute good run orders when the computation time is an important issue. A similar 
conclusion can be drawn for the other time trends. 

Table 4: Trend factors and computation times of the Vcoptimal run orders and the 
adjusted run orders for the full second-order response model in three factors, n = 27 and 
h = 27 

trend factor computation time (sec) 
DDt (d = 27) DDt (d = 125) Dadj DDt (d = 27) DDt (d = 125) Dadj 

gl (t) l.0000 l.0000 l.0000 3.1 274.8 3.1 
g2(t) 0.9217 0.9637 0.9536 6.2 60l.2 6.2 
g3(t) 0.9202 0.9501 0.9410 7.6 567.0 7.6 
g4(t) 0.8690 0.9189 0.9045 7.7 544.7 7.7 

The next example compares the adjustment of the Vt-optimal run orders computed with 
d = 27 and h = 27 with the Vroptimal run orders for d = 27 and h = 53. The former ones 
are used as input to the adjustment algorithm and to make the comparison valid, only 
the time points are allowed to be adjusted. Besides, the parameters of the adjustment 
algorithm are specified such that the time points of the adjusted run orders form part of 
the set of time points of the Vroptimal run orders for h = 53. The results are given in 
table 5. For instance, the trend factor of the adjusted run order for a quadratic time trend 
is equal to 0.9536, which is again very close to trend factor 0.9638 of the corresponding 
Vcoptimal run order with h = 53. The computation time of the adjusted run order is 
much lower than that of the Vcoptimal run order, namely 6.2 seconds is almost negligible 
as compared to 131. 7 seconds. Similar conclusions hold for the other trend functions. 

As a final illustration consider the comparison between run orders with possibly repli­
cated observations and run orders without replicated observations. The number of design 
points and time points equals d = 27 and h = 53 respectively. The results are given in 
table 6. Taking into account the possibility for replicated observations naturally involves 
an improvement in the balance for time trend effects. For instance, the trend factor of 
the Vt-optimal run order for gl(t) without replicated observations is equal to 0.9413, 
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Table 5: Trend factors and computation times of the 'Droptimal run orders and the 
adjusted run orders for the full second-order response model in three factors, n = 27 and 
d = 27 

trend factor computation time (sec) 
DDt (h = 27) DDt (h = 53) Dadj DDt (h = 27) DDt (h = 53) Dadj 

gl (t) 1.0000 1.0000 1.0000 3.1 38.2 3.1 
g2(t) 0.9217 0.9638 0.9536 6.2 131.7 6.2 
g3(t) 0.9202 0.9501 0.9410 7.6 99.4 7.6 
g4(t) 0.8690 0.9193 0.9075 7.7 100.3 7.7 

whereas allowing replicated observations leads to a completely linear-trend free run order. 
However, taking into account replicated observations goes at the cost of the computation 
time. Applying the adjustment algorithm-with the parameters set to allow replicated 
observations-to the 'Droptimal run order without replicates augments the trend factor to 
0.9926, which approximates complete trend-resistance. The computation time of the ad­
justed run order is again much lower than that of the 'Droptimal run order with replicated 
observations. The conclusions can be generalized to the higher-order time trends. 

Table 6: Trend factors and computation times of the 'Droptimal run orders and the 
adjusted run orders for the full second-order response model in three factors, n = 27, d 
= 27 and h = 53 

trend factor computation time (sec) 
DDt (no rep!.) DDt (rep!.) Dadj DDt (no rep!.) DDt (rep!.) Dadj 

gl (t) 0.9413 1.0000 0.9926 3.8 38.2 3.8 
g2(t) 0.9090 0.9638 0.9544 14.0 131.7 14.0 
g3(t) 0.8959 0.9501 0.9327 14.2 99.4 14.2 
g4(t) 0.8682 0.9193 0.8978 11.3 100.3 11.3 

Summing up, this example has clearly illustrated that it is recommended to use the 
adjustment algorithm in addition to the exchange procedure when the computation time 
is an important issue. The resulting outperformance in computation time goes at the 
expense of the trend-resistance but the loss is only moderate. 
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6 Conclusion 

This paper has proposed an adjustment algorithm to improve the trend factors of the 
'Droptimal run orders computed with the exchange algorithm. This is done by moving 
the design points and/or the time points of the predefined candidate set along their 
axes. Only design modifications that improve the 'Dt-criterion value are accepted. The 
computational results have shown that an adjustment of the design points and/or the time 
points considerably increases the protection against time dependent results. Besides, it 
has been illustrated that the assumption of equally spaced time points is in general not a 
good one and that the adjustment algorithm is very useful to compute the optimal time 
points. Finally, instead of using a conventional exchange procedure to compute run orders 
over a fine grid, the use of the adjustment algorithm in addition to an exchange procedure 
over a coarse grid is very recommendable in situations where the aim is to obtain good 
run orders at an acceptable computation time. 
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Appendix. The design algorithm 

In the outline of the algorithm, the starting run order is written as R = {(Xi, tjl) and 
the criterion value will be denoted as Q. The initial step lengths for the design points 
and the time points are denoted as Sl and S2 respectively. The minimum step lengths 
are written as 31,min and 32,min respectively. Finally, Vi = 1 indicates that design points 
are considered to be adjusted, whereas the opposite holds for Vi "# 1. In a similar way, 
the value of parameter V2 indicates whether the time points are considered for adjustment 
or not. The values of Vi and V2 are of course user-specified. The practitioner has the 
additional possibility to impose a minimum distance to be maintained between any two 
successive time points. To preserve clarity, this option is left out from the outline. The 
output of the algorithm consists of the adjusted run order Ropt and its corresponding 
criterion value Qopt. After reading the input, the algorithm proceeds as follows: 

2. Compute the criterion value Q of the starting run order R. 

3. Set Qopt = Q and R opt = R. 

4. Adjust the run order: 

(a) Set 6 1 = 1. 

(b) If Vi = 1, then find the best change in design points: 

VXi E R, Vj E {I, ... ,J}: 

• If Xij - 31 ;::: -1, compute the effect 6 on Qopt of changing Xij to Xij - 31. 

If 6> 6 1 then set 6 1 = L, Wll = -1, al = i and bl = j. 
• If Xij + 31 ::; 1, compute the effect 6 on Qopt of changing Xij to Xij + 31. 

If 6 > 6 1 then set 6 1 = 6, Wll = 1, al = i and bl = j. 

(c) Set 6 2 = 1. 

(d) If V2 = 1, then find the best change in time points: 

Vt", E R: 

• If tk - 32;::: -1, compute the effect 6 on Qopt of changing tk to the - 32· 

If 6> 6 2 then set 6 2 = 6, W22 = -1 and C2 = k. 

• If tk + 82 ::; 1, compute the effect 6 on Qopt of changing tk to h + 32· 

If 6 > 6 2 then set 62 = 6, W22 = 1 and C2 = k. 

(e) Set 6 3 = 1. 

(f) If Vi = 1 and V2 = 1, then find the best change in design points and time 
points: 

V(Xi' tk) E R, Vj E {I, ... ,J}: 
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• If Xij-81 2: -1 and tk-82 2: -1, compute the effect I:::. on Qopt of changing 
Xij to Xij - 81 and tk to tk - 82· 

If I:::. > 1:::.3 then set 1:::.3 = 1:::., W31 = -1, W32= -1, a3 = i, b3 = j and 
C3 = k. 

• If Xij - 81 2: -1 and tk + 82 :'S: 1, compute the effect I:::. on Qopt of changing 
Xij to Xij - 81 and tk to tk + 82. 

If I:::. > 1:::.3 then set 1:::.3 = 1:::., W31 = -1, W32 = 1, a3 = i, b3 = j and C3 = k. 
• If Xij + 81 :'S: 1 and tk - 82 2: -1, compute the effect I:::. on Qopt of changing 

Xij to Xij + 81 and tk to tk - 82· 

If I:::. > 1:::.3 then set 1:::.3 = 1:::., W31 = 1, W32 = -1, a3 = i, b3 = j and C3 = k. 
• If Xij + 81 :'S: 1 and tk + 82 :'S: 1, compute the effect I:::. on Qopt of changing 

Xij to Xij + 81 and tk to tk + 82. 

If I:::. > 1:::.3 then set 1:::.3 = 1:::., W31 = 1, W32 = 1, a3 = i, b3 = j and C3 = k. 

5. Compute I:::. = max(1:::. 1 , 1:::. 2 , 1:::.3)' 

6. If I:::. > 1 then 

(a) If I:::. = 1:::. 1 , then replace Xa,b, with Xa,b, + W1l81 and go to (d). 

(b) If I:::. = 1:::. 2 , then replace te2 with te2 + W2282 and go to (d). 

(c) If I:::. = 1:::. 3 , then replace Xa3 b3 with Xa3b3 + W3181 and te3 with te3 + W3282. 

(d) Update Qopt. 

(e) Go to 4. 

7. Reduce the step lengths: 

(a) If V1 = 1, V2 =f. 1 and 81/2 2: 81,min, then 

i. Set 81 = 81/2. 

ii. Go to 4. 

(b) If V1 =f. 1, V2 = 1 and 82/22: 82,min, then 

i. Set 82 = 82/2. 

ii. Go to 4. 

(c) If V1 = 1, V2 = 1 and (81/22: 81,min or 82/2 2: 82,min), then 

i. If s1/2 2: Sl,min then set 81 = 81/2. 

ii. If 82/2 2: 82,min then set 82 = 82/2. 

iii. Go to 4. 

8. Write Qopt and Rapt. 

The algorithm is implemented in Fortran 77 and makes use of the library Netlib of Bell 
Labs. It uses predefined routines to factor a symmetric matrix, to compute the deter­
minant of a factored symmetric matrix, to invert a symmetric matrix and to generate 
random numbers. 
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