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Abstract

The traditional approach to discriminate amongst two competing hedging strategies is to com-
pare the sample portfolio return variance implied by each strategy. This simple approach suffers
from two drawbacks. First, it is an unconditional performance measure which is theoretically
not coherent with a dynamic hedging strategy that minimizes the conditional portfolio return
variance. Second, estimating unconditional performance over the entire period may not be
sufficient since a strategy with a good unconditional hedging performance may not perform
well at a particular point in time. In this paper, I use the Giacomini and White (2006), the
Wald, and the Diebold and Mariano (1995) statistical tests in order to conditionally (and as a
special case, unconditionally) compare the portfolio return variances implied by two compet-
ing hedging strategies. The attractive feature of the conditional perspective is that, in case of
rejection of equal conditional hedging effectiveness among two initial strategies, it provides us
with a new hedging strategy that selects at each date the initial strategy that will perform the
best next period, conditional on current information. An application to several agricultural
commodities illustrates the technique. For daily hedging horizons, it is found that most of the
time Ederington’s (1979) static strategy is superior to more elaborate dynamic strategies. This
calls into question earlier results reported in the literature that were based on a much smaller
database.
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1 Introduction

Traditionally, the hedge ratio is determined by the slope of the OLS regression of the spot

returns on the futures returns (and a constant) (Johnson, 1960; Stein, 1961; Ederington, 1979).

The resulting hedge ratio is static, minimizes the unconditional variance of the portfolio and is

often used as a benchmark. This approach, however, ignores the conditional heteroskedasticity

in the returns. As a result, recent research focusses on the determination of time-varying

optimal hedge ratios, minimizing the conditional variance of the portfolio return.

Numerous studies on hedging allow the joint distribution of spot and futures returns to vary

over time (for short reviews, see Lien and Tse, 2002; or Chen, Lee and Shrestha, 2003). The

bulk of the literature estimates dynamic hedge ratios using a conditional distribution associated

with a bivariate GARCH (BGARCH) model. For instance, Baillie and Myers (1991), Myers

(1991), Bera, Garcia and Roh (1997) and Haigh and Holt (2002) estimate time-varying hedge

ratios in commodity markets; Kroner and Sultan (1993) in foreign exchange markets; Park and

Switzer (1995) and Lafuente and Novales (2003) in stock markets; Lien, Tse and Tsui (2002)

in all of the above markets; Gagnon and Lypny (1995) in fixed-income markets and Byström

(2003) in electricity markets.

In order to rank two competing strategies, the traditional approach is to compute the

ratio of the sample unconditional return variance of the first strategy to that of the second.

However, this simple measure suffers from two major drawbacks. First, it is an unconditional

measure. Evaluating a dynamic strategy resulting from the minimization of the conditional

portfolio return variance by means of the implied unconditional portfolio return variance is not

adequate. Secondly, it is an empirical fact that any return on a traded asset and, by extension,

any portfolio return, exhibits conditional heteroskedasticity. Thus, at any particular moment in

time, when comparing two minimum variance (conditional or unconditional) hedging strategies,

the hedger should pay attention to the relative risk reduction in terms of the conditional

portfolio return variances, instead of solely focussing on comparing unconditional portfolio

return variances. Said differently, simply checking unconditional relative performance is not

sufficient since a hedging strategy with a good unconditional relative hedging performance may

nevertheless have a poor conditional relative hedging performance at any particular moment.

In this paper, I use the Giacomini and White (2006), the Wald, and the Diebold and

Mariano (1995) statistical tests in order to compare the portfolio return variances implied by

two competing hedging strategies conditionally (and as a special case, unconditionally). The
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attractive feature of the conditional perspective is that, in case of rejection of equal conditional

hedging effectiveness among two initial strategies, it provides us with a new hedging strategy

that selects at each date the initial strategy that will perform best next period, given current

information. An application to several agricultural commodities illustrates the technique.

The remainder of this paper is structured as follows. Section 2 discusses some existing

hedging strategies. Section 3 presents a methodology to evaluate conditional hedging effec-

tiveness. Section 4 applies this methodology to agricultural commodity data and section 5

concludes.

2 Standard hedging strategies

I begin with a brief discussion on standard hedging strategies in order to establish ideas and

fix notations.

Consider an agent with a one-period hedging horizon who wants to place a hedge on a long

spot position. Let st denote the log of the spot price and ft the log of the nearest-to-maturity

futures price.1 Assume that the agent has a portfolio with a long position of one unit in the

spot market and a short position of ht−1 units in the futures contract. At time t, the return

of the portfolio is

rt (ht−1) = ∆st − ht−1∆ft. (2.1)

The hedge ratio ht−1 has to be determined in some optimal way. On the one hand, John-

son’s (1960), Stein’s (1961) and Ederington’s (1979) (henceforth ED) approach minimizes the

unconditional variance of the portfolio return to derive the optimal static hedge ratio

h∗ =
cov (∆st,∆ft)

var (∆ft)
. (2.2)

Sercu and Wu (2000) extend this approach in order to pick up the lead-lag relationships

between ∆st and ∆ft. They derive the following static hedge ratio based on the Scholes-

Williams estimator:

h∗∗ =
cov (∆st,∆ft−1 +∆ft +∆ft+1)

cov (∆ft,∆ft−1 +∆ft +∆ft+1)
.

On the other hand, a large literature initiated by Baillie and Myers (1991) allows the ED

1For notational convenience and since only the nearest-to-maturity futures contract is used, I use ft instead
of ft,T , the log of the futures price maturing on date T .
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minimum variance hedge ratio to vary over time. The dynamic version of h∗ is given by:

h∗t−1 =
cov (∆st,∆ft|It−1)
var (∆ft|It−1)

, (2.3)

where It−1 is the information set available at time t − 1. The major issue then becomes the
choice of the BGARCH model to estimate the conditional (co)variances. Other more tractable

approaches that take into account the time-varying nature of the hedge ratio have also been

proposed. For instance, Miffre (2004) modifies ED’s traditional OLS-based estimation method

to incorporate conditional information and Bera, Garcia and Roh (1997) introduce a random

coefficient autoregressive model to estimate the dynamic hedge ratio in (2.3).

As we have seen there are a lot of available strategies to choose from. A strategy should be

preferred if it leads to greater reduction of risk. Risk measurement is the subject of the next

section.

3 A method to compare conditional hedging effectiveness and

a new dynamic strategy

I split the data sample in two parts, an in-sample and an out-of-sample part. The in-sample

observations t = 1, ..., Tin are used to estimate the optimal hedging strategies. The out-of-

sample observations t = Tin + 1, ..., T are used to compare hedging effectiveness. Let Tout ≡
T − Tin be the out-of-sample size.

Assume we can choose between two competing hedging strategies, h1 and h2, prescribing

a hedge ratio at each time, conditional on available information at that time. Let r2t
(
h1
)

and r2t
(
h2
)
be the squared demeaned out-of-sample portfolio return implied by h1 and h2,

respectively. It is well known that these are unbiased estimates of the true conditional variances.

See Andersen and Bollerslev (1998) or Diebold and Lopez (1996), for instance.

In order to measure conditional hedging effectiveness, the conditional portfolio return vari-

ances implied by each strategy is compared. Denote the difference in squared returns by

dt ≡ r2t
(
h1
)
− r2t

(
h2
)
. The null hypothesis of equal conditional hedging effectiveness is then

formulated as

H0 : E [dt|It−1] = 0. (3.4)

The motivation behind conditional testing is that it represents the real-time problem of a hedger

in deciding which of the two strategies reduces the next period portfolio return variance most,

conditional on current information. In order to achieve that objective, a set of unconditional
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moment conditions are derived from H0. Suppose zt−1 is a q × 1 vector included in the
information set and let Zt ≡ zt−1dt be a q × 1 vector. Then, by the law of total expectations,
H0 implies

2

H0,z : E [Zt] = 0. (3.5)

Giacomini and White (2006) (GW) constructed a test of H0,z against the two-sided alternative

H1,z : E [Zt]
′E [Zt] > 0.

The GW test is based on the Wald-type statistic

GWz ≡ ToutZ̄
′Σ̂−1Z̄, (3.6)

where Z̄ ≡ T−1out
∑T
t=Tin+1

Zt is a q × 1 vector and Σ̂ ≡ T−1out
∑T
t=Tin+1

ZtZ
′
t is a q × q matrix

estimating the variance of Zt. UnderH0,z, GWz
d→ χ2(q). The test will rejectH0,z, and therefore

H0, at the level α whenever GWz > χ2q,1−α, where χ2q,1−α is the (1− α)-quantile of the χ2(q)

distribution.

This test deserves some comments:

1. In the application, I choose the variables zt−1 from the information set that have potential

explanatory power for predicting the difference in the squared returns. As it is often the

case in finance, it is assumed that all existing information is included in the first lag and

zt−1 is chosen to be
3

zt−1 ≡ (1,∆st−1,∆ft−1,∆st−1∆ft−1, ft−1 − st−1)
′ . (3.7)

2. There is a relation between the Diebold and Mariano (1995) (DM) unconditional test and

the GW conditional test. The DM approach is concerned with testing the null hypothesis

of equal unconditional hedging effectiveness, i.e.

H0,DM : E [dt] = 0. (3.8)

Under H0,DM , the statistic

DM ≡
√
Toutd̄√

L̂RV (dt)

d→ N (0, 1) , (3.9)

2H0 and zt−1 ⊂ It−1 imply that E [zt−1dt|It−1] = 0. Taking the unconditional expectation on both sides
gives H0,z.

3Alternative choices such as zt−1 being quadratic in returns or a function of past relative performance have
been tried. However, all of them predicted dt less accurately than (3.7).
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where d̄ ≡ T−1out
∑T
t=Tin+1

dt and L̂RV (dt) is an estimate of the long-run variance of

dt. Note that H0 implies H0,DM . Furthermore, H0 implies that dt and dt′ have zero

covariance for t �= t′, so the long-run variance of dt equals the variance of dt′ . If the

DM test is implemented with the latter restriction, it is a special case of the GW test,

corresponding to the choice zt−1 = 1. Consequently, if 1 ∈ zt−1, H0,z cannot hold

if H0,DM does not hold, so a rejection of H0,DM logically implies a rejection of H0,z

(although there is a probability that the test outcomes violate the logical implication).

Note also that the conditional hedging literature initiated by Baillie and Myers (1991)

sticks to the null hypothesis (3.8) since the relative performance is traditionally measured

by the implied out-of-sample return variance difference or ratio (but they don’t, strictly

speaking, test H0,DM).

3. Both the GW statistic (3.6) and the DM statistic (3.9) can be computed using standard

regression packages. Define Z ≡
(
dTin+1z

′
Tin

· · · dT z
′
T−1

)′
, a Tout × q matrix and ι,

a Tout × 1 vector of ones. As it is discussed in Comment 4 of GW, the GW statistic can

be rewritten as

GWz = Tout
ι′Z

Tout

(
Z ′Z

Tout

)−1
Z′ι

Tout

= Tout
ι′Z (Z′Z)−1Z ′ι

ι′ι
(3.10)

= ToutR
2,

where R2 is the uncentered square multiple correlation coefficient for the artificial regres-

sion ι = Zγ + ε. The DM statistic can be written as the t-statistic in a regression of dt

on a constant with Newey-West standard error.4

4. Rejection of equal conditional hedging effectiveness does not indicate per se which strat-

egy reduces the risk best next period. But it indicates that zt−1 contains information

about the expected relative performance of the two competing hedging strategies. In

other words, rejecting H0,z implies that

E [dt|zt−1] � β̂
′
zt−1 �= 0, (3.11)

where β̂ denotes the OLS regression estimate of dt on zt−1, over the out-of-sample period.

The sign of β̂
′
zt−1, computed at time t − 1, indicates the direction of the rejection

4 In the application, the default truncation lag in EViews is used to compute the Newey-West standard error.
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of the two-sided GW test: a negative (positive) sign indicates that strategy h1 would

conditionally outperform (will be outperformed by) strategy h2 at time t. Remark also

that the sign of

d̄ ≡ T−1out

T∑

t=Tin+1

dt = T−1out

T∑

t=Tin+1

β̂
′
zt−1

indicates the direction of the rejection of the two-sided DM test.

5. There is a relation between the Wald test implemented using the White heteroskedasticity

consistent covariance estimator and the GW test. The GW statistic in (3.10) can be

rewritten as

GWz = ι′Z




T∑

t=Tin+1

(dtzt−1) (dtzt−1)
′



−1

Z′ι.

Consider the regression (3.11). That is, d = Xβ + ε, where X ≡
(
zTin · · · zT−1

)′

is a Tout × q matrix. The heteroskedasticity consistent Wald statistic testing the null

hypothesis β = 0 is given by

Wz ≡ β̂
′ (
X ′X

)



T∑

t=Tin+1

(êtzt−1) (êtzt−1)
′



−1

(
X ′X

)
β̂

= d′X




T∑

t=Tin+1

(êtzt−1) (êtzt−1)
′



−1

X ′d

= ι′Z




T∑

t=Tin+1

(êtzt−1) (êtzt−1)
′



−1

Z′ι (3.12)

where êt = dt − β̂
′
zt−1. It thus follows that Wz equals GWz when the robust variance of

β̂ is computed under the null H0,z, that is, when êt is replaced by dt in (3.12). In the

application, both GWz and Wz are reported.

6. Rejection of the null of equal conditional hedging effectiveness naturally leads to a third

strategy, h3, which selects one of the two initial strategies, h1 and h2, based on currently

available information: h3 at time t−1 chooses strategy h2 if β̂
′
zt−1 > 0 and h1 otherwise.

That is,

h3
(
h1, h2

)
= 1

{
β̂zt−1 ≤ 0

}
h1 + 1

{
β̂
′
zt−1 > 0

}
h2, (3.13)

where 1 {·} is the indicator function. Remark that rejection of H0,z, i.e. rejection of

equal conditional hedging performance between h1 and h2 over the out-of-sample period,

implies per se the (in-sample) superiority of h3 over h1 or h2 over the out-of-sample
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period. This is not, however, a genuine out-of-sample test of h3. Therefore, I slightly

modify h3 by replacing the out-of-sample estimate β̂ by the in-sample estimate β̃, giving

h3
(
h1, h2

)
= 1

{
β̃
′
zt−1 ≤ 0

}
h1 + 1

{
β̃
′
zt−1 > 0

}
h2, (3.14)

instead of (3.13). The genuine out-of-sample performance of h3 (both unconditionally

and conditionally) can now be compared to that of h1 or h2 in exactly the same manner

as comparing the performances of h1 and h2.

7. One may wonder if we can go one step further in considering a more general linear

combination of the initial hedge ratios than in (3.13). Indeed h3 restricts the weights to

be zero or one. Consider the strategy

h3α
(
h1, h2

)
= αh1 + (1− α)h2, (3.15)

which generalizes (3.14). Since rt
(
h3α
)
= αrt

(
h1
)
+ (1− α) rt

(
h2
)
, this can be seen as

holding two portfolios whose weights sum to unity: one portfolio hedged with strategy

h1 and one with h2. The goal is now to find the optimal α such that var
(
rt
(
h3α
)
|It−1

)
is

minimal. Rewriting the objective function in terms of spot and futures returns, setting
d var(rt(h3α)|It−1)

dα
= 0 and solving for α, we get after some basic algebra

α∗t−1 =
h2 var (∆ft|It−1)− cov (∆st,∆ft|It−1)

(h2 − h1) var (∆ft|It−1)
. (3.16)

Assume we have reliable estimates for ĉov (∆st,∆ft|It−1) and v̂ar (∆ft|It−1) thus yield-
ing an estimate α̂∗t−1. But if this were the case, in a minimum variance setting, we

would use them to construct either h1 or h2. Without loss of generality, assume h2 =

ĉov(∆st,∆ft|It−1)
v̂ar(∆ft|It−1)

. But then α̂∗t−1 equals zero and h3α reduces to h2. Thus if one of the

strategies, say h2, incorporates reliable estimates of the conditional covariances, it can-

not be further improved upon. It follows that the same must hold for (3.13): h3 cannot

improve upon h2. Of course this reasoning is based on the premise that zt−1 is properly

taken to be part of It−1 when the conditional covariances are estimated. If the estimates

are based on a model that incorrectly imposes certain exclusion restrictions, the GWz

and Wz statistics may reveal this and h3 may outperform h1 and h2.

4 Application to agricultural commodities

I now turn to an empirical application of the methodology developed above. In this section the

data are first described, then static and dynamic hedge ratios are estimated and the results



Conditional comparison of competing hedging strategies 8

and some problems encountered are discussed. Then, the relative ability of each strategy to

reduce risk is compared. Finally, the relative performance of the new strategy h3 is analyzed.

4.1 Data

The data consist of daily spot and nearest-to-maturity futures prices of corn, wheat, soybeans

and oats. All futures closing prices were extracted from the Chicago Board of Trade tapes

and cover the period January 1979 through December 2003 for corn, soybeans and oats, and

the period January 1983 through December 2003 for wheat.5 For the same period, the closing

spot prices (in cents per bushel) were extracted from Datastream. Qualities (and exchanges)

of the spot prices are the following: oats, No.2 (Milling Minneapolis); wheat, No.2, Soft Red

(Chicago); soybeans, No.1, Yellow (Chicago); corn, No.2, Yellow (Chicago).

Following current practices in the literature, and in order to avoid expiration effects, a

contract that expires in month m is replaced with the next expiring contract on the last day of

month m−1. Specifically, on the last day of m−1, ∆ft is set equal to the return on the former

contract, while on the first day of m, ∆ft is set equal to the return on the latter contract.

The hedging horizons considered in this paper are one day and one week.6 Similar horizons

are considered in the literature (see for instance Lien, Tse and Tsui (2002) or Byström (2003)).

Minimum-variance hedge ratios are computed for each horizon, based on non-overlapping data

with the same frequency as the hedging horizon. Thus, the returns were aggregated to yield

weekly returns, computed from Friday closing prices. Table 1 gives the mean, standard de-

viation, skewness, kurtosis and autocorrelations on ∆st and ∆ft for each commodity. The

returns data are non-normal as evidenced by the high kurtosis and the significant Jarque-Bera

statistics (not reported here).

4.2 Static hedge ratios

The sample is splitted in two parts. The in-sample period is from January 1979 (1983 for

wheat) to December 1993 and the out-of-sample period is from January 1994 to December

2003. The in-sample observations are used to estimate GARCH and ED’s optimal hedge

5There are different beginning dates for weekly data than for daily data, see Table 1. The reason is that the
conditional comparison of the strategies was first investigated on the weekly horizon and that, by that time, all
futures prices were not extracted from the CBOT tapes yet.

6Longer hedging horizons such as one month and six months were considered but I have not been able to
estimate the parameters of the bivariate GARCH-type models.
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Table 1: Descriptive statistics on spot and futures returns.
mean std. deviation skewness kurtosis autocorrelation coef.

ρ1 ρ6 ρ12
Corn, daily, 1/04/1979-12/31/2003, 6520 observations.

∆st 5.8072× 10−6 0.0144 −0.4832 8.9742 0.0189 0.0218 −0.0049
∆ft −2.8836× 10−4 0.0122 −0.0060 5.6544 0.0497 −0.0063 0.0098

Corn, weekly, 1/26/1979-12/26/2003, 1301 observations.
∆st −2.0968× 10−5 0.0326 −0.4958 7.2140 0.0392 0.0276 −0.0362
∆ft −0.0014 0.0280 0.3005 6.8211 −0.0166 −0.0101 0.0003

Wheat, daily, 1/04/1983-12/31/2003, 5477 observations.
∆st −6.5684× 10−6 0.0172 −0.9733 22.1083 −0.0079 0.0037 0.0205
∆ft −2.0203× 10−4 0.0137 0.0811 5.5408 0.0243 0.0034 0.0195

Wheat, weekly, 1/13/1984-12/26/2003, 1042 observations.
∆st 1.0417× 10−5 0.0373 −0.6618 10.9648 −0.0203 −0.0206 0.0140
∆ft −9.9113× 10−4 0.0301 0.4218 4.6755 0.0014 −0.0357 0.0208

Oats, daily, 1/04/1979-12/31/2003, 6520 observations.
∆st 2.6532× 10−5 0.0193 −0.0794 22.9636 −0.0295 0.0108 −0.0008
∆ft −3.3979× 10−4 0.0178 −0.0572 5.1270 0.0566 −0.0102 −0.0047

Oats, weekly, 1/26/1979-12/26/2003, 1301 observations.
∆st 4.9289× 10−5 0.0420 −0.0550 7.6995 −0.0720 −0.0335 −0.0278
∆ft −0.0017 0.0415 0.1307 7.0114 −0.0512 −0.0183 0.0428

Soybeans, daily, 1/04/1979-12/31/2003, 6520 observations.
∆st 2.4267× 10−5 0.0135 −0.3723 6.5939 −0.0290 −0.0208 −0.0104
∆ft −1.6056× 10−4 0.0129 −0.1511 5.3061 −0.0174 −0.0221 0.0032

Soybeans, weekly, 1/19/1979-12/26/2003, 1302 observations.
∆st 6.6689× 10−5 0.0307 −0.1426 6.0890 −0.0873 −0.0139 −0.0078
∆ft −8.2016× 10−4 0.0294 −0.1573 6.3095 −0.0543 −0.0014 −0.0248

ratios. The static hedge ratio h∗ in equation (2.2) is estimated by the OLS regression slope

of ∆st on ∆ft (and a constant). Estimated parameters and Newey-West standard errors are

reported in Table 2 for each hedging horizon. As expected, the optimal hedge ratios are close

to unity, except for oats. The reason might be that the oats spot market is the Minneapolis

exchange whereas the futures contract is traded on the CBOT.

4.3 Dynamic hedge ratios

Following the hedging literature initiated by Baillie and Myers (1991), the static hedge ratio is

compared to more sophisticated time-varying ones resulting from a bivariate GARCH model.

To date, many multivariate GARCH specifications have been proposed (see Bauwens, Laurent

and Rombouts (2005) for a survey). The most general expression when the variances and

covariances are linear functions of the squares and cross-product of the innovations is the VECH

model of Engle and Kroner (1995). But this model involves many parameters (21 parameters

in a bivariate context) and imposes many nonlinear cross-coefficient inequality restrictions to

yield positive definite stationary covariance matrices. Engle and Kroner (1995) proposed a
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Table 2: Static hedge ratio estimates, January 1994-December 2003.
Daily Weekly Daily Weekly

Corn Wheat
a 0.000269 0.001496 −2.27× 10−6 −0.000522

(0.000124) (0.000700) (0.000215) (0.001160)
h∗ 0.980 1.002 0.845 0.957

(0.022) (0.027) (0.054) (0.045063)
Loglik. 13280.17 2091.48 8613.12 1183.64
N Obs. 3914 781 2869 522

Soybeans Oats
a 0.000290 0.00155 0.000231 0.001892

(0.000067) (0.00030) (0.000214) (0.000776)
h∗ 0.918 0.985 0.378 0.687

(0.017) (0.013) (0.024) (0.039)
Loglik. 14054.65 2524.30 10997.86 1695.45
N Obs. 3913 782 3913 781

Note. Parameters estimates of ∆st = a+ h∗∆ft + εt and Newey-West standard errors in parentheses.

fairly general multivariate alternative, the BEKK model (named after Baba, Engle, Kraft and

Kroner), that is guaranteed to yield positive definite covariance matrices. Empirical studies

on hedging that use the BEKK model include Baillie and Myers (1991), Gagnon and Lypny

(1995), Bera Garcia and Roh (1997) and more recently Haigh and Holt (2002). However Lien,

Tse and Tsui (2002) and Byström (2003) reported failure to get convergence in the estimation

process of the BEKK model.

The GARCH models most commonly used in practice impose restrictions on the VECH

and BEKK models (Ledoit, Santa-Clara and Wolf; 2003). They include the diagonal VECH of

Bollerslev, Engle and Wooldridge (1988), the diagonal BEKK model and the constant condi-

tional correlation GARCH (CCC) model of Bollerslev (1990). Amongst these models, the CCC

model is the most popular in the hedging context and has been used by Kroner and Sultan

(1993), Park and Switzer (1995), Bera, Garcia and Roh (1997), Lien, Tse and Tsui (2002) and

Byström (2003), among others.

In this paper, I follow the hedging literature in considering the CCC and the BEKK. The

CCC model is given by

∆yt = µ+ εt (4.17)

εt ∼ i.i.d. N (0,Ht)

hs,t = ω11 + α11ε
2
s,t−1 + β11hs,t−1

hf,t = ω22 + α22ε
2
f,t−1 + β22hf,t−1

hsf,t = ρ
√

hs,thf,t



Conditional comparison of competing hedging strategies 11

where ∆yt ≡ [∆st,∆ft]
′, µ ≡

[
µs, µf

]′
, εt ≡ [εs,t, εf,t]

′ , Ht ≡
[

hs,t hsf,t
hsf,t hf,t

]
. There are

7 parameters to estimate in the (co)variance equations. This specification has the benefit of

parsimony of parameters and gives positive definite and stationary covariance matrices provided

that ω11, ω22, α11, α22 , β11, and β22 are all non-negative satisfying α11+β11 < 1, α22+β22 < 1

and −1 ≤ ρ ≤ 1. The problem with the CCC model is the assumption of constant conditional

correlation, which is not always supported by the data.

The BEKK model (or more precisely the student-t version of it; see below), which allows

more flexibility than the CCC model, can be written as

∆yt = µ+ εt (4.18)

εt ∼ i.i.d. (0,Ht)

Ht = Ω+αεt−1ε
′
t−1α

′ + βHt−1β
′,

where β and α are 2 × 2 matrices, and Ω is symmetric and positive definite. The latter

condition is imposed by

Ω ≡
[

ω211 ω11ω21
ω11ω21 ω221 + ω222

]
.

The model imposes positive definiteness restrictions over parameters across equations. The

model is stationary if the eigenvalues of α ⊗ α+ β ⊗ β are smaller than 1 in modulus, with
⊗ denoting the Kronecker product of matrices. There are 11 parameters to estimate in the

conditional variance equation.

For the CCC model, estimation is performed by maximizing the quasi-likelihood, assuming

conditional normality of the innovations. This ensures consistency of the estimates even when

the innovations are non-normal. For the second model, the likelihood is maximized assuming

the innovations εt are i.i.d. drawing from the bivariate student-t distribution.7 The reason

for using the student distribution, as opposed to the normal distribution, is that only in a

few cases Gaussian BEKK model estimation converged whereas the student BEKK (t-BEKK)

7This bivariate distribution can take a number of forms according to the specification of the dependence.
I retain the form which is the most generally used (see Johnson and Kotz (1972), section 3, page 134, for a
description of the joint density function). Let Θ be the unknown vector of parameters in the model, including
the degree of freedom ν. The loglikelihood for the t-BEKK model is given by

LT (Θ) =

T∑

t=Tin+1

{
log

(
Γ

(
ν + 2

2

))
− log

(
πνΓ

(ν
2

)
|Ht|

1/2
)

−
ν + 2

2
log
(
1 + ν

−1
y
′

tH
−1
t yt

)}
. (4.19)

where Γ (·) is the gamma function.
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Table 3: Descriptive statistics of the time-varying hedge ratios, January 1994-December 2003.
mean median max min std dev. corr(CCC; t-BEKK)

Corn, daily
CCC 0.9354 0.9141 3.2184 0.5492 0.1439 0.0051

t-BEKK 0.9746 0.9836 1.4699 −0.7808 0.1203
Corn, weekly

CCC 1.0278 0.9864 2.1993 0.6892 0.1814 0.5979
t-BEKK 0.9857 0.9734 1.5388 0.2803 0.1276

Wheat, daily
CCC(constr.) 0.9649 0.9020 5.1135 0.6257 0.2818 −0.3257

t-BEKK 0.9682 0.9884 1.3026 −2.5190 0.1311
Wheat, weekly

CCC 0.9743 0.9494 2.0373 0.6122 0.1765 −0.2110
t-BEKK 0.9753 0.9871 1.1314 0.7372 0.0546

Soya, daily
CCC 0.9171 0.9041 1.6787 0.6732 0.0968 0.1898

t-BEKK 0.9568 0.9700 1.3225 −0.0624 0.0912
Soya, weekly

CCC 0.9853 0.9679 1.7592 0.7162 0.0919 0.8800
t-BEKK 0.9807 0.9714 1.3993 0.6232 0.0736

Oats, daily
CCC 0.4105 0.3590 2.2815 0.1380 0.1899 0.1679

t-BEKK 0.4029 0.4159 3.3082 −1.5567 0.3624
Oats, weekly

CCC 0.6755 0.6506 2.5811 0.2597 0.1796 0.4019
t-dBEKK 0.6247 0.6396 1.0870 0.0417 0.1547

model estimation converged for all commodities and frequencies, except for oats on a weekly

horizon.8 For that particular commodity on weekly horizon, I estimated instead the diagonal

t-BEKK model (t-dBEKK) which is given by (4.18) where β and α are 2×2 diagonal matrices.
The estimations were carried out using the Marquardt algorithm in the Logl object in EViews

5.1. Parameter values from univariate GARCHwere used to initialize the BGARCH estimation.

The parameter estimates for the CCC, the t-BEKK and the t-dBEKK models along with

standard errors are presented in Tables 8 to 15 in the appendix, for corn, wheat, oats and

soybeans on daily and weekly hedging horizons. Please note that in Table 10, for wheat

with daily data, the CCC model estimates do not satisfy the stationarity condition since

α̂11 + β̂11 > 1. This issue is discussed in the next section.

At time t−1, for each horizon, the dynamic hedge ratio is then computed as the ratio of the
out-of-sample conditional covariance between ∆st and ∆ft to the out-of-sample conditional

variance of ∆ft, i.e. as h∗t−1 =
ĥsf,t

ĥf,t
with t = Tin + 1, ..., T . Table 3 shows the descriptive

8The convergence problem of the BEKK model is discussed in the following section.
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statistics of the various dynamic hedge ratios. As the standard deviations indicate, the hedge

ratios vary considerably across time. There is a non-negligible difference between the hedges

ratios implied by the CCC and the t-BEKK models. Moreover, the correlations between the

hedge ratios are surprisingly small on daily horizons. These are even negative on both horizon

for wheat.

4.4 BGARCH estimation issues

Before comparing relative hedging performances, it is worth pointing out several problems I

encountered in estimating BGARCH models.

First, I experienced problems in estimating the BEKK model for most commodities/fre-

quencies and in estimating the t-BEKK model for oats with weekly data. The problem lies

mainly in the positive definiteness constraint that I impose on Ω. Typically, one of the two

eigenvalues and the determinant of Ω̂ are pretty close to zero suggesting that Ω is nearly

singular9 (while I have constrained for positive definiteness). The problem persists even when I

consider alternative constrained specifications for Ω. Trying to resolve the puzzle, I estimated

an unconstrained symmetric specification for Ω. The singularity of the unconstrained Ω is

pointed out by the determinant and by the eigenvalues of its estimate.10 The similarity between

the likelihood values of the model with unconstrained and constrained Ω leads to the conclusion

that the loglikelihood is maximal on or slightly outside the boundary of the parameters space.11

In other words, the problem in the estimation procedure is due to the fact that the algorithm

forces Ω to be singular, because the maximum of the likelihood is found where Ω is singular,

while I constrain it to be positive definite. As discussed above, to circumvent the estimation

problem, I estimated the BEKK model with student-t innovations.

Another problem has occurred when estimating the CCC model for wheat with daily data.

As discussed above, the CCC model estimates do not satisfy the stationarity condition since

α̂11 + β̂11 > 1. The CCC model with the constraint12 α̂11 + β̂11 ≤ 0.999 is also estimated.

9For example, for oats with daily data, the eigenvalues of Ω̂ are 2.26 × 10−14 and 1.92 × 10−4 and the
determinant equals 4.35× 10−18.

10For example, for oats with daily data, the eigenvalues the unconstrained Ω̂ are −1.38×10−4 and 1.82×10−4

and the determinant is equal to −2.51× 10−8.

11For example, for oats with daily data, the likelihood is 3193.154 for the BEKK model with the constrained
Ω, and 3194.470 for the BEKK model with the unconstrained Ω.

12The algorithm achieved convergence for the constrained CCC model but did not report standard errors
of the estimates. This is not so important because the latter are bounded by the standard errors from the
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As can be seen from the last column of Table 10, the constraint α̂11 + β̂11 ≤ 0.999 is binding,
meaning that the likelihood of the constrained CCC model is maximal on the boundary of the

parameters space. I therefore report the constrained CCC model for that particular commodity

on a daily hedging horizon.

4.5 Out-of-sample comparison of hedging effectiveness: GARCH strategies

versus ED’s strategy

In this section, the relative out-of-sample unconditional performance of the dynamic strategies

(CCC, t-BEKK or t-dBEKK) against ED’s static strategy is investigated. The difference in

the squared returns is dt ≡ r2t
(
hSTATIC

)
− r2t

(
hDYNAMIC

)
with t = Tin + 1, ..., T , where

hDYNAMIC is the strategy implied by the CCC, t-BEKK or t-dBEKK model.

Table 4: Dynamic vs. static strategy: out-of-sample relative hedging performances, 1/1/1994-
31/12/2003.

dt ≡ r2t
(
hSTATIC

)
− r2t

(
hDYNAMIC

)

Competing Strategies Unconditional performance Conditional performance

Dyn. vs. static d Winning DM p-val. GWz p-val. Wz p-val.

Corn, daily
CCC vs. ED −5.38× 10−6 ED 0.0095 0.0006 0.0010

t-BEKK vs. ED −4.16× 10−6 ED 0.0097 0.0392 0.0387

Wheat, daily
CCC (constr.) vs. ED −1.79× 10−5 ED 0.0563 0.2154 0.2130

t-BEKK vs. ED 2.19× 10−6 t-BEKK 0.0981 0.2589 0.2780

Soybeans, daily
CCC vs. ED −1.07× 10−6 ED 0.0020 0.0117 0.0068

t-BEKK vs. ED −3.33× 10−7 ED 0.5324 0.0312 0.0211

Oats, daily
CCC vs. ED −2.91× 10−6 ED 0.5169 0.2367 0.1953

t-BEKK vs. ED 6.16× 10−6 t-BEKK 0.5466 0.0578 0.0650

Corn, weekly
CCC vs. ED −2.08× 10−5 ED 0.1919 0.4837 0.1814

t-BEKK vs. ED −1.63× 10−5 ED 0.3305 0.9045 0.2018

Wheat, weekly
CCC vs. ED −4.69× 10−5 ED 0.0004 0.0011 0.0008

t-BEKK vs. ED 5.21× 10−6 t-BEKK 0.4088 0.3057 0.2705

Soybeans, weekly
CCC vs. ED −7.73× 10−6 ED 0.2562 0.5350 0.5425

t-BEKK vs. ED −3.79× 10−6 ED 0.0902 0.5859 0.6039

Oats, weekly
CCC vs. ED 1.02× 10−5 CCC 0.8168 0.2097 0.1587

t-dBEKK vs. ED −2.90× 10−6 ED 0.9407 0.8962 0.8975

In the third column of Table 4, the “potential” winning strategy for the unconditional

two-sided tests is reported. The p-values of the DM test are reported in the fourth column.

unconstrained CCC model.
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The following conclusions can be drawn from Table 4. First, the CCC model has the worst

overall unconditional performance and should not be considered for hedging these agricultural

commodities. Second, ED ’s static strategy mostly outperforms the GARCH strategies uncon-

ditionally on a daily horizon. In fact, the dynamic strategies never significantly outperform

ED’s strategy in the unconditional sense. This is in contrast with the conclusions (based on

different data, however) reached in Baillie and Myers (1991). Third, the difference in un-

conditional hedging performance is less pronounced on the weekly horizon than on the daily

horizon. Fourth, significant differences in unconditional performances are also picked up by

the conditional performance tests. In addition, the latter tests reveal in some cases differences

in conditional performance while the unconditional performances are very similar.

4.6 Out-of-sample comparison of hedging effectiveness: new strategy versus

initial strategies

The objective of this section is to investigate the relative performance of h3. As discussed

above, I proceed in two steps. First, the initial static hedge ratios in section 4.2 are re-used

and the dynamic hedge ratios are computed over the period t = 1, ..., Tin with the GARCH

parameters estimated in section 4.3. Table 5 shows the GWz and Wz p-values, i.e. the relative

conditional performance of h1 and h2 over the same period. Compared to Table 4, rejections

of H0,z are only marginal.13 Then h3 is computed from the rule (3.14).

Table 5: Dynamic vs. static strategy: in-sample relative hedging performances, 1/1/1979-
31/12/1993.

dt ≡ r2t
(
hSTATIC

)
− r2t

(
hDYNAMIC

)

DAILY WEEKLY

Competing Strategies Conditional performance Competing Strategies Conditional performance
Dyn. vs. static GWz p-val. Wz p-val. Dyn. vs. static GWz p-val. Wz p-val.

Corn Corn
CCC vs. ED 0.2031 0.1803 CCC vs. ED 0.4895 0.6073

t-BEKK vs. ED 0.8216 0.8041 t-BEKK vs. ED 0.4478 0.4764

Wheat Wheat
CCC (constr.) vs. ED 0.0155 0.0023 CCC vs. ED 0.0305 0.3432

t-BEKK vs. ED 0.2041 0.2449 t-BEKK vs. ED 0.7218 0.6717

Soybeans Soybeans
CCC vs. ED 0.9617 0.0392 CCC vs. ED 0.2041 0.1762

t-BEKK vs. ED 0.2650 0.1342 t-BEKK vs. ED 0.0511 0.0408

Oats Oats
CCC vs. ED 0.2989 0.3210 CCC vs. ED 0.5740 0.5812

t-BEKK vs. ED 0.5349 0.5171 t-dBEKK vs. ED 0.7853 0.4079

13 In the same way, in-sample rejections of H0,DM (not reported here) are only marginal compared to Table
4, even though the “potential” winning strategies are mostly the same.
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Table 6: New dynamic strategy vs. initial strategies: out-of-sample relative hedging perfor-
mances on a daily horizon, 3/1/1994-31/12/2003.

dt ≡ r2t
(
h3
)
− r2t

(
hINITIAL

)

Competing Strategies Unconditional performance Conditional performance

New vs. Initial d Winning DM p-val GWz p-val Wz p-val.

Corn, daily
h3(CCC,ED) vs. ED 9.39× 10−7 ED 0.0138 0.1002 0.0574
h3(CCC,ED) vs. CCC −4.45× 10−6 h3 0.0234 0.0122 0.0132
h3(t-BEKK,ED) vs. ED 1.11× 10−6 ED 0.0547 0.2687 0.2929
h3(t-BEKK,ED) vs. t-BEKK −3.05× 10−6 h3 0.0232 0.0321 0.0366

Wheat, daily
h3(CCC,ED) vs. ED 8.77× 10−6 ED 0.1348 0.1308 0.0819
h3(CCC,ED) vs. CCC −9.15× 10−6 h3 0.1326 0.5160 0.5041
h3(t-BEKK,ED) vs. ED −3.54× 10−7 h3 0.6516 0.0198 0.0208
h3(t-BEKK,ED) vs. t-BEKK 1.84× 10−6 t-BEKK 0.0617 0.5694 0.5777

Soybeans, daily
h3(CCC,ED) vs. ED 8.08× 10−7 ED 0.0042 0.0108 0.0117
h3(CCC,ED) vs. CCC −2.58× 10−7 h3 0.1985 0.0642 0.0518
h3(t-BEKK,ED) vs. ED 8.52× 10−7 ED 0.0679 0.2671 0.2926
h3(t-BEKK,ED) vs. t-BEKK 5.19× 10−7 t-BEKK 0.0747 0.0334 0.0241

Oats, daily
h3(CCC,ED) vs. ED −4.77× 10−6 h3 0.0536 0.3945 0.4052
h3(CCC,ED) vs. CCC −7.68× 10−6 h3 0.0547 0.3434 0.3147
h3(t-BEKK,ED) vs. ED 1.36× 10−7 ED 0.9888 0.1600 0.2231
h3(t-BEKK,ED) vs. t-BEKK 6.30× 10−6 t-BEKK 0.1071 0.0865 0.1461

Define the difference in the squared returns dt ≡ r2t
(
h3
)
−r2t

(
hINITIAL

)
. The out-of-sample

unconditional hedging performance of h3 relative to the initial strategies, is indicated by the

DM p-values and the “potential” winning strategy reported in the fourth and third columns

of Tables 6 and 7. The following conclusions can be drawn. First, h3 improves both initial

dynamic strategies in the case of corn on a daily horizon and improves both CCC and ED for

oats on a daily horizon, as well. In general, however, the new strategies h3 do not outperform

the static strategy. Second, the difference in hedging performance is less pronounced on weekly

horizons than on daily horizons.

I also report the conditional (in-sample) tests through the GWz andWz p-values in the fifth

and sixth columns of Tables 6 and 7: the rejection indicates that there is some information

left to construct a new strategy, h4, which selects amongst h3 and hINITIAL the strategy that

will perform the best next period, conditional on current information.

5 Conclusion

In this paper I have tried to answer the following two questions: among two initial competing

hedging strategies (i) which strategy will reduce the portfolio risk more on an average? and (ii)

which strategy will reduce the next period risk more, given current information? The former
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Table 7: New dynamic strategy vs. initial strategies: out-of-sample relative hedging perfor-
mances on a weekly horizon, 1/1/1994-31/12/2003.

dt ≡ r2t
(
h3
)
− r2t

(
hINITIAL

)

Competing Strategies Unconditional performance Conditional performance

New vs. Initial d Winning DM p-val GWz p-val Wz p-val.

Corn, weekly
h3(CCC,ED) vs. ED 4.03× 10−6 ED 0.1026 0.5990 0.6013
h3(CCC,ED) vs. CCC −1.67× 10−5 h3 0.3031 0.3843 0.1132
h3(t-BEKK,ED) vs. ED −1.07× 10−8 h3 0.9966 0.6918 0.7340
h3(t-BEKK,ED) vs. t-BEKK −1.63× 10−5 h3 0.3249 0.7850 0.0633

Wheat, weekly
h3(CCC,ED) vs. ED 1.88× 10−5 ED 0.0120 0.0740 0.0365
h3(CCC,ED) vs. CCC −2.81× 10−5 h3 0.0023 0.0176 0.0300
h3(t-BEKK,ED) vs. ED −2.39× 10−6 h3 0.3339 0.5997 0.5613
h3(t-BEKK,ED) vs. t-BEKK 2.82× 10−6 t-BEKK 0.6430 0.4690 0.5635

Soybeans, weekly
h3(CCC,ED) vs. ED 7.44× 10−6 ED 0.2927 0.3672 0.3798
h3(CCC,ED) vs. CCC −2.86× 10−7 h3 0.8729 0.1487 0.4034
h3(t-BEKK,ED) vs. ED 2.76× 10−7 ED 0.8891 0.7202 0.6759
h3(t-BEKK,ED) vs. t-BEKK −3.51× 10−7 h3 0.0062 0.0217 0.0210

Oats, weekly
h3(CCC,ED) vs. ED −1.86× 10−5 h3 0.5024 0.7863 0.8868
h3(CCC,ED) vs. CCC −8.44× 10−6 h3 0.8012 0.1877 0.1327
h3(t-dBEKK,ED) vs. ED −8.25× 10−7 h3 0.9624 0.7301 0.7860
h3(t-dBEKK,ED) vs. t-dBEKK −3.73× 10−6 h3 0.9214 0.4524 0.5259

question is addressed by making use of the Diebold and Mariano (1995) unconditional test.

The latter can be answered by the Giacomini and White (2006) and the Wald conditional tests.

The theoretical relations between the three tests is discussed and the idea that rejection of

the null of equal conditional hedging effectiveness naturally defines a third strategy is devel-

oped. This strategy selects the initial strategy that will perform best next period, conditional

on available information. In addition, it is shown that, in a minimum variance framework, it

was not possible to generalize that new strategy to a strategy that is a weighted average of

two strategies.

One traditional static strategy and two dynamic strategies based on popular bivariate

GARCH models are considered and the problems encountered in the estimation are outlined.

The tests are then applied to four agricultural commodities to compare those strategies. It

is found that more elaborate GARCH strategies do not outperform the simple OLS regression

hedge ratio on daily and weekly horizons. Moreover, the new strategy implied by the tests do

not often reduce the risk significantly as compared to the static strategy. The empirical results

are disappointing for the conditional approach to commodity hedging and call into question

earlier results reported in the literature that were based on a much smaller database.



Conditional comparison of competing hedging strategies 18

Appendix: Estimation results

Table 8: t-BEKK and CCC estimates for corn using daily data from 2/1/1979 to 31/12/1993
t-BEKK CCC

µs 0.000380 (0.000145) 0.000354 (0.00016) 1
µf −0.000141 (0.000133) −2.74× 10−5 (0.000148)
ω11 0.001762 (0.000175) 1.13× 10−5

(
6.28× 10−7

)

ω12 8.44× 10−5 (0.000184)
ω22 0.001048 (0.000140) 5.76× 10−6

(
6.31× 10−7

)

α11 0.365211 (0.023806) 0.097748 (0.003815)
α22 0.235820 (0.022522) 0.078896 (0.005503)
α12 −0.041977 (0.021115)
α21 −0.133040 (0.024072)
β11 0.770123 (0.022974) 0.833157 (0.006149)
β22 0.932680 (0.021096) 0.869667 (0.009422)
β12 0.029777 (0.020194)
β21 0.191540 (0.024165)
ν 3.989207 (0.201341)
ρ 0.804914 (0.003945)

Loglik. 29036.73 26020.68
SICc −14.81157 −13.28058
N. obs. 3914

Table 9: t-BEKK and CCC estimates for corn using weekly data from 19/1/1979 to
31/12/1993.

t-BEKK CCC

µs 0.001972 (0.000761) 0.001372 (0.000934)
µf −0.000739 (0.000706) −0.000647 (0.000782)
ω11 0.006565 (0.001168) 7.45× 10−5

(
9.70× 10−6

)

ω12 0.007438 (0.001332)
ω22 0.003730 (0.000519) 0.000102

(
2.42× 10−5

)

α11 0.158349 (0.054215) 0.171585 (0.012951)
α22 0.390815 (0.071067) 0.128247 (0.017947)
α12 −0.102882 (0.049838)
α21 0.126900 (0.073613)
β11 0.939962 (0.054331) 0.759041 (0.014941)
β22 0.711744 (0.085589) 0.699629 (0.051237)
β12 0.098289 (0.054539)
β21 −0.081546 (0.083698)
ν 3.634522 (0.393009)
ρ 0.841710 (0.007705)

Loglik. 4569.660 3973.957
SICc −11.59755 −10.11280
N. obs. 780
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Table 10: t-BEKK, CCC and constrained CCC estimates for wheat using daily data from
4/1/1983 to 31/12/1993.

t-BEKK CCCa constrainedb CCC

µs 0.000414 (0.000203) 0.000491 (0.000174) 0.000492
µf 1.80× 10−5 (0.000185) 0.000160 (0.000172) 0.000161
ω11 0.002320 (0.000575) 7.68× 10−6

(
6.96× 10−7

)
7.92× 10−6

ω12 −0.000417 (0.000670)
ω22 0.001548 (0.000354) 5.35× 10−6

(
9.28× 10−7

)
5.40× 10−6

α11 0.353453 (0.029816) 0.167634 (0.005447) 0.167416
α22 0.171771 (0.029001) 0.104523 (0.007829) 0.104447
α12 −0.033202 (0.023524)
α21 −0.259523 (0.033195)
β11 0.524220 (0.048086) 0.832918 (0.004456) 0.831584
β22 0.946172 (0.041628) 0.863992 (0.011515) 0.863531
β12 0.021466 (0.039044)
β21 0.486268 (0.050912)
ν 3.353898 (0.153612)
ρ 0.735086 (0.006696) 0.734573

Loglik. 20614.61 17829.23 17829.22

SICd −14.33673 −12.40823 −12.40822
N. obs. 2869

a. Notice that the stationarity condition is not met because α11+β11 > 1.
b. I forced stationarity by imposing α11 + β11 ≤ 1− 10

−3.

Table 11: t-BEKK and CCC estimates for wheat using weekly data from 6/1/1983 to
31/12/1993.

t-BEKK CCC

µs 0.002074 (0.001161) −0.000437 (0.001486)
µf 0.000327 (0.001002) 6.57× 10−5 (0.000972)
ω11 0.008151 (0.011126) 0.000192

(
6.07× 10−5

)

ω12 0.002253 (0.015324)
ω22 −0.000314 (0.110942) 5.13× 10−5

(
2.90× 10−5

)

α11 0.085760 (0.038587) 0.290261 (0.039502)
α22 0.125357 (0.080125) 0.097603 (0.027362)
α12 0.087636 (0.039699)
α21 0.104308 (0.090631)
β11 1.379511 (0.327410) 0.631969 (0.057908)
β22 0.302600 (0.301664) 0.826642 (0.057459)
β12 0.597409 (0.282569)
β21 −0.669437 (0.325710)
ν 3.669311 (0.381857)
ρ 0.722465 (0.022275)

Loglik. 2875.060 2381.121
SICc −10.86860 −9.032514
N. obs. 522
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Table 12: t-BEKK and CCC estimates for soya using daily data from 3/1/1979 to 31/12/1993.
t-BEKK CCC

µs 0.000200 (0.000149) 4.17× 10−5 (0.000148)
µf −0.000173 (0.000149) −0.000247 (0.000149)
ω11 0.000637 (0.000442) 2.69× 10−6

(
2.34× 10−7

)

ω12 −0.000400 (0.000783)
ω22 −0.001190 (0.000362) 3.09× 10−6

(
3.02× 10−7

)

α11 0.403448 (0.030066) 0.078454 (0.003195)
α22 0.222638 (0.028126) 0.077958 (0.003725)
α12 −0.053120 (0.027462)
α21 −0.231053 (0.029191)
β11 0.690788 (0.033542) 0.907217 (0.003440)
β22 0.893452 (0.033134) 0.903621 (0.004525)
β12 0.073965 (0.031814)
β21 0.289634 (0.034786)
ν 3.377528 (0.145856)
ρ 0.877837 (0.002381)

Loglik. 29887.11 26354.16
SICc −15.25010 −13.45447
N. obs. 3913

Table 13: t-BEKK and CCC estimates for soya using weekly data from 12/1/1979 to
31/12/1993.

t-BEKK CCC

µs 0.000188 (0.000806) 0.000104 (0.000866)
µf −0.001792 (0.000803) −0.001509 (0.000842)
ω11 0.005114 (0.001063) 9.83× 10−5

(
1.49× 10−5

)

ω12 0.004888 (0.001248)
ω22 0.002865 (0.000330) 0.000103

(
1.69× 10−5

)

α11 0.434596 (0.093833) 0.147309 (0.015651)
α22 0.228820 (0.094001) 0.135949 (0.014875)
α12 0.058995 (0.089333)
α21 −0.149972 (0.094546)
β11 0.745988 (0.113503) 0.737419 (0.028891)
β22 0.921258 (0.109572) 0.729466 (0.029412)
β12 −0.018772 (0.103022)
β21 0.168100 (0.119153)
ν 4.502604 (0.588959)
ρ 0.938979 (0.003197)

Loglik. 4826.173 4228.206
SICc −12.23956 −10.75092
N. obs. 782
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Table 14: t-BEKK and CCC estimates for oats using daily data from 3/1/1979 to 31/12/1993.
t-BEKK CCC

µs 0.000180 (0.000157) 0.000156 (0.000216)
µf −0.000242 (0.000191) −0.000370 (0.000232)
ω11 0.001195 (0.000111) 1.26× 10−5

(
1.03× 10−6

)

ω12 0.000174 (0.000209)
ω22 0.000643 (0.000246) 5.02× 10−6

(
8.35× 10−7

)

α11 0.188137 (0.008655) 0.064838 (0.004665)
α22 0.171785 (0.011488) 0.081297 (0.007055)
α12 0.036997 (0.011735)
α21 0.015497 (0.009167)
β11 0.940508 (0.004771) 0.884306 (0.007715)
β22 0.974814 (0.004004) 0.902066 (0.008168)
β12 −0.025995 (0.007079)
β21 0.002326 (0.003789)
ν 2.834261 (0.142549)
ρ 0.361231 (0.011511)

Loglik. 24632.95 21872.25
SICc −12.56393 −11.16310
N. obs. 3913

Table 15: t-dBEKK and CCC estimates for oats using weekly data from 19/1/1979 to
31/12/1993.

t-dBEKK CCC

µs 0.000437 (0.001128) −7.29× 10−5 (0.001146)
µf −0.001882 (0.001162) −0.002782 (0.001269)
ω11 0.011975 (0.001922) 0.000374

(
9.66× 10−5

)

ω12 0.006125 (0.001044)
ω22 0.005937 (0.001354) 0.000216

(
5.94× 10−5

)

α11 0.266370 (0.035174) 0.145773 (0.032727)
α22 0.228367 (0.027407) 0.121961 (0.015691)
α12 − −
α21 − −
β11 0.852220 (0.040438) 0.580137 (0.093910)
β22 0.917187 (0.020079) 0.728981 (0.046541)
β12 − −
β21 − −
ν 5.292789 (0.828016)
ρ 0.664129 (0.016834)

Loglik. 3645.719 3171.466
SICc −9.262621 −8.055127
N. obs. 781
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