
DEPARTEMENT TOEGEPASTE
ECONOMISCHE WETENSCHAPPEN

ONDERZOEKSRAPPORT NR9744

COMPLEXITY MEASURES FOR OBJECT-ORIENTED

CONCEPTUAL MODELS OF AN APPLICATION DOi\llAIN

by

Geert Poels

Guido Dedene

Katholieke Universiteit Leuven

Naamsestraat 69, 8-3000 Leuven

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6469041?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ONDERZOEKSRAPPORT NR 9744

COMPLEXITY MEASURES FOR OBJECT-ORIENTED

CONCEPTUAL MODELS OF AN APPLICATION DOMAIN

0/1997/2376/46

by

Geert Poels

Guido Dedene

Complexity measures for object-oriented conceptual models
of an application domain

Abstract

Geert Poels'"
Guido Dedene

Department of Applied Economic Sciences
Katholieke Universiteit Leuven

Naamsestraat 69, B-3000 Leuven, Belgium
tel: +3216326891
fax: +32 16326732

e-mail: {geert.poels.guido.dedene}@econ.kuleuven.ac.be

According to Norman Fenton few work has been done on measuring the complexity of the
problems underlying software development. Nonetheless, it is believed that this attribute has
a significant impact on software quality and development effort. A substantial portion of the
underlying problems are captured in the conceptual model of the application domain. Based
on previous work on conceptual modelling of application domains, the attribute 'complexity
of a conceptual model' is formally defined in this paper using elementary concepts from
Measure Theory. Moreover, a number of complexity measures are defined and validated
against this complexity definition. It is argued and demonstrated that these problem domain
measures are part of a solution to the problem outlined by Norman Fenton.

Keywords

conceptual modelling, formal specifications, Measure Theory, complexity measures, measure
validity

.. Research Assistant of the Fund for Scientific Research - Flanders

1. Introduction

A recurrent theme in software engineering research is the validation of the hypothesised
relationship between software product abstraction attributes and software quality attributes
[2], [4], [9], [10], [14]. Software product abstractions [1] do not merely include the source
code of the software, but also various types of abstractions used in all phases of software
development, e.g., flow graphs, inheritance trees, formal specifications, etc. When a
significant relationship between quality attributes like correctness, reusability, adaptability or
maintainability and attributes of early software product abstractions can be shown to exist,
then a theoretical basis for quality prediction and control has been established. However,
before such relationships can be validated, measures must be defined for the attributes of the
early software product abstractions.

According to Norman Fenton one of the attributes that is potentially related to software
quality, but also to software process attributes such as development time and costs, is the
complexity of the problems underlying software development [7]. A problem qualifies as a
software product if it can be stated as a list of requirements or a specification. The
complexity of the underlying problem is in fact the same as the complexity of the
requirements. Some problems are inherently more complex than others since they are more
difficult to solve, implying that in a software engineering context they require more
development effort. Also, more complex problems lead to more complex solutions resulting
in software that is less understandable, less maintainable, etc.

Apart from studies on computational complexity, not much work has been done on
measuring the complexity of the underlying problem [7]. To the best of our knowledge the
complexity of software specifications or requirements has not been adequately measured.
The aim of this paper is to present measures for the complexity of the underlying problem
such as captured in a conceptual model of an application domain. Current methods for
conceptual modelling offer a bundle of specification techniques to describe different views,
i.e., static, dynamic and interaction views, on the same business reality. Few methods
include a formal procedure for checking the consistency and correctness of these
complementary views [15]. The approach to conceptual modelling taken here is the
M.E.R.O.DE. process algebra [5], [15]. It is an object-oriented specification technique that
guarantees model consistency and correctness. Since syntax and semantics of the technique
have been defined, it is particularly suited to be supported by CASE-tools. Moreover, its
formal definition allows to rigorously define specification measures. The M.E.R.O.DE.
process algebra is briefly presented in section 2.

In section 3 the complexity measure definition approach is presented. According to
Measurement Theory, measurement cannot proceed unless there is a clear understanding of
the attribute [6], [13]. Although in general, software attributes such as complexity are badly
understood [20], the approach presented here systematically defines the 'complexity of a
conceptual model' using more elementary concepts having definitions that are universally
agreed upon. Our definition of complexity also allows to distinguish this concept from other
attributes of specifications such as length and structure. While this section presents a
particular point of view on complexity, care has been taken in section 4 to define valid
measures. If measures are proven to be valid, then the acceptance or rejection of a measure
only depends on the viewpoint of the attribute.

2

It must be stressed right from the beginning that the goal of this research is to define and
measure the complexity of the problems underlying software development, but not to
demonstrate empirical relationships between this attribute and other attributes such as
software quality or development effort. The software measure definition problem does not
only precede empirical software engineering research. It is of crucial importance for the
success of these research programs. Therefore it is believed that the problem of software
measurement is interesting enough to be investigated on its own. Accordingly in section 5
our approach is evaluated mainly in terms of scientific validity (i.e., do the measures measure
what they are supposed to measure) and completeness (i.e., which aspects of the complexity
of the underlying problem have been measured). The usefulness of the measurements (i.e.,
the significance of attribute relationships [8], the construction of prediction models [8], etc.)
is not assessed here and is left as an open question for further research.

2. Conceptual modelling with business objects

Conceptual modelling refers to the identification of the elements of an application domain
[16]. Two relevant types of elements are business object types and event types. Business
object types have occurrences (i.e., business objects) that participate in events that are
atomic, have no duration and can be observed in the application domain. Events are
occurrences of event types. The following definitions of (business) object types, event types
and conceptual models are taken from [5], [15] and [16]. The example is taken from [15].

Let A be the universe of event types associated with the application domain that is our
universe of discourse. The power set of A is peA). The alphabet of an object type is the set
of event types participated in. An object type participates in an event type if occurrences of
the object type participate in occurrences of the event type. For every object type in the
conceptual model with alphabet a, it holds that a E peA).

A set of regular expressions over A can be built by the operators '.' (sequence), '+'
(selection) and '*' (iteration). The set of regular expressions over A is R*(A). The sequence
constraints of object types on participation in event types are defined by a regular expression
over A. For every object type in the conceptual model with regular expression e, it holds that
e E R*(A).

Basically, object types are defined as tuples <a,e> E <P(A) , R*(A» such that e is not in
deadlock and every event type in a occurs at least once as an operand in e. Also, every
operand in e is an event type in a.

To select the alphabet and regular expression of an object type, the selector functions SA and
SR are defined:
SA: <peA), R *(A» -7 peA): P -7 a
SR: <peA), R*(A» -7 R*(A): P -7 e

It is further required that for each object type it must be possible to create an occurrence and
end the life of an occurrence. Hence, for the object type P, the alphabet SAP is partitioned
into c(P), m(P) and e(P) where
c(P) = {a E A I a creates an occurrence of type P}
m(P) = {a E A I a modifies an occurrence of type P}
e(P) = {a E A I a ends the life of an occurrence of type P}
and c(P) and e(P) may not be empty.

3

Based on these three subsets the default sequence constraints l are given by LC(P) . (Lm(P»*
. Le(P). This default describes the trivial life cycle of an object type. The actual sequence
constraints of an object type cannot be less deterministic than the trivial life cycle.

The object types in a conceptual model are related. The classification schema used in
M.E.R.O.DE. is the existence dependency relation. Object type P is existent dependent of
object type Q if the life of each occurrence p of type P is embedded in the life of one single
and always the same occurrence q of type Q. The object p is the marsupial object. The
object q is the mother object.

According to the M.E.R.O.DE. process algebra, if P f- Q model consistency can be
guaranteed by applying the following rules:
• Propagation rule: SAP s;;;; SAQ

A marsupial cannot participate in an event without the mother having knowledge of this
event.

• Type of involvement rule: c(P) S;;;; c(Q) u m(Q) and m(P) s;;;; m(Q) and e(P) S;;;; m(Q) u
e(Q)
A marsupial cannot be created before its mother exists nor can it exist after the life of its
mother has ended.

• Restriction rule: SRP may not be less deterministic than SRQ
Any sequence of events in which a marsupial participates that is not acceptable from the
point of view of the mother, must be rejected.

Let A be the universe of event types. A conceptual model is basically a set of object types M
s;;;; <peA), R*(A» on which an existence dependency relation is defined.

Example

A conceptual model for a hotel administration is presented. Fig. 1 is the existence
dependency graph. For the cardinalities of the existence dependency relationships the
Bachman notation is used.

An A is associated with zero or one existent dependent B' s

An A is associated with zero, one or many existent
dependent B' s

Fig. 2 is the Object Event Table. It shows the alphabets of the object types and their
partitioning into create event types (C), modify event types (M) and end event types (E).

The regular expressions of the object types are specified as follows:

CUSTOMER = create-customer. (reserve + confirm + cancel + no-show + first-check-in +
next-check-in + invoice + dun + pay)* . file-customer
ROOMTYPE = create-room. (reserve + confirm + cancel + no-show + first-check-in + next
check-in + assign-roomtype)* . file-roomtype
RESERVATION = reserve. (cancel + confirm. (no-show + first-check-in + next-check-in»
ROOM = create-room. (first-check-in + next-check-in + consume + put-on-bill + invoice +
dun + pay + assign-roomtype)* . file-room

I The symbol L must be read as an exclusive and exhaustive selection. For instance, LC(P) means that
object occurrences are created by one and only one create event belonging to an event type in c(P) [15,
p.69].

4

GUEST = first-cheek-in. (next-check-in + consume + put-on-bill + invoice + dun + pay)* .
file-guest
STAY = (first-cheek-in + next-cheek-in) . (consume + put-on-bill)* . invoice. (dun)* . pay
CONSUMPTION = consume. put-on-bill
PAYMENT = invoice. (dun)* . pay

Room ,- Reservation
-/

Customer
h

Type t-" /- -" ~

~)

\I n
Consumption Payment

-I. ,"

~cr ____ ~.~ ________ ~~ ____ ~~ __ G_-_u_es_t __ ~
Figure 1: Existence Dependency Graph

CUSTOM. ROOMTP RESERV. ROOM GUEST STAY CONSUM. PAYM. __ o______ _ __ ~_o ___________ ,_~~_, ___ ""' ___ ~,,_"'_""'_,~ __ ,, __ ,,_,, __ ,~_""
reserve

confirm

cancel

no-show

first-cheek-in

next-cheek-in

consume

put-on-bill

invoice

dun

pay

create-room

file-room

assign-roomtype

create-roomtype

file-room type

create-customer

file-customer

M

M

M

M

M

M

M

M

M

C

E

M C
M

M

M

M

M

M

C

E

M

E

E

E

E

Figure 2: Object Event Table

5

M C C

M M C

M M M C

M M M E

M M M C

M M M M

M M E E

C

E

M

3. A systematic deimition of the complexity of a conceptual model

Before the complexity of a conceptual model can be measured, it must be defined. It must be
stressed that there does not exist a generally accepted definition of 'complexity' [7].
Therefore definitions of complexity are by their nature subjective. The aim of this section is
to propose one such definition of complexity, in this case for the complexity of a conceptual
model of an application domain. The definition is systematic in the sense that it captures the
basic assumptions underlying our viewpoint of complexity.

Our specific definition of complexity is justified by three observations. Thefirst observation
is that he complexity of a conceptual model must somehow be related to the complexity of its
elements. The composing elements of a conceptual model are object types and existence
dependency relationships between object types. According to [3] the complexity of a system
only depends on the relationships between the elements of the system, while the elements
themselves have no inherent complexity. On the one hand such a viewpoint is too simplistic
and too abstract since object types are defined in terms of more atomic elements, i.e., event
types (see previous section). On the other hand, it is clear that relationships between
elements contribute to the complexity of the system. A definition that abstracts from the
relationships in the model would qualify as a definition of the size of the system, but does not
adequately capture its complexity. Therefore, the first observation leads to the following two
assumptions:
• ASSUMPTION 1. The complexity of a conceptual model is a function of the complexity

of its object types;
• ASSUMPTION 2. The complexity of an object type is a function of the existence

dependency relationships it participates in (i.e., both being existent dependent and having
existent dependent object types).

The second observation is that whatever the definition of complexity is used, it must be
possible to identify entities (object types or conceptual models) that are not complex, i.e.,
that have zero complexity. This is a crucial observation since it actually refers to the
representational theory of measurement (e.g., [13]). If, prior to measurement, entities with
zero complexity can be identified, then each entity can be classified as having either zero
complexity or not zero complexity. So at least measurement in the sense of classification
(i.e., measurement on a nominal scale) is possible. It may further be safely assumed that
complexity is not negative. Hence, the second observation implies the assumptions that
• ASSUMPTION 3. The definition of complexity must allow the identification of object

types and conceptual models with zero complexity;
• ASSUMPTION 4. When the complexity of an object type or conceptual model is not

zero, then it is positive.

Assumptions 3 and 4 require a complexity definition that allows the classification of object
types into a zero complexity class and a positive complexity class. The criteria for this
classification express our viewpoint on complexity. Given assumption 2 these criteria
depend on the position of the object type in the existence dependency graph. The same
criteria can also be used to define a zero complexity object type for every position in the
existence dependency graph.

The third observation pertains to a strategy for defining concepts. It is common to define
concepts in terms of other concepts. For instance, Euclid defined geometrical figures in
terms of elementary concepts such as point, line and plan. Since the concept of complexity in
software engineering is badly understood [20] it is an acceptable strategy to define
complexity in terms of concepts whose definitions are generally agreed upon. Given that for
every position in the existence dependency graph a zero complexity object type can be

6

defined, complexity can be defined in terms of a simpler concept, i.e., difference which is
mathematically equivalent to distance, meaning that difference is defined by the same
postulates.

Given these observations and assumptions the complexity of an object type is defined as the
difference (i.e., distance) between its specifications and the specifications of the
corresponding zero complexity object type. Object types correspond when they have the
same position in the existence dependency graph.

This systematic definition of complexity must be further formalised. This is done next. Note
that the definition of complexity as a distance implies a number of additional assumptions
related to its representation and scale type. These assumptions are not discussed in detail
here and must be investigated in subsequent research. Instead it is shown how assumptions 1
to 4 are applied in the definition process.

Assumption 3 necessitates a precise definition of an object type with zero complexity.
Recall from the previous section that object types in a conceptual model are tuples <a,e> E

M ~ <peA), R*(A» that satisfy a number of consistency and correctness constraints. Since
these constraints must be satisfied for all object types in the model, it is our viewpoint that
they do not contribute to the complexity of the object type. Merely satisfying the necessary
constraints does not make the object type more complex than the other object types in the
model. This conclusion leads to the following definition:

DEFINITION 1. Let A be the universe of event types, let M ~ <P(A) , R*(A» be a
conceptual model. The object type P = «x,e> E M has zero complexity if and only if
1. :3 a E Ap,M n c(P) and :3 b E Ap,M n e(P) ::::> a - Ap,M = 0
2. -, :3 a E Ap,M n c(P) and :3 b E Ap,M n e(P) ::::> a - Ap,M = {cp}
3. :3 a E Ap.M n c(P) and -, :3 b E Ap,M n e(P) ::::> a - Ap,M = {ep}
4, :3 a E Ap,M n c(P) and -, :3 b E Ap,M n e(P) ::::> a - Ap,M = {cp, ep}
5. e = LC(P) . (Lm(P))* . Le(P)
where

Ap,M = U SAQ
Qf-p
QEM

is the set of event types propagated from the marsupial object types of P in M;
Cp E c(P) and ep E e(P).

The alphabet of an object type with zero complexity is basically the union of alphabets of its
marsupial object types. This satisfies the propagation rule. Only if this union does not
contain an event type to create objects and/or to end the life of objects, then such (an) event
type(s) may be added to the alphabet without making the object type complex. This rule
does not contradict the type of involvement rule.

The regular expression of an object type with zero complexity is exactly the default life cycle
on its alphabet. This guarantees that e is not more deterministic than the default life cycle. It
also trivially satisfies the restriction rule.

Based on the criteria of definition 1 for every object type P in a conceptual model its
corresponding zero complexity object type, hereafter denoted by min(P), can be defined.
This is formalised in definition 2.

7

DEFINITION 2. Let A be the universe of event types, let M ~ <peA), R *(A» be a
conceptual model and let P = <a,e> E M.
The object type min(P) = <a' ,e'> is defined as
1. a' is partitioned into c(min(P)), m(min(P)) and e(min(P)) such that

a) c(min(P)) ~ c(P)
b) m(min(P)) ~ m(P)
c) e(min(P)) ~ e(P)
d) Amin(P),M ~ a'
e) ::J a E Amin(P),M II c(P) and::J b E Anin(P),M II e(P) ~ a' - Amin(P),M = 0
f), :3 a E Amin(P),M II c(P) and :3 b E Amin(P),M II e(P) ~ a; - Amin(P),M = {cp}
g) ::J a E Amin(P),M II c(P) and......, :3 b E Amin(P),M II e(P) ~ a' - Amin(P),M = {ep}
h), :3 a E Amin(P),M n c(P) and......, ::J b E Amin(P),M II e(P) ~ a' - Amin(P),M = {cp, ep}

2. e' = I,c(min(P)) . (I,m(min(P)))* . I,e(min(P))
where

Amin(P),M = U SAmin(Q)
Q<.-P
QEM

is the set of event types propagated from the marsupial object types of P in M;
Cp E c(P) and ep E e(P).

This definition is consistent with the first definition. The main difference is that only those
event types from the marsupial object types Q that belong to the alphabets of the min(Q)
object types are propagated into a'. The definition is recursive in the sense that min(P) can
only be defined if for all object types Q existent dependent of P, the corresponding zero
complexity object types min(Q) are defined. As a consequence, when the zero complexity
object types corresponding to the top2 object types in the existence dependency graph are
defined, then for all object types in the conceptual model the corresponding zero complexity
object types are derived. Note that whenever it holds that an object type Q is existent
dependent of an object type P, then min(Q) is existent dependent of min(P). Therefore, the
set of zero complexity object types corresponding to the object types of a conceptual model
M is also a valid conceptual model (hereafter denoted by min(M)). The model min(M) is the
conceptual model with zero complexity that corresponds to M.

Example

A model min (HOTEL) corresponding to the model HOTEL is defined. The alphabets of the
zero complexity object types are shown in fig. 3. If an entry in a cell is in bold then the event
type in the row header belongs to the alphabet of the zero complexity object type that
corresponds to the object type in the column header. The regular expressions of the zero
complexity object types are easily derived from this table by defining a default life cycle on
the alphabets.

Comments
• Consumption is the only zero complexity object type in the Hotel model. It satisfies all

criteria of definition 1.
• The modify event type dun does not belong to the alphabet of min(Payment).
• The modify event type dun does not belong to the alphabet of min(Stay) since it does not

belong to the alphabets of min(Consumption) and min(Payment). Since these alphabets
contain no create event type for Stay, a choice has been made between first-check-in and
next-check-in. Only one of these may be included in min(Stay).

2 A top object types is not existent dependent of any other object type in the conceptual model [15, p.
95]

8

• The event types next-check-in, dun and assign-roomtype may not be included in the
alphabet of min(Room).

• The event types next-check-in and dun are not contained in the alphabet of min(Guest).
• The event type confirm is a modify event type, not contained in a marsupial of

Reservation. A choice has been made between the four end event types.
• A number of modify event types are not included in the alphabet of rnin(Roomtype) since

they do not belong to the alphabet of min(Reservation).
• A number of modify event types are not included in the alphabet of rnin(Customer) since

they do not belong to the alphabet of min(Reservation) and min(Payment).

CUSTOM. ROOMTP RESERV. ROOM GUEST STAY CONSUM. PAYM. ~'~~ __ ~_M~~_. ____ ¥ __ " __

reserve M M C

confirm M M M

cancel M M E

no-show M M E

first -check -in M M E M C C

next-cheek-in M M E M M C

consume M M M C

put-on-bill M M M E

invoice M M M M C

dun M M M M M

pay M M M E E

create-room C

file-room E

assign-roomtype M M

create-roomtype C

file-roomtype E

create-customer C

file-customer E

Figure 3: Object Event Table for zero complexity model

Now the complexity of an object type and the complexity of a conceptual model can formally
be defined.

DEFINITION 3. Let A be the universe of event types and let M ~ <peA), R*(A» be a
conceptual model.
a. The complexity of an object type P = <a.,e> E M is the difference between <a.,e> and
<a.' ,e'>, where <a.' ,e'> is the object type min(P).
b. The complexity of M is the difference between M and min(M).

The concept of difference in definition 3 is mathematically equivalent to the concept of
distance. Both are defined by the same postulates. As complexity is redefined in terms of
distance, it cannot be negative. Hence, assumption 4 is satisfied. The definition of the zero
complexity object types in function of the existence dependency relationships their
corresponding object types participate in, is in accordance with assumption 2.

The final decision to be made prior to measure definition concerns the modelling of the
difference between object types and between conceptual schemes.

Let P = <a.,e> and rnin(P) = <a.' ,e'>. Since a. and a' are sets, their difference can be
modelled by their respective set differences. Moreover, since a' ~ a the difference between
a and a' is modelled by the set difference a - a'. To model the difference between the

9

regular expressions e and e' an approach is taken similar to the solution to the tree-editing
problem [11], [19]. First, a set of elementary transformations is defined. Each elementary
transformation is an editing operation on regular expressions.

DEFINITION 4. Let A be the universe of event types. For e, e' E R*(A), x E A:
ti(e) = e'
where ti(e) for subscript i = 0, 1, 2, ... , 9 is defined as:
to(e) = e . x = e'
tl(e) = x . e = e'
t2(e) = e + x = e'
t3(e) = x + e = e'
t4(e) = (e)* = e'
ts(e) = ts(e' . x) = e'
t6(e) = t6(X . e') = e'
t7(e) = h(e' + x) = e'
ts(e) = ts(x + e') = e'
t9(e) = tg((e')*) = e'

(add right sequence event type)
(add left sequence event type)
(add right selection event type)
(add left selection event type)
(add iteration)
(delete right sequence event type)
(delete left sequence event type)
(delete right selection event type)
(delete left selection event type)
(delete iteration)

Given a regular expression e over A, all elementary transformations ti may be applied to e or
to any part of e that is a regular expression over A.
For e, e', e" E R*(A):
(i) e = e' . e" ~ ti(e) = ti(e'. e") or tiCe') . e" or e'. tiCe")
(ii) e = e' + e" ~ ti(e) = ti(e' + e") or ti(e') + e" or e' + tiCe")
(iii) e = e'* ~ tiCe) = ti((e')*) or (tiCe'»*

Next it must be shown that a finite sequence of elementary transformations ti can take every
regular expression e E R *(A) to every other regular expression e' E R *(A). A proof can be
found in [12]. The difference between e and e' is modelled as the shortest T-derivation
from e to e' [19].

DEFINITION 5. Let T be a sequence of til, ... , tik elementary transformations.
A T-derivation from e E R*(A) to e' E R*(A) is a sequence of regular expressions eo, ... , ek
such that e = eo, e' = ek, and tij{ej_l) = ej for 1 :s; j :s; k. The length of a T-derivation is the
number of transformations in T.

The differences between M and min(M) are modelled through the differences between their
corresponding object types. This is in accordance with assumption 1.

Example

Let us illustrate definitions 4 and 5. Suppose we wish to model the difference between
SRSTAY = (first-check-in + next-check-in) . (consume + put-on-bill)* . invoice. (dun)* . pay
and
SRmin(STAY) = first-check-in. (invoice + consume + put-on-bill)* . pay

A T-derivation from SRSTAY to SRmin(STAY) is shown in fig. 4. Its length is 5.

10

T -derivation from SRSTA Y to SRmin(STA Y)

Regular Expression
(first-check-in + next-check-in) . (consume + put-on-bill)* . invoice.
(dun)* . pay
first-check-in . (consume + put-on-bill)* . invoice. (dun)* . pay
first-check-in . (consume + put-on-bill)* . invoice. dun. pay
first-check-in . (consume + put-on-bill)* . invoice. pay
first-check-in . (consume + put-on-bill)* . pay

~~st-check-in .. (invoice + consume + J?ut-on-bill)* . p._ay __ _

Figure 4: T-derivation from SRSTA Y to SRmin(STAY)

4. Complexity measures

Transformation
used on previous
regular expression

Definition 3 defines the complexity of an object type P = <ex,e> as the difference between
<ex,e> and <ex' ,e'> = min(P) , modelled as the set difference ex - a' and the shortest T
derivation from e to e'. Such as mentioned in the previous section, this definition is based on
a number of assumptions regarding representation and scale type that are not further
discussed here. But even without a detailed discussion it is clear that these definitions
require the complexity measures to be metrics in the sense of Measure Theory.

The set difference ex - ex' is a special case of the symmetric difference model that defines a
metric distance between sets [17]. The symmetric difference between sets A and B (notation
A ~ B) is equal to (A - B) u (B - A). It can be shown that for an additive function <p, o(A,B)
= <peA - B) + <pCB - A) is a metric [17]. The most obvious function <p is the cardinality
function [12]. Hence, if A and B are sets, then o(A,B) = I A - B I + I B - AI is a metric. Note
that if B ~ A then B - A = 0 and o(A,B) = I A - B I.

It is also proven that the length of the shortest T -derivation from e E R *(A) to e' E R *(A) is
a metric. For a formal proof see appendix 2 in [12].

DEFINITION 6. Let A be the universe of event types and let M ~ <peA), R*(A» be a
conceptual model. The complexity of an object type P = <ex,e> E M is measured by
o(P,min(P» = (Oalph(P,min(P), Oseq(P,min(P» = (I ex - ex' I , length of the shortest T-derivation
from e to e')

The complexity of a conceptual model is a function of the complexity of its object types.
The model of the difference between conceptual models M and min(M) contains all set
differences between the alphabets of the corresponding object types P and min(P), as well as
all shortest T-derivations from the regular expressions of the P object types to the regular
expressions of the corresponding min(P) object types. The difference between M and
min(M) is defined as a distance if it is the sum of the distances from every object type P in M
to its corresponding object type min(P) in min(M). Given this equality, a complexity
measure for conceptual models can be defined as follows:

DEFINITION 7. Let A be the universe of event types and let M ~ <P(A) , R*(A» be a
conceptual model. The complexity of M is measured by

G(M) = L o(P,min(P»
PEM

11

Example

The complexity measurements of the Hotel model are presented in fig. 5. The Oalph values
can easily be calculated using fig. 3. In each column the number of entries that are not in
bold must be counted. Examples of shortest T-derivations for all object types in the model
can be found in the appendix. The length of these T -derivations are the values of Oseq.

Object type 03 1 h Ose

Payment 1 2
Consumption ° 0
Stay 2 5
Room 3 3
Guest 2 2
Reservation 4 4
Roomtype 5 5
Customer 5 5
Model
cr(Hotel) = 22 26

Figure 5: Complexity measurements

Note that the Oalph values are lower bounds on the Oseq values. However, the Oalph values do
not fully capture the complexity of object types. For instance, the object type Stay is
complex because of the dun and next-check-in event types. But, it is also complex because
of a number of sequence constraints imposed on its life cycle. If after the removal of the
event types in SAP - SAmin(P) from SRP, the life cycle is trivial, then Oalph and Oseq values are
equal. Otherwise, the Oseq values capture additional complexity. If only one measure of
complexity is needed, then we would choose Oseq.

5. Evaluation

The first issue to evaluate is the validity of the complexity measures. From a Measure
Theory point of view validity is guaranteed. The cardinality of the symmetric difference and
the length of the shortest T-derivation are metrics on peA) and R*(A) respectively. Since
complexities are distances in peA) and R *(A), the metrics can be used as complexity
measures.

However, measure validity must also be evaluated from the viewpoint of Measurement
Theory. This requires a detailed analysis of the representation, uniqueness and
meaningfulness problems of measurement [6], [13]. Although these issues need to be
addressed in the future, the results of this paper already allow a limited form of measurement
theoretic validation.

The definitions of complexity allow to decide whether entities (object types and conceptual
models) are complex or not. Recall that the postulates of distance dictate that, for all entities
A and B:
• A = B :::? the distance from A to B is zero;
• A * B :::? the distance from A to B is positive.

Therefore, whenever P = min(P) and whenever M = min(M) the complexities of P and M
must be zero. These requirements are satisfied as according to definitions 6 and 7 it holds
that o(P,min(P)) = (0,0) and cr(M) = (0,0).

12

On the other hand, whenever P *- min(P) and whenev(',r M *- min(M) the complexities of P
and M must be positive. In fact, if P *- min(P) then a - a' *- 0 and the length of the shortest
T-derivation from e to e' is equal to or greater than 1 (i.e., at least one transformation is
needed). Therefore, according to definition 6 it holds that Oalph(P,min(P)) ~ 1 and
Oseq(P,min(P)) ~ 1. As a consequence a(M) is positive (cf. definition 7).

Now, define an empirical ordering relation L on M ~ <peA), R*(A» as

P L Q ¢:} the complexity of P is zero and the complexity of Q is positive

This relation implies that empirically the complexity of an object type P can only be judged
lower than the complexity of an object type Q if and only if P has zero complexity and Q has
some positive complexity.

Note that M is a countable set of object types [13]. Since L. is asymmetric (i.e., P L. Q => -,
Q L. P) and negatively transitive (i.e., P L Q => \:;f R EO M: P L R or R L Q) it imposes a
strict weak: order on M. According to Cantor's theorem [13] when L is a strict weak order
on the countable set M, then there exists a real-valued function fan M such that

P L Q ¢:} f(P) < f(Q)

Moreover, the representation «M, L), (Re, <), f) is an ordinal scale.

Clearly, the complexity measure 0 does not satisfy as the function f since it is not a
homomorphism from (M, L) into (Re, <). It holds that P L Q => o(P,min(P)) < o(Q,min(Q)),
but it does not hold that o(P,min(P)) < o(Q,min(Q)) => P L Q. Therefore, we believe that the
definition of complexity as a distance allows more complex representations than the mapping
of the simple empirical relation L.. This needs to be investigated in the future.

Note that it is possible to find a homomorphic function f that is a metric at the same time.
For all a, a' E peA) let ol(a,a') = 0 if a = a' and let ol(a,a') = Cl > 0 if a *- a'. For all e, e'
E R*(A) let 02(e, e') = 0 if the shortest T-derivation from e to e' has length zero and let o2(e,
e') = C2 > 0 if the shortest T -derivation from e to e' has length not equal to zero. Since 01 and
02 satisfy the metric axioms, they are metrics on PCA) and R*(A) respectively. It now holds
that \:;f P = <ap,ep>, Q = <<XQ,eQ> E M: P L Q ¢:} ol(ap,ap') < 01(<XQ,<XQ') and o2(ep,ep') <
02(eQ,eQ'). This example shows that our definition of complexity allows at least ordinal
measurement.

Apart from their validity, it must be evaluated whether the complexity measures can be
described as measures of the 'complexity of the problems underlying software development'.
In M.E.R.O.DE. the conceptual model is that crucial part of the specifications that describes
the business model, showing the exact functioning of the business in terms of entities,
constraints and rules [15]. According to Zachman, the business model is an integral part of
the system requirements [18]. Hence, it is a problem statement. As such it captures
'problems underlying software development'.

However, not all problems are modelled. For instance, apart from the process algebra, the
M.E.R.O.DE. method includes a number of techniques to specify other types of
requirements. Examples are business rules other than sequence constraints, information
requirements of the users of a system, technology constraints and performance demands. A
conceptual model is by definition an abstraction of the problem domain. It highlights some

13

features, while it purposely omits other features. Of course, if a conceptual model is used as
a measurement model, then only those features can be measured that are included in the
model. Currently these features are the alphabet and the sequence constraints of object
types. All other aspects that are not captured in the conceptual model, but that do contribute
to the 'complexity of the underlying problem' are not measured. Further research on
measuring 'the complexity of underlying problem' must focus on other problem domain
abstractions.

References

[1] Baker A.L., 1.M. Bieman, N. Fenton, D.A. Gustafson, A. Melton and R. Whitty, 'A
Philosophy for Software Measurement', Journal of Systems and Software, Vol. 12,
1990, pp. 277-281.

[2] Basili V.R., L.c. Briand and W.L. Melo, 'A Validation of Object-Oriented Design
Metrics as Quality Indicators', IEEE Transactions on Software Engineering, Vol. 22,
No. 10, 1996, pp. 751-761.

[3] Briand L.c., S. Morasca and V.R. Basili, 'Property-Based Software Engineering
Measurement', IEEE Transactions on Software Engineering, Vol. 22, No. 1, 1996, pp.
68-86.

[4] Brito e Abreu F. and W. Melo, 'Evaluating the Impact of Object-Oriented Design on
Software Quality', IEEE Third International Software Metrics Symposium, Berlin,
March 1996.

[5] Dedene G. and M. Snoeck, 'Formal deadlock elimination in an object oriented
conceptual schema', Data and Knowledge Engineering, Vol. 15, No.1, 1995, pp. 1-30.

[6] Ellis B., Basic Concepts of Measurement, Cambridge Academic Press, 1968.
[7] Fenton N.E. and S.L. Pfleeger, Software Metrics, A Rigorous and Practical Approach,

2nd edition, International Thomson Computer Press, 1997.
[8] Kitchenham B., S.L. Pfleeger and N. Fenton, 'Towards a Framework for Software

Measurement Validation', IEEE Transactions on Software Engineering, Vol. 21, No.
12, 1995, pp. 929-944.

[9] Lanubile F. and G. Visaggio, 'Evaluating Predictive Quality Models Derived from
Software Measures: Lessons Learned', Journal of Systems and Software, Vol. 38,
1997, pp. 225-234.

[10] Li W. and S. Henry, 'Object-Oriented Metrics that Predict Maintainability', Journal of
Systems and Software, Vol. 23,1993, pp. 111-122.

[11] Oommen BJ., K. Zhang and W. Lee, 'Numerical Similarity and Dissimilarity Measures
Between Two Trees', IEEE Transactions on Computers, Vol. 45, No. 12, 1996, pp.
1426-1434.

[12] Poels G. and G. Dedene, 'Formal Software Measurement for Object-Oriented Business
Models', DTEW research paper 9623, Katholieke Universiteit Leuven, 1996.

[13] Roberts F.S., Measurement Theory with Applications to Decisionmaking, Utility, and the
Social Sciences, Addison-Wesley, 1979.

[14] Schneidewind N.F., 'Validating Metrics for Ensuring Space Shuttle Flight Software
Quality', IEEE Computer, Vol. 27, No.8, 1994, pp. 50-57.

[15] Snoeck M., On a Process Algebra Approach for the Construction and Analysis of
M.E.R.O.DE.-Based Conceptual Models, Phd dissertation, department of computer
science, Katholieke Universiteit Leuven, 1995.

[16] Snoeck M., 'Existence Dependency: Conceptual modelling by contract', DTEW research
paper 9640, Katholieke Universiteit Leuven, 1996.

[17] Suppes P., D.H. Krantz, R.D. Luce and A. Tversky, Foundations of Measurement.
Volume II: Geometrical, Threshold and Probabilistic Representations, Academic Press,
Inc., 1989.

14

[18] Zachman I.A., 'A Framework for Information Architecture', IBM Systems Journal, Vol.
26, No.3, 1987, pp. 276-292.

[19] Zhang K. and D. Shasha, 'Simple fast algorithms for the editing distance between trees
and related problems', Siam Journal on Computing, Vol. 18, No.6, 1989, pp. 1245-
1262.

[20] Zuse H. and P. Bollmann, 'Software Metrics. Using Measurement Theory to Describe
the Properties and Scales of Static Software Complexity Metrics', ACM Sigplan
Notices, Vol. 24, No.8, 1989, pp. 23-33.

Appendix

T -derivation from SRPA YMENT to SRmin(PA YMENT) Transformation
used on previous

.. Rt:~!~!: Expressio!!... __ .. ____ ~ __ _ . _____ ... ___ . __ .. __ ...~~~la~ .. ~!p~~~§!Q!!.
invoice. (dun)* . pay
invoice. dun. pay

T-derivation from SRCONSUMPTION to SRmin(CONSUMPT.) Transformation
used on previous

__ Regular E!pression ____________ .. _~~laL~xpE_essioB __ ...

, .. ,~?,,~~~~~""'J?~!.::~n-bi!!._._,~~ .. ,_."~ ..

T-derivation from SRSTAY to SRmin(STAY) Transformation
used on previous

~egular EXp'!:~ssion.____ ____ .~g!!lar ~~p!t:§~iQ!!_
(first-cheek-in + next-cheek-in) . (consume + put-on-bill)* . invoice.
(dun)* . pay
first-cheek-in. (consume + put-on-bill)* . invoice. (dun)* . pay
first-cheek-in. (consume + put-on-bill)* . invoice. dun. pay
first-cheek-in. (consume + put-on-bill)* . invoice. pay
first-cheek-in. (consume + put-on-bill)* . pay
"~,~ck-in . (invoice + consume + Eut-on-bill)* .~_

T-derivation from SRROOM to SRmin(ROOM)

... ~ular Expr_e_ss_i_o_n __ _
create-room. (first-cheek-in + next-cheek-in + consume + put-on-bill
+ invoice + dun + pay + assign-roomtype)* . file-room
create-room. (first-cheek-in + consume + put-on-bill + invoice +
dun + pay + assign-roomtype)* . file-room
create-room. (first-cheek-in + consume + put-on-bill + invoice + pay
+ assign-roomtype)* . file-room
create-room. (first-cheek-in + consume + put-on-bill + invoice +

. file-room

15

ts

Transformation
used on previous
regular e.!p!esslQ~

T-derivation from SRGUEST to SRmin(GUEST)

Regular.Ex~ession

first-check-in . (next-check-in + consume + put-on-bill + invoice +
dun + pay)* . file-guest
first-check-in. (consume + put-on-bill + invoice + dun + pay)* . file
guest

~ f~~i-check-~~co_nsume.+ put-on-bill + invoice +-E~:t)* . file-:.~est

T-derivation from SRRESERVATION to SRmin(RESERVAT.)

Regular Expression
reserve. (cancel + confirm. (no-show + first-check-in + next-check
in))
reserve. (cancel + confirm. (no-show + first-check-in))
reserve. (cancel + confirm. first-cheek-in)
reserve. (cancel + first-check-in)
reserve. first-check-in

Transformation
used on previous
regular expression

tg

Transformation
used on previous
regular expression __ _

~~~ ____ ' _ .. ,~' ___ AA ___ ...... "~='== __ '_'" 

T-derivation from SRROOMTYPE to SRmin(ROOMTYPE) Transformation 
used on previous 

Re~lar EXp!ession _~ _____ , __ , ___ " ___ r--,e~ar eXp"~~ssion"_,,, .. 
create-room. (reserve + confirm + cancel + no-show + first-check-in 
+ next-check-in + assign-roomtype)* . file-roomtype 
create-room. (reserve + cancel + no-show + first-check-in + next
check-in + assign-roomtype)* . file-roomtype 
create-room. (reserve + no-show + first-check-in + next-check-in + 
assign-roomtype)* . file-roomtype 
create-room . (reserve + first-check-in + next-check-in + assign
roomtype)* . file-roomtype 
create-room. (reserve + first-check-in + assign-roomtype)* . file
roomtype 

.... create-room. ,~es~rve -t:~ch~k-il~:2.:,.' file-~oo~!ype._-=. ____ ,~ __ ~t7:....", •• __ ~.".,.""., 

T-derivation from SRCUSTOMER to SRmin(CUSTOMER) 

""Regular E~pres~o-":."~""""." ___ ."",,,,, ___ ,. _____ _ 
create-customer . (reserve + confirm + cancel + no-show + first
check-in + next-cheek-in + invoice + dun + pay)* . file-customer 
create-customer . (reserve + cancel + no-show + first-check-in + 
next-check-in + invoice + dun + pay)* . file-customer 
create-customer. (reserve + no-show + first-check-in + next-check
in + invoice + dun + pay)* . file-customer 
create-customer. (reserve + first-check-in + next-check-in + invoice 
+ dun + pay)* . file-customer 
create-customer. (reserve + first-check-in + invoice + dun + pay)* . 
file-customer 
create-customer. (reserve + first-cheek-in + invoice + pay)* . file-
customer 

16 

Transformation 
used on previous 
regular eXPE~~,,~l~~.., 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 

I 
I 
I 

I 
I 

I 
I 
I 
I 


