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Abstract

Mixed models, with both random and fixed effects, are most often estimated on the assump-
tion that the random effects are normally distributed. In this paper we propose several formal
tests of the hypothesis that the random effects and/or errors are normally distributed. Most of
the proposed methods can be extended to generalized linear models where tests for non-normal
distributions are of interest. Our tests are nonparametric in the sense that they are designed
to detect virtually any alternative to normality. In case of rejection of the null hypothesis, the
nonparametric estimation method that is used to construct a test provides an estimator of the
alternative distribution.

Keywords: mixed model, hypothesis test, nonparametric test, minimum distance, order
selection.

AMS Subject classification codes: Primary 62G10

1 Introduction

Availability of large sets of data, some with many variables but only a few replicates, and others
with many repeated observations per subject, asks for advanced models. Often, one uses a mixture
of random and fixed effects for describing these data. For example, in microarray experiments one
typically has information on thousands of genes, with only a few replicates. This is a situation
where a “classical” model with only fixed effects would fail, since the number p of variables (genes)
greatly exceeds n, the number of observations (replicates). Using a random effects model and
estimating effects distributions is often preferable to trying to estimate all the individual effects.
Often, normality is assumed for effects distributions. In this paper we address ways in which we
can test the assumption of normality.

As another example, consider small area estimation where one usually has only a few obser-
vations per area. Typically, the areas are modelled as random effects. Their distribution is then
important in constructing prediction intervals for specific areas. Using an incorrect distribution
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can lead to incorrect prediction bounds, with possibly important consequences for the conclusions
drawn from such an analysis.

Mixed linear models, for example for longitudinal studies (with p < n), might ask that random
effects distributions be more complex than the classical Gaussian. Approaches based on normal
mixtures Komárek and Lesaffre (2008), penalized model fitting (Ghidey et al., 2004), or Hermite
expansions (Zhang and Davidian, 2001; Chen et al., 2002) provide more flexible alternatives. Again,
the question arises whether such approaches are justified by the data, or whether the simpler normal
random effect distribution would suffice.

Rejecting the null hypothesis of normality in a linear mixed model and looking at the estimated
alternative distribution might suggest missing variables in the model. For example, a missing fixed
binary covariate might lead to a mixture of two distributions.

In this paper we provide several strategies for constructing formal statistical tests of the hypoth-
esis of normality of random effects and/or error distributions. The tests will be nonparametric in
the sense that we do not assume a single parametric form for the alternative model. The omnibus
nature of the tests leads to good power for a wide range of alternative distributions.

In Sections 3 and 4 we give a (non-exhaustive) overview of simple diagnostic measures (mainly
based on plots) for checking the distribution of random effects and error terms. Section 5 proposes
series-based tests that have a close connection to order selection and Neyman smooth type tests
developed for testing hypotheses in (fixed effects) regression models and testing the fit of an error
density (without covariates present), respectively. Section 7 explains a minimum distance testing
approach that could be used in mixed effects models for which each random effect has at least two
replicates. These tests are applied to some data examples in Sections 6 and 8. A discussion follows
in Section 9.

2 Notation

The main part of this paper will work with linear mixed models, even though several of the proposed
methods can be applied to more general mixed models. A linear mixed model takes the form

Y = Xβ + Zγ + ε, (1)

where Y is the vector of length N of response values, X is the N ×K design matrix of fixed effect
covariates, β is the vector of length K of fixed effect parameters, Z is the N × d design matrix
of random effect covariates, γ is the vector of length d of random effects and ε is the vector of
random errors, assumed to be independent of the random effects γ. Standard assumptions include
independence between random effects γ and errors ε, as well as normality for both random effects
and error distributions. Individual components of the vector Y are often denoted using multiple
indices. For example, in longitudinal studies Yjk denotes the kth observation for the jth subject.
The number of subjects is given by n, while nj denotes the number of replicated observations for
subject j.

The covariance matrix of Y is denoted by V , while those of γ and ε are denoted by Σg and Σε,
respectively. The likelihood of the data Y will be denoted by L(·), possibly stressing dependence
on parameter values in the function argument, when this would not be clear from the context. We
use θ as a notation for the combined parameters in the mixed model (coming from both fixed and
random effects and error distributions).
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3 Graphical diagnostics in mixed models

Calvin and Sedransk (1991) describe two methods to construct residuals for graphically checking
the normality assumption on the error terms; however, their methods cannot be used to check
assumptions on random effects distributions. Their first method consists of premultiplying the re-
sponse vector by the inverse of the square root of the estimated variance matrix V of the response
variables. This leads to residuals that are approximately standard normally distributed. Disadvan-
tages of this approach include the smoothing effect that averaging of residuals has (which might
mask effects of outlying observations), and the effect of using estimated variance components rather
than the true values in the standardization. A similar transformation of residuals has recently been
investigated by Jacqmin-Gadda et al. (2007), who multiply the residuals Y −Xβ̂ by the Cholesky
square root of the covariance matrix to obtain residuals that are uncorrelated. These are then used
in a QQ-plot to check normality. Like the first Calvin-Sedransk approach, this method does not
provide a means of testing assumptions concerning the random effects distribution. The second
approach described in Calvin and Sedransk (1991) uses best linear unbiased predictors (BLUP)
of the random effects, predicts the response values, and computes BLUP residuals of the form
Y −Xβ̂ − Zγ̂. While this does not introduce averaging of residuals, the resulting residuals are
still correlated.

The diagnostic plots of Lange and Ryan (1989) use standardized empirical Bayes estimates of
the random effects in a weighted normal QQ-plot. This method works in particular for graphi-
cally checking the distribution of random effects. The choice of weights allows one to test nor-
mality of multiple random effects by computing a linear combination of effects. As in the first
Calvin-Sedransk approach, this method can be adversely affected by having to estimate unknown
parameters, namely fixed effects and variance components.

The QQ-plots of Park and Lee (2004) for longitudinal data are based on the fact that, under
normality, a quadratic form in the residuals Y −Xβ̂ is approximately chi-squared distributed when
estimated variances are inserted in the covariance matrix.

4 Traditional tests for normality adapted to mixed models

Formal tests have not been studied extensively. Most approaches try to transform the correlated
residuals of a linear mixed model to uncorrelated residuals, in order to apply a classical test for
normality. Hwang and Wei (2006) apply such a method to a two-stage cluster sampling design
corresponding to a mixed model of the form

Yjk = µj + γj + εjk, j = 1, . . . , n; k = 1, . . . , nj ,

with the εjk and γj independent mean-zero random variables with variance σ2
e for the errors and σ2

γ

for the random effect. Under normality of both error and random effects, Hwang and Wei (2006)
construct a transformation of the response values Yjk that results in uncorrelated transformed
variables. These are then used for testing univariate normality using classical test statistics (such
as a Shapiro-Wilk test or tests based on skewness). When the null hypothesis of normality is
rejected, one cannot say whether this is due to a misspecified random effects distribution, or to a
wrong error distribution.

Pearson χ2-type tests for mixed models have been studied by Jiang (2001), who assumes a
linear random effects model with independent additive random effects of the form

Y = Xβ + Z1γ1 + . . . + Zsγs + ε,
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and performs hypothesis tests about the random effects and error distributions. The Pearson “χ2”
statistic (which in this case, however, does not have a χ2 distribution), is based on a partitioning
of the range of response values into disjoint intervals. One computes the observed “cell counts,”
indicating how many Yjk are within each cell, and compares that to the estimated expected cell
counts under the hypothesized distributions (by inserting estimators of fixed effects and variance
components). The test statistic is a multiple of the sum of squared differences of observed and
expected cell counts. Since the response values are correlated by construction of the mixed model,
the observed cell counts are not a sum of independent and identically distributed values, causing
the limiting distribution to be different from χ2, and making the choice of the normalizing factor
difficult. For the case of a single random effect where Yjk = Xjkβ + γj + εjk with j = 1, . . . , n
and k = 1, . . . , nj , the normalizing factor is taken to be n, while the choice is less clear in the
case of multiple random effects. Moreover, this test requires the same difficult choices as does the
classical Pearson χ2 test, namely what should the number of cells be and should the cells be of
equal length or of equal probability. Since the null hypothesis simultaneously specifies the random
effects distributions and the error distribution, it is not clear in case of rejection what has been the
cause nor what is a good form for the distributions. The tests that we will construct in Sections 5
and 7 explicitly suggest alternative distributions.

A test that does not not specifically address testing the distribution of random effects, but does
test a parametric mixed effect model against a semiparametric mixed effect model, is studied by
Lombard́ıa and Sperlich (2008).

5 Order selection-type goodness-of-fit tests

5.1 The concept of order selection tests

Until further notice we assume that model (1) holds. We first address the problem of testing
normality of the random effects distribution assuming that the error distribution is known up to
finitely many parameters.

Order selection tests were introduced by Eubank and Hart (1992) to test the fit of a regression
mean function. This testing approach is based on an (orthogonal) series expansion of the function
of interest about the hypothesized null model. To apply an order selection test to our problem, the
random effects density is expanded in a series about a normal density; see for example equation
(2). For an overview of such estimation methods for random effects densities, see Section 5.2. The
series expansion is truncated after M terms, yielding an approximation to the underlying density
that improves as the truncation point, or order, M increases. One may fit several models, each
with a different value of M , and then use a suitable model selection criterion to determine an
appropriate M . Eubank and Hart (1992) used a modified Mallows’ Cp to determine the order.
An intuitively appealing test can now be constructed as follows. If the model selection criterion
selects a model with more parameters than the null model, then the null hypothesis is rejected.
Otherwise, normality of the random effects distribution is not rejected. In Section 5.3.1 we apply
the theoretical results of Aerts et al. (1999) to obtain the limiting distribution of this test.

5.2 Density estimation methods

In recent years, nonparametric estimation approaches have been developed to estimate the random
effects densities as smooth density functions. Zhang and Davidian (2001) use the so-called ‘semi-
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nonparametric’ representation of a density function as studied by Gallant and Nychka (1987).
This estimator takes the form of a Hermite series where the normal density function is multiplied
by the square of a polynomial and suitably normalized to arrive at a proper density function.
Clearly, the hypothesized normal density function is obtained when setting the polynomial equal
to 1, while adding more terms to the series expansion allows one to obtain density functions with
more features than a normal density. This expansion, and in particular the necessary number of
terms in a truncated series approximation, will form the basis of our formal testing approach. See
Section 5.3.1 for more details.

A finite mixture of normal density functions is fit by Verbeke and Lesaffre (1996). To test for
the presence of such heterogeneity, they discourage the use of a likelihood ratio test, but rather
suggest transforming the response vector Y j for the jth individual by taking a linear combination
at

jY j , where the vector aj corresponds to the eigenvector belonging to the largest eigenvalue of
ZjV̂ar(γj)Z

t
j , and then using a Kolmogorov-Smirnov or Shapiro-Wilk test. Again, an alternative

could be to base a test on the data-driven selection of the number of components in the mixture
distribution; see Section 5.3.3.

A further extension of the finite mixture model is studied by Ghidey et al. (2004) who, based
on the idea of penalized spline estimators (P-splines), fit a large number of mixture components
and introduce a penalty on the finite differences of coefficients related to the mixture proportions.

A comparison of the three estimation methods mentioned above, together with the ‘smoothing
by roughening’ method of Shen and Louis (1999), which uses empirical Bayes estimators, is given
in Ghidey et al. (2008).

5.3 Tests for normality of random effects assuming that the error distribution
is normal

Here we consider the mixed model Y = Xβ + Zγ + ε, where we assume that ε ∼ N(0, σ2
εIN ) and

pose no assumption on the distribution of γ. Our interest lies in testing the null hypothesis

H0 : γ ∼ Nd(µγ ,Σγ),

where the covariance structure is not specified. By the reparametrization γ = µγ + GU , with µγ

the mean of γ and Σγ = GGt, it is sufficient to test the hypothesis that U ∼ Nd(0, I).

5.3.1 Semi-nonparametric Hermite expansions

As a first approach we follow Zhang and Davidian (2001), who use a so-called semi-nonparametric
(SNP) estimator for the distribution of the random effects γ, as developed by Gallant and Nychka
(1987). This estimator is based on a Hermite expansion of the unknown density of γ about the
normal density. More specifically, we approximate the density fU of the standardized variable U
in γ = µg + GU . By an Edgeworth expansion of the density of U around the normal density φ
(here given for the one-dimensional case; see e.g. Severini (2000), Section 2.3, which also contains
an expression for the multi-dimensional case),

fU (u) = φ(u){1 + k3H3(u) + k4H4(u) + . . .},

where k3, k4 are related to the cumulants of U and the Hermite polynomials satisfy Hj(u)φ(u) =
(−1)j djφ(u)

duj , and are hence polynomials in u. For example, H3(u) = u3− 3u, H4(u) = u4− 6u2 +3.

5



By a reordering of the terms in the expansion we may approximate the infinite series by the semi-
nonparametric density, here given for the d-dimensional case,

f̂U,M (u) = P 2
M (u)φ(u), (2)

where φ is the d-dimensional standard normal density and PM (·) is a d-variable polynomial, defined
as

PM (u) =
∑

|λ|≤M

aλuλ.

Here, λ = (λ1, . . . , λd), |λ| =
∑d

l=1 λl, uλ = uλ1
1 . . . uλd

d , and the coefficients aλ for each λ in the
sum satisfy conditions to ensure that the integral of f̂U,M is equal to one. The integer M is called
the order of the polynomial. For example, in the case M = 2 and d = 2, the integers λ1 and λ2

satisfy |λ1 + λ2| ≤ 2 and the polynomial is

P2(u) = a00 + a10u1 + a01u2 + a20u
2
1 + a11u1u2 + a02u

2
2.

This leads immediately to an approximation of the density function fγ of γ. For linear mixed
models, this constraint on the coefficients a, which is the vector containing all aλ, can be given
explicitly by requesting that atAa = 1, where the matrix A is defined in terms of moments of d-
dimensional uniform random variables (see Zhang and Davidian, 2001, for details). For generalized
linear mixed effects models (see for example Chen et al., 2002) no such explicit constraint can be
given, and instead one introduces a normalizing constant which, together with setting the first
coefficient a0...0 = 1, ensures that f̂U,M integrates to one. The obtained densities can take various
shapes, with tails ranging from lighter than normal to t-like tails. From a computational point of
view, this method is attractive since it avoids the construction of residuals as needed for ordinary
density estimation. It phrases the model again as a closed-form likelihood and performs maximum
likelihood estimation of all parameters directly, namely fixed effects, variance components and
polynomial coefficients a.

Note that the integer M plays the role of a smoothing parameter, with larger values of M corre-
sponding to less smooth distributions, i.e., ones with more features. Chen et al. (2002) construct an
informal test for normality by letting M take the values 0, 1 and 2, and choose one of those three
possibilities by application of the information criteria AIC (Akaike, 1973), BIC (Schwarz, 1978;
Akaike, 1978) or Hannan and Quinn’s criterion (1979). This idea can be formalized by making
the connection to order selection and Neyman smooth type tests; see Eubank and Hart (1992) and
Ledwina (1994).

To estimate a one-dimensional distribution, only one term at a time is added to the truncated
series, leading to the limit distribution as described in Eubank and Hart (1992), Hart (1997) and
Aerts et al. (1999).

For a two-dimensional distribution of random effects, the number of terms added in the con-
struction of the Hermite series in each step (that is, going from M − 1 to M) is equal to M + 1.
This corresponds precisely to model sequence (b) of Aerts et al. (2000). For the summation limit
in (2) equal to M , a total of N2,M =

(M+2
M

)
= 0.5M(3 + M) + 1 terms are contained in the sum.

Upon invoking the constraint that f̂U,M integrates to 1, the model f̂U,M contains N2,M − 1 more
estimated parameters than the null model. Note that the fixed effect parameters and the error
covariance matrix Σε enter in the same way in all models. Hence, for the penalized criteria it
suffices to consider in the penalty only the number of terms added in the series expansion. Indeed,
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adding a constant to the penalty that is the same for all models will not change the selected order.
The test that rejects whenever the order M̂aic > 0, is equivalent to rejecting H0 when (see Aerts
et al., 1999)

TOS,n = max
1≤m≤M

2{log L(âm)− log LH0}
m(m + 3)/2

> 2, (3)

where L(âm) denotes the maximized likelihood under the alternative fU ≡ f̂U,m, and LH0 denotes
the maximized likelihood under the null hypothesis of normality. Under the regularity conditions
on the likelihood function as stated in Aerts et al. (1999), and using the extension to more than
one dimension as in Aerts et al. (2000), we obtain that TOS,n

D→ TOS as n tends to infinity, with

TOS = max
r≥1

Vr

r(r + 3)/2
, where Vr =

r∑

j=1

χ2
j+1, (4)

χ2
2, χ

2
3, . . . are independent random variables, and χ2

j is distributed chi-square with j degrees of
freedom, j ≥ 2. Using 100,000 simulated values of this distribution, it turns out that the level of
test (3) which rejects for values bigger than 2, is about 0.18. This is the situation of the informal
testing approach when using the standard AIC.

Let Cα be the 1 − α quantile of TOS, and define a modified version of AIC by AICCα(M) =
−2 log-likelihoodM + Cα(N2,M − 1). If M̂AIC is the value of M that minimizes AICCα , then a test
that rejects the hypothesis of normality if and only if M̂AIC > 0 has limiting level α. This test is
equivalent to working directly with TOS,n and rejecting H0 if and only if TOS,n > Cα. The latter
approach would allow calculation of an approximate P -value by comparison of the observed value
of TOS,n with the distribution of TOS.

For a d-dimensional density estimator, at step M , there are
(M+d−1

d−1

)
terms added to the series.

In total, after M steps, this leads to

Nd,M =
M∑

m=0

(
m + d− 1

d− 1

)
=

(
M + d

M

)

terms. Thus, the traditional AIC for this model with the series truncated at value M takes the
form AIC(M) = −2 log-likelihoodM + 2(Nd,M − 1). Rejecting the null hypothesis of normality at
level α is equivalent to rejecting when

TOS,d,n = max
1≤m≤M

2{log L(âm)− log LH0}
(Nd,m − 1)

> Cn, (5)

with Cn appropriately chosen as the (1 − α) quantile of the corresponding distribution. The
expression in (3) is the special case with d = 2. Under the same set of regularity conditions, it can
be shown that TOS,d,n has limiting distribution

TOS,d = max
r≥1

Vr

(Nd,r − 1)
, (6)

with Vr =
∑r

j=1 χ2
n(d,j), n(d, j) =

(j+d−1
d−1

)
(the number of terms added in step j for the d-dimensional

density estimator) and χ2
2, χ

2
3, . . . defined as before. Again, the critical value Cn or a P -value is

easily simulated for any d. As an alternative, one may apply a bootstrap procedure, which might
be advantageous, especially for small data sets.

7



We wish to stress that this particular way of testing may not be very powerful for large dimen-
sions (i.e., large d) because of the curse of dimensionality. For alternative testing procedures and
different schemes for entering terms in a series expansion, see Aerts et al. (2000). The so-called
frequentist-Bayes tests of Hart (2008) may also be adapted to the setting of the current paper and
it would be worthwhile comparing them to order selection tests in high dimensional cases.

Both BIC(M) = −2 log-likelihoodM + log(n)(Nd,M − 1) and the Hannan-Quinn criterion
HQ(M) = −2 log-likelihoodM + log log(n)(Nd,M − 1) are consistent model selection criteria (see,
for example, Claeskens and Hjort, 2008, Ch. 4). This implies that if the null hypothesis holds,
then the null model will be selected with probability tending to 1 as n → ∞. This has important
consequences for the construction of a test statistic. In order to construct a valid test (with a
non-trivial distribution under the null hypothesis), we have to omit M = 0 from the model choice
list. In other words, we do not allow that the null model is chosen by the BIC or HQ criterion. This
construction is used in the goodness of fit testing setting by Ledwina (1994). As a test statistic,
we can take the value of the likelihood ratio statistic at the model with the series truncated at the
BIC or HQ selected model order. Note that, originally, Ledwina (1994) used a score test. In the
construction of a nested sequence of models, where terms are added to the series expansion one
by one, as is the case in the one-dimensional density estimation setting, this approach results in a
limiting χ2

1 distribution under the null hypothesis, and a non-central χ2
1 under local alternatives.

(See, however, Claeskens and Hjort (2004) for alternative schemes with better power properties.) In
general, for estimation of a d-dimensional density using the Hermite series approach, the simplest
model (excluding the normal model) contains d more estimated parameters than the null model.
This implies that the limiting distribution of a test based on BIC or HQ order selection has a
limiting χ2

d distribution when the null model is excluded from the model search.

5.3.2 Log-linear expansions

An alternative to the Hermite expansion is the following log-linear expansion of the density function

fM (u; a) = φ(u)cM (a)−1 exp





M∑

j=1

ajψj(u)



 , (7)

where the basis functions ψj are orthogonal with respect to the null density φ in the sense that∫
φ(u)ψj(u)ψk(u)du = I(j = k), a = (a1, . . . , aM ) and the normalizing constant is given by

cM (a) =
∫

φ(u) exp{∑M
j=1 ajψj(u)}du.

To estimate the unknown parameters in the linear mixed model with this type of log-linear
expression for the random effect distribution, we can proceed as follows. The marginal density of
the response vector Y i for subject i (i = 1, . . . , n) can be written in terms of the conditional density
of Y i given the (standardized) random effects U i = u, and the marginal density of the random
effects fM (u;a) in the following way

f(Y i; θ) =
∫

f(Y i|u; θ)φ(u)cM (a)−1 exp





M∑

j=1

ajψj(u)



 du.

If the random effects have a d-variate standard normal distribution, then f(Y i|u; θ)φ(u) = g(u|Y i)g(Y i; θ),
where g(Y i; θ) denotes the marginal density of Y i under the null model and g(u|Y i) the condi-
tional density of the random effects, given Y i. Hence, the log likelihood of the data can be written
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as
n∑

i=1

log g(Yi; θ) +
n∑

i=1

log


c−1

M (a)EUi|Yi,θ


exp





M∑

j=1

ajψj(U i)









 .

This expression is to be maximized for the unknown parameter values. The first sum is simply
the log-likelihood of normal data, while the second sum needs the evaluation of conditional means
of exp{ψj(U)} with U standard normal. A test of the hypothesis that γ has a d-variate normal
distribution can now proceed in the same way as with the Hermite expansions. Models with several
values of approximation level M are fit to the data (but with otherwise the same random and fixed
effects) and a model selection criterion, or equivalently an order selection test statistic, is applied.
Asymptotic distribution theory as in Aerts et al. (1999) justifies the approach. By expanding
around another distribution than the normal one in (7), other null hypotheses can be tested, which
makes this type of test interesting for use in, for example, generalized linear mixed models.

5.3.3 Mixtures of normal distributions

An interesting alternative to a series expansion to model a more flexible random effect distribution
is through the use of a mixture of normal distributions. Verbeke and Lesaffre (1996) used this
approach in mixed linear models. In their heterogeneity model, the random effects are assumed to
be sampled from a mixture of G normal distributions with different (unknown) means and identical
(unknown) covariance matrix,

γi ∼
G∑

g=1

πgN(µj ,Σγ),

with the constraints that
∑G

g=1 πg = 1 and E(γi) =
∑G

g=1 πgµg = 0.
This implies that the response Y i also follows a mixture of normal distributions, namely

Y i ∼
G∑

g=1

πgN(Xi + Ziµj , V i),

where the covariance matrix is V i = ZiΣγZt
i + σ2

εIni . While Verbeke and Lesaffre (1996) use
the EM algorithm to estimate the unknown parameters, Proust and Jacqmin-Gadda (2005) use a
Marquardt algorithm. An extension of the above model is provided by Ghidey et al. (2004) who
use a large number of mixture components and add a penalty to deal with the resultant possibility
of overfitting, similarly to the penalized spline fitting idea.

The model under the null hypothesis results when G = 1, while values of G > 1 allow for
more flexible shapes of the distribution. Testing the null hypothesis of normality can proceed by
means of tests on the value of G, in a similar way as for order selection tests. Proust and Jacqmin-
Gadda (2005) suggested the use of AIC and BIC to determine the number of components. They
constructed an AIC-type model selection criterion by penalizing twice the value of the attained
log likelihood by twice the number of parameters, the latter composed by adding the number of
fixed effects parameters, the number of parameters in the covariance matrix and the number of
components G in the mixture. This is in the spirit of AIC for linear models, without random
effects and mixture distributions. It turns out (see for example Naik et al., 2007) that for mixture
models, this is not a good course to follow. In Naik et al. (2007) the mixture regression criterion
is developed and it is shown to be an efficient selection criterion to determine jointly the number
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of components in the mixture and the regression parameters in the (fixed effects) linear regression
model.

A value of AIC for models with random effects (with a single normal distribution) is studied by
Vaida and Blanchard (2005). A ‘marginal AIC’ is there formed by considering the mixed model as
a linear model though with a correlation structure for the errors that is determined by the random
effects. The marginal AIC is defined as twice a penalized log-likelihood value, where the penalty
is the total number of parameters (fixed effects and parameters in the covariance matrix). For
conditional models where the random effects are themselves of main interest, a different formula is
needed (see Vaida and Blanchard, 2005). A criterion in the spirit of the AIC for mixture models
with random effects can be formed by combining these methods. Instead of the constant 2 in the
penalty part of the AIC, we could use a value C that is found via simulation, or bootstrap, to yield
the desired level of the test. In contrast to orthogonal series tests, in the context of mixture models,
the orthogonality is no longer present, which complicates the asymptotic distribution. Rather than
developing such theory here, we suggest using the bootstrap for practical application.

5.4 Simultaneous tests on error and random effects distributions

The way of testing as described in the previous section can be extended to simultaneously testing
normality hypotheses of both random effects and error distributions. We here describe the approach
based on Hermite series expansions; a similar method results for log-linear expansions.

Consider approximation (2) for the random effects density, and similarly, write for the error
density

f̂ε,Mε(v) =





∑

|δ|≤Mε

bδvδ





2

φ(v).

This leads to modeling the marginal density of Y in the following way,

fM,Mε(y; θ) =
∫

f̂ε(y −Xβ −Zu|u, θ)f̂U,M (u)du

=
∫

φ(y −Xβ −Zu; θ)φ(u)





∑

|δ|≤Mε

bδ(y −Xβ −Zu)δ





2

×





∑

|λ|≤M

aλuλ





2

du.

Maximizing the likelihood of the data yields maximum likelihood estimates of the model parameters
θ, aλ and bδ. The null model of normality for both random effects and error distribution is obtained
when M = Mε = 0. The order selection idea now uses a model selection method such as AIC,
with appropriately chosen penalty constant, to determine data-driven values for M and Mε. A
particular advantage of this test is that, in case of rejection, it can indicate where the discrepancy
is; for example, when only one of the two orders exceeds zero.

10



6 Examples and simulation results

6.1 Framingham cholesterol data

As a first example we consider the Framingham cholesterol data as used by Zhang and Davidian
(2001). This dataset consists of information on 200 individuals, with cholesterol levels measured
at the start of the study and further every two years for 10 years. Other information given is the
age at the start of the study and the individual’s gender. Not all measurements for all subjects
were recorded. The following mixed model, with a random intercept and random slope for the time
effect, is fit to the data:

Yjk = β0 + β1agej + β2genderj + β3timejk + γ0j + γ1jtimejk + εij .

Zhang and Davidian (2001) used the SNP estimation method on this dataset and tried models with
series truncation point M = 0, 1, 2. They then applied AIC with penalty term twice the number
of parameters in the model, BIC with penalty term the log of the total number of observations N
(although n could have been another choice here) multiplied by the number of parameters, and the
Hannan and Quinn criterion with penalty term log log(N) times the number of parameters. They
report that all three criteria prefer the model with M = 1 over the models with M = 0 or M = 2.

We will test the null hypothesis of bivariate normality of the random effects

H0 : (γ0, γ1) ∼ N2(0,Σγ)

using the order selection test based on the semi-nonparametric Hermite expansion. Models were fit
with truncation points M = 0, corresponding to the null model, and with M = 1, 2, . . . , 5. Using
the asymptotic distribution, we obtain the following simulated critical values of the test statistic:
at nominal level 10% Cn = 2.474, at 5% Cn = 3.084 and at level 1% Cn = 4.584. The observed
value of the test statistic TOS is equal to 12.39, with the corresponding P -value equal to 10−5, which
is clearly evidence that the null hypothesis of bivariate normality of the random effects should be
rejected. The chosen value of the series truncation point is M = 1, also indicating that a more
complex model is needed than just bivariate normality for the random effects. These values are
computed using log likelihood values for the models with M = 0, . . . , 5, as in the following table:

M 0 1 2 3 4 5
log lik. -160.986 -148.597 -146.891 -145.470 -142.917 -142.606
N2,M − 1 0 2 5 9 14 20

6.2 The sleep study

The data for the sleep study are obtained from R’s library lme4, using the syntax data(sleepstudy).
This considers the reaction times in a sleep deprivation study for 18 individuals on 10 consecutive
days. On day zero, the subjects had their normal amount of sleep, but starting that night they
were restricted to only three hours of sleep per night. The response variable is the average reaction
time on a series of tests given each day to each person in the study. This dataset is balanced, with
all observations recorded. The fitted model contains a random subject specific intercept and slope

Yjk = β0 + β1Dayk + γ0j + γ1jDayk + εjk.

We test the null hypothesis of bivariate normality of the random effects

H0 : (γ0, γ1) ∼ N2(0,Σγ).

11



(a) (b) (c)

intercept

sl
op

e

−100 −50 0 50 100

−
30

−
20

−
10

0
10

20
30

−100 −50 0 50 1000.
00

0
0.

00
5

0.
01

0
0.

01
5

intercept

m
ar

gi
na

l d
en

si
ty

−30 −20 −10 0 10 20 30

0.
0

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

slope

m
ar

gi
na

l d
en

si
ty

Figure 1: Sleep study. (a) Contour plot of the estimated density of the random slope and random
intercept. (b) Marginal density estimate for the random intercept. (c) Marginal density estimate
for the random slope. Estimates are obtained by using a penalized Gaussian mixture linear mixed
model.

Table 1 contains the differences between AIC for models with M = 1, . . . , 9 and the AIC value
under H0, computed as

aicC(M) = 2{log L(âM )− log LH0} − C(N2,M − 1).

It is worth noting that large values of aicC indicate good models. In order to perform the test
at, say, level 5%, we use the penalty constant C = 3.084, which is obtained by simulation from
the asymptotic distribution of TOS,2 in (6). For these data, all aic3.084 values are negative, which
indicates that the model of the null hypothesis is chosen as the best one. So, for the sleep study data
we do not have evidence that the random intercept and slope have a more complicated distribution
than bivariate normality. This is also found by using the alternative version of the order selection
test. Computing the test statistic TOS,2,n as in (5) gives the value 2.63, with a corresponding
simulated P value of 0.084. Interestingly, this is a case where the traditional AIC selects a nonnull
model, but the penalty-modified AIC does not.

A graphical representation of these data is obtained using a penalized Gaussian mixture linear
mixed model (Ghidey et al., 2004) with a grid of 10×10 density bases and a penalty term based on
differences of adjacent coefficients. The AIC is used to obtain a data-driven value of the two penalty
constants (one for each dimension). Figure 1 contains a contour plot of the bivariate density of the
random intercept and slope, as well as marginal density plots. A visual inspection also shows no
clear departure from normality.

6.3 Simulation results

We conducted a simulation study to compare the performance of the SNP-based order selection
test TOS,1,n to that of the Pearson test, as described by Jiang (2001). The data are generated
according to the mixed model

Yij = β0 + β1xij + γi + εij , (8)

with replicates j = 1, 2, 3 = m, i = 1, . . . , n, β0 = 1, β1 = 2, xij ∼ Unif(0, 10), εij ∼ N(0, 0.3).
As sample sizes we took n = 35, 50 and 100. We test for normality of the random effect, that is,

12



Table 1: Sleep study. Differences between AIC for models with various truncation points M in the
Hermite series expansion and AIC for the null model. AIC2 is the traditional AIC, with penalty
twice the difference in numbers of parameters for the considered models. The AICC uses C = 3.084
instead of 2 in the penalty term, corresponding to a 5% level for the order selection test.

M 1 2 3 4 5 6 7 8 9
N2,M − 1 2 5 9 14 20 27 35 44 54
aic2 1.25 -2.75 -4.46 -14.62 -24.33 -39.00 -51.08 -68.10 -87.55
aicC -0.91 -8.17 -14.21 -29.79 -46.01 -68.27 -89.02 -115.79 -146.08

H0 : γ ∼ N(0, σ2
γ). Under the null hypothesis we generate random effects with σ2

γ = 0.1.
The Pearson test divides the range of the response values into a number of bins, and compares

the observed count Ok in each bin to the expected count Ek under the the hypothesized distribution
for the random effect and error terms. We follow Jiang (2001) in the construction of this test. In
particular, a range [0,22] is considered as likely values for the response values, and we construct for
each sample size M = floor{(nm2)0.2} = 3 bins, resulting in the statistic

TP =
1

nm2

3∑

k=1

(Ok − Ek)2.

We tried to use the asymptotic distribution of this test, but did not obtain useful results for these
small sample sizes, with all levels equal to zero. Instead we have used an empirical study of 10,000
simulated data sets to obtain quantiles of the null distribution of TP . Subsequently, for each n,
1000 data sets were generated from the null model and each of two alternatives. In each setting,
empirical quantiles were used for TP and large sample quantiles for TOS . To investigate the power
of the tests, we generated data with true random effect γ ∼ t(1), which is a heavy tailed Cauchy
distribution, and with γ coming from a mixture of normal distributions: with probability 0.1, a
N(−4, 0.1) distribution and with probability 0.9 a N(4, 0.1) distribution. Table 2 shows that the
order selection test is fairly conservative, but reaches good power under the alternative hypotheses.
We reiterate that the critical values for the Pearson test are obtained from an empirical study,
thus guaranteeing that they are nearly correct, while no corrections for the level were performed to
obtain the power results for the order selection test. The order selection test has higher power for
both alternatives. In particular for the mixture of normals case, it is able to detect the departure
from normality, while with these sample sizes, the Pearson test is completely unable to do so.

7 Minimum distance methods

When replications are available, testing the fit of both error and random effects distributions
becomes feasible. Initially we consider a fairly simple random effects model, and then discuss
generalizations to more complex random effects and mixed models. Suppose the observations Yjk,
k = 1, . . . , nj , j = 1, . . . , n, obey the model

Yjk = µ + γj + εjk, k = 1, . . . , nj , j = 1, . . . , n, (9)
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Table 2: Simulated data. Simulated rejection probabilities for testing the null hypothesis of nor-
mality of the random effect γ in model (8), for the SNP-based order selection test TOS and the
Pearson test TP .

H0 γ ∼ t(1) γ ∼mixture
Test n α = 0.10 α = 0.05 0.10 0.05 0.10 0.05
TOS 35 0.024 0.006 0.163 0.150 0.239 0.206
TP 0.098 0.045 0.101 0.081 0.002 0.000
TOS 50 0.014 0.011 0.230 0.217 0.294 0.269
TP 0.101 0.055 0.184 0.144 0.000 0.000
TOS 100 0.020 0.010 0.336 0.329 0.362 0.355
TP 0.103 0.052 0.220 0.196 0.000 0.000

where µ is a constant, γ1, . . . , γn are i.i.d. mean 0 random variables having density g and εjk,
k = 1, . . . , nj , j = 1, . . . , n, are i.i.d. mean 0 random variables that are independent of γ1, . . . , γn

and have common density f . Of interest is testing the fit of parametric models for f and/or g.
Before proceeding to a discussion of our methodology, it is worthwhile to discuss the identi-

fiability of model (9). Now, the model fails to be identifiable if and only if there exist distinct
pairs (f1, g1) and (f2, g2) of densities that yield the same joint distribution for Yjk, k = 1, . . . , nj ,
j = 1, . . . , n. Since the Yjk are i.i.d. for different j, it follows that identifiability is determined by
the joint distribution of Ym1, . . . , Ymnm , where nm is the largest of the njs. In other words, the
model is not identifiable if there exist distinct pairs (f1, g1) and (f2, g2) of densities such that the
joint distribution of Ym1, . . . , Ymnm is the same for both pairs.

Let φε and φγ be the characteristic functions (cfs) of f and g, respectively. Reiersøl (1950)
proved the remarkable result that model (9) is identifiable when nm = 2 under the single condition
that neither φε nor φγ vanish throughout an interval. In essence this result implies that, under
general conditions, both f and g can be consistently estimated in model (9) so long as the number
of cases with nj ≥ 2 is unbounded as n → ∞. This fact has been exploited in recent work by Li
and Vuong (1998), Hall and Yao (2003), Delaigle et al. (2008) and Hart and Cañette (2008), all of
whom propose methods for estimating f and g in model (9).

7.1 A test of fit for the error distribution

Consider the differences {δjkl = Yjk−Yjl : 1 ≤ k < l ≤ nj , j = 1, . . . , n}. Obviously, δjkl = εjk− εjl

for all j, k, l, and hence the differences are completely free of the random effect γj . Now, suppose
one wishes to test the null hypothesis that f belongs to a parametric family F0 = {f(·|θ) : θ ∈ Θ}.
One very straightforward way of doing so is to apply a standard goodness-of-fit test, such as the
Kolmogorov-Smirnov (KS) or Cramér-von Mises (CVM), to the δjkls to test the hypothesis that
the distribution of εjk − εjl is that induced by the assumption that εjk ∼ f(·|θ). There are at least
two potential disadvantages of this approach. First of all, as argued by Rayner and Best (1989) and
others, omnibus tests such as KS and CVM are often much less powerful than “directional” types
of tests, such as smooth tests. A second disadvantage of basing a test on the marginal distribution
of δjkl is that identifiability of f from the distribution of εjk − εjl requires a fairly strong condition
on the characteristic function of f . This entails that a test based on the marginal distribution of
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δjkl will sometimes have very poor power. We will thus use a procedure that largely avoids the
identifiability issue and also makes use of directional test statistics.

Let ε1, ε2, and ε3 be independent and identically distributed as f , and let h be the joint density
of ε1−ε2 and ε1−ε3. The previously mentioned result of Reiersøl (1950) implies that f is identifiable
from h on the single condition that the characteristic function of f does not vanish throughout any
interval. Assuming that nj ≥ 3 for a substantial proportion of the nj , we may thus use information
from all the pairs (δjkl, δjkm) such that k 6= l, k 6= m and l 6= m to estimate f . This is done using
a variation of the minimum distance method of Wolfowitz (1957). Now, h has the form

h(x, y) =
∫ ∞

−∞
f(z − x)f(z − y)f(z) dz,

where f is the density of εjk. Define

Sn = {(j, k, l, m) : 1 ≤ j ≤ n, nj ≥ 3, 1 ≤ k, l, m ≤ nj , l 6= k,m 6= k, l 6= m}

and let Ĥ denote the empirical distribution of all pairs (δjkl, δjkm) such that (j, k, l, m) ∈ Sn. Then
the parameters of a model f(·|θ) may be estimated by choosing θ to maximize the Kullback-Leibler
discrepancy

D(θ) =
∫ ∞

−∞

∫ ∞

−∞
log h(x, y|θ)dĤ(x, y)

=
1

#Sn

∑

(j,k,l,m)∈Sn

log h(δjkl, δjkm|θ),

where #Sn is the number of elements in Sn and

h(x, y|θ) =
∫ ∞

−∞
f(z − x|θ)f(z − y|θ)f(z|θ) dz.

It is worth noting that D(θ) is not the likelihood of the pairs (δjkl, δjkm) since these pairs are not
all independent. Rather, D(θ) measures the discrepancy of the parametric model h(·|θ) from the
true density h.

Our test of the null hypothesis that f is in F0 makes use of log-linear expansions as in Sec-
tion 5.3.2. Define for M = 1, 2, . . . ,

fM (x|θ, α) = f(x|θ)cM (θ, α)−1 exp (αψM (x)) ,

and note that this model uses only one orthogonal function ψM and corresponding parameter α.
For M = 1, 2, . . ., define

DM (θ, α) =
1

#Sn

∑

(j,k,l,m)∈S

log hM (δjkl, δjkm|θ, α)

where

hM (x, y|θ, α) =
∫ ∞

−∞
fM (z − x|θ, α)fM (z − y|θ, α)fM (z|θ, α) dz. (10)

Our test procedure may be summarized as follows.
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• For M = 1, . . . , q, define

∆M =
∂DM (θ, α)

∂α

∣∣∣∣∣
(θ,α)=(θ̂0,0)

,

where θ̂0 is the maximizer of DM (θ, 0) with respect to θ. The statistic ∆M is analogous
to a score statistic. Let sM be an estimator of the standard error of ∆M . Then each of
SM = (∆M/sM )2, M = 1, . . . , q, would serve as a test statistic for the null hypothesis that
f ∈ F0.

• The statistics S1, . . . ,Sq are combined into an omnibus statistic as proposed in Hart (2008).
This statistic has the form

T = log




q∑

j=1

j−2 exp(Sj/2)


 , (11)

and the null hypothesis is rejected for large values of T .

• The null distribution of the statistic T is approximated by use of the parametric bootstrap.
Independent and identically distributed random variables ε∗jk, k = 1, . . . , nj , j = 1, . . . , n, are
generated from f(·|θ̂0). Differences δ∗jkl are computed from the ε∗jks, and a test statistic T ∗

is computed from these differences in exactly the same way T was computed from the δjkls.
This process is repeated a large number B of times, leading to bootstrap statistics T ∗1 , . . . , T ∗B.
The null hypothesis is rejected at level α if T exceeds the (1 − α)100th percentile of the B
bootstrap statistics.

7.2 Tests for the random effects distribution

If f were known, a method such as that in Section 5 could be used to test the fit of the random
effects distribution. Here we do not assume that f is known. Our testing methodology requires
estimates of f and g on the assumption that H0 is true. There are at least two ways of estimating f .
If nj ≥ 3 for most j, then, as described in Hart and Cañette (2008), we may compute a minimum
distance estimate of f , an estimate that requires no parametric model. The advantage of this
method is that the estimate of f is in no way influenced by fitting the parametric model g(·|θ) for
g. Alternatively, we may use a method in which f and g(·|θ) are simultaneously estimated. An
advantage of this method is that it only requires two replications for each j. The second method
is the one described in this section. Specifically, we will use the minimum distance method of Hart
and Cañette (2008) to estimate f and g(·|θ). This method is similar to that of Beran and Millar
(1994) for random coefficient regression models.

For ease of notation, let us assume that µ is known to be 0. The joint characteristic function
(cf) of (Yjk, Yjl) (k 6= l) is

φ(s, t) = φγ(s + t)φε(s)φε(t),

where φγ and φε are the respective cfs of γ and ε. Defining the total number of pairs in the data
as ntotal =

∑n
j=1

(nj

2

)
, a consistent estimator of φ(s, t) is the empirical cf

φ̂(s, t) =
1

ntotal

n∑

j=1

∑

k<l

exp[isYjk + itYjl].
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Now, let φγ(t|θ) be the cf of the parametric model for g and φ̂ε be a candidate for φε. Then we
try to find θ and φ̂ε so that φγ(s + t|θ)φ̂ε(s)φ̂ε(t) is a good match to φ̂(s, t) for all (s, t). This, in
essence, is the minimum distance method.

Let Qf be the quantile function associated with f . The minimum distance method of Hart and
Cañette (2008) produces estimates of Qf (u) at u = (j−1/2)/q, j = 1, . . . , q. Let Q = (Q1, . . . , Qq),
where Q1 < · · · < Qq are estimates of Qf ((j − 1/2)/q), j = 1, . . . , q. A corresponding estimate of
φε is

φ̂ε(t) =
1
q

q∑

j=1

eitQj .

We propose that θ and Q be chosen to minimize

D(θ, Q) =
∫ ∫

exp[−b2(s2 + t2)]
∣∣∣φ̂(s, t)− φ̃(s, t)

∣∣∣
2

dsdt,

where
φ̃(s, t) = φγ(s + t|θ)φ̂ε(s)φ̂ε(t).

Introducing the factor exp[−b2(s2 + t2)] into the discrepancy measure ensures integrability. The
quantity b is a small positive number that plays the role of bandwidth. Indeed, exp[−b2(s2 +
t2)/2]φ̂(s, t) is the cf of a kernel density estimate based on the observations (Ŷjk, Ŷjl), j = 1, . . . , n,
k < l, and using bandwidth b and kernel equal to the product of Gaussian densities. A random
search algorithm for determining the minimizer of D with respect to θ and Q is described in Hart
and Cañette (2008).

As a test statistic, we propose D(θ̂, Q̂), where θ̂ and Q̂ are the values determined to minimize
D. The null distribution of the test statistic is approximated by use of the following bootstrap
algorithm:

B1. Draw a random sample ε∗jk, k = 1, . . . , nj , j = 1, . . . , n, with replacement, from the set of
quantiles Q̂.

B2. Generate a random sample γ∗1 , . . . , γ∗n from the density g(·|θ̂).
B3. Construct bootstrap data Y ∗

jk = γ∗j + ε∗jk, k = 1, . . . , nj , j = 1, . . . , n.

B4. Compute the test statistic D(θ̂∗, Q̂
∗
) from the bootstrap data using all the steps used in

computing D(θ̂, Q̂) from the original data.

B5. Repeat steps B1-B4 a large number of times and reject H0 at level of significance α if D(θ̂, Q̂)
exceeds the (1− α) percentile of all bootstrap statistics.

The choice of q, the number of quantiles, is worth some discussion. The test statistic depends on
Q̂ only through φ̂ε, and φ̂ε is relatively insensitive to choice of q so long as q is sufficiently large.
The only reason not to take q very large is computational, as the algorithm of Hart and Cañette
(2008) is slower the larger q is. We have found q = 100 to be a good choice in practice.
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7.3 Generalization to mixed models

Suppose now that we have a model of the form

Yjk = xT
j β + zjkγj + εjk, k = 1, . . . , m, j = 1, . . . , n, (12)

where β is a p-vector of fixed effects and γj is a random effect. The index j denotes different main
experimental units, while k denotes subunits within a main unit. We assume that each main unit
has the same number m of subunits only to simply notation. Each main unit has a known covariate
xj and each subunit a known covariate zjk. We make the following assumptions about the model:

A1. All covariate values x1, . . . , xn and zjk, k = 1, . . . , nj , j = 1, . . . , n, are fixed.

A2. The random variables εjk, k = 1, . . . , nj , j = 1, . . . , n are i.i.d. with E(εjk) = 0.

A3. The random effects γ1, . . . , γn are i.i.d. with E(γj) = 0.

A4. The collections of random variables {εjk} and {γj} are independent of each other.

We wish to test the fit of models for the cumulative distribution functions G and/or F of γj and
εjk, respectively. Because of the covariate zjk, taking differences does not eliminate the random
effect in this case, and hence we will estimate F and G simultaneously. If one wishes to test the fit
of models for both F and G, we suggest that two separate tests be conducted, since then one will
know which (if either) model exhibits lack of fit. Our methodology for the two cases is virtually
the same and will be illustrated by testing the fit of a model for G.

We first note that the fixed effects add little difficulty to the inference of F and G. Let X
be the n × p matrix with jth row equal to xT

j and Ȳ be the column vector with jth element
equal to m−1 ∑m

k=1 Yjk, j = 1, . . . , n. Under standard conditions, the least squares estimator
β̂ = (XT X)−1XT Ȳ is consistent for β as n →∞. We thus define the residuals

êjk = Yjk − xT
j β̂, j = 1, . . . , n, k = 1, . . . ,m,

and base our inference of F and G on these residuals.
Define ejk = Yjk − xT

j β and let φγ and φε be the cfs of γj and εjk, respectively. Now consider
the joint cf φjkl of (ejk, ejl) for k < l:

φjkl(s, t) = E [exp (isejk + itejl)] = E [exp (iγj(szjk + tzjl))]φε(s)φε(t)
= φγ(szjk + tzjl)φε(s)φε(t).

Averaging over all (j, k, l) yields

φn(s, t) =
2

nm(m− 1)

n∑

j=1

m−1∑

k=1

m∑

l=k+1

φjkl(s, t)

= φε(s)φε(t)
2

nm(m− 1)

n∑

j=1

m−1∑

k=1

m∑

l=k+1

φγ(szjk + tzjl).

We may use the last expression as a basis for estimating φγ and φε on the assumption that H0 is
true. Our methodology here closely parallels that in Section 7.2. First, we may estimate φn(s, t)
by

φ̂n(s, t) =
2

nm(m− 1)

n∑

j=1

∑

k<l

exp(isêjk + itêjl).
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Let φγ(t|θ) be the cf of γ assuming that H0 is true, and let φ̂ε be the cf corresponding to a finite
set Q of candidate quantiles for F (as in Section 7.2). Then we may choose θ and Q to minimize

D(θ, Q) =
∫ ∫

exp[−h2(s2 + t2)]
∣∣∣φ̂n(s, t)− φ̃n(s, t)

∣∣∣
2

dsdt,

where

φ̃n(s, t) = φ̂ε(s)φ̂ε(t)
2

nm(m− 1)

n∑

j=1

∑

k<l

φ̂γ(szjk + tzjl|θ).

Again, the algorithm of Hart and Cañette (2008) may be used to approximate the minimizer of D
with respect to θ and Q.

As a test statistic, we use D(θ̂, Q̂), where θ̂ and Q̂ are the values determined to minimize D.
Virtually the same bootstrap algorithm as described in B1-B5 may be used to approximate the
distribution of the test statistic. The bootstrap data take the form

Y ∗
jk = xT

j β̂ + zjkγ
∗
j + ε∗jk, k = 1, . . . , m, j = 1, . . . , n,

and all the same steps used in calculating D(θ̂, Q̂) from the Yjks are used in calculating D(θ̂∗, Q̂
∗
)

from the Y ∗
jks.

As in the simpler model of Section 7.2, identifiability of the model is an important consideration.
The results of Beran and Hall (1992) show that, under quite general conditions, both F and G can
be estimated consistently in model (12). A sufficient condition for this result is that some sequence
zjkj , j = 1, . . . , n, represent i.i.d. draws from a distribution that has at least one of the points 0,
−∞ or ∞ in its support.

A generalization of model (12) is

Yjk = xT
j β + zT

jkγj + εjk, k = 1, . . . , nj , j = 1, . . . , n,

where now zjk is a column vector of r covariates and γj a column vector of r random effects. As
before, εjks are i.i.d. as f , γjs are i.i.d with common r-variate density g, and εjks are independent
of γjs. Tests analogous to those described for the case r = 1 may be constructed. Beran and
Millar (1994) describe minimum distance methodology that could be used to estimate (g(γ|θ), f)
or (g, f(ε|θ)), depending upon which goodness-of-fit hypothesis is of interest. They also provide
conditions under which both g and f may be consistently estimated, a result that would ensure
consistency of tests as proposed above.

8 A microarray example

Here we consider microarray data collected by Robert Chapkin and coworkers of his at Texas A&M
University. The data we analyze are only part of a much larger data set, but provide a good example
of methodology described in Sections 7.1 and 7.2. The data considered are Yjk, j = 1, . . . , 8038,
k = 1, . . . , 5, where j indexes genes, k indexes different rats, and Yjk is the logarithm of the
expression level for gene j and rat k. The five rats from which these data were collected were all
subjected to the same treatment.

We assume the following model for the data:

Yjk = Rk + γj + εjk, j = 1, . . . , 8038, k = 1, . . . , 5,
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Table 3: Score statistics for testing the hypothesis that the rat data error distribution is normal.
The statistic corresponding to M is based on the orthogonal function cos(πMx). This results in the
value T = 469 for the statistic T in (11).

M 1 2 3 4 5 6 7 8 9 10
Statistic 0.380 940 0.00119 99.3 1.23 0.0154 2.47 20.2 3.13 48.3

where Rk represents a rat effect, γj a gene effect, and εjk measurement error. Our assumptions
about the γjs and εjks are the same as those we made for model (9).

We will test normality of each of g and f , the densities of γj and εjk, respectively. The first step
in the analysis is to estimate rat effects by computing the mean of all data for each rat. Defining

Zjk = Yjk − 1
8038

8038∑

i=1

Yik, j = 1, . . . , 8038, k = 1, . . . , 5,

we may say that, to a good approximation, the Zjks follow model (9) since each rat effect is
estimated by the mean of over 8000 observations. We will thus apply the methods of Sections 7.1
and 7.2 to test the two hypotheses of interest.

To test the null hypothesis that f is N(0, σ2), we compute differences of the form δjkl = Zjk−Zjl.
For computational expediency, we compute only one pair of differences for each gene. This is done
by randomly selecting, for each gene j, three rats, k, l and m, say, and computing the differences
(δjkl, δjkm). In applying a test as described in Section 7.1, we use ψM (x) = cos(πMΦ(x/σ)), where
Φ is the standard normal cumulative distribution function. Defining hM as in (10), we may then
compute a test statistic based on the likelihood

LM (σ, α) =
8038∏

j=1

h(δjk(j)l(j), δjk(j)m(j)|σ, α),

where (k(j), l(j), m(j)) denote the three rats randomly selected for gene j. We then use standard
methods to define a score statistic from the likelihood LM for each of M = 1, . . . , 10. These ten score
statistics and the test statistic T (defined by (11)) are given in Table 3. The bootstrap algorithm
of Section 7.1 was applied with B = 500. The largest bootstrap statistic was 3.95, indicating that
the observed value of T is highly significant.

Examining a plot of the data reveals that the significance of T is not surprising. Figure 2 is
a scatterplot of the pairs (δjk(j)l(j), δjk(j)m(j)), which should follow a bivariate normal distribution
if the errors are in fact normal. Instead the plot has an interesting pattern in which “arms”
radiate from a central scatter. These arms are due to outlying differences, which in turn are due to
outlying errors εjk. The minimum distance algorithm of Hart and Cañette (2008) was applied to
the pairs (δjk(j)l(j), δjk(j)m(j)) to obtain estimates Q̂1, . . . , Q̂100 of the quantiles Qf ((j − 1/2)/100),
j = 1, . . . , 100, respectively. A kernel estimate of f of the form f̂(x) = (100b)−1 ∑100

j=1 K((x−Q̂j)/b),
with K equal to a standard normal density, was then computed. The resulting estimate (scaled to
have variance 1) is shown in Figure 3 along with a standard normal density. The error density is
apparently leptokurtic with a longer right than left tail.

We next test for normality of the gene effect. We use the procedure described in Section 7.2
except that Q̂ is taken to be the nonparametric estimate obtained from the analysis described
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Figure 2: Scatterplot of differences for the rat data.
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Figure 3: Estimate of error density for the rat data. The solid and dashed lines are the density
estimate and a standard normal density, respectively.

immediately above and the estimate of the gene effect variance, σ2
γ,0 is σ̂2

γ , the minimizer of D(σ2
γ , Q̂)

with respect to σ2
γ . Our test statistic is then D(σ̂2

γ , Q̂). To speed up computations, only two of five
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Figure 4: Estimates of gene effect density for the rat data. The solid line is a nonparametric
estimate of the density, and the dashed line is the normal density obtained on the assumption that
gene effects are normally distributed.

rats were used for a given gene, with the two rats being randomly selected for each gene. The value
of the test statistic was 0.059, and the largest of five hundred bootstrap statistics was 0.000776,
providing convincing evidence that the gene effects are not normally distributed. Applying the
algorithm of Hart and Cañette (2008), led to the nonparametric estimate of the gene effect density
shown in Figure 4.

9 Discussion

The use of flexible distributions in mixed effects models is relatively new. In addition to having
good estimation methods, it is desirable to be able to test whether a more involved distributional
model is really needed. The tests proposed in this paper are useful for that purpose. We construct
smooth omnibus tests, which are well-studied and known to have good power properties in the
context of linear models. Our proposed minimum distance tests are designed for mixed models
with just a few replicates. A particular advantage of such tests is that they automatically provide
an estimate of the underlying distribution. In case of rejection of the null hypothesis, they may
suggest missing fixed effects in the model, for example in case of multimodality of the random
effects distribution.

In generalized linear mixed models (GLMM), the conjugate distribution might be used as a
random effect distribution instead of the normal distribution (Lee and Nelder, 1996). In such
GLMM a closed form version of the likelihood is usually not available, which asks for alternative
testing procedures that are not likelihood-based. An interesting direction for future research is a
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development of score-based goodness-of-fit tests that would work in combination with generalized
estimating equations.

Another interesting direction is the development of Bayesian or frequentist-Bayesian tests to
accompany Bayesian estimation methods in mixed models with flexible distributions for random
effects.
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