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Abstract

This paper proposes a fully nonparametric framework to estimate relative e¢ ciency

of entities while accounting for a mixed set of continuous and discrete (both ordered

and unordered) exogenous variables. Using robust partial frontier techniques, the prob-

abilistic and conditional characterization of the production process, as well as insights

from the recent developments in nonparametric econometrics, we present a generalized

approach for conditional e¢ ciency measurement. To do so, we utilize a tailored mixed

kernel function with a data-driven bandwidth selection. So far only descriptive analysis

for studying the e¤ect of heterogeneity in conditional e¢ ciency estimation has been sug-

gested. We show how to use and interpret nonparametric bootstrap-based signi�cance

tests in a generalized conditional e¢ ciency framework. This allows us to study statistical

signi�cance of continuous and discrete environmental variables. The proposed approach

is illustrated by a sample of British pupils from the OECD Pisa data set. The results

show that several exogenous discrete factors have a signi�cant e¤ect on the educational

process.
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1 Introduction

The traditional nonparametric procedures to estimate e¢ ciency (such as the non-convex Free

Disposal Hull (FDH; Deprins et al., 1984) and the convex Data Envelopment Analysis (DEA;

Charnes et al., 1978) have recently been directed towards the incorporation of exogenous envi-

ronmental variables. Indeed, e¢ ciency estimations which do not account for the operational

environment have only a limited value. If, for example, the e¢ ciency of the educational

system is assessed, it is useless to compare schools located in �good� neighborhoods (e.g.

measured by the highest degree of the mother, income of the parents, native language) with

schools located in less advantageous areas. Thus, if the evaluated observations are a¤ected

by external, exogenous factors, performance analysis should control for this heterogeneity.

The literature counts various approaches to incorporate the exogenous environment in

nonparametric e¢ ciency analysis (for an overview see Fried et al., 2008). The �rst family of

models uses a one-stage approach (e.g. Banker and Morey, 1986a, 1986b; Ruggiero, 1996),

where environmental factors are considered as free disposable inputs and/or outputs which

are used in the estimation of the production possibility set, but treated as non-controllable (or

non-discretionary) variables. Essential drawbacks of this approach are that (1) the researcher

has to choose a priori whether to model the environmental variable as an input or as an

output, and that (2) the environmental variable is required to be free disposal (monotone) in

the production process (and possibly also convex if DEA is used).1 Although several variants

have been developed (e.g. Färe et al., 1989; Ferrier and Lovell, 1990), they also su¤er from

problem (1) and are only suitable for continuous variables.

The second family of models is based on a so-called frontier separation (or metafrontier)

approach (e.g. Charnes et al., 1981; Thanassoulis and Portela, 2002; Battese et al., 2004;

De Witte and Marques, 2008a). The basic idea behind the frontier separation approach

is to group evaluated units according to some criteria and then perform separate e¢ ciency

assessments for di¤erent groups (or di¤erent values of environmental variables). However,

this approach (1) can only be applied to categorical environmental variables, and (2) in

practice it is not possible to include several environmental factors (at least if variables have

many classes) because otherwise groups can be very small. In addition, (3) comparison and

statistical testing of e¢ ciency di¤erences between more than two categories seems to be

challenging.

The third family of models is based on a two-stage approach (e.g. Ray, 1991; Simar and

1Note that these conditions have to be satis�ed for both continuous and discrete environmental variables.

For catecorigal variables this means that the researcher needs to order beforehand the values of the variable

from the least to most detrimental e¤ect upon e¢ ciency. This is very restrictive and in practice one cannot

use variables that are unordered (e.g. school). Moreover, the approach is not meaningful in applications with

several environmental variables (see Ruggiero, 1998).
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Wilson, 2007; Park et al., 2008). Environmental factors are not included in the �rst stage

of the e¢ ciency estimation, but only in a second stage regression model where the e¢ ciency

scores are explained by the environmental variables. Also three- and four-stage approaches

(see Ruggiero, 1998; Fried et al., 1999, 2002) have been proposed. Di¤erent multi-stage

models avoid the above problems and make it possible to include both continuous and discrete

variables. However, the multi-stage approaches assume (implicitly) a separability condition

in that the operational environment would not in�uence the input or output levels, but only

e¢ ciency. Obviously, in many applications the exogenous variables (e.g. the neighborhood

and mother tongue) do in�uence the observed input use (e.g. teaching hours) and output

levels (e.g. test scores) of the observations. In this sense, there is no separability between

the inputs and outputs on the one hand, and the exogenous variables on the other hand.

The fourth and more novel approach for including environmental factors is based on a

probabilistic formulation of the production process. It incorporates the operational environ-

ment by conditioning on the exogenous characteristics (Cazals et al., 2002; Daraio and Simar,

2005, 2007a). This so-called conditional e¢ ciency approach generalizes previous models by

avoiding the separability condition and by not requiring any speci�cation on the direction of

in�uence of environmental variables. In addition, it allows one to include several environmen-

tal variables and to examine the e¤ect (favorable or unfavorable) of them. As the conditional

e¢ ciency approach avoids the problems of the other models, it seems to be the most promis-

ing method to introduce external environmental factors into nonparametric frontier models.

Therefore, the remainder of this paper concentrates on this approach.

Cazals et al. (2002) outlined the idea on how to incorporate exogenous variables in the

non-convex nonparametric model. Daraio and Simar (2005, 2007a) expanded their approach

to a more general multivariate (continuous) setup and presented a practical methodology

to evaluate the estimators. Later, extension to convex nonparametric models was proposed

(Daraio and Simar, 2007b) and also a signi�cant amount of work has been done to prove

the consistency and the asymptotic properties of di¤erent conditional e¢ ciency estimators

(Cazals et al., 2002; Jeong et al., 2008). As the merits of the approach are large (in partic-

ular avoiding the separability condition) it is increasingly used in several research questions.

Previous applications include the productivity of universities (Bonaccorsi et al., 2006, 2007a,

2007b; Bonaccorsi and Daraio, 2008), e¢ ciency in the water sector (De Witte and Dijkgraaf,

2008; De Witte and Marques, 2008b, De Witte and Saal, 2008), performance of mutual funds

(Daraio and Simar, 2005, 2006; Daouia and Simar, 2007; Jeong et al., 2008; Badin et al.,

2008) and banks (Blass Staub and da Silva e Souza, 2007), e¢ ciency of post o¢ ces (Cazals et

al., 2008), knowledge spillover and regional innovation performance (Bonaccorsi and Daraio,

2007c; Broekel, 2008; Broekel and Meder, 2008) and primary education (Cherchye et al.,

2007).
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Nevertheless, some intricate issues remain. As the conditional e¢ ciency approach relies on

the estimation of nonparametric kernel functions to select the appropriate reference partners,

it heavily relies on the bandwidths. The original article of Daraio and Simar (2005) considered

the cross-validation k -nearest neighbor technique for estimating the bandwidth. However,

besides being nonoptimal in �nite samples, this bandwidth approach does not take into

account the in�uence of the exogenous variable on the production process. As such, although

the conditional e¢ ciency estimates avoid the separability condition, its bandwidth relied on

it. Recently, Badin et al. (2008) suggested an alternative (i.e. data-driven) approach to

select the optimal bandwidth. This approach accounts for the input and output variables

while selecting the bandwidth. Moreover, following Hall et al. (2004), a data-driven procedure

can help to identify external variables that have no in�uence on the production process.

The current paper contributes to the literature by focussing on three additional issues,

which are very relevant in most empirical applications. Firstly, it considers the inclusion

of both discrete and continuous variables in the conditional e¢ ciency framework. The con-

ditional models used in previous studies have been designed for continuous environmental

variables only.2 However, in interesting real-life applications the exogenous variables are

both continuous and discrete. This paper shows how to adapt the nonparametric conditional

e¢ ciency measures to include mixed (i.e. both continuous and discrete) exogenous variables

by specifying an appropriate kernel function which smooths the mixed variables. In doing so,

we propose a procedure to estimate (data-driven) kernel bandwidths both for continuous and

discrete variables (adapted from Hall et al., 2004). By estimating an observation and variable

speci�c bandwidths, our approach is able to estimate for every observation the e¢ ciency rel-

ative to a su¢ ciently large reference group of similar units (i.e. units with a large probability

of being similar). As such, the approach is also superior to the frontier separation approach

which dramatically reduces the number of reference units when the number of groups is large.

Secondly, thanks to our speci�c kernel estimation, our approach can include several or-

dered and/or unordered categorical variables along with continuous environmental variables

even in relatively small samples. We know from previous research (Cazals et al., 2002; Jeong

et al., 2008) that the convergence rate of conditional e¢ ciency estimators decreases when the

number of continuous environmental variables increases. The typical curse of dimensional-

ity in nonparametric models is deteriorated in the conditional e¢ ciency models due to the

smoothing on the exogenous variables. Owing to this problem, one cannot include many

continuous environmental variables in small samples. However, we know from nonparametric

econometrics and statistics that discrete variables with compact support are not sensitive to

this dimensionality problem (see e.g. Li and Racine, 2007). We argue and prove that this is

2 In some applications, it might be justi�ed to use continuous kernels for ordered dicrete variables with

many categories, since those variables are close to be continuous. Instead, the values of unordered discrete

variables have no natural order, and thus cannot be modelled analogously with continuous variables.
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also the case in our conditional e¢ ciency framework. In particular, we prove that the con-

vergence rate does not depend on the number of discrete variables. This is very relevant for

applied research, because it allows one to include a large number of discrete environmental

variables in conditional e¢ ciency measures without deteriorating accuracy of estimation.

Thirdly, we present a framework to test nonparametrically the signi�cance of the ex-

ogenous variables. We note that, so far, only descriptive analysis for studying the e¤ect of

the environmental variables in conditional e¢ ciency estimation has been suggested (Daraio

and Simar, 2005). This is in contrast to the two-stage semiparametric approach of Simar

and Wilson (2007), which allows one to evaluate the signi�cance of explanatory variables in

a truncated regression by the use of bootstrapping techniques. We extend the Daraio and

Simar toolbox for visualizing the e¤ects of the continuous exogenous variables to a generalized

nonparametric setting which allows both visualizing and statistical inference of continuous

and discrete environmental variables. For the signi�cance testing, we use recently developed

nonparametric boostrap-based procedures.

Thanks to our contributions, the nonparametric setup starts approaching very well the

bene�ts of a parametric model (i.e. multivariate analysis with continuous and discrete factors

and with well established statistical inference), but without facing the major drawback of a

parametric model (i.e. selecting a priori a functional form of the production process). To show

potentiality of the approach, we demonstrate it by a relevant research question. In particular,

the inclusion of both discrete and continuous variables in the conditional e¢ ciency estimates

is illustrated by assessing the e¢ ciency of a random sample of British 15 years old pupils.

We use the Pisa data set (Program for International Student Assessment) to estimate the

performance of pupils while accounting for a broad range of unordered (e.g. mother tongue,

possession of own room), ordered (highest degree of mother and father) and continuous

environmental variables (school size or teacher-student ratio). Including both discrete and

continuous factors in the nonparametric model allows for a rich and solid analysis. Obviously,

our approach is not limited to educational performance assessment but could be implemented

in about all known applications.

The remainder of the paper unfolds as follows. The next section discusses the probabilis-

tic formulation of the production process and describes the conditional e¢ ciency approach.

Section 3 presents the generalized kernel estimation, its appropriate bandwidth selection and

shows the procedure for testing the signi�cance of environmental variables. Section 4 applies

the insights to the Pisa data set. Finally, we present the conclusions.
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2 Conditional order-m e¢ ciency estimators

2.1 Probabilistic formulation and order-m

Nonparametric e¢ ciency measures are based on micro-economic production theory and esti-

mation methods that do not require any functional form assumptions. In this framework it

is typical to consider a production technology where production units are characterized by a

set of inputs x (x 2 Rp+) and outputs y (y 2 R
q
+). The production technology is the set of

of all feasible input-output combinations: 	 =
�
(x; y) 2 Rp+q+ j x can produce y

	
. Various

e¢ ciency measures can be de�ned using the set 	. For example, the traditional Farrell (1957)

output-oriented technical e¢ ciency measure is usually de�ned as:

�(x; y) = sup f� j (x; �y) 2 	g ; (1)

where the output e¢ ciency measure �(x; y) � 1 is the proportionate increase of outputs,

which the unit operating at level (x; y) should attain to be considered as being e¢ cient (i.e.

�(x; y) = 1).

Obviously, in practice the set 	 and the e¢ ciency measures are unknown and have to be

estimated from a random sample of production units denoted by �n = f(xi; yi) j i = 1; :::; ng.3

To make the estimation operational, we need to make some assumptions regarding the pro-

duction possibility set 	. One usual assumption is the free disposability of inputs and

outputs, de�ned as: 8(x; y) 2 	; if ex � x and ey � y then (ex; ey) 2 	: This assumption, which
can be easily defended in most applications, is typically required in the nonparametric e¢ -

ciency framework. For example, the non-convex Free Disposal Hull model (FDH, Deprins et

al., 1984) relies only it, while the convex Data Envelopment Analysis (DEA, Charnes et al.,

1978) estimators require it along with an additional convexity assumption. In the remainder

of this paper, we will concentrate on the FDH model as its free disposability assumption can

be easily defended, whereas the convexity assumption is more intricate. The FDH model

estimates the production possibility set as:

	̂FDH =
�
(x; y) 2 Rp+q+ j y � yi; x � xi; (xi; yi) 2 �n

	
: (2)

By interpretation, FDH estimates the set 	 using best practice observations that are de�ned

as undominated units which produce with a given input vector x the highest output vector

y (i.e. an output-orientation), or alternatively, which are able to produce a set of outputs y

with the smallest set of inputs x (i.e. an input-orientation). Note that FDH estimator for

the Farrell output-oriented e¢ ciency score is then obtained by replacing 	 with 	̂ in the

equation (1).

3To clarify presentation, we denote the observed sample from which the e¢ ciency scores are estimated by

lowercase letters (xi; yi) whereas uppercase letters (X;Y ) denote the unknown (and thus random) variables

which can take any value.
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Traditionally, the production process and di¤erent e¢ ciency measures have been pre-

sented using the production possibility set 	̂ as illustrated above. Recently, Cazals et al.

(2002) described the production process using an equivalent probabilistic formulation, which

provides an alternative way of describing the nonparametric FDH estimators. The proba-

bilistic formulation is also useful in presenting a robust version of FDH and in introducing

environmental factors in the nonparametric framework (see below). The idea behind this

probabilistic formulation is to examine the probability that an evaluated observation (x; y)

is dominated using the joint probability function:

HXY (x; y) = Pr(X � x; Y � y): (3)

It is worth emphasizing that HXY (x; y) is not a standard distribution function, because for

the outputs y the survival form is used, not the cumulative form like for the inputs x. In

line with the idea of FDH, HXY (x; y) gives the probability that a unit, operating at input-

output levels (x; y); is dominated. The joint probability function can be further decomposed

as (remark: we only present the output-orientation, for the input-orientation see Cazals et

al., 2002):

HXY (x; y) = Pr(Y � y j X � x) Pr(X � x)
= SY jX(Y � y j X � x)FX(X � x)
= SY (y j x) FX(x) (in shorthand notation)

(4)

where SY (y j x) denotes the conditional survivor function of Y and FX(x) the cumulative

distribution function of X: Now it easy to show that if 	 is free disposal (as assumed above),

the upper boundary of the support of SY (y j x) de�nes the traditional Farrell output-oriented
technical e¢ ciency measure:

�(x; y) = sup f� j SY (�y j x) > 0g = sup f� j HXY (x; �y) > 0g . (5)

This alternative presentation of the output-oriented e¢ ciency score can be interpreted as the

proportionate increase in outputs required for the evaluated unit to have zero probability of

being dominated at the given input level.

To estimate e¢ ciency scores using the probabilistic formulation, one needs to �rst sub-

stitute the empirical distribution function bHXY;n(x; y) for HXY (x; y) and bSY;n(y j x) for
SY (y j x), correspondingly. These empirical analogs are given by:

bHXY;n(x; y) = 1

n

nX
i=1

I (xi � x; yi � y) (6)

and bSY;n(y j x) = bHXY;n(x; y)bFX;n(x) =
bHXY;n(x; y)bHXY;n(x; 0) ; (7)
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where I(�) is an indicator function. Using the plug-in principle, the FDH estimator for the
output-oriented e¢ ciency score can be then obtained as b�FDH(x; y) = supn� j bSY;n(�y j x) > 0o.
It should be noted that the traditional FDH estimator b�FDH(x; y) has two major draw-

backs: (1) it is deterministic and (2) it does not account for the operational environment.

Here we discuss the �rst issue, while the second one is treated in the next subsection. The

deterministic nature of the FDH estimator arises from the assumption that all observations

constitute the production set: Prob((x; y) � 	) = 1. As such, the nonparametric technique

is sensitive to outlying and atypical observations as these could heavily in�uence the upper

boundary of the support of bSY;n(y j x): Therefore, Cazals et al. (2002) suggested to consider
instead of the maximum output production for a given input (which could be in�uenced by

atypical observations), the expected value of m random variables Yi; i = 1; :::;m generated by

the conditional q-variate distribution function SY (y j x). Thus, instead of considering the full
frontier, the idea is to draw a partial frontier depending on a random set of m variables which

consume maximally x resources. Taking the expectation of this less extreme benchmark, we

obtain the order-m e¢ ciency measure �m(x; y). If a unit is on average performing superior

than its m randomly drawn (with X � x) reference units, it obtains a �super-e¢ ciency�

score (i.e. an output-e¢ ciency score of �m(x; y) < 1) which is impossible in the traditional

framework where by construction �(x; y) � 1. Cazals et al. (2002) showed that the order-

m e¢ ciency score �m(x; y) has an explicit expression that depends only on the conditional

distribution SY (y j x):

�m(x; y) =
R1
0
[1� (1� SY (uy j x))m]du: (8)

Similarly with FDH, one can then obtain the estimator for the order-m e¢ ciency by plugging

the bSY;n(y j x) to equation (8), which gives b�m;n(x; y) = R10 [1�(1� bSY;n(uy j x))m]du. Note
that this estimator is relatively easy to compute, as it based on a univariate integral. As

shown by Cazals et al. (2002), the remarkable statistical property of the order-m estimatorb�m;n(x; y) is its pn-consistency, i.e. it converges to the true value as quickly as parametric
estimators. Since this is valid for the general multiple input-output case, the estimator avoids

the curse of dimensionality problem, which is very rare for nonparametric methods.

2.2 Conditional e¢ ciency

Using the probabilistic formulation, Cazals et al. (2002) also suggested a conditional e¢ ciency

approach which includes external environmental factors that might in�uence the production

process but are neither inputs nor outputs under the control of the producer. Daraio and

Simar (2005) extended their ideas to a more general multivariate setup and proposed a prac-

tical methodology to evaluate the e¤ect of environmental variables in the production process.

As mentioned in the introduction, the main bene�t compared to the alternative two-stage
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approach is that it can include environmental variables in the e¢ ciency estimates without

assuming a separability condition. Indeed, in a favorable operational environment, entities

will need less inputs to produce the given set of outputs. Contrarily, an unfavorable opera-

tional environment increases the input requirements. Therefore, the exogenous environment

de�nitely in�uences the input-output selection and its levels. The conditional e¢ ciency ap-

proach consists of conditioning the production process to a given value of Z = z, where Z

denotes variables characterizing the operational environment. The joint probability function

given Z = z can be de�ned as:

HXY jZ(x; y j z) = Pr(X � x; Y � y j Z = z): (9)

Again, this can be further decomposed into:

HXY jZ(x; y j z) = Pr(Y � y j X � x; Z = z) Pr(X � x j Z = z)
= SY jX;Z(Y � y j X � x;Z = z) FX(X � x j Z = z)
= SY (y j x; z) FX(x j z): (in shorthand notation)

(10)

The support of SY (y j x; z) de�nes the production technology when Z = z: To reduce the

deterministic nature, again instead of using the full support of SY (y j x; z) one can draw
randomly m variables Yi; i = 1; :::;m for which X � x and use the expected value of these

draws as the e¢ ciency measure �m(x; y j z). Analogously to the unconditional order-m
e¢ ciencies, �m(x; y j z) can be expressed using the following integral:

�m(x; y j z) =
R1
0
[1� (1� SY (uy j x; z))m]du: (11)

Estimating SY (y j x; z) nonparametrically is somewhat more di¢ cult than for the uncon-
ditional case, as we need to use smoothing techniques in z (due to the equality constraint

Z = z):

ŜY;n(y j x; z) =
Pn

i=1 I(xi � x; yi � y)Kh (z; zi)Pn
i=1 I(xi � x)Kh (z; zi)

; (12)

where Kh(�) is a kernel and h is an appropriate bandwidth for this kernel. The conditional
order-m e¢ ciency estimator �̂m;n(x; y j z) is then obtained by plugging ŜY;n(y j x; z) into
equation (11), i.e.

�̂m;n(x; y j z) =
R1
0
[1� (1� ŜY;n(uy j x; z))m]du: (13)

Importantly, Cazals et al. (2002) showed that the convergence rate of estimator b�m;n(x; y j
z) depends on the dimension of Z, being (nhr)�1=2, where r = dim(Z).4 This means that

4Here it is assumed that bandwidth is similar for all environmental variables in Z. However, this assump-

tion can be easily relaxed, as we will do later.
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although order-m estimator avoids the curse of dimensionality, the accuracy of the conditional

estimator depends on the dimension of Z due to the smoothing in z.

The current literature assumes that the univariate/multivariate Z is continuous. Clearly,

an extension of the conditional e¢ ciency approach to a more general setting including both

discrete and continuous variables requires changes to the presented framework, because in

general it is not appropriate to treat discrete variables similarly with continuous (i.e. use

continuous kernel for all ordered and unordered discrete variables). Next section discusses

the treatment of discrete variables, the choice of kernel functions and the bandwidth selection

in a generalized setting including both discrete and continuous exogenous variables.

3 Estimation with mixed data

3.1 Motivation

This section shows how to generalize the conditional e¢ ciency approach to the case of envi-

ronmental factors having both discrete and continuous components. Firstly, it is important

to notice that the conditional e¢ ciency approach presented in Section 2 is similar to tradi-

tional nonparametric methods (like kernel methods) used in regression and density estimation

with respect to the presumption that the underlying data is continuous. If one would have

a data set containing a mix of continuous and discrete data, the conventional approach in

nonparametric estimation would be to split the sample in subgroups (or �cells�) corresponding

to the di¤erent values of the discrete variables and then estimate separate models/functions

for those subsamples. This approach is sometimes referred to as a �frequency-based�method

(see e.g. Li and Racine, 2007). One could follow the frequency-based approach also in the

conditional e¢ ciency estimation by splitting the sample to subgroups with respect to the

values of discrete variables, and then employ the methods presented in Section 2 for each of

the subgroups (using inputs, outputs and continuous environmental variables). In essence,

this would combine the conditional e¢ ciency approach with the frontier separation approach

referred in the introduction.

However, there are some important reasons why we prefer the alternative approach (pre-

sented below), which does not require the sample splitting a priori. The �rst and perhaps

also the most important reason is that the frequency-based method will be problematic and

even infeasible when the sample size is not large relative to the number of subgroups. For

example, in our empirical application the sample size is 293, and the number of subgroups (or

cells) is 6� 6� 3� 2� 16 = 3456 meaning that there are only 293=3456 � 0:08 observations
per subgroup on average! We note that this is not just a curious example; in fact, e¢ ciency

applications using parametric regression methods use frequently many discrete variables in

relative small samples (100-300 observations). Clearly, one can then not use the nonpara-
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metric frequency-based method without ignoring some discrete variables from the analysis.

Besides the infeasibility problem, it is not practical to estimate a large number of models

for di¤erent values of discrete variables. The second relevant disadvantage of the frequency-

based method concerns statistical inference. Although it is is quite straigthforward to test

the e¤ect of a dummy variable using boostrapping methods by comparing e¢ ciency distri-

butions of separate groups (as Daraio and Simar, 2007a, also mention), the test is much

more challenging if there are more than two subgroups and in particular if one wants to test

signi�cance of the categorical variable that has many classes.

To avoid the problems of the frequency-based method, we propose to use an alternative

approach that smooths also the discrete variables in a particular manner (as �rst suggested by

Aitchison and Aitken, 1976). The idea of smoothing discrete along with continuous variables

is based on novel kernel methods presented by Qi Li, Je¤ Racine and their colleagues (see

e.g. Li and Racine, 2003; Racine and Li, 2004; Hall, Li and Racine, 2004; Li and Racine

2007, 2008). We introduce and adapt these techniques in next subsections to our framework.

3.2 Generalized kernel estimation

As we treat continuous, discrete ordered (i.e. the discrete variables have a meaningful order)

and discrete unordered variables (i.e. it does not matter how the variables are classi�ed to

categories) di¤erently in the estimations, we rede�ne the multivariate Z. De�ne a vector of

observed environmental variables by zi = (zci ; z
o
i ; z

u
i ), i = 1; :::; n, where the �rst component

zci 2 Rr denotes a vector of continuous environmental variables, zoi is a v-dimensional vector
of environmental variables that assume ordered discrete values and zui is a w-dimensional

vector of exogeneous variables that assume unordered discrete values. In addition, let zois
and zuis denote sth components of z

o
i and z

u
i . Without losing any generality, we assume

that zois and z
u
is can take cs � 2 and ds � 2 di¤erent values, i.e. zois = f0; 1; :::; cs � 1g for

s = 1; :::; v and zuis = f0; 1; :::; ds � 1g for s = 1; :::; w. This means that the support of zoi and
zui are S

o =
vQ
s=1

f0; 1; :::; cs � 1g and Su =
wQ
s=1

f0; 1; :::; ds � 1g, respectively.
To smooth both continuous and discrete variables, we need to use kernel functions for all

the environmental variables. We follow Li and Racine (2007) and use a standard multivariate

product kernel for all three components in zi.5 By multiplying these multivariate kernel

functions, we obtain a generalized product kernel function, formally expressed as:

Kh (z; zi) =
rQ
s=1

1

hcs
lc
�
zcs � zcis
hcs

�
r+vQ
s=r+1

lo (zos ; z
o
is; h

o
s)

r+v+wQ
s=r+v+1

lu (zus ; z
u
is; h

u
s ) ; (14)

where lc(�), lo(�) and lu(�) are univariate kernel functions and hcs, hos and hus are bandwidths
for, respectively, continuous, ordered and unordered environmental variables. Regarding the

5Of course, if any of the components zci ; z
o
i or z

u
i are univariate, then an univariate kernel su¢ ces for that

component.
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continuous kernel function lc(�), we know from the previous research (Daraio and Simar,

2005) that one should use kernels with compact support (i.e. kernels for which k(z) = 0 if

jzj � 1) such as the uniform, triangle, Epanechnikov or quartic kernels. In this study we will
use the Epanechnikov kernel (although other compact kernels deliver very similar results).

For unordered variables we employ the Aitchison and Aitken (1976) discrete univariate kernel

function that was designed for discrete variables without any order, while for ordered dis-

crete variables we employ the Li and Racine (2007) discrete kernel function that also takes

into account the ordering of the categories. Formally, these continuous and discrete kernel

functions are given by:

lc
�
zcs � zcis
hcs

�
=

8><>:
3

4
p
5

�
1� 1

5

�
zcs�z

c
is

hcs

�2�
if
�
zcs�z

c
is

hcs

�2
� 5

0 otherwise
(15)

lu (zus ; z
u
is; h

u
s ) =

(
1� hus if zuis = z

u
s

hus= (cs � 1) if zuis 6= zus
(16)

lo (zos ; z
o
is; h

o
s) = (h

o
s)
jzois�z

o
s j: (17)

It is worth considering the two discrete kernel functions in more detail, as they have not

been previously used in nonparametric e¢ ciency literature. Firstly, both the Aitchison and

Aitken (1976) and Li and Racine (2007) kernel functions impose contraints for bandwidth

parameters. For the former, bandwidth hus must be between 0 and (cs � 1) =cs, whereas for
the latter bandwidth hos can take values between [0,1].

6 By considering the limit values of

hus , we see that when h
u
s = 0 then l

u (zus ; z
u
is; 0) = I(z

u
is = z

u
s ) becomes an indicator function,

while hus = (cs � 1) =cs gives lu (zus ; zuis; (cs � 1) =cs) = 1=cs, i.e. a constant kernel func-

tion. The �rst special case is of particular interest, because the indicator function divides

the sample to subgroups exactly the same way as the frequency-based method discussed in

Section 3.1. Similarly, we can observe that when hos = 1, Li and Racine kernel function

becomes lo (zos ; z
o
is; h

o
s) = 1 for all values of zos and z

o
is 2 f0; 1; :::; cs � 1g such that the ir-

relevant variable zos will be smoothed out. In our conditional e¢ ciency setting, the discrete

kernel estimations boil intuitively down to in the order-m estimation drawing with a positive

probability of (1�hus ) observations which belong to the same class as the evaluated observa-
tion, and with a positive probability of hus= (cs � 1) (or alternatively for unordered variables
(hos)

jzois�z
o
s j) observations which do not belong to this class. Drawing observations which

both belong to and not belong to the evaluated class (although with a di¤erent probability)

smooths the discrete variable.

Having presented the idea of smoothing the mixed variables with the generalized kernel

approach, we apply the technique to the conditional e¢ ciency framework. For multivariate
6For example, if we have a unordered dummy variable, we know that cs = 2 and thus hus 2 [0; 1=2].
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z = (zc; zo; zu) inluding continuous and unordered and ordered discrete components, the

estimator for the conditional survivor function of Y can be expressed as:

bSY;n(y j x; z) = Pn
i=1 I(xi � x; yi � y)Kh (z; zi)Pn

i=1 I(xi � x)Kh (z; zi)
; (18)

where Kh (z; zi) is the generalized multivariate kernel function speci�ed in equation (14).

Further, one can again obtain the conditional e¢ ciency estimator b�m;n(x; y j z) by plugging
in bSY;n(y j x; z) in equation (8).
To show the validity of the approach, and in particular to show the consistency of the

estimators, we make the following assumptions.

Assumption (A1): The sample observations Sn = f(xi; yi; zi) j i = 1; :::; ng are real-
izations of independent and identically distributed (iid) random variables (X;Y; Z) with the

probability density function fXY Z(x; y; z). Both the marginal density function fZ(z) and the

conditional survivor function SY (y j x; z) have continuous second order partial derivatives
with respect to zc. For �xed values of x; y and z, fZ(z) > 0 and 0 < SY (y j x; z) < 1:
Assumption (A2): lc(�) is a symmetric, bounded, and compactly supported density

function.

Assumption (A3): As n!1, hcs ! 0 for s = 1; :::; r, hos ! 0 for s = 1; :::; v, hus ! 0

for s = 1; :::; w, and (nhc1h
c
2:::h

c
r)
� 1
2 !1.

The following theorem and corollary give the convergence rate of bSY;n(y j x; z) andb�m;n(x; y j z).
Theorem 1 Under Assumptions (A1) to (A3), bSY;n(y j x; z) converges to SY (y j x; z) with
Op

�
(nhc1h

c
2:::h

c
r)
� 1
2

�
:

Proof.

First, note that we can write the conditional survivor function estimator as:

bSY;n(y j x; z) = P
i2Nx

I(yi � y)Kh (z; zi)P
i2Nx

Kh (z; zi)
; (19)

where Nx = fxi j I (xi � x) = 1, i = 1; :::; ng. Li and Racine (2008) prove that bFY;n(y j
z) =

Pn
i=1 I(yi � y)Kh (z; zi)Pn

i=1Kh (z; zi)
converges to FY (y j z) in mean square error (and hence

in probability) with Op
�
(nhc1h

c
2:::h

c
r)
� 1
2

�
under regularity conditions that are similar to

Assumptions (A1)-(A3). Besides X � x, the only di¤erence to Li and Racine (2008) is

that we are estimating the conditional survivor function SY (y j z) instead of the conditional
distribution function FY (y j z). Since by de�nition SY (y j z) = 1 � FY (y j z), their results
extends to our case when condition on X � x:
The following result follows directly from Theorem 1, as for given m �m(x; y j z) depends

only on SY (y j x; z).
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Corollary 1 Under Assumptions (A1) to (A3), b�m;n(x; y j z) converges to �m(x; y j z)
with Op

�
(nhc1h

c
2:::h

c
r)
� 1
2

�
for any �xed value of m.

These results prove that the conditional e¢ ciency estimator b�m;n(x; y j z) is consistent in
a more general case including both discrete and continuous environmental variables. Addi-

tionally, they show that the convergence rate of the estimator is (nhc1h
c
2:::h

c
r)
� 1
2 , i.e. it does

not depend on the number of discrete variables in Z but only on the number of continuous

variables. This is very relevant result, since e¢ ciency applications use frequently several

discrete exogenous factors in small samples.

3.3 Bandwidth selection: A data-driven method

The bandwidth selection is the most crucial step in a nonparametric kernel estimation (cfr.

it has the same importance as the model speci�cation in parametric estimations). If the

bandwidth is too large, the kernel function will be oversmoothed; if the bandwidth is too

small, the kernel function will be undersmoothed. The initial proposal of Daraio and Simar

(2005) estimated for zc the bandwidth hcs by the likelihood cross-validation k -nearest neighbor

technique. However, (1) only asymptotic optimality of this approach has been shown and

(2) although the conditional e¢ ciency estimates try to avoid the separability condition, its

bandwidth selection relies on it. Indeed, by only relying on the exogenous variables, the

estimation of hcs ignores the impact of z
c on the production process (i.e. the impact of zc on

y given that xi � x). Therefore, conditional bandwidth estimations are required.
Similar as before, the main challenge lies in extending the traditional bandwidth estima-

tions for y conditional on Z = z, to estimations for y conditional on X � x and Z = z (as
required by the conditional e¢ ciency model). The former conditional bandwidth estimations

are developed by the models of Li and Racine (2007, 2008) and Hall et al. (2004). The latter

conditional e¢ ciency estimations are explored by Badin et al. (2008) for continuous variables

only. Following the lines of Badin et al. (2008) we adopt the model of Hall et al. (2004) to

a generalized conditional e¢ ciency framework.

Before going more into detail on the approach, we highlight that several procedures for

conditional bandwidth estimation exist. For example, the seemingly easier plug-in method. It

only seems easier as plug-in methods could be extremely computational intensive and, more

importantly, they do not necessarily lead to an optimal bandwidth if some of the covariates

are irrelevant (Li and Racine, 2008). Therefore, we opt for a data-driven approach. Although

there does not exist a data-driven bandwidth selection approach for mixed conditional CDF,

Li and Racine (2008) suggest to estimate the bandwidth by the least squares cross-validation

method based on the closely related conditional probability density functions (PDF), as

outlined by Hall et al. (2004). As major advantage, the latter procedure removes irrelevant

covariates by oversmoothing these variables.
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To estimate bandwidths (hc; ho; hu), we minimize the cross-validation function CV (hy; hc; ho; hu),

where hy is a bandwidth vector for outputs y: Note that although we estimate bandwidths

also for y, those bandwidths are not used in conditional e¢ ciency estimation. 7 De�ne

therefore the conditional PDF of Y for X � x and Z = z (with z = (zc; zo; zu)) as

g(y j X � x; Z = z) = f(y;X � x; Z = z)=m(X � x;Z = z) where f denotes the joint

density of (y; z) and m the marginal density of z for given X � x: The density f and

the marginal density m are not observed but can be estimated by the use of nonnegative,

generalized kernels K(�) and L(�):

f̂(y; xi � x; z) = 1
n

Pn
i=1 I(xi � x)Kh(z; zi)Lhy (y; yi)

m̂(xi � x; z) = 1
n

Pn
i=1 I(xi � x)Kh(z; zi)

(20)

where the generalized kernel Kh(z; zi) is computed as in equation (14) and the multivariate

kernel Lhy (y; yi) as
Qq
j=1

1
hyj
l
�
yj�yij
hyj

�
with l(�) a univariate kernel function (Epanechnikov).

As also remarked by Badin et al. (2008, p. 8), the only di¤erence between the general-

ized conditional bandwidth computation of Hall et al. (2004) and the optimal data-driven

bandwidth needed for the conditional e¢ ciency framework is the reduction of the reference

sample size where (hc; ho; hu) are computed in. In particular, instead of using the full refer-

ence sample (consisting of n observations) we only consider the observations for which xi � x
and compute for this limited reference set the bandwidths (hc; ho; hu). As such, we obtain

for every observation a particular set of bandwidths in each of its dimensions (i.e. for every

element of zi). As a disadvantage, this approach dramatically limits the number of reference

units for observations with a small x.8

Following Hall et al. (2004), we start from the weighted integrated squared error (ISE)

between ĝ(�) and g(�):

ISE =
R
fĝ(y j xi � x; z)� g(y j xi � x; z)g2m(xi � x; z)dW (z)dy

=
R
ĝ(y j X � x; z)2m(xi � x; z)dW (z)dy (I1n)

�2
R
ĝ(y j X � x; z)g(y j X � x; z)m(xi � x; z)dW (z)dy (I2n)

+
R
g(y j X � x; z)2m(xi � x; z)dW (z)dy (I3n)

(21)

where dW (z) denotes an in�nitesimal element of a measure (in order to avoid for the continu-

ous components of z, zc, dividing by 0 in the ratio f̂(y; xi � x; z)=m̂(xi � x; z)): The leading
term of the ISE (i.e. the part depending on the bandwidth; which corresponds in equation

(21) with the terms I1n and I2n as these have estimates of g(�)) can be approximated by a
cross-validation (CV ) objective function which does not assume numerical integration, nor

7 In total, there are q+ r+v+w bandwidths: (hy ; hc; ho; hu) = (hy1 ; :::; h
y
q ; h

c
1; :::; h

c
r; h

o
1; :::; h

o
v ; h

u
1 ; :::; h

u
w),

but only bandwidth vectors hc; ho and huare used in conditional e¢ ciency estimation.
8Note that this is also the case for the traditional and robust FDH estimator of, respectively, Deprins et

al. (1984) and Cazals et al. (2002).
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initial assumptions on bandwidths or density function estimators. Hall et al. (2004) (and

extended by Badin et al., 2008) show that the leading term of the CV criterion corresponds

to:

CV (hy1; :::; h
y
q ; h

c
1; :::; h

c
r; h

o
1; :::; h

o
v; h

u
1 ; :::; h

u
w) = Î1n � 2Î2n (22)

where the empirical approximations of I1n and I2n, respectively, Î1n and Î2n; are based on

a leave-one-out sample, i.e. a sample of (n � 1) observations due to deleting observation i
from the sample. By optimizing (hy1; :::; h

y
q ; h

c
1; :::; h

c
r; h

o
1; :::; h

o
v; h

u
1 ; :::; h

u
w), we minimize the

CV function.

It can be shown that the optimal order of the bandwidths corresponds hcs � n�1=(5+r)

and ho;us � n�2=(5+r) (Li and Racine, 2008). However, as we basically estimate the optimal
bandwidth for the conditional PDF instead of for the closely related conditional CDF, we

need to adjust the bandwidths to obtain bandwidths of the optimal order of hcs � n�1=(4+r)

and ho;us � n�2=(4+r). The optimal bandwidths (as computed along the conditional PDF)

can be corrected by multiplying hcs with n
1

5+r�
1

4+r and ho;us by n
2

5+r�
2

4+r .

Finally, we note that in some applications one might want to compare performance of

units only with the observations in the same category (i.e. the same value of discrete vari-

able). For example, in evaluating e¢ ciency of hospitals using data from several countries,

one may want to limit comparison units to hospitals in the same country because of the

technological and operational di¤erences. In our framework this is very easy to implement

by imposing bandwidth to be zero for the discrete variable in question (i.e. country). It

is worth emphasizing that the presented framework still allow bandwidths of other discrete

environmental variables to be positive and is therefore more general than the nonparametric

frontier separation (or metafrontier) approach.

3.4 Examining the in�uence of exogenous variables on the produc-

tion process

3.4.1 Visualization

To evaluate systematically the in�uence of exogeneous variables on the production process,

we compare the conditional e¢ ciency measure b�m;n(x; y j z) with the unconditional e¢ ciency
measure b�m;n(x; y): In particular, we follow the methodology suggested by Daraio and Simar
(2005, 2007a) by nonparametrically regressing the ratio of the conditional and unconditional

e¢ ciency measure Qz =
b�m;n(x;yjz)b�m;n(x;y)

to environmental factors z. They use a smooth nonpara-

metric kernel regression to estimate the model Qzi = f(zi) + �i. In addition, they visualize

the estimated relationships between environmental variables and the ratio of e¢ ciency scores.

Using simulations, Daraio and Simar showed that this approach allows one to detect positive,
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negative, neutral or even nonmonotone e¤ects of the environmental factors on the production

process.

When Z is continuous and univariate the visualization is straigthforward as one can use

scatterplots of Qz against Z; and as a smoothed nonparametric regression curve can illustrate

the e¤ect of Z on Qz. For example in an output-oriented e¢ ciency, a horizontal line implies

that Z does not a¤ect the production process, whereas an increasing (decreasing) smoothed

regression curve shows that Z is favorable (unfavorable) to the production process. By

interpretation, a favorable e¤ect means that the environmental variable plays the role of a

�substitutive� input in the production process by increasing the productivity of traditional

inputs, whereas an unfavorable e¤ect implies that the environmental variable contraints the

production by using more inputs in production activity.

When Z is multivariate and includes also discrete variables, visualization is also feasible,

although somewhat more challenging. For dim(Z) = 2, one can use 3-dimensional plots.

However, if dim(Z) > 2, those are not enough. Perhaps the easiest solution for multivariate

cases is to examine so-called partial regression plots (see e.g. Daraio and Simar, 2007a; Badin

et al., 2008), where only one (or two) environmental variable(s) is (are) allowed to change

and other variables are kept at a �xed value. Further, one can then use several di¤erent

�xed values such as median and 1st and 3rd quartile to examine whether the e¤ect on

individual variable Zs is the same for di¤erent values of others exogenous factors. This kind

of procedure helps to recognize the e¤ect of individual variable on the production process

and possible interactional e¤ects between environmental variables. Moreover, it can be used

also for discrete variables as we illustrate in the empirical application.

3.4.2 Nonparametric estimation and inference

Although it can be useful to visualize the e¤ect of environmental variables to the production

process, researchers are usually more interested in their statistical signi�cance. Yet in the

conditional e¢ ciency framework, so far, only descriptive analysis has been suggested and

applied in studying the e¤ect of environmental variables on the production process. This is

in sharp contrast to the papers using two-stage models, where tools of statistical inference

have been used extensively. Our aim is to propose for robust (thus order-m) conditional

e¢ ciency models a framework to test the signi�cance of mixed multivariate environmental

variables in the production process. We follow the lines of earlier research by focussing on

smoothed nonparametric regression. However, instead of Nadaraya-Watson kernel regression,

which has been mostly used in previous conditional e¢ ciency studies, we will use local linear

regression for estimatingQzi = f(zi)+�i. Compared to the Nadaraya-Watson kernel estimator

(i.e. local constant regression), the local linear estimator is less sensitive to boundary e¤ects

and can also simultaneously uncover the marginal e¤ects of the environmental variables on
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Qz.9

As in our framework Z can include both discrete and continuous variables, it is again

useful to employ smoothing techniques which allow one to estimate the nonparametric re-

gression model without sample splitting (i.e. which was the case in the frequency approach).

Therefore, we use the nonparametric regression method developed by Racine and Li (2004)

and Li and Racine (2004), which smooths both continuous and discrete variables. To present

the basic idea shortly, consider our nonparametric model:

Qzi = f(zi) + �i; i = 1; :::; n (23)

where as previously Qzi =
b�m;n(xi;yijzi)b�m;n(xi;yi)

, zi = (zci ; z
o
i ; z

u
i ) includes values of continuous, or-

dered and unordered exogenous variables for observation i, �i is the usual error term with

E (�i jzi ) = 0, and f is the conditional mean function. The local linear method is based on
the following minimization problem:

min
f�;�g

nX
i=1

(Qzi � �� (zci � zc)�)
2
Kh(z; zi); (24)

where � and � are local coe¢ cients and Kh is the generalized product kernel function de�ned

earlier. Letting b� = b�(z) and b� = b�(zc) denote the solutions that minimize equation (24), it is
straigthforward to show that local linear estimators b�(z) and b�(zc) are consistent estimators
for f(z) = E (Qz jz ) and �(zc): Note that the practical advantage of local linear regression is
the fact that one can estimate simultaneously both the conditional mean function f(z) and

the gradient vector �(zc) for continuous components (which can be interpreted as varying

coe¢ cient). For bandwidth choice we use again the least-squares cross-validation, although

one can employ also other methods available in literature. For more details on nonparametric

regression with mixed data and the bandwidth choice methods, see Racine and Li (2004) and

Li and Racine (2004, 2007).

Before presenting the statistical inference tools, it is important to justify our approach. We

want to emphasize that our framework does not su¤er from similar inference problems as the

two-stage models with the traditional and deterministic FDH and DEA models. Simar and

Wilson (2007) rigourously show that most studies using two-stage models have used tools that

are invalid in that context. Therefore, to make accurate and valid inference, Simar andWilson

(2007) suggested boostrapping methods, which has been lately used in many applications.

There are basically four reasons why our approach avoids the problems listed by Simar and

Wilson (2007). Firstly, since our dependent variable Qzi is based on the ratio of conditional

and unconditional e¢ ciency score, it is not restricted to interval [0; 1] or [1;1) (which is the
case in traditional deterministic FDH and DEA). Secondly, as the ratio of e¢ ciency scores

9Jeong et al. (2008) use also local linear procedure to estimate the e¤ect of environmental variable(s).
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in Qzi can be very di¤erent for di¤erent observations, there is no reason to suspect that

there would be a systematic correlation between observations if Qzi 6= 1. Moreover, even in
the very unlikely case when the conditional and unconditional e¢ ciency scores would be the

same for all observations, the possible correlation is a smaller problem (and disappears more

quickly) in the robust order-m than in the traditional deterministic FDH and DEA. Thirdly,

since our framework does not assume separability (in contrast to two-stage models), there

is no reason for � and Z to be systematically correlated. Fourthly, although our estimation

methods cannot avoid bias in small samples (similarly to other nonparametric methods), if

the number of continuous variables in Z is small our fully nonparametric estimation method

has much faster convergence rate than typical semiparametric two-stage models. Therefore,

we can conclude that the robust (order-m) conditional e¢ ciency framework does not su¤er

from the problems in the traditional two-stage model.

Since our estimation framework is fully nonparametric, we also want to avoid any para-

metric assumptions in the statistical inference stage. It is worth emphasizing that parametric

assumptions would be di¢ cult to justify in this context and even inconsistent with our non-

parametric e¢ ciency estimation. Thus, to test the signi�cance of regressors in (23), we will

utilize recently developed nonparametric tests. More speci�cally, we test the signi�cance of

each of the discrete and each of the continuous variables using tests, respectively, proposed

by Racine et al. (2006) and Racine (1997). These tests can be seen as the nonparametric

equivalent of standard t-tests in ordinary least squares regression. However, nonparametric

test are more general than standard t-tests, as the former tests both linear and (unspeci�ed)

non-linear relationships. In a multivariate setting the null hypotheses for testing continuous

and discrete (both ordered and unordered) components are, respectively:

H0 : E
�
Qz
��� eZ;Zcs � = E �Qz ��� eZ � almost everywhere, and (25)

H0 : E
�
Qz
��� eZ;Zds � = E �Qz ��� eZ � almost everywhere, (26)

where Zcs and Z
d
s denote sth component of continuous and discrete (ordered or unordered)

variables and eZ represent all other environmental variables, which can be both continuous

and discrete. The alternative hypotheses H1 are negations for the null hypotheses. Thus,

e.g., for the second case the alternative hypothesis is H1 : E
�
Qz
��� eZ;Zds � 6= E �Qz ��� eZ � :

To deduce a practical implementation, we �rstly rewrite the null hypothesis for continuous

variables as:

H0 :
@E

�
Qz
��� eZ;Zcs �

@Zcs
= � (Zcs) = 0 almost everywhere; (27)

i.e., that the partial derivative of f(Z) with respect to Zcs is zero. Using this representation,

the test statistic for continuous components can be written as:

Ic = E
n
� (Zcs)

2
o
: (28)
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A consistent estimator for this test statistic can be obtained by substituting the local linear

estimator for unknown derivative and using a sample average of I, i.e.

Icn =
1

n

nX
i=1

b� (zis)2 : (29)

To estimate the �nite-sample distribution and critical value of the test statistic Icn, nonpara-

metric bootstrap procedures can be used. We shortly explain the steps of the bootstrap

procedure; for more details, see Racine (1997). First estimate the conditional mean function

E
�
Qz
��� eZ;Zcs � � f0 and save residuals b�i; i = 1; :::; n: Secondly, resample with replacement

from the residual distribution bF ; which has probability mass 1
n for all b�i; to obtain a boot-

strap sample fb��i gni=1 : Thirdly, generate a bootstrap sample n bQ�i ; zion
i=1
, where bQ�i = f̂0i +b��i ;

i = 1; :::; n and zi include all conditioning variables. Fourthly, estimate b� (zis)� and the test
statistic using the bootstrap sample. By repeating steps (1)-(4) B times (where B is a large

number) one obtains a sample distribution that can be then used for calculating critical

values and p-values for the test statistic.

Secondly, for discrete variables a statistic similar to (29) can be used for the signi�cance

testing. Let us assume that the testable discrete variable Zds (ordered or unordered) takes c

di¤erent values, f0; 1; 2; :::; c� 1g. If we denote the conditional mean function by f( eZ;Zds );
the null hypothesis E

�
Qz
��� eZ;Zds � = E �Qz ��� eZ � is equivalent to f( eZ;Zds = l) = f( eZ;Zds = 0)

for all eZ and for l = 1; 2; :::; c� 1: The test statistic is:
Id =

c�1X
l=1

E

�h
f( eZ;Zds = l)� f( eZ;Zds = 0)i2� ; (30)

which is clearly always nonnegative and equals zero when the null hypothesis is true. A

consistent estimator of the test statistic is then obtained as:

Idn =
1

n

nX
i=1

c�1X
l=1

h bf(ezi; zdis = l)� bf(ezi; zdis = 0)i2 ; (31)

where bf is the local linear estimator of the conditional mean function at the given values of
the variables. This estimator can be straightforwardly generalized also to the case, where

multiple discrete variables are tested simultaneously (see Racine et al., 2006).

To approximate the �nite-sample distribution of Idn, Racine et al. (2006) suggest to use

a boostrap procedure.10 As the procedure is a bit di¤erent than for continuous variables, we

next sketch shortly the steps. Firstly, randomly select z�is from fzisg
n
i=1 with replacement and

call
n bQ�i ; ezi; z�ison

i=1
the bootstrap sample. Secondly, use the bootstrap sample to compute

the bootstrap statistic I�;dn , which is otherwise similar than (31) but zis is replaced by z�is:

10Note that Racine et al. (2006) propose for discrete variables also two alternative bootstrap procedures

that could be used in this context. However, the computational burden is larger.
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Thirdly, by repeating steps 1 and 2 B times (with B a large number) one obtains a sample

distribution that can be then used for calculating critical values and p-values.

4 Educational e¢ ciency

4.1 The performance of pupils

Our conditional e¢ ciency model allows one to proxy the exogenous environment by a combi-

nation of discrete, both ordered and unordered, and continuous variables. The use of combined

discrete and continuous variables is particularly valuable when assessing educational data.11

We estimate the performance of British pupils at the age of 15 as surveyed by the inter-

national Pisa (Program for International Student Assessment) data set for 2006. The latter

OECD survey is currently at its third wave (2000, 2003 and 2006) and contains survey data

for more than 400,000 pupils from 57 countries. Besides a pupil survey, it consists of a survey

by the school and by the parents which try to capture the socio-economic background of the

pupil. We limited our sample to 16 randomly chosen English and Welsh schools which count

in total 293 surveyed pupils. By considering a small sample, we try to illustrate that our

conditional e¢ ciency approach is able to include a large number of discrete variables without

losing accuracy of the estimation. As the conditional e¢ ciency model relies on the robust

e¢ ciency estimates, it is also well suited to deal with the extremal and atypical observations

which could arise from survey data (e.g. Bound et al., 2001).

The conditional order-m estimation requires the selection of input, output and environ-

mental variables. We follow the education literature in selecting these. Students are spending

resources (in particular time) to study languages, math, science and other skills. The four

input variables sum for, respectively, language, math, science and other subjects the total

hours that pupil reported to spend on the subject during regular classes, out of school and

self study (i.e. the sum of the variables ST31Q in the Pisa data set). As such, the inputs

proxy the devotion to the subjects. Given these e¤orts, students are obtaining test results

which are proxied by 5 plausible values for, respectively, language, math and science (the

plausible values are standardized across the OECD countries with an average score of 500).

Following the standard literature (e.g. OECD, 2007) we consider as output variables the

arithmetic average of the 5 plausible values in the Pisa data set for each of the three sub-

jects. The socio-economic environment (SEE) of the pupil is captured by 7 environmental

variables (following Hampden-Thompson and Johnston, 2006 and references therein). We

include two ordered variables, i.e. the education of the mother and the father as proxied by

11Obviously, the scope of the generalized conditional e¢ ciency framework is much broader. Therefore, the

R code is available from the authors upon request. The code utilizes np package by Hay�eld and Racine

(2008).
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Table 1: Descriptive statistics

Minimum Median Mean Maximum St. Dev.

Input Hours devoted to language 0 6 6 21 3

Hours devoted to math 0 6 6 21 3

Hours devoted to science 0 6 6 13 3

Hours devoted to other subject 0 7 8 21 4

Output Test score language 214 477 474 673 90

Test score math 246 472 474 667 74

Test score science 227 487 492 715 78

SEE Education mother 1 4 4 6 1

Education father 1 4 4 6 1

Lang. at home (1=di¤; 2=other nat; 3=Eng)

Own room (1=No; 2=Yes)

School

School size 187 1003 946 1501 326

Students per teacher 12 16 15 17 1

a variable between 0 (did not complete ISCED 1; where ISCED denotes the International

Standard Classi�cation of Education by the Unesco) and 6 (completed ISCED 5a or 6). We

also condition on three unordered variables: whether the language at home is the test lan-

guage (denoted by a value of 3), another national language (a value of 2) or another language

(a value of 1); whether the pupil possesses his/her own room (with a value of 2 if so, 1 if not);

and a factor denoting the school. The latter variable captures the clustering at the school

level which could, e.g., arise from the neighborhood the school is located. Finally, we include

two continuous variables which are related to the school characteristics: the total school size

and the average teacher-student ratio of the school. Some descriptive sample statistics are

presented in Table 1.

Following Daraio and Simar (2005, 2007a) we select the size of the partial frontier m as

the value for which the percentage of super-e¢ cient observations (i.e. �mFDH < 1) remains

more or less stable. In sample under study, m corresponds to 30. The R code, using some

features of the np-package of Hay�eld and Racine (2008), is available upon request.

4.2 Results

To assess the performances of the pupils, we estimate the extent to which the pupils are able

to deploy their acquired knowledge to obtain higher test results (i.e. an output-orientation).

Using this input and output set, we experimented with various combinations of the exogenous
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variables. As in all models the discrete variables had a signi�cant e¤ect on the performance of

the pupils, we present only two models and particularly discuss the model with only school

size as a continuous variable. Denote �Model 1� as the general model with all exogenous

variables, and �Model 2�as the model without student-teacher ratio. Applying a standard

robust order-mmodel (so without taking the exogenous environment into account), we obtain

average e¢ ciency scores of �mFDH(x; y) = 1:22 (see also Table 2). This indicates that if

all pupils would perform as e¢ cient as the best practice pupils (i.e. those pupils who are

obtaining with a given devotion to the subjects the highest test results), the test scores

could on average increase by 22%. Note that some pupils have an e¢ ciency score below

1. These �super-e¢ cient�pupils are performing better than the average m (m = 30) pupils

they were benchmarked with in the order-m procedure. Obviously, these e¢ ciency scores

are in�uenced by the socio-economic background of the pupils. We try to capture the pupil

and school speci�c background by a mix of 7 discrete and continuous exogenous variables

(Model 1). Taking into account pupil and school characteristics, the conditional e¢ ciency

scores reduce to �mFDH(x; y j z) = 1:15. By excluding the number of students per teacher

as exogenous variable �mFDH(x; y j z) reduces to 1.14 (Model 2). Summary statistics for the
pupil-speci�c bandwidth estimates in Model 2 are presented in Table 2. We observe that

the bandwidth for the school size is very large. This is a result of e¤ectively smoothing

out the insigni�cant variables. On the contrary, the discrete variables have rather narrow

bandwidths which seem to indicate their signi�cant in�uence on the production process. This

will be tested next.

To examine the in�uence (i.e. favorable or unfavorable) of the exogenous variables, we

nonparametrically regress the exogenous variables on the ratio of the conditioned to the un-

conditioned e¢ ciency scores. From examining the signi�cance tests and the partial regression

plots for the discrete and continuous variables (see below), we learn that the average e¤ect

on e¢ ciency is positive and signi�cantly di¤erent from 0 for all discrete variables and in-

signi�cantly negative for the continuous variables (see Table 3). The average favorable e¤ect

for the �rst two variables (education of mother and father) means that for median values of

the other variables, the e¤ect is positive. This means that the larger z the more the uncon-

ditioned e¢ ciency score will bene�t from z if it is favorable (and thus the higher the ratio).

Instead, for unordered discrete variables we cannot give similar interpretation, as classes do

not have natural ordering. However, we can see whether there are signi�cant di¤erences be-

tween classes and which classes are favorable for educational e¢ ciency. Overall, our results

are in line with the general (parametric) literature (see Sirin (2005) for a comprehensive

overview of published articles between 1990 and 2000):

- More educated parents will stimulate and encourage their children, such that for a given

study devotion these will obtain higher test results.

23



Table 2: E¢ ciency estimates and bandwidth

Minimum Median Mean Maximum St. Dev.

Unconditional e¤. 0,9316 1,1974 1,2160 2,0270 0,1867

Conditional e¤. - Model 1 0,9993 1,1028 1,1466 1,9174 0,1571

Conditional e¤. - Model 2 0,9998 1,0905 1,1384 1,8803 0,1518

Bw education mother (M2) 0,0000 0,4514 0,4407 0,6848 0,1265

Bw education father (M2) 0,0001 0,3269 0,3409 0,6848 0,1924

Bw lang. at home (M2) 0,0000 0,1538 0,1573 0,4210 0,1323

Bw own room (M2) 0,0000 0,1770 0,1864 0,3424 0,1185

Bw school e¤ect (M2) 0,0000 0,6075 0,5665 0,6420 0,1364

Bw school size (M2) 8,275E-05 5,042E+09 7,321E+09 9,975E+10 8,457E+09

Table 3: Nonparametric signi�cance test

Model 1 Model 2 Average e¤ect as

p-value p-value revealed from partial plot Interpretation

Education mother 0.075 * 0.079 * Favorable Higher education is better

Education father 0.012 ** 0.015 ** Favorable Higher education is better

Language 0.012 ** 0.016 ** - Same language is better

Own room 0.041 ** 0.008 *** - Own room is better

School variable 0.154 0.032 ** - E¤ect between schools

School size 0.153 0.155 Unfavorable Smaller school is better

Student-teacher ratio 0.510 Unfavorable Smaller classes are better

where "***" denotes signi�cance at 1% level, "**" at 5% and "*" at 10%.

- Children which are facing language di¢ culties at school (because they speak a di¤erent

language at home) obtain for a given e¤ort lower test results.

- Besides creating a good study environment, the possession of an own room can proxy

the wealth of the family. Pupils with an own room (or, alternatively, from a wealthier family)

obtain better results.

- There are signi�cant di¤erences between schools. This school variable can proxy the

neighborhood e¤ects and clustering of pupils (which is in line with the metafrontier litera-

ture on school and pupil decompositions, see Thanassoulis and Portela, 2002 and references

therein).

As mentioned above we use partial regression plots (see Section 3.4) to visualize the e¤ect

of the exogenous environment. In a generalized multivariate framework, we set all other

exogenous variables on their median value (and, respectively, on their �rst and third quartile

value to capture the heterogeneity among pupils) while the discrete variables are evaluated
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Table 4: Evaluation of general exogenous variables - example for native language

Constant variable

Education mother 4 4 4

Education father 4 4 4

Own room 2 2 2

School variable 71 71 71

School size 1003 1003 1003

Evaluation

Language 1 2 3

1 quartile 0.973 0.921 0.979

Mean 0.934 0.937 0.938

3 quartile 0.878 0.910 0.919

once at each category (continuous variables are evaluated at 50 evaluation points). Here

we illustrate the approach for the native language and for the school size. While keeping

all other exogenous variables at their median value (respectively at their �rst and third

quartile value), we evaluate the variable (in casu the language) at its di¤erent data points

(i.e. factors between 1, representing other language than any national language, and 3 the

native language is the same as the test language). The results for the language are presented

in Table 4 and in Figure 1 and, respectively, for the school size in Figure 2. Similar as in

Daraio and Simar (2005, 2007a), the upward sloping trend points to the favorable e¤ect of the

exogenous variables (although this is a multivariate framework where all other observations

are hold constant at their median, respectively, �rst and third quartile value). In contrast to

Daraio and Simar (2007) by the use of the nonparametric tests, we are also able to examine

the signi�cance level of the exogenous characteristics.

5 Conclusion

This paper introduced mixed continuous and discrete exogenous variables in a conditional

e¢ ciency framework. The latter accounts, in estimating relative e¢ ciency scores, for het-

erogeneity among the evaluated entities without assuming a separability condition (i.e. the

environmental variables do not a¤ect the level of the inputs and outputs). We explored

the probabilitistic framework where it is relying on. However, the traditional conditional

e¢ ciency model faced two main drawbacks. Firstly, it has only been developed for contin-

uous exogenous variables. In more interesting real life applications, the researcher wants

to investigate the performance of entities while accounting for a broad set of exogenous

variables, including both continuous and discrete variables. By using insights from recent
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Figure 1: Nonparametric plot of language
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Figure 2: Nonparametric plot of the e¤ect of school size
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nonparametric econometrics literature, we generalized the conditional e¢ ciency model to

mixed heterogeneous variables. Moreover, we prove that in our setting the discrete com-

ponent does not su¤er from the dimensionality problem, which is the case for continuous

environmental variables. Therefore, one can include a large number of discrete environmen-

tal variables without reducing the accuracy of the estimation. Secondly, apart from analyzing

some descriptive �gures, no statistical inference tools have been used in previous studies to

test the signi�cance of the exogenous variables. Based on appropriate nonparametric econo-

metric tests, we presented bootstrap procedures for testing the signi�cance of continuous and

discrete environmental variables in the production process. In contrast to inference based

on more traditional two-stage models, these tests can be used without assuming separability

and without any parametric functional forms.

The suggested generalized approach was illustrated on a sample of the OECD Pisa data

set. In particular, we examined the performance of British secondary school pupils while

taking into account a broad range of continuous, ordered discrete and unordered discrete

variables. We �nd a signi�cant impact on the educational process of each of the discrete

exogenous variables. This illustrates that in conditional e¢ ciency estimation one should

not limit only to continous environmental variables, but also control for the heterogeneity

resulting from the ordered and unordered discrete exogenous factors.
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