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Abstract: Least Angle Regression (LARS) is a variable selection method with

proven performance for cross-sectional data. In this paper, it is extended to time

series forecasting with many predictors. The new method builds parsimonious fore-

cast models, taking the time series dynamics into account. It is a flexible method

that allows for ranking the different predictors according to their predictive content.

The time series LARS shows good forecast performance, as illustrated in a simula-

tion study and two real data applications, where it is compared with the standard

LARS algorithm and forecasting using diffusion indices.

Keywords: Macro-econometrics, Model selection, Penalized regression, Variable rank-

ing.

1 INTRODUCTION

This article introduces a new method for forecasting univariate time series using

many predictors. In various fields of application, large data sets are available and the

problem of forecasting using many possible predictors is of interest. In this article,

we focus on macro-economic forecasting, where the availability of time series data
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is rapidly growing. Each of these time series could be informative for predicting any

single economic indicator. Including all possible time series in one prediction model

generally leads to poor forecasts, due to the increased variance of the estimates

in a model that is too complex. Therefore, it is essential to identify the most

informative predictors and separate them from the noise variables. Including only

the former in the prediction model leads to parsimonious models with better forecast

performance. This article presents a method which automatically identifies these

most informative predictors. It is an extension of the Least Angle Regression (LARS)

method proposed by Efron et al. (2004), and we call it Times Series LARS, or TS–

LARS. The TS–LARS procedure takes the time series dynamics into account, since

the predictive power of a time series is not only contained in the present values, but

also in their lagged values. This requires a substantive extension of the standard

LARS algorithm, which constitutes the main methodological contribution of this

paper. TS–LARS is a flexible variable selection procedure as it allows us to select

the predictors according to the macro-economic variable we want to forecast and for

which horizon the forecast is made. This makes it possible to identify the short-term

and long-term predictors for various macro-economic variables. The new TS–LARS

method shows very good forecast performance, as will be illustrated in a simulation

study and in two real data applications.

In cross-sectional analysis, extensive research has been done in the area of vari-

able selection. The objective is to predict a univariate response making use of many

covariates. Breiman (1995) introduced the non-negative garotte. This method fits

a model that regresses the response on all covariates and shrinks the regression pa-

rameter estimates to zero. By deliberately setting many parameter estimates to

zero, the non-negative garotte obtains variable selection. This is also achieved by

the LASSO method, as proposed in Tibshirani (1996), where the LASSO puts a

constraint on the parameters from an OLS fit.

More recently, Efron et al. (2004) proposed the LARS method, which can be

considered as a computationally efficient version of the LASSO. The LARS method
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first ranks the candidate predictors according to their predictive content. Parsi-

monious prediction models are then obtained by retaining only the highest ranked

variables for model estimation. As such, a more compact model is selected, which

can be fitted by standard estimation procedures, like OLS. The LARS algorithm

is fast and shows good forecast performance in various applied fields. This is illus-

trated, for instance, in the biomedical application developed in Efron et al. (2004),

in the field of bioinformatics in Bovelstad et al. (2007) and Saigo et al. (2007), and

in Sulkava et al. (2006), who apply LARS in the context of environmental monitor-

ing. Because of its good performance, several extensions of the LARS method have

been proposed: for logistic regression (Keerthi and Shevade (2007)), multivariate

regression (Simila and Tikka (2007)), analysis of variance (Yuan and Lin (2006)

and Meier et al. (2008)), robust regression (Khan et al. (2007) and McCann and

Welsch (2007)) and experimental design (Yuan et al. (2007)). This article extends

the LARS algorithm to a time series context. To the best of our knowledge, no such

modification of the LARS algorithm exists in the literature.

It is commonly recognized in time series analysis that lagged values of both

the response variable, which we want to predict, and the predictors might contain

predictive information. To account for these dynamic relationships, predictors are

selected as blocks of present and lagged values of a time series. Selecting a time

series as an important predictor corresponds to selecting the block of present and

lagged values of the series. This excludes the possibility to select, for instance, the

second lagged series of a certain predictor but not the first. A similar problem

arises in the static case when working with categorical variables. Selecting one

single categorical variable with more than two levels implies selecting several dummy

variables. Blockwise variable selection for categorical variables has been studied by

Yuan and Lin (2006) and Meier et al. (2008).

The need for automated variable selection in a time series context was the mo-

tivation for the development of the Gets method by Hoover and Krolzig (1999).

The Gets procedure is a general-to-specific method which starts by estimating a
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general unrestricted model. This model is then reduced by sequential testing and

a post-search evaluation. It is an extensive set of steps and rules that result in a

final parsimonious forecast model. An Ox package, called PcGets, was developed

by Hendry and Krozlig (2001). The approach followed in this article is different,

however, as the TS–LARS method starts from an auto-regressive model and then

adds the predictors one by one following the LARS-computation scheme. There are

at least two advantages of using TS–LARS as an alternative. First, the number of

variables can be larger than the number of observations. This is not the case in the

Gets procedure, which starts by fitting an unrestricted model. And secondly, the

TS–LARS algorithm involves no testing.

The remainder of this article is organized as follows. Section 2 presents the

TS–LARS algorithm in detail. It is described how the TS–LARS procedure results

in a ranking of the predictors according to their incremental predictive content

for the response variable. It is also discussed how the number of time series to

be included in the final prediction model and the lag lengths should be selected.

Section 3 extends the method of forward selection to a time series context and

gives a short overview of forecasting using diffusion indices; both are alternatives

to the TS–LARS for forecasting using many predictors. The excellent performance

of the TS–LARS method is shown in Section 4 by means of a simulation study,

and in Section 5 on two large macro-economic data sets. The first application

selects predictors for forecasting aggregate US industrial production growth, from a

total of 131 potential predictors. The second application concerns the prediction of

Belgian industrial production growth using 75 time series measuring European-wide

economic sentiment. Section 6 presents a short summary of the results and some

concluding remarks.
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2 LARS FOR TIME SERIES

Suppose we observe a time series, denoted by yt, for which we want to predict future

values. We observe a large number m of candidate predictors xj,t. Index t is the

time index and j the index of the predictor time series, which ranges from 1 to m.

These can be used for obtaining h-step-ahead forecast of the response. We consider

the linear time series model

yt+h = β0,0yt + . . . + β0,p0
yt−p0

+ β1,0x1,t + . . . + β1,p1
x1,t−p1

+ . . .

+ βm,0xm,t + . . . + βm,pm
xm,t−pm

+ εt+h , (1)

with h ≥ 1 the forecast horizon. Model (1) explains yt+h in terms of current and

past values of the response itself and all the predictors. The past of the response

variable is included up to lag p0 and the past of predictor j is included up to lag pj

for j = 1, . . . ,m. The above can be written in matrix-notation as

y = yβ0 +
m

∑

j=1

xjβj + ε , (2)

where y is the response vector of length T . On the right hand side of equation (2),

y is the T × (1 + p0) matrix of lagged values of y from lag h to p0 + h, and β0 is the

associated autoregressive parameter vector of size 1 + p0. Each predictor variable

xj (j = 1, . . . ,m) enters model (2) as xj , a T × (1 + pj) matrix of lagged values of

xj, and βj is the accompanying parameter vector of size (1 + pj). The error term, a

vector of length T , is denoted by ε, and it is assumed that each component has zero

mean. We assume that all time series, i.e. response and predictors, are covariance

stationary. Furthermore, to simplify the calculations and similar as in Efron et al.

(2004), all variables are standardized so that they have mean zero and unit variance.

Hence, no intercept is included in model (2).

Not all predictors in model (2) are relevant, i.e. many of the βjs are zero. The

aim of the TS–LARS method is to identify which of these βjs are non-zero vectors

and to obtain accurate estimates of them. Of course, in reality, many βj’s will
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not be exactly zero, but will be very small. Adding them to the regression model

increases the variability of the parameter estimates, while not improving the forecast

performance. The TS–LARS algorithm aims at obtaining a more parsimonious

model than (2), with better predictive power. To that end, the procedure first ranks

the predictors, as will be discussed in Section 2.1. Once the ranking is obtained,

only the highest ranked predictors will be included in the final prediction model.

The exact number of predictors to include in the selected model is obtained using

information criteria. A detailed discussion can be found in Section 2.2.

2.1 Predictor ranking with TS–LARS

This section outlines how the predictors are ranked according to the TS–LARS

procedure. We start by fitting an autoregressive model to the response variable, ex-

cluding the predictors, using OLS. The corresponding residual series is retained and

its standardized version is denoted by z0. This scaling of z0 is without loss of gen-

erality, and simplifies the algebra. The autoregressive model can be improved upon

by including predictors, at least if the latter have incremental predictive power. The

TS–LARS procedure ranks the predictors according to how much they contribute

to improving upon the autoregressive fit.

In the first step, the residual series z0 serves as the response. The first ranked

predictor is that xj, which has the highest R2 measure

R2(z0 ∼ xj) ,

for j = 1, . . . ,m. Here, R2(y ∼ x) denotes the R2 measure of an OLS regression

of the vector y on the variables contained in the columns of the matrix x. Recall

that xj is a matrix of lagged xj values. The predictor with largest R2, which we

denote by x(1), is the first ranked predictor, hence the subscript (1). It is the first

predictor included in the active set A. At every stage of the procedure, the active set

contains all predictors ranked so far. The complement of the active set Ac contains
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all predictors which have not been ranked yet. As the procedure continues, all

predictors are added one by one to the active set.

Denote the hat-matrix corresponding to the first active predictor by H(1), which

is the projection matrix on the space spanned by the columns of x1,

H(1) = x(1)(x
′

(1)x(1))
−1x′

(1) .

Furthermore, let ẑ0 = H(1)z0 be the vector of fitted values. The current response z0

is updated by removing the effect of x(1):

z1 = z0 − γ1ẑ0 , (3)

where γ1 still needs to be determined. The scalar γ1 is called the shrinking factor

and takes values between zero and one. If γ1 = 1, then z1 simply contains the OLS

residuals of regressing z0 on x(1). But the good performance of LARS results from

shrinking the OLS parameters towards zero. This is achieved by multiplying them

with the shrinking factor γ1, which is chosen as the smallest positive value, such

that for a predictor xj, with j ∈ Ac, it holds that

R2(z0 − γ1ẑ0 ∼ x(1)) = R2(z0 − γ1ẑ0 ∼ xj) . (4)

Condition (4) is an extension of the equi-correlation condition of the LARS procedure

developed by Efron et al. (2004). In standard LARS, one adds single variables one by

one, whereas in our case we add blocks of lagged values of a time series. For standard

LARS, the R2 in equation (4) reduces to a squared correlation, and equation (4)

is trivial to solve. For TS–LARS, as is shown in the Appendix, condition (4) is

equivalent to solving the following quadratic equation in γ:

z′0(H(1)−Hj)z0+z′

0(H(1)Hj+HjH(1)−2H(1))z0γ+z′

0(H(1)−H(1)HjH(1))z0γ
2 = 0 , (5)

with Hj the projection matrix on the space spanned by xj, so Hj = xj(x
′

jxj)
−1x′

j.

We show in the Appendix that for every j in Ac, we find two solutions for condition

(5), of which at least one between zero and one. The shrinking factor γ1 is then
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chosen as the smallest positive solution to condition (5), taken over all indices j in

the non-active set Ac.

Equation (5) can be written in a more compact form, avoiding the use of multiple

matrix multiplications. Denote the standardized version of ẑ0 by x̃(1), so

x̃(1) =
ẑ0

s1

for s2
1 =

ẑ′0ẑ0

T − 1
.

In this paper, all variances and covariances are computed with denominator (T −1),

with T the number of observations. In the Appendix, it is shown that equation (5)

is equivalent with

(T −1)s2
1−z′0Hjz0 +2(z′

0Hjx̃(1)−(T −1)s1) (s1γ)+((T −1)− x̃′

(1)Hjx̃(1))(s1γ)2 , (6)

which is computationally faster to solve than equation (5).

The TS–LARS algorithm chooses the shrinking parameter γ1 in equation (3)

simultaneously with the next predictor entering the active set. In particular, the

second time series in the active set is the one with index j yielding the smallest

positive value of γ1. Denote this predictor by x(2), where the subscript (2) indicates

it is the second ranked predictor in the active set. The active set now contains two

predictors and the response z1 is obtained according to equation (3). Then we scale

the response z1 to unit variance for numerical convenience.

Since the second and all following steps have the same structure, we generalize

from here on to step k. At the beginning of step k, the active set A contains k active

or ranked predictors x(1), x(2), . . . , x(k), with k ≥ 2. The current response is denoted

by zk−1. Let x̃(i) be the standardized vector of fitted values H(i)zi−1 for i = 1, . . . , k.

First, we look for the equiangular vector uk, which is defined as the vector having

equal correlation with all vectors x̃(1), x̃(2), . . . , x̃(k). This correlation is denoted by

ak

ak = Cor(uk, x̃(1)) = Cor(uk, x̃(2)) = . . . = Cor(uk, x̃(k)) . (7)

The equiangular vector uk is easy to obtain (e.g. Khan et al. (2007) and Efron et al.

(2004)). Let Rk be the (k × k) correlation matrix computed from x̃(1), x̃(2), . . . , x̃(k)
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and 1k a vector of ones of length k. The equiangular vector uk is then a weighted

sum of x̃(1), . . . , x̃(k):

uk = (x̃(1), x̃(2), . . . , x̃(k))wk with wk =
R−1

k 1k
√

1k
′R−1

k 1k

.

Note that the equiangular vector has unit variance.

Afterwards, the response is updated by moving along the direction of the equian-

gular vector

zk = zk−1 − γkuk . (8)

The shrinking factor γk is chosen as the smallest positive solution such that for a

predictor xj not in the active set it holds that

R2(zk−1 − γuk ∼ x̃(k)) = R2(zk−1 − γuk ∼ xj) . (9)

The associated predictor, denoted by x(k+1), is then added to the active set. Once γk

is obtained, we can update the response as in equation (8) and the new response is

than standardized and again denoted by zk. In the Appendix, we prove the following

lemma.

Lemma 1 For every step k ≥ 1 in the TS–LARS algorithm, it holds that

(a) The current response zk−1 has equal and positive correlation with all x̃(1), . . . , x̃(k)

in the active set:

rk = Cor(zk−1, x̃(1)) = . . . = Cor(zk−1, x̃(k)) ≥ 0 . (10)

(b) For every j not in the active set, it holds that

R2(zk−1 ∼ xj) ≤ r2
k .

(c) For the solution γk to (9) it holds that 0 ≤ γk ≤ rk/ak.
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From the above lemma, it follows that, in equation (9), the index k can be replaced

by any other number from 1 to k. Using the coefficient of correlation rk, defined

be (10), it is shown in the Appendix that condition (9) is equivalent to solving the

following quadratic equation in γ:

(T −1)r2
k − z′k−1Hjzk−1 +2(z′

k−1Hjuk − (T −1)akrk)γ +((T −1)a2
k −u′

kHjuk)γ
2 = 0 .

(11)

The TS–LARS algorithm solves equation (11) for every j in Ac and retains the

smallest positive solution over all j in Ac. The associated variable is added to

the active set and denoted by x(k+1). This procedure is continued either until all

predictors have been ranked, or until more predictors have been ranked than there

are observations in each time series.

2.2 Variable and lag length selection

After ranking the predictors, only the highest ranked ones will be included in the final

prediction model. The variable selection problem reduces to choosing the number of

highest ranked predictors to be included in the prediction model. This number can

be chosen according to different information criteria. Efron et al. (2004) propose

using the Cp information criterion, but we prefer to use the Bayesian Information

Criterion (BIC). The BIC is well known to be a good information criterion in time

series analysis, as discussed, for instance, in Qian and Zhao (2007). At every stage of

the LARS procedure, we perform an OLS fit to model (1), where only the predictors

in the active set are included. We store these BIC values and choose the model with

optimal BIC, selecting k∗ predictors. We allow k∗ to be equal to zero. If this is the

case, no predictors are included and a pure autoregressive model is selected.

An additional difficulty in a time series context is that the vector of lag lengths

(p0, p1, . . . , pm) is unknown. The lag length of the autoregressive component, p0,

can be chosen at the beginning of the procedure by optimizing the BIC for the

autoregressive model. Concerning the selection of p1 to pm, we assume fixed lag
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lengths for the predictors, i.e. p = p1 = p2 = . . . = pm. For different values of the

lag length p, we run the TS–LARS algorithm, and obtain a selected model with a

number of predictors minimizing BIC. The final prediction model, then, is the model

obtained by minimizing BIC further over all the considered values of p.

In principle, it is possible to include an automated mechanism into the TS–LARS

method, allowing for different lag lengths for different predictors. In every TS–LARS

step, one finds the optimal lag length for every time series in the non-active set with

respect to the current response. Given the large number of predictors, such an

approach will be computationally too demanding.

3 OTHER METHODS

In this section, we review two other forecasting methods applicable when many

predictors are available. The first one is the straightforward time series extension

of forward variable selection. The second one is forecasting with diffusion indices,

following the dynamic factor model approach of Stock and Watson (2002a). In

Sections 4 and 5, the performance of TS–LARS method will be compared with

these two approaches.

Forward Selection of Predictors

Forward selection is a well known variable ranking and selection method considered

in many textbooks on applied regression analysis, such as Dielman (2001). It is a

competitor of the LARS method, and its extension to the time series context will

be called the TS–FS. The first step of the TS–FS method consists of regressing the

response yt on its own past only and retaining the residuals z0 of this auto-regressive

model. As in the TS–LARS procedure, the first ranked predictor x(1) is the one with

the largest R2 value

R2(z0 ∼ xj) ,
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for j = 1, . . . ,m. Retain the residuals z1 of regressing z0 on x(1) by OLS. No

shrinkage is involved here. The second ranked predictor, then, is the one with

largest value of

R2(z1 ∼ xj) ,

for all predictors xj which have not yet been selected. This procedure is continued

until all predictors have been ranked.

The selection of the number of predictors to be included in the prediction model

and the lag length selection are carried out by minimizing the BIC, in the same

way as explained in Section 2.2. Since every step uses only one block of variables as

regressors, the forward selection method allows to rank all predictors, regardless of

the number of observations. This is in contrast with backward variable selections,

which requires the number of observations in each time series to be larger than the

number of variables.

Forecasting Using Diffusion Indices

Time series forecasting using many predictors is receiving increasing attention in

the literature. For a recent overview, we refer to Stock and Watson (2006), who

discuss three approaches in depth: forecast combination, Bayesian model averaging

and dynamic factor models. In forecast combination, many forecasts from different

models are combined to obtain one final forecast. In the Bayesian framework, model

averaging is achieved by assigning probabilities to each model. Recent developments

in forecast combination and Bayesian model averaging can be found in Ekkund and

Karlsson (2007). The methods presented in this article are different in the sense that

we obtain forecasts from one parsimonious model in which the included predictors

are automatically selected from the many candidate predictors.

The method we compare with is the basic Dynamic Factor Model (DFM), which

uses diffusion indices or latent factors. These diffusion indices are extracted from

the predictors and are then used in a final prediction model. The underlying idea
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is that there are a few unobserved forces driving the economy or influencing both

the predictors and the response (see e.g. Stock and Watson (2002a), Forni et al.

(2005), and Bai and Ng (2007)). The dynamic factor model is based on this idea

and tries to extract these latent factors from the predictors. The latent factors are

denoted by f1, f2, . . . and extracted from the predictors by the method of principal

components. The forecast model associated with the DFM regresses the response

yt+h on current and lagged values of the response itself and on current and lagged

values of the factors

yt+h = β0,0yt+. . .+β0,p0
yt−p0

+β1,0f1,t+. . .+β1,p1
f1,t−p1

+. . .+βk,pk
fk,t−pk

+εt+h , (12)

with k the number of latent factors. Note that the autoregressive model is a special

case of the DFM, when the optimal number of factors to include is zero. In this

paper, we choose the number of factors and the lag lengths according to the BIC.

The simulation results in Stock and Watson (2002a) indicate that the BIC is a good

information criterion for selecting the number of factors. More advanced methods

for estimating the number of factors can be found in Bai and Ng (2002) and Dante

and Watson (2007).

Conceptually, the TS–LARS method has two advantages over the dynamic factor

model. First, the TS–LARS method takes the response variable and the forecast

horizon into account while building the forecast model, as was also considered by

Heij et al. (2007). This allows us to use different types of information from the many

predictors depending on the value to forecast. In the dynamic factor model, on the

other hand, the response is not at all involved in extracting the latent factors from

the data, while in reality, different predictors are important for different responses

and different forecast horizons. Secondly, the model selected by TS–LARS is directly

interpretable in terms of the original predictors. This contrasts with the dynamic

factor model which can be hard to interpret since it is not always clear what the

extracted factors measure.
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4 SIMULATION STUDY

In this section, we compare the TS–LARS procedure with four other methods for

univariate time series forecasting using many predictors. First, we compare with a

static approach, where we only use current values of the response and the predictors

for predicting yt+h, taking all lag lengths in model (1) equal to zero. Variables will

be ranked using standard LARS, as described in Efron et al. (2004). No blockwise

selection of predictors is required, hence we simply refer to this method as LARS. It

might be that TS–LARS and LARS select the same model, but in most applications

lagged values of the predictors will be included by the TS–LARS algorithm. The

simulation study will show that taking the dynamics of the series into account leads

to a much better performance. Both LARS and TS–LARS are compared with

time series forward selection (TS–FS), and forecasting with diffusion indices in the

dynamic factor model (DFM), as discussed in Section 3.

Different aspects of the procedures will be studied. First, we will compare the

predictor ranking and selection performance of TS–LARS, LARS and TS–FS. Are

the highest ranked predictors indeed the relevant ones? Note that the DFM method

is not performing a ranking, and neither a selection of the predictors, and hence will

not be included in this comparison. We also study whether the number of relevant

predictors and the lag length are appropriately selected using the BIC criterion.

Secondly, the forecast performance of the variable selection methods TS–LARS,

LARS and TS–FS is compared with the DFM approach. For studying the forecast

performance, two different simulation models are considered: a linear time series

model as in equation (1) and a latent factor model as in equation (12). We add

the latent factor setting as a second simulation scheme for forecast comparison, as

one would expect that the DFM method gives the better results in that setting. It

turns out, however, that the TS-LARS procedure outperforms the other methods

considered for both simulation schemes.
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Simulation Schemes

The first simulation setting generates time series according to a linear time series

model. The data generating process is given by

yt+1 = β0,0yt + β0,1yt−1 +
20

∑

j=1

βj,0xj,t +
20

∑

j=1

βj,1xj,t−1 + εt+1 , (13)

where εt+1 is i.i.d. N(0, 2). Only five of the m = 20 candidate predictors are relevant,

while the remaining 15 predictors are redundant. The lagged values of the dependent

variable enter the model with two lags. Denote βj = (βj,0, βj,1)
′, then the regression

parameters are

β0 = (0.4 , 0.1)′, β1 = (4 , 2)′, β2 = (3 , 1.5)′,

β3 = (2 , 1)′, β4 = (1 , 0.5)′ and β5 = (0.5 , 0.25)′ .

For the redundant predictors x6 to x20 we have βj = 0, for j = 6, . . . , 20. Further-

more, the predictors are auto- and cross-correlated. The first two relevant predictors

are simulated from the following VAR(1) model:




x1,t

x2,t



 =





0.5 0.3

0.3 0.5









x1,t−1

x2,t−1



 +





e1

e2



 .

Additionally, four of the redundant predictors are simulated according to the VAR(1)

model
















x6,t

x7,t

x8,t

x9,t

















=

















0.5 0.3 0.1 0

0.3 0.5 0 0.1

0.1 0 0.5 0.3

0 0.1 0.3 0.5

































x6,t−1

x7,t−1

x8,t−1

x9,t−1

















+

















e6

e7

e8

e9

















.

All the other predictors are generated from the following AR(1) model:

xi,t = aixi,t−1 + ei for i = 3, 4, 5, 10, 11, . . . , 20 ,

where the auto-regressive parameter ai is chosen randomly between 0 and 0.8, ac-

cording to a uniform distribution. The error components ei for i = 1, . . . , 20 are

independent of each other, and all follow an i.i.d. N(0, 1) process.
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The second simulation setting uses a latent factor model and relates to the dy-

namic factor model, as discussed in Section 3. In this setting, we simulate two latent

factors, denoted by L1 and L2, that follow the VAR model





L1,t

L2,t



 =





0.5 0.3

0.3 0.5









L1,t−1

L2,t−1



 +





l1,t

l2,t



 ,

where l1 and l2 are i.i.d. N(0, 1). The relevant predictors are generated as

x1,t = 3L1,t + e1 ,

x2,t = 0.5L1,t + e2 ,

x3,t = 3L2,t + e3 ,

x4,t = 0.5L2,t + e4 ,

x5,t = 0.5L1,t + 0.3L2,t + e5 ,

where e1 to e5 are i.i.d. N(0, 1) noise components. The response depends on lagged

values of the latent factors

yt+1 = β0,0yt + β0,1yt−1 + 2L1,t + 2L1,t−1 + L2,t + L2,t−1 + εt+1

where β0,0, β0,1 and εt+1 are as before in the previous setting. The redundant

predictors are simulated in the same way as in the first simulation setting. For

both simulation schemes, we generate M = 2000 data sets, each consisting of 20

candidate predictor series and one series to predict, where all series are of length

T = 150.

Ranking of predictors and model selection

We generate time series according to the model (13), yielding a total number of

relevant predictors equal to five in every simulation run. We compare the predic-

tor ranking obtained by the TS–LARS, LARS and TS–FS procedures using recall-

curves. A recall-curve plots the number of relevant predictors among the first k
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ranked predictors, where k ranges from 1 to the total number of predictors. The

steeper the recall-curve goes towards its maximum value of five, the better.

Figure 1 shows the recall-curves of the TS–LARS, LARS and TS–FS methods

applied for forecast horizon h = 1, and averaged over all simulation runs. The TS–

LARS method has the steepest recall-curve and thus shows the best performance in

terms of predictor ranking. On average, the relevant predictors are ranked higher

by the TS–LARS procedure than by the LARS and TS–FS procedures. The latter

two perform equally well. For example, when retaining the highest k = 5 ranked

predictors, we see from Figure 1 that, on average, more than 4 relevant predictors

will be in this set of 5. In contrast, the other two methods have an average recall

below 4 out of 5. For all methods, it is observed that the recall curve increases

quickly, and then tends rather slowly to the maximum value 5. The reason is that

the explanatory power of the fifth predicting time series is very low, having a small

value of β5 relative to the error variance. Hence, it is difficult to distinguish this

fifth predictor from the redundant ones.

In Section 2.2, we proposed using the BIC as a criterion for both the selection of

predictors and the lag length. We can select an incorrect model both by selecting

an incorrect set of predictors or by selecting an incorrect lag length.

As concerns the selection of predictors, four scenarios can occur. The best sce-

nario would be to select exactly the set of 5 relevant predictors. Another possibil-

ity is under-selection, i.e. all selected predictors are relevant, but not all relevant

predictors are selected. Over-selection, on the other hand, means that all relevant

predictors are selected as well as some redundant predictors. The remaining scenario

is the selection of a model including some relevant and some redundant predictors.

The results for forecast horizon h = 1 are summarized in Table 1. In 26% of the

simulation runs, the TS–LARS selects exactly the set of relevant predictors, as com-

pared to only 1% for the LARS and 8% for the TS–FS procedures. In 42% of the

simulation runs, the TS–LARS method did not succeed in selecting all relevant pre-

dictors. But under-selection is more a problem of the LARS and TS–FS methods,
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Figure 1: Recall curves averaged over the 2000 simulation runs. The full line rep-

resents the TS–LARS method, the dashed line the TS–FS method and the dotted

line the LARS method.
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Table 1: Percentage of simulation runs where number of relevant predictors was

correctly identified and where it was under- or over-selected.

Correct Under Over

TS–LARS 0.26 0.42 0.01

LARS 0.01 0.50 0.02

TS–FS 0.08 0.61 0.00

Table 2: Percentage of correctly selected, under- and over-selected lag lengths.

Correct Under Over

TS–LARS 0.87 0.11 0.02

TS–FS 0.91 0.04 0.05

selecting a model where some of the relevant predictors are missing in 50% and 61%

of all runs, respectively. In this simulation study, over-selection is not an issue. This

means that it almost never occurs that redundant predictors are selected, when all

relevant ones are already in the model.

We further look at the performance of the TS–LARS and TS–FS procedures with

respect to lag length selection. The LARS method is not considered here because

it does not perform any lag length selection. There are three possible scenarios:

under-, over- or correct selection of the lag length. The results, again for h = 1,

are summarized in Table 2. In a large majority of the simulation runs, both the

TS–LARS and the TS–FS algorithms select the correct lag length. In the other

cases, the lag length is taken too short rather than too long.

To conclude, we may say that the BIC criterion succeeds reasonably well in

specifying the correct model, both in terms of the number of relevant predictors and

in terms of the lag length. The fully correctly specified model with p = 1 and k = 5

relevant predictors, is retrieved in 24% of the simulation runs using the TS–LARS
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method. This is substantially higher than for the TS–FS method, which has a hit

rate of only 8%. When interpreting these rather low numbers, one should take into

account that the number of candidate models is very large, and the time series of

moderate length T = 150. Moreover, even when the number of relevant predictors

is not correctly specified, the resulting model may still have very good forecasting

performance, as will be discussed in the remainder of this section.

Forecast performance

We study the out-of-sample forecast performance of the TS–LARS, LARS and TS–

FS procedures and make a comparison with the DFM method discussed in Section 3.

In every simulation run, we fit the models selected by the different procedures to the

simulated data-set of length 150. We then obtain one to five step ahead forecasts for

observations 151 to 155. These forecasts are compared to the realized values of the

time series as simulated according to the data generating process. The performance

of the forecast methods is then compared using the Mean Squared Forecast Error

at horizon h:

MSFEh =
1

M

M
∑

i=1

(yi,150+h − ŷi,150+h)
2 ,

where the index i indicates the simulation runs and M = 2000 is the number of

simulation runs.

The results for the first simulation setting are presented in Table 3, where the

simulated out-of-sample MSFEh is reported for h = 1, . . . , 5. First of all, we observe

that for all methods the MSFEh steeply increases in h, as is to be expected. Most

striking is that for almost all forecast horizons the TS–LARS method yields the

smallest MSFEh. In 14 out of 15 cases, as shown by applying a paired t-test (p-

value reported in the table), the MSFEh of the TS-LARS method is significantly

smaller than for the other methods. At horizon 5 the LARS method performs best,

but the difference with TS–LARS is not significant.

The better performance of TS–LARS with respect to the static LARS shows
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Table 3: Simulated MSFEh at several forecast horizons using the TS–LARS, LARS,

TS–FS and DFM method. Series are generated from a linear time series model. The

smallest MSFEs are indicated in italics; p-values of a paired t-test for equal MSFEh

with respect to TS–LARS are given between parentheses.

h = 1 h = 2 h = 3 h = 4 h = 5

TS–LARS 55.49 127.36 220.74 316.30 403.26

LARS 76.55 145.70 234.65 322.20 403.13

(< 0.01) (< 0.01) (< 0.01) (0.03) (0.67)

TS–FS 59.08 132.32 227.96 333.03 423.87

(< 0.01) (< 0.01) (0.01) (< 0.01) (< 0.01)

DFM 73.64 149.25 247.55 337.19 420.34

(< 0.01) (< 0.01) (0.01) (< 0.01) (0.01)

that it is worth taking lagged values of the series into account. More interesting is

that TS-LARS outperforms both the more simple TS–FS method, and the popular

DFM approach. The worse performance of the DFM method could be explained

by the fact that all predictors enter in the construction of the factors, even the

redundant ones. Of course, the latter will receive a small weight in the construction

of the factor, but they still increase variability of the estimates, leading to poorer

forecasting performance.

The second simulation scheme is a latent factor model, where one expects the

DFM approach to yield better results. However, as can be seen from Table 4, the

results are similar to those obtained before. For almost all forecast horizons, the

TS–LARS method yields the smallest MSFEh, and the differences with the other

methods are significant in most cases. An exception is h = 5, where the DFM

method is better, but the difference with TS–LARS is not significant. It is, however,

worth mentioning that for h = 5 the DFM approach mostly selects k = 0 predictors,

meaning that a pure autoregressive model is taken. The other methods based on
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Table 4: Simulated MSFEh at several forecast horizons using the TS–LARS, LARS,

TS–FS and DFM method. Series are generated from a latent factor model. The

smallest MSFEs are indicated in italics; p-values of a paired t-test for equal MSFEh

with respect to TS–LARS are given between parentheses.

h = 1 h = 2 h = 3 h = 4 h = 5

TS–LARS 20.60 38.52 66.58 99.55 124.74

LARS 23.92 43.78 71.83 102.10 124.67

(< 0.01) (< 0.01) (< 0.01) (0.01) (0.64)

TS–FS 24.75 42.58 72.48 105.17 138.18

(< 0.01) (< 0.01) (< 0.01) (< 0.01) (< 0.01)

DFM 29.60 47.84 73.28 102.35 122.76

(< 0.01) (< 0.01) (< 0.01) (0.12) (0.40)

selection of predictors, i.e. LARS and TS–FS, also generally yield better results

than forecasting using diffusion indices.

We conclude that for the simulation schemes under consideration, the TS–LARS

method outperforms its competitors, in particular for short term forecasting.

5 APPLICATIONS

5.1 Predicting Aggregate Industrial Production Growth in

the US Using Many Economic Indicators.

To illustrate the performance of the TS–LARS method using real data, we repeat the

example elaborated by Stock and Watson (2002a) and Stock and Watson (2002b) for

forecasting US industrial production growth. The data used are available on Mark

W. Watson’s homepage1 and were previously used in, for instance, Stock and Watson

1http://www.princeton.edu/∼mwatson/
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(2005) and de Poorter et al. (2007). The data set includes 132 time series covering

many different aspects of the US economy, such as price indices, unemployment

rates, interest rates and money supply numbers. There is no missingness in the

data and we have 528 monthly observations at our disposal, ranging from January

1960 to December 2003. The aim is to obtain accurate predictions of the industrial

production growth rate, while the remaining 131 time series are candidates to be

included in the forecast model. The industrial production growth rate is obtained

as the log-differences of real US industrial production. A precise description of all

132 series can be found in Stock and Watson (2005). They also describe how the

original series can be transformed to be stationary. For some series, this requires

differencing, for others taking a log-transformation or log-differencing. We apply

the same transformations.

Using the TS–LARS algorithm, we obtain a ranking of the predictors according

to their additional predictive power for one-month-ahead US industrial production

growth. The top-5 ranking, as obtained by the TS–LARS method, is presented in

Table 5. The highest ranked predictor, the NAPM new orders index, is a survey-

based indicator constructed by the National Association of Purchasing Management.

More than 300 purchasing and supply executives from across the US indicate recent

evolutions in their business with respect to orders, prices and unemployment among

other things. The TS–LARS algorithm suggests that the number of new orders

is the most important predictor for future growth in industrial production. Other

important predictors quantify the number of job openings in newspapers, interest

rates, wages and consumer expectations. The smallest BIC value is obtained by

including the 4 highest ranked predictors up to one lag in the forecasting model.

To compare the forecast performance of the different methods, we divide the

data in an in-sample and an out-of-sample part. The in-sample part of the data

ranges from January 1960 to December 1981, with a length of R = T/2. The

selected model is recursively estimated for t = R, . . . , T − h, to obtain a series of

out-of-sample h-step-ahead forecasts. The number of included predictors and the
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Table 5: Top-5 ranking of predictor series for predicting one step ahead US industrial

production growth, as obtained by the TS–LARS algorithm.

Ranking Predictor

1 NAPM new orders index

2 Index of help-wanted advertising in newspapers

3 3-month FF spread

4 Average hourly earnings: construction

5 Michigan index of consumer expectations

Table 6: Out-of-sample MSFEh (×10000) obtained by the TS–LARS, LARS, TS–FS

and DFM methods, for different forecast horizons. The smallest MSFEh value is in

italics; p-values of the Diebold-Mariano test for equal forecast accuracy compared

to TS–LARS are between parentheses.

h = 1 h = 2 h = 3 h = 6 h = 12

TS–LARS 60.81 58.68 64.82 71.13 81.79

LARS 62.41 59.60 73.71 75.50 81.79

(0.57) (0.79) (0.02) (0.02)

TS–FS 65.31 74.21 72.19 78.04 87.35

(0.42) (0.01) (0.04) (0.04) (0.08)

DFM 69.28 66.72 72.36 79.80 84.57

(0.07) (0.03) (0.11) (0.11) (0.64)
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lag length are obtained as discussed in Section 2.2. The mean squared forecast error

at horizon h is computed as

MSFEh =
1

T − h − R + 1

T−h
∑

t=R

(yt+h − ŷt+h)
2 .

The MSFEh is presented in Table 6 for the procedures TS–LARS, LARS, TS–FS

and DFM, at several forecast horizons h. First of all, it is clear that the prediction

model selected by the TS–LARS method results in the smallest MSFEh at every hori-

zon. To check whether the observed differences in MSFEh are significant, p-values

are reported for a Diebold-Mariano test for equal out-of-sample predictive accuracy

in comparison with the TS–LARS (Diebold and Mariano (1995)). The significance

results vary according to the forecast horizon. For short-term forecasts (h = 1 and

h = 2), there is no significant difference between the three methods that rely on

variable selection method, LARS, TS–LARS and TS–FS. However, TS–LARS does

significantly better than DFM. For 6-month forecasts, the TS–LARS approach gives

significantly lower MSFEh than both other variable selection procedures. In par-

ticular, the difference between TS–LARS and LARS is pronounced, showing that

accounting for dynamic relationships, as done by the TS–LARS, is worthwhile. At

long forecast horizons (h = 12), all methods perform comparably. Note that the

TS–LARS selects a model here with only current values of the selected predictors,

and therefore yields an identical MSFEh as standard LARS.

The good performance of the TS–LARS method on this well-known data set is

striking and promising. The number of retained predicting time series for TS–LARS

ranges from k = 4, for forecast horizon one, to k = 2, for forecast horizon 12, yielding

very parsimonious models. Finally, including a total of 12 factors in the forecast

model, as was done in Stock and Watson (2002b), does not improve the MSFEh for

the DFM approach (results available upon request).
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5.2 Predicting Country Specific Industrial Production Us-

ing Sentiment Indicators.

As a second application, we study the predictive content of European consumer

and production sentiment surveys. We are interested in forecasting Belgian indus-

trial production growth and use sentiment surveys from all over Europe. For every

EU15 country, we use 5 sentiment indicators: consumer, industrial, retail, services

and construction sentiment indicators, resulting in a total of 75 sentiment indica-

tors. All these indicators are potential predictors for Belgian industrial production

growth. The data range from April 1995 to October 2007, resulting in a total of 151

observations. All the data are publicly available on the Eurostat website2.

Running the TS–LARS algorithm with forecast horizon one leads to the top-5

ranking as presented in Table 7. Using the BIC, one retains the first two predictors,

each with one lag. The industrial confidence indicators in France and Belgium are

identified as the most powerful predictors for short term forecasting of Belgian indus-

trial production growth. This suggests that, in the short run, industrial production

growth might be strongly driven by confidence of the industrial sector itself. Other

high ranked predictors, not included in the selected model, are consumer confidence

in the Netherlands and retail confidence in Germany and France. It is interesting to

note that the five highest ranked predictors are from Belgium itself or neighboring

countries. For one-year-ahead forecasting (h = 12) of Belgian industrial production

growth, the TS–LARS method selects the Belgian and German consumer confidence

indicators to be included in the prediction model. So, in the long run, industrial

production growth is more accurately predicted by consumer confidence than by

confidence in the industrial sector.

To compare the forecast performance of the TS–LARS method to the LARS, TS–

FS and DFM, we compare out-of-sample forecasts. The in-sample range includes the

first 75 observations and we proceed in the same way as in Section 5.1. The results of

2ec.europa.eu/eurostat

26



Table 7: Top-5 ranking of predictor series for predicting one step ahead Belgian

industrial production growth, as obtained by the TS–LARS algorithm.

Ranking Predictor

1 Industrial Confidence, France

2 Industrial Confidence, Belgium

3 Consumer Confidence, the Netherlands

4 Retail Confidence, Germany

5 Retail Confidence, France

the out-of-sample forecast comparisons are presented in Table 8, where the MSFEh

is reported for the TS–LARS, LARS, TS–FS and DFM methods and for several

forecast horizons. For forecasting one-month-ahead industrial production growth,

the TS–LARS gives the best results. Even more, the TS–LARS is significantly

better than all three other methods. No significant differences are obtained for two-

months-ahead forecasts, but for three-months-ahead we again see that the TS–LARS

performs significantly better than the other three considered methods. For longer

forecast horizons, all methods perform comparably.

6 CONCLUSION

The LARS procedure, as presented in Efron et al. (2004), is a fast and well-

performing method for model selection with cross-sectional data. We propose a

new version of the LARS especially designed for time series data and call it the

TS–LARS. The new procedure takes the dynamics of the time series into account

by selecting blocks of variables. Each block consists of a number of lagged series of

a predictor. The good performance of the TS–LARS method is demonstrated by

means of a simulation study. It performs better than the standard LARS method,

which does not take the dynamics into account. Moreover, in terms of forecast
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Table 8: Out-of-sample MSFEh (×1000) obtained by the TS–LARS, LARS, TS–FS

and DFM methods, for different forecast horizons. The smallest MSFEh value is in

italics; p-values of the Diebold-Mariano test for equal forecast accuracy compared

to TS–LARS are between parentheses.

h = 1 h = 2 h = 3 h = 6 h = 12

TS–LARS 22.63 16.98 17.30 17.17 19.68

LARS 25.95 14.24 20.73 17.18 19.48

(0.01) (0.09) (0.01) (0.89) (0.75)

TS–FS 26.60 15.76 21.28 17.10 19.48

(0.02) (0.13) (<0.01) (0.56) (0.75)

DFM 26.36 15.72 26.09 17.18 20.74

(<0.01) (0.45) (<0.01) (0.89) (0.25)

performance, the TS–LARS method shows better results than the dynamic factor

model.

In the first empirical application, we apply the TS–LARS method to a large data

set to identify which predictors are most informative for future US monthly industrial

production growth rates. The highest ranked short-term predictor is the “NAPM

new orders index” indicating that evolutions in the number of placed orders is a

good predictor for industrial production growth. The second application studies the

predictive content of EU business and consumer surveys for future Belgian monthly

industrial production growth rates. The TS–LARS procedure indicates that the

industrial confidence indicators of both France and Belgium are the most informative

short-term predictors. The models selected by the TS–LARS procedure shows good

forecast performance as compared to a dynamic factor model, especially for short

term forecasting.

In this article, the TS–LARS method acted as a variable selection technique,

after which a standard OLS-fit was applied to the selected model. Our experience is
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that the selected model typically contains only few predictors, avoiding overfitting by

OLS of the selected model. In the examples considered in this paper, parsimonious

prediction models were obtained by making use of an OLS fit. In cases where

the TS–LARS method would yield a fairly large prediction model, estimation by

OLS can be improved upon, since it is well known that OLS estimators may have

high variance in models with too many predictors. A solution would be to use a

penalized version of OLS, for example the LASSO estimators (Tibshirani (1996)),

instead. Alternatively, one could use TS–LARS both as a variable selection and as

a model fitting procedure, using the shrinked OLS regression estimates computed

in the TS–LARS algorithm outlined in Section 2.1.

A distinct feature of TS–LARS is that it allows for a ranking of the different

predictors. This ranking differs according to the series one wants to predict and

the forecast horizon. The highest ranked time series are the ones that need to

be followed up closely by the forecaster. If data monitoring is expensive or time-

consuming, then one might continue to track only the highly ranked series, and not

the less informative ones. To conclude, we think that the use of TS–LARS algorithm

for predicting time series using many predictors yields parsimonious and easy-to-

interpret models, with good forecasting performance. While the good properties

of the LARS algorithm have been well documented for cross-sectional data, this

paper present its extension to the time series setting. The obtained results are very

promising and might generate a new stream of research on forecasting with high

dimensional time series.
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Appendix

Proof of equation (5). The left hand side of equation (4) can be rewritten as

R2(z0 − γẑ0 ∼ x(1)) = 1 −
(z0 − γẑ0)

′(I − H(1))(z0 − γẑ0)

(z0 − γẑ0)′(z0 − γẑ0)
.

with

(z0 − γẑ0)
′(I − H(1))(z0 − γẑ0) = (z0 − γH(1)z0)

′(I − H(1))(z0 − γH(1)z0)

= z′

0(I − γH(1))(I − H(1))(I − γH(1))z0

= z′

0(I − H(1))z0, (A.14)

where we used the well known properties H ′

(1) = H(1) and H(1)H(1) = H(1) of the

projection matrix. Note that the value of (A.14) does not depend on γ anymore.

The right hand side of equation (4) equals

R2(z0 − γẑ0 ∼ xj) = 1 −
(z0 − γẑ0)

′(I − Hj)(z0 − γẑ0)

(z0 − γẑ0)′(z0 − γẑ0)
,

with

(z0 − γẑ0)
′(I − Hj)(z0 − γẑ0) = (z0 − γH(1)z0)

′(I − Hj)(z0 − γH(1)z0) (A.15)

= z′

0[(I − γH(1))(I − Hj)](I − γH(1))z0

= z′

0

(

I − Hj + (H(1)Hj + HjH(1) − 2H(1))γ

+(H(1) − H(1)HjH(1))γ
2
)

z0 . (A.16)

So equation (4) holds if and only if (A.14) and (A.16) are equal to each other. This

results in the following quadratic equation (5) for γ.

Finally, note that (5) will always have a root between zero and one, and this for

every j not in the active set. Indeed, for γ = 0 we have R2(z0 ∼ x(1)) ≥ R2(z0 ∼ xj),

by definition of the first index in the active set. On the other hand, for γ = 1 we

have 0 = R2(z0− ẑ0 ∼ x(1)) ≤ R2(z0− ẑ0 ∼ xj). Hence, there must exist a γ between

zero and one for which condition (4), and then also condition (5) holds.
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Proof of equation (6). Recall that ẑ0 = H(1)z0 and x̃(1) = ẑ0/s1. The following

relations hold:

z′0H(1)z0 = z′

0H(1)H(1)z0 = ẑ′

0ẑ0 = (T − 1)s2
1 (A.17)

z′0(H(1)Hj + HjH(1) − 2H(1))z0 = ẑ′

0Hjz0 + z′

0Hj ẑ0 − 2ẑ′

0H(1)ẑ
′

0

= 2(s1x̃
′

(1)Hjz0 − ẑ′

0ẑ
′

0)

= 2s1(x̃
′

(1)Hjz0 − (T − 1)s1) (A.18)

z′0(H(1) − H(1)HjH(1))z0 = ẑ′

0ẑ0 − ẑ′

0Hj ẑ0

= s2
1((T − 1) − x̃′

(1)Hj x̃(1)) (A.19)

Inserting relations (A.17), (A.18) and (A.19) in (5) results in (6).

Proof of Lemma 1. The three statements of the lemma will be proven by induction.

For k = 1, we know that

r1 = Cor(z0, x̃(1)) = Cor(z0, ẑ0) ≥ 0 ,

so (a) holds for k = 1. Since the index (1) by construction yields the largest

R2(z0 ∼ xj), (b) holds for k = 1. For proving (c) for k = 1, note that we already

showed that (5) always has a solution between zero and one. Every solution of (5)

multiplied by s1 then solves (6) for k = 1, since

R2(z0 − γẑ0 ∼ x(1)) = R2(z0 − γs1x̃(1) ∼ x(1)) = R2(z0 − γs1x̃(1) ∼ x̃(1)) .

From a1 = 1, since x̃(1) is the equiangular vector in the first step, and from r1 = s1,

since z0 has unit variance, it follows that (c) holds for k = 1.

Suppose now that the three statements of Lemma 1 hold for k − 1. Now we will

prove that they also hold for step k. First of all, we have for every i in 1, . . . , k − 1

Cor(zk−1, x̃(i)) = Cov(zk−1, x̃(i))

= Cov(zk−2 − γk−1uk−1, x̃(i))

= rk−1 − γk−1ak−1 ≥ 0 , (A.20)
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which does not depend on i. Here, we used (a) for k − 1, and (7). The inequality

holds since (c) is assumed to hold for k − 1. Furthermore, since condition (9) holds

in step k − 1, it follows that

R2(zk−1 ∼ x̃(k−1)) = R2(zk−1 ∼ x(k)) or Cor2(zk−1 ∼ x̃(k−1)) = Cor2(zk−1 ∼ x̃(k)) .

Since x̃(k) is proportional to the fitted values in the OLS regression of zk−1 on x(k),

one also has Cor(zk−1, x̃(k−1)) = Cor(zk−1, x̃(k)) ≥ 0. We conclude that (a) holds for

step k.

To prove (b), suppose that there exists a j not belonging to the active set in step k

such that

r2
k = R2(zk−1 ∼ x̃(k)) < R2(zk−1 ∼ xj) . (A.21)

We use the shortened notations f0(γ) = R2(zk−2−γuk−1 ∼ x̃(k−1)), for the left hand

side of condition (9) at step k − 1, and fj(γ) = R2(zk−2 − γuk−1 ∼ xj), for the right

hand side of condition (9) at step k − 1. By definition, γk−1 is the first crossing of

the two curves f(k)(γ) and f0(γ), for γ > 0. Since (b) is assumed to be hold at step

k − 1, we have f0(0) ≥ fj(0). But definition (8) and (A.21) imply that

f0(γk−1) = f(k−1)(γk) < fj(γk−1) .

Hence, there must exist a crossing of f0(γ) and fj(γ) at a γ̃ strictly smaller than γk−1.

This contradicts the definition of γk−1, so (A.21) can not hold, proving statement

(b).

Finally, let us show that (c) holds at step k. It is sufficient to show that there

always exists a solution of equation (9) in the interval [0, rk/ak]. Now note that for

γ = 0, the left hand side of (9) is larger than the right hand side, since we have

already proven (b) for step k. On the other hand, for γ = rk/ak, the left hand side

of equation (9) equals 0 (as can be seen from equation (A.20)), which is of course

smaller than the right hand side of equation (9). Hence, there exists a positive

solution, smaller than rk/ak to condition (9).
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Proof of equation (11). The left hand side of equation (9) can be rewritten as

R2(zk−1 − γuk ∼ x̃(k)) = Cor2(zk−1 − γuk, x̃(k))

=
(Cov(zk−1, x̃(k)) − γCov(uk, x̃k))

2

Var(zk−1 − γuk)

=
(rk − γak)

2

Var(zk−1 − γuk)
.

We used here equation (7) and the fact that x̃(k) has been standardized. The right

hand side of condition (9) can be written as

R2(zk−1 − γuk ∼ xj) = 1 −
(zk−1 − γuk)

′(I − Hj)(zk−1 − γuk)

(zk−1 − γuk)′(zk−1 − γuk)

=
(zk−1 − γuk)

′Hj(zk−1 − γuk)

(zk−1 − γuk)′(zk−1 − γuk)
,

where j does not belong to the active set. So condition (9) is equivalent to

(rk − γak)
2

1
T−1

(zk−1 − γuk)′(zk−1 − γuk)
=

(zk−1 − γuk)
′Hj(zk−1 − γuk)

(zk−1 − γuk)′(zk−1 − γuk)

⇔ (T − 1)(rk − γak)
2 = (zk−1 − γuk)

′Hj(zk−1 − γuk)

⇔ (T − 1)(r2
k − 2akrkγ + a2

kγ
2) = z′

k−1Hjzk−1 − 2z′

k−1Hjukγ + u′

kHjukγ
2 .

After rearranging the terms, equation (11) follows.
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