
KATHOLIEKE
UNIVERSITEIT

LEUVEN

DEPARTEMENT TOEGEPASTE
ECONOMISCHE WETENSCHAPPEN

RESEARCH REPORT 0340

A HYBRID SCATTER SEARCH I
ELECTROMAGNETISM META-HEURISTIC FOR

PROJECT SCHEDULING
by

D. DEBELS
B. DE REYCK

R.LEUS
M.VANHOUCKE

D/2003/2376/40

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6468992?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Hybrid Scatter Search / Electromagnetism

Meta-Heuristic for Project Scheduling

Dieter Debels1 • Bert De Reyck 2 • Roel Leus3,§ • Mario Vanhoucke1,4

1 Faculty of Ecorwmics and Business Administration, University of Ghent, Gent, Belgium

2London Business School, London, United Kingdom

3Department of Applied Economics, Katholieke Universiteit Leuven, Leuven, Belgium

<Operations & Technology Management Centre, Vlerick Leuven Gent Management School, Gent, Belgium

dieter.debels@ugent.be • bdereyck@london.edu • roel.leus@econ.kuleuven.ac.be • mario.vanhoucke@ugent.be

In the last few decades, several effective algorithms for solving the resource-constrained
project scheduling problem have been proposed. However, the challenging nature of this
problem, summarised in its strongly NP-hard status, restricts the effectiveness of exact
optimisation to relatively small instances. In this paper, we present a new meta-heuristic
for this problem, able to provide near-optimal heuristic solutions. The procedure
combines elements from scatter search, a generic population-based evolutionary search
method, and a recently introduced heuristic method for the optimisation of
unconstrained continuous functions based on an analogy with electromagnetism theory,
hereafter referred to as the electromagnetism meta-heuristic. We present computational
experiments on standard benchmark datasets, compare the results with current state-of
the-art heuristics, and show that the procedure is capable of producing consistently good
results for challenging instances of the resource-constrained project scheduling problem.
We also demonstrate that the algorithm outperforms state-of-the-art existing heuristics.

Keywords: project scheduling; heuristics; scatter search; electromagnetism

1. Introduction

We study the resource-constrained project scheduling problem (RCPSP), denoted as

m,llcpmlCmax using the classification scheme of Herroelen et aI. (1998a). The RCPSP can be

stated as follows. A set of activities N, numbered from 0 to n (I NI =n+l) , is to be scheduled

without pre-emption on a set R of renewable resource types. Activity i has a deterministic

duration dielN and requires TikelN units of resource type k, keR, which has a constant

availability ak throughout the project horizon. We assume that Til< ::; ak, ieN, keR. The

dummy start and end activities 0 and n have zero duration while the other activities have a

non-zero duration; the dummies also have zero resource usage. A is the set of pairs of

§ Research assistant of the Fund for Scientific Research - Flanders (F.W.O.).

activities between which a finish-start precedence relationship with time lag 0 exists. We

assume graph G(N,A) to be acyclic. A schedule 5 is defined by an (n+1)-vector of start times

s = (so, ... ,Sn) which implies an (n+1)-vector of finish times e (ej=sj+dj, ViEN). A schedule is

said to be feasible if the precedence and resource constraints are satisfied. The objective of

the RCPSP is to find a feasible schedule such that the schedule makespan en is minimised.

The research on the RCPSP has widely expanded over the last few decades, and reviews can

be found in Brucker et al. (1999), Herroelen et al. (1998b), Icmeli et al. (1993), Kolisch and

Padman (2001) and Ozdamar and Ulusoy (1995). Numerous exact solution approaches have

been advanced, with Brucker et al. (1998), Demeulemeester and Herroelen (1992, 1997),

Mingozzi et al. (1998) and Sprecher (2000) perhaps the most noteworthy. However, the

RCPSP, being a generalisation of the job shop scheduling problem, is strongly NP-hard

(Blazewicz et al. 1983), and the computation times for exact algorithms can be excessive even

for moderately sized instances. This has motivated numerous researchers to develop

heuristic methods for dealing with RCPSP-instances of practical sizes. Kolisch and

Hartmann (1999) and Hartmann and Kolisch (2000) present a classification and performance

evaluation of different such heuristics. Additional recent sources include Alcaraz and

Maroto (2001), Bouleimen and Lecocq (2003), Fleszar and Hindi (2004), Harbnann (1998,

2002), Nonobe and Ibaraki (2002), Palpant (2001), Palpant et al. (2002), and Valls et al. (2001,

2003).

In this paper, we describe a new heuristic for the RCPSP, inspired by recent advances in the

development of meta-heuristics. The procedure combines elements from scatter search (55),

a population-based evolutionary search method, and a recently introduced heuristic method

for the optimisation of unconstrained continuous functions that simulates the

electromagnetism theory of physics, hereafter referred to as the electromagnetism (EM)

meta-heuristic (Birbil and Fang 2003). We extend the EM heuristic for combinatorial

optimisation problems and integrate it in a scatter search framework. In Section 2, we

describe the main elements of the EM heuristic applied to unconstrained continuous

optimisation. Section 3 discusses how we represent and evaluate RCPSP solutions to be

used in a scatter search framework. In Section 4, we show how the EM methodology can be

modified and enhanced to be used in a combinatorial optimisation setting and how it can be

integrated with scatter search for the RCPSP. Section 5 and 6 discuss intensification and

diversification strategies employed to enhance the effectiveness and efficiency of the

2

algorithm. Section 7 contains the computational results on benchmark datasets, as well as a

comparison with other current state-of-the-art heuristics. We conclude with Section 8.

2. The electromagnetism meta-heuristic

Birbil and Fang (2003) propose a so-called electromagnetism (EM) optimisation heuristic for

unconstrained global optimisation problems, i.e. the minimisation of non-linear functions.

In a multi-dimensional solution space where each point represents a solution, a charge is

associated with each point. This charge is related to the objective function value associated

with the solution point. As in evolutionary search algorithms, a population, or set of

solutions, is created, in which each solution point will exert attraction or repulsion on other

points, the magnitude of which is proportional to the product of the charges and inversely

proportional to the distance between the points (Coulomb's Law). The principle behind the

algorithm is that inferior solution points will prevent a move in their direction by repelling

other solution points in the population, and that attractive points will facilitate moves in

their direction. This can be seen as a form of local search in Euclidian space in a population

based framework, similar to scatter search. The main difference with existing methods is

that the moves are governed by forces that obey the rules of electromagnetism. Birbil and

Fang (2003) provide a generic pseudo-code for the EM algorithm:

Algorithm EM(maxiter, LSiter)
iter :=1
while iter<maxiter do

local(LSiter)
compute_forces
apply_forces
iter++

endwhile

The function EM requires two parameters, maxiter defining the number of iterations or

populations, and LSiter defining the number of iterations in a local search sub-procedure

local, which is applied before a new population is created. The function local explores the

immediate (Euclidian) neighbourhood of individual points. The total force exerted on each

point by all other points is calculated in function computeJorces, which depends on the

charge of the point under consideration as well as of the points exerting the force. The

charge of each point Xi is determined by its objective function value f(Xi) in relation to the

objection function value of the current best point xbest in the population, with better objective

3

function values resulting in higher charges. For a minimisation problem, the charge qi of

particle Xi is determined according to equation (2.1).

[f(x)- f(x b"') J
qi = exp - d 2::~1 (f(xk) _ f(xb"')) (2.1)

The parameter m represents the population size, d is the dimension of the solution space. In

the function compute.Jorces, a set of force vectors Fi is determined, i=l, .. . ,m, that are exerted

on particle Xi:

(2.2)

The point with a relatively good objective function value attracts the other one, the point

with the inferior objective value repels the other. The forces exerted on i by each of the other

points are combined by means of vector summation, as shown in the example in Figure 1. In

the example, F13 is the force exerted by Xl on X3 (repulsion: the objective function value of X3

is better than that of Xl) and F23 is the force exerted by X2 on X3 (attraction: the objective

function value of X3 is worse than that of X2). The total force exerted on X3 equals F3=F13+F23 .

......
.

/
.........

X2 J
Figure 1. Example of exertion of forces

The movement according to the resulting forces is performed in apply.Jorces, which

generates a new population. Contrary to the simplified example in Figure 1, the imposed

force is normalised, by dividing it by its norm, and therefore only identifies the direction of

the move, not the magnitude. The magnitude of each move is determined for each

dimension separately, and is equal to a value randomly selected from domain [0; maxmove],

where maxmove indicates the maximum allowable move in the particular dimension.

4

Birbil and Fang (2003) use maxiter iterations, or populations, although other termination

criteria could be applied, such as a maximum number of iterations without improving the

current best solution. Convergence details for the heuristic are provided in Birbil et al.

(2003).

EM is a 'population based' or 'evolutionary' algorithm, since it operates on a population of

solutions rather than on a single solution at a time. This makes it most closely related to

genetic algorithms (GA, Goldberg 1989) and to scatter search (SS, Glover et al. 2003). SS,

being a generic methodology, can be seen as a generalisation of the GA procedure (Taillard

et al. 2001). SS is a population-based method where new solutions are constructed using

convex or non-convex linear combinations of solutions. In our procedure, the selection and

combination rules for SS are provided by the EM framework, which, not unlike GA, can be

seen as a particular form of the S5 algorithm. In the following section, we will discuss how

we have extended the EM methodology for combinatorial optimisation and the RCPSP in

particular, and how it can be integrated in a general SS framework.

3. Representation, schedule generation and solution evaluation

The backbone of most improvement heuristics for solving the RCPSP, where an initial (set

of) solution(s) is gradually improved, is a schedule representation scheme, a schedule generation

scheme and a solution evaluation procedure. Typically, an RCPSP improvement heuristic

does not operate directly on a schedule, but on some representation of a schedule that is

convenient and effective for the functioning of the algorithm. After an operation on a

solution (i.e. on a schedule represented in a particular way) has been performed, the newly

obtained solution is transformed into a schedule using a schedule generation scheme (SGS).

Kolisch and Hartmann (1999) distinguish between various representations for schedules in

the development of heuristics for the RCPSP. The two most important ones are the random

key (RK) representation and the activity-list (AL) representation. In RK form, a solution

corresponds to a point in Euclidian (n+1)-space, such that the i-th vector element functions

as a priority value for the i-th activity. Using a serial schedule-generating scheme, these

priority values can then be used to construct an active schedule by scheduling each activity

one-at-a-time and as soon as possible within the precedence and resource constraints.

Alternatively, a parallel 5GS could be used, although Kolisch (1996) has shown that,

5

contrary to the serial SGS, the parallel SGS is sometimes unable to reach an optimal solution.

In the AL representation, a schedule is represented by a linear extension of the partial order

induced by the precedence constraints, such that a SGS gives priority to the activity that

comes first in the list containing a complete order on N. This is similar to list scheduling in

machine scheduling.

Hartmann and Kolisch (2000) report that in general, procedures that make use of the AL

representation perform better than those based on the RK form. This claim is based solely

on computational tests, and no underlying reasons are cited. We believe that the main

reason for the inferior performance of the RK representation lies in the fact that one single

schedule can have many different representations. This results in a larger solution space,

and the issue that the structure of a solution or schedule representation does not necessarily

contain information about the quality of the associated schedule, which sometimes prevent

(meta-) heuristics operating on schedule representations from making improvements. The

AL representation also suffers from this, in that a single schedule can be represented by

different activity lists. This problem, however, occurs more frequently using the RK

representation, for reasons we will explain below.

The RK representation, however, has the advantage that each solution corresponds to a

point in Euclidian (n+1)-space, so that geometric operations can be performed on its

components. Since this is one of the cornerstones of both the SS and EM methods, we adopt

the RK representation, allowing us to perform mathematical operations on solutions. We

have modified the standard RK representation in order to eliminate the problem stated

above, thereby removing its comparative disadvantage relative to the AL form.

There are four underlying reasons why a schedule can be represented by different RK forms,

caused by (1) scaling, (2) precedence constraints, (3) timing anomalies and (4) activities with

identical starting times. We will discuss these problems one by one and show how these

problems can be eliminated using a unique, standardised form of the RK representation.

Note that problems (3) and (4) also occur for activity lists. By eliminating all four problem

areas, our unique RK representation will perform better than both the standard RK as well

as the standard AL forms.

6

We introduce the example project depicted in Figure 2, with a single renewable resource

type with availability al=2. A feasible schedule for this scheduling problem, with a

makespan equal to 18, is given in Figure 3. Assuming that lower RK values correspond to

higher priorities, the schedule in Figure 3 can be obtained with the following RK vector: Xl=

[0.9; 1.1; 2.6; 2.9; 2.1; 3.5; 0.7; 1.9; 3.2] (we omit the RK values for the dummy start and end

activity).

Figure 2. Example project

2

3
2

8

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 3. A schedule for the example project

(1) Scaling in Euclidean space

Scaling the priority values of any RK representation up or down results in a different

RK representation, which, however, will always result in the same schedule. In fact,

there exist an infinite number of RK representations with different priority values, but

with the same priority structure. For our example, X2= [8; 13; 31; 32; 26; 52; 3; 17; 48]

results in the same schedule. We eliminate this problem by replacing the priority values

by their rank values. For the example, we can transform Xl or X2 into X3= [2; 3; 6; 7; 5; 9;

1; 4; 8], which also yields the schedule in Figure 3.

7

(2) Precedence constraints

In an RK representation, priority values are not constrained by the precedence

constraints, in the sense that the RK of an activity can be higher than the RK of one of its

predecessors. Essentially, this is not a problem since a SGS will take the precedence

relations into account, but it can lead to different RK representations for a single

schedule. In our example, we can see in X3, that activity 7 has a higher priority (a lower

RK) than activities I, 2, 3 and 4, the predecessors of activity 7. A serial SGS would

schedule the activities in the following order: I, 2, 8, 5, 3, 4, 6, 7 and finally 9, i.e. taking

into account the precedence relations. Another RK representation such as X4= [1; 2; 6; 7;

5; 9; 3; 4; 8] would result in the same schedule. To eliminate this problem, we set the RK

values of each activities equal to their rank order in the activity list obtained using a

serial SGS. This results in an RK representation with priority values "in line" with the

precedence constraints. For our example, we obtain Xs= [1; 2; 5; 6; 4; 7; 8; 3; 9].

(3) Timing anomalies

The previous two problems arise only with the RK representation. There are two more

problems, associated with both the RK and AL representation. The first is caused by the

following phenomenon. If an activity al starts earlier than another activity a2 in a

schedule, then an AL representation of this schedule exists with al before a2. If,

however, none of the activities starting after al and before a2 in the activity list, nor a2

itself, could be scheduled earlier if activity al is removed from the schedule (because of

precedence and/ or resource constraints), then there also exists an AL representation for

the same schedule in which al right comes after a2.

In the example schedule of Figure 3, activity 5 starts earlier than activity 8. Therefore,

there is an AL in which activity 5 has higher priority than activity 8. Nevertheless, in

Xs= [1; 2; 5; 6; 4; 7; 8; 3; 9], which leads to the schedule in Figure 3, the RK of activity 5,

namely 4, is higher than the RK of activity 8, namely 3, and thus activity 5 receives

lower priority although its starts earlier. This is due to the fact that even in the absence

of activity 5, activity 8 cannot be scheduled earlier due to activity 1 and 2 requiring a

Significant amount of the resource in periods 1 through 6. Activity 5, consuming less

resource and taking less time, can be inserted into the schedule at time 0 both before

and after activity 8 is included. In other words, there are at least two priority vectors

leading to the same schedule.

8

To deal with this problem, we propose to use a topological-order (TO) representation of

schedules (Valls et al. 1999, 2003): for a schedule 5, a TO representation of 5 is any

vector x containing the numbers from 0 to n+1 and for which Si(S) <Sj(S) implies Xi<Xj.

Adhering to the TO representation eliminates the problem discussed above. For the

example schedule in Figure 3, activity 5 receives the second highest priority in the TO

representation. Consequently, Xs is replaced by X6 = [1; 3; 5; 6; 2; 7; 8; 4; 9].

(4) Activities with the same starting times

Even with the TO representation, there can still be multiple representations of a single

schedule. If two activities al and a2 start at the same time, the position of al and a2 in an

AL can be interchanged without affecting the associated schedule. To prevent this, we

take the average of the rankings in the AL of activities starting at the same time, which

will be the same for all the activities under consideration. By doing so for the example

schedule, we end up with X7 = [1.5; 3; 4.5; 6; 1.5; 7; 8; 4.5; 9], a unique standardised

random key (SRI<) representation for the schedule.

Using the SRI< schedule representation, each population member is uniquely associated

with a schedule. The EM algorithm, however, transforms the priority vectors by moving

them in Euclidian space according to the (electromagnetic) forces exerted on them. These

new priority vectors may again suffer from any of the four problems mentioned above.

Therefore, we re-write each new priority vector in SRK-form, while at the same time

evaluating the associated objective function value, as follows. When a priority vector x E

]Rn+l is transformed into a vector y, we compute a schedule S=o(y), using a SGS 0; with

associated objective function value equal to the makespan en(o(Y)). We then replace x by

SRI< priority vector n(o(y)), where 7l"transforms the schedule to SRI<-standardised priorities,

based on the activity starting times in o(x).

4. Modifying the EM algorithm for the RCPSP

In the basic EM algorithm, all points in a population exert a force on all other points. We

generalise this concept by allowing a variable number b of points to act on any given point,

with bE [1;m-1], where m is the population size. The selected set of points is referred to as B.

Furthermore, we generalise the basic EM algorithm as follows. When determining the force

exerted on point i by pointj, we do not use fixed charge qi and qj to compute the attraction or

repulsion force, but rather a charge qji that depends on the relative difference in objective

9

function value between i and j. So, contrary to the basic EM algorithm, point charges are not

computed independently but based on the point they exert force on:
_ f(x,) - f(x j)

q)l- f(x wors,)_ f(Xb"') (4.1)

with x worst and xbest the worst and best solutions in the current generation. As a result,

qj;E[-1;1] and 'better' points j have higher scores on qji. More specifically, if f(x;»f(Xj), i.e.

when point i has higher makespan than particle j, qji is positive and particle j attracts particle

i. The opposite is true when f(x;)<f(Xj) and repulsion occurs. No action results when

f(x;)=f(Xj). In our implementation, forces are computed as follows:

with

B (c, q. + c2S.. J Pi = I(Xj -Xi) II II

j=l D(x"x j)+C2
I"

ifqji >0

ifqji =0

ifqji <0

(4.2)

(4.3)

C1 and C2 are parameters that allow to calibrate the importance of the distance measure

D(Xi,Xj), which is the sum of the absolute values of the component-wise difference between Xi

andxj.

Based on the calculated forces and resulting attraction and repulsion, points are

transformed, i.e. moved in Euclidian space, resulting in a new population. In the basic EM

algorithm, forces are exerted in each dimension. For the RCPSP, this corresponds to a

change in the priority of each activity. We generalise this concept by allowing forces to act

only in a particular subset of the dimensions or activities. We randomly select pminE[1;n-1]

and pmaxE[2;n], with pmin :s; pmax, and update only the RK values between pmin and pmax

(inclusive) according to the forces exerted in these dimensions. Note that due to the SRK

representation, the thus updated activities all start within a particular time interval. The

other RK components are not left unchanged, but are updated as follows. We subtract the

constant value n from all RK values lower than Pmirv and add this same constant to all values

higher than pmax. Doing this preserves the priority structure of the activities unaffected by

the forces, and the relative priorities of the three resulting subsets of activities. The resulting

RK vector is not in SRK form but can be transformed in SRK format.

We again consider the example project presented in Section 3, SRK-vector X7 = [1.5; 3; 4.5; 6;

1.5; 7; 8; 4.5; 9], pm;n= 3 and pmax=6. In Table 1, the components of X7 in interval [pmm; pmax] are

10

underlined, and the force F imposed on X7 is given. The vector added to X7 is referred to as

F', and x7+F'=x;.

Activities 1 2 3 4 5 6 7 8 9

X7 1.5 1 4.5 Q 1.5 7 8 4.5 9

F 0.6 2.2 0.4 -0.9 0 -2.2 1.2 1.9 0.5

F' -10 2.2 0.4 -0.9 -10 10 10 1.9 10

x' 7 -8.5 5.2 4.9 5.1 -8.5 17 18 6.4 19

Table 1. lllustration of the execution of a move according to a force

5. Intensification using local search

The makespan en(o(x» associated with a solution x is obtained using a serial SGS a: In order

to improve the intensification characteristics of the algorithm, we use an enhanced

generation scheme if that iteratively looks for improvements in the priority vector using

forward and backward global shifts of individual activities. The scheme d" guarantees that

en(d"(x» ~ en(a(x» so that we can replace x by solution n(if(x». Our method is based on the

basic principles described by Ii and Willis (1992) and Ozdamar and Ulusoy (1996).

First we apply (j on x, yielding an active, i.e. left-justified schedule. Next, we iteratively

perform backward and forward passes. The priorities used in these passes are based on the

RK-vector consisting of the ending times (backward) and starting times (forward) in the

schedule, which results in a right-justified and left-justified schedule, respectively. It is

guaranteed that the schedule makespan of each intermediate schedule is never higher than

the makespan of the previous one. In effect, rather than completely rescheduling, we exploit

opportunities for global right and left shifts of individual activities in order to reduce the

makespan.

11

2

3
2

8

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920

2

2~--~---------r------~--~----~

3

1
2

8

4

6
7

9

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 4. Stepwise improvement of the makespan

A computational example will illustrate our approach: consider the project of Figure 2 and

RK-vector Xl = [0.9; 1.1; 2.6; 2.9; 2.1; 3.5; 0.7; 1.9; 3.2]. a(XI) was depicted Figure 3, which is

repeated at the top of Figure 4. The schedule has a makespan of 18 time units. We now try

to reduce the makespan by scheduling each activity as much as possible to the right, in

decreasing order of activity end times, without affecting the project makespan. Activity 9

and 7 cannot be scheduled later. Activity 6 can be right shifted to start at time 15. Activity 4

can be shifted two time units and start at time 10. Since the global right shift of activity 6 has

made some additional resources available, activity 8 can be shifted three time units to start

at time instant 9. Activities 3, 2 and 1 can shift two time units. Finally, activity 5 is shifted to

time 14. In this way, we obtain a schedule with a makespan of 16 units. Further

improvements of the schedule are possible by shifting activities as much as possible to the

left. This reduces the makespan by one further time unit, as illustrated in Figure 4. This

procedure is continued until no further improvements can be found.

As in the original EM algorithm, we can use a function local to improve population members

in the foregoing manner. Contrary to the original algorithm, however, we perform this

12

search immediately after new members are added to the population as a result of the

function applyJorces, rather than at the start of each iteration.

6. Diversification using mutation

In order to prevent the population from becoming overly homogeneous, we introduce a

means of diversification using mutation, by swapping the RK values of two randomly

chosen activities that are not precedence related. This mutation is imposed right after a force

is executed, and only afterwards, makespan evaluation takes place. Additionally, we

replace the population by new points when the makespans of the schedules in the

population are identical. The initial population is also generated randomly to ensure a

diversified starting solution.

7. Computational experiments

We have coded the procedure in Visual C++ 6.0 and performed computational tests on an

Acer Travelmate 634LC with a Pentium IV 1.8 GHz processor using two different testsets.

The first set is composed of instances generated by RanGen (Demeulemeester et al. 2003) and

is used to study the impact of the different parameters on the performance of the algorithm.

The second testset is the well-known PSPLIB testset (Kolisch and Sprecher 1997), used to

report computational results of our procedure and to compare with other state-of-the-art

results.

7.1. Impact of the parameters

To test the impact of the different parameters on the effectiveness and efficiency of the

procedure, we have constructed a dataset containing 480 instances using RanGen

(Demeulemeester et al. 2003). Each instance contains 75 activities and has been generated

with the following settings. The order-strength is set at 0.25, 0.50 or 0.75, resource usage at I,

2,3 or 4 and the resource-constrainedness at 0.2, 0.4, 0.6 or 0.8. Using 10 instances for each

problem class, we obtain a problem set with 480 network instances.

This approach is similar to the way Valls et al. (2001, 2003) derive their computational

results. The authors optimise the values of the different parameters based on a subset of the

J120 instances, and then test the effectiveness of the algorithm on the complete testset.

Although the results would be improved by optimising the parameter values for the

13

complete testset, the approach by Valls et al. (2001,2003) is more suitable since the results do

not rely on customising the parameters for that particular set. We opt for a similar

approach, but take it one step further by not optimising the parameter values on the testset

at all, not even on a subset, but on a completely different testset as described in this section.

Table 2 illustrates the influence of the size of the population m and the parameter b, i.e. the

number of points exerting a force on any given point, on the performance of the algorithm.

The column "Sum" contains the sum of the 480 project makespans, and the column 'Avg.

Dev.' contains the average deviation from the critical path based lower-bound. The table

reveals that the algorithm performs best with a population size of 8 and b equal to 1,

although the algorithm seems very robust with respect to these parameter values. Similarly,

optimal values for parameters C1 and C2 were found to be 15 and 10.

m=6 m=8 m=10

Sum Avg. Dev. Sum Avg.Dev. Sum Avg. Dev.

b=1 91,153 276% 91,149 276% 91,153 276%

b=2 91,157 276% 91,230 277% 91,261 277%

b= m-1 91,407 278% 91,488 278% 91,513 278%

Table 2. Impact of parameters m and b

7.2. Comparative results with best known solutions

In order to compare with the best results from literature, we use the well-known J30, J60, J90

and J120 instances of the PSPLIB testset (Kolisch and Sprecher 1997). Table 3 shows the

results. The row labelled "Sum" contains the sum of the makespans of all problem

instances. The row labelled "A vg. Dev. CPM" reports the average deviation from the

critical path based lower-bound. Since all J30 problem instances have been solved to

optimality by branch-and-bound procedures from the literature, we do not report the

deviation for this problem set. The row labelled "Avg. Dev. Best" displays the average

percentage deviation from the current best solution in PSPLIB as reported on September 12,

2003. For the J30 set these solutions are all optimal. The fourth row, labelled "Best" shows

the number of instances for which our heuristic algorithm reports a makespan equal to the

current best solution. The last rows, labelled "Avg. CPU" and "Max. CPU", indicate the

14

average and maximal computation time to solve a problem instance. Each cell of the table

displays the results for a run with maximum 1,000, 5,000,50,000 and 500,000 schedules.

Problem Set J30 J60 J90 J120
28,386 38,860 46,448 77,315

Sum 28,339 38,632 46,166 76,087
28,324 38,479 45,959 75,122
28,319 38,416 45,859 74,757

- 12.01% 11.61% 36.22%
Avg. Dev. CPM 11.35% 10.93% 34.07%

10.90% 10.43% 32.37%
10.70% 10.18% 31.72%

0.20% 1.09% 1.32% 3.89%
Avg. Dev. Best 0.06% 0.62% 0.84% 2.54%

0.02% 0.32% 0.50% 1.49%
0.008% 0.18% 0.33% 1.08%

437 (480) 359 (480) 362 (480) 194 (600)
Best 462 (480) 376 (480) 370 (480) 215 (600)

473 (480) 381 (480) 381 (480) 247 (600)
477J480) 424(480) 391 (480) 279 (600)

0.02 0.06 0.14 0.21
Avg.CPU 0.11 0.30 0.61 1.01
(seconds) 1.10 3.02 6.08 10.18

10.96 30.17 60.95 102.82
0.05 0.12 0.34 0.37

Max. CPU 0.17 0.48 1.01 1.72
(seconds) 1.57 4.56 10.11 15.29

14.60 46.78 100.36 155.04

Table 3. Computational results

The results indicate that the algorithm is capable of providing near-optimal solutions for set

J30 within very small computation times, and competitive solutions for the other problems

sets, all with limited computational effort. Also, the results show only a moderate increase

in required computational effort when the problem size increases, which is an encouraging

result since this allows the solution of very large scale instances.

7.3. Comparative results with 5,000 schedule limit

In the following tables we report a comparison with the best heuristic procedures as

reported in the literature. In order to have a fair base of comparison, we only compare the

results with a limit of 5,000 schedules, and omit procedures that do not report such results

(these will be discussed later). To measure the effectiveness of the algorithms, we report the

average deviation of the heuristic solutions from the critical path, except for J30, where we

report the average deviation from the optimal solution. We also provide a rank order of

15

effectiveness for each problem set in column uRn. Empty cells denote that, to the best of our

knowledge, no results have been reported in literature. Table 4 reveals that our new

algorithm performs consistently well over all problem sets, and outperforms the current

best-performing procedure in each class.

Problem Set J30 J60 J90 J120

Author Dev. (%) R Dev. (%) R Dev. (%) R Dev. (%) R

Hartmann (1998) 0.25 5 11.89 4 - - 36.74 5

Hartmann (2002) 0.22 3 11.70 2 - - 35.39 2

Nonobe and Ibaraki (2002) - - - - - - 35.86 3

Alcaraz and Maroto (2001) 0.12 2 11.86 3 - - 36.57 4

Bouleimen and Lecocq (2003) 0.23 4 11.90 5 - - 37.68 6

Our procedure 0.06 1 11.35 1 10.93 1 34.07 1

Table 4. Comparative computational results with limit on number of schedules

7.4. Comparative results with extended time limit

In this section we provide a comparison with other state-of-the-art heuristics for which

computational results with a limited number of schedules are not available. These include

Valls et al. (2001), Valls et al. (2003) and Fleszar and Hindi (2004). We also compare with

results obtained by the algorithm of Nonobe and Ibaraki (2002) without a limit on the

number of schedules (Valls 2003). Because the results for the different algorithms have been

obtained using different computers, a direct comparison is not possible. Rather, we will

show that our algorithm is able to outperform these heuristics with a specific limit on the

number of schedules generated. As measures of algorithmic effectiveness and efficiency, we

report the sum of the project makespans, the average deviations from the critical path

(except for J30, where we report the average deviation from the optimal solution) and

average and maximum CPU times, where available.

Nonobe and Ibaraki (2002) developed a tabu search algorithm for RCPSP, for which new

computational results are reported by Valls et al. (2003). These results, given in Table 5,

show that we are able to outperform their results using only 5,000 schedules, except for J30,

where we need slightly more. We therefore outperform their results with far less required

16

computation time, even if we take into account the difference in computers (Sun Ultra 2

running at 300 MHz versus 1.8 GHz PC).

Problem Set J30 J60

Sum Dev. Avg. Max. Sum Dev. Avg. Max.

Author (%) CPU CPU (%) CPU CPU

Nonobe & lbaraki 28,337 0.06 9.07 - 38,697 11.55 26.49 -

Fleszar & Hindi - - 0.64 5.86 - 10.94 8.89 80.70

VaIls et aI. (2003) 28,335 0.06 1.61 6.15 38,671 11.45 2.76 14.61

Vails et aI. (2001) 28,361 0.13 0.38 1.54 38,512 10.98 1.14 7.03

Our (5,000) 28,339 0.06 0.11 0.17 38,632 11.35 0.30 0.48

Our (50,000) 28,324 0.02 1.10 1.57 38,479 10.90 3.02 4.56

Our (500,000) 28,319 0.008 10.96 14.60 38,416 10.70 30.17 46.78

Problem Set J90 J120

Sum Dev. Avg. Max. Sum Dev. Avg. Max.

Author (%) CPU CPU (%) CPU CPU

Nonobe & lbaraki 46,294 11.25 181.41 - 76,600 34.99 645.33 -

Fleszar & Hindi - - 32.43 247.91 - 33.10 219.86 1,126.97

Valls et al. (2003) 46,247 11.12 4.63 25.49 76,356 34.53 17.00 43.94

VaIls et aI. (2001) 45,967 10.44 2.53 17.57 75,009 32.18 14.52 60.80

Our (5,000) 46,166 10.93 0.61 1.01 76,087 34.07 1.01 1.72

Our (50,000) 45,959 10.43 6.08 10.11 75,122 32.37 10.18 15.29

Our (500,000) 45,859 10.18 60.95 100.36 74,757 31.72 102.82 155.04

Table 5. Comparative computational results

Recently, Fleszar and Hindi (2004) have developed a heuristic for the RCPSP based on

variable neighbourhood search. They report good computational results, but requiring

substantial computational effort For sets J60 and J120, Fleszar and Hindi (2004) report

average deviations from the critical-path lower bound of 10.94% and 33.10%. Our algorithm

is capable of producing deviations of only 10.70% and 31.72% with 500,000 schedules, and

10.90% and 32.37% with 50,000 schedules, respectively. This indicates that we are

outperforming their results, even with a maximum of 50,000 schedules, whereas Fleszar and

Hindi (2004) do not set a limit on the number of schedules, which runs to a maximum of

more than 1 million for J60 and more than 10 million for J120. They also report high

17

computation times up to a maximum of 1,127 seconds (1 GHz processor), compared to

slightly more than 15 seconds for our procedure (with 50,000 schedules on a 1.8 GHz

processor). Based on these results, our results clearly outperform those of Fleszar and Hindi

(2004).

Valls et al. (2003) present a heuristic based on critical activity re-ordering. Although their

results for the J30 set are good, and require a 50,000 schedule-limit for our procedure to be

able to outperform it, the results are rather disappointing for sets J60, J90 and J120, where

our algorithm can produce better results with only 5,000 schedules. The CPU time required

by Valls et al. (2003) is limited, but even considering the different processor speeds (400

MHz versus 1.8 GHz), our procedure requires even less time. This is especially clear for set

J120, where Valls et al. (2003) require 17 times the CPU time we need to outperform them.

Valls et al. (2001) report excellent results, especially for sets J60, J90 and J120, as shown in

Table 6. In their paper, Valls et al. (2001) show that their results outperform all other state

of-the-art heuristics, although their procedure is not subjected to a schedule limit, whereas

the other procedures are. The authors show, however, that even with extended time limits,

the other heuristics are not able to outperform their results. Using our new procedure, we

are able to outperform these results, using 5,000 schedules for J30; 50,000 schedules for J60

and J90; and 500,000 schedules for J120. Note, however, that in order to outperform the

results of Valls et al. (2001), our procedure requires more CPU time if we take into account

the difference in processor speed (400 MHz versus 1.8 GHz).

8. Conclusions

In this paper, we have presented a new heuristic procedure for solving the resource

constrained project scheduling problem (RCPSP), one of the most challenging combinatorial

optimisation problems in scheduling. The procedure is a population-based evolutionary

method, and combines elements from scatter search and a novel method originally

introduced for optimising unconstrained continuous functions based on an analogy with

electromagnetism theory. We have shown how this electromagnetism heuristic can be

extended for application to combinatorial optimisation problems and the RCPSP, and how it

can be integrated into a scatter search framework. The procedure is equipped with

intensification and diversification methods to improve its effectiveness. The computational

results show that the procedure outperforms other state-of-the-art heuristics in the literature,

18

and that it is competitive with the procedure of Valls et al. (2001), which is probably the

most effective heuristic presented in the literature to date.

References

Alcaraz, J., Maroto, C. (2001). A robust genetic algorithm for resource allocation in project

scheduling. Annals of operations Research, 102, 83-109.

Birbil, S.l. and Fang, S.c. (2003). An electromagnetism-like mechanism for global

optimization. Journal of Global Optimization, 25, 263-282.

Birbil, S.l., Fang, S.c. and Sheu, R-L. (2003). On the convergence of a population-based

global optimization algorithm. Journal of Global Optimization, forthcoming.

Blazewicz, J., Lenstra, J.K. and Rinnooy Kan, AH.G. (1983). Scheduling subject to resource

constraints: classification and complexity. Discrete Applied Mathematics, 5, 11-24.

Bouleimen, K and Lecocq, H. (2003). A new efficient simulated annealing algorithm for the

resource-constrained project scheduling problem and its multiple mode version.

European Journal of Operational Research, 149, 268-281.

Brucker, P., Drexl, A, Mohring, R, Neumann, K and Pesch, E. (1999). Resource-constrained

project scheduling: notation, classification, models and methods. European Journal of

Operational Research, 112, 3-41.

Brucker, P., Knust, S., Schoo, A and Thiele, O. (1998). A branch & bound algorithm for the

resource-constrained project scheduling problem. European Journal of Operational

Research, 107, 272-288.

Demeulemeester, E. and Herroelen, W. (1992). A branch-and-bound procedure for the

multiple resource-constrained project scheduling problem. Management Science, 38,

1803-1818.

Demeulemeester, E. and Herroelen, W. (1997). New benchmark results for the resource

constrained project scheduling problem. Management Science, 43,1485-1492.

Demeulemeester, E., Vanhoucke, M. and Herroelen, W. (2003). A random generator for

activity-on-the-node networks. Journal of Scheduling, 6, 13-34.

Fleszar, K and Hindi, KS. (2004). Solving the resource-constrained project scheduling

problem by a variable neighbourhood search. European Journal of Operational Research,

forthcoming.

Glover, F., Laguna, M. and Marti, R (2003). Scatter search. In: Ghosh, A and Tsutsui, S.

(eds.). Theory and Applications of Evolutionary Computation: Recent Trends. Springer

Verlag, forthcoming.

Goldberg, D. (1989). Genetic Algorithms in Search, Optimization and Machine Learning.

Addison-Wesley.

19

Hartmann, S. (1998). A competitive genetic algorithm for the resource-constrained project

scheduling. Naval Research Logistics, 45, 733-750.

Hartmann, S. (2002). A self-adaptive genetic algorithm for project scheduling under

resource constraints. Naval Research Logistics, 49, 433-448.

Herroelen, W., Demeulemeester, E. and De Reyck, B. (1998a). A classification scheme for

project scheduling, Chapter 1 in Weglarz, J. (Ed.), Project Scheduling - Recent Models,

Algorithms and Applications. International Series in Operations Research and

Management Science, 14, 77-106, Kluwer Academic Publishers.

Herroelen, W., De Reyck, B. and Demeulemeester, E. (1998b). Resource-constrained project

scheduling: a survey of recent developments. Computers and Operations Research, 25

(4),279-302.

Icmeli, 0., Erenguc, S.5. and Zappe, CJ. (1993). Project scheduling problems: a survey.

International Journal of Operations and Productions Management, 13 (11),80-91.

Kolisch, R (1996). Serial and parallel resource-constrained project scheduling methods

revisited: theory and computation. European Journal of Operational Research, 43, 23-40.

Kolisch, R and Hartmann, S. (1999). Heuristic algorithms for solving the resource

constrained project scheduling problem: classification and computational analysis.

In: Weglarz, J. (ed.). Project Scheduling - Recent Models, Algorithms and Applications,

147-178, Kluwer Academic Publishers, Boston.

Kolisch, R and Padman, R (2001). An integrated survey of deterministic project scheduling.

Omega, 49 (3),249-272.

Kolisch, R and Sprecher, A. (1997). PSPLIB - A project scheduling library. European Journal

of Operational Research, 96, 205-216.

Li, KY. and Willis, RJ. (1992). An iterative scheduling technique for resource-constrained

project scheduling. European Journal of Operational Research, 56, 370-379.

Mingozzi, A., Maniezzo, V., Ricciardelli, S., Bianco, L. (1998). An exact algorithm for the

resource-constrained project scheduling problem based on a new mathematical

formulation. Management Science, 44, 715-729.

Nonobe, K and Ibaraki, T. (2002). Formulation and tabu search algorithm for the resource

constrained project scheduling problem (RCPSP). In: Ribeiro, CC and Hansen, P.

(Eds.). Essays and Surveys in Metaheuristics, 557-588, Kluwer Academic Publishers.

Ozdamar, L. and Ulusoy, G. (1995). A survey on the resource-constrained project

scheduling problem. lIE Transactions, 27, 574-586.

Ozdamar, L. and Ulusoy, G. (1996). A note on an iterative forward/backward scheduling

technique with reference to a procedure by Li and Willis. European Journal of

Operational Research, 89, 400-407.

20

Palpant, M. (2001). Conception d'une metaheuristique et application au probleme

d'ordonnancement de project a moyens limites. Memoire de DEA d'Informatique,

http:! jwww.lim.univ-mrs.frj-vancanjdeajdea2001jmemoires.html.

Palpant, M., Artigues, C. and Michelon, P. (2002). Solving the resource-constraint project

scheduling problem by integrating exact resolution and local search. Eight

International Workshop in Project Management and Scheduling, April 3-5, Valencia,

Spain.

Sprecher, A. (2000). Scheduling resource-constrained projects competitively at modest

resource requirements. Management Science, 46,710-723.

Taillard, E.D., Gambardella, L.M., Gendreau, M. and Potvin, J.-Y. (2001). Adaptive memory

programming: a unified view of metaheuristics. European Journal of Operational

Research, 134, 1-16.

Valls, V., Ballestin, F. and Quintanilla, S. (2001). A population-based approach to the

resource-constrained project scheduling problem. Technical Report TRlO-20D1,

Departamento de Estadistica e Investigaci6n Operativa, Universidad de Valencia.

Valls, V., Quintanilla, S. and Ballestin, F. (2003). Resource-constrained project scheduling: a

critical activity reordering heuristic. European Journal of Operational Research, 149,282-

301.

21

