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In the last few decades, several effective algorithms for solving the resource-constrained 
project scheduling problem have been proposed. However, the challenging nature of this 
problem, summarised in its strongly NP-hard status, restricts the effectiveness of exact 
optimisation to relatively small instances. In this paper, we present a new meta-heuristic 
for this problem, able to provide near-optimal heuristic solutions. The procedure 
combines elements from scatter search, a generic population-based evolutionary search 
method, and a recently introduced heuristic method for the optimisation of 
unconstrained continuous functions based on an analogy with electromagnetism theory, 
hereafter referred to as the electromagnetism meta-heuristic. We present computational 
experiments on standard benchmark datasets, compare the results with current state-of
the-art heuristics, and show that the procedure is capable of producing consistently good 
results for challenging instances of the resource-constrained project scheduling problem. 
We also demonstrate that the algorithm outperforms state-of-the-art existing heuristics. 

Keywords: project scheduling; heuristics; scatter search; electromagnetism 

1. Introduction 

We study the resource-constrained project scheduling problem (RCPSP), denoted as 

m,llcpmlCmax using the classification scheme of Herroelen et aI. (1998a). The RCPSP can be 

stated as follows. A set of activities N, numbered from 0 to n (I NI =n+l) , is to be scheduled 

without pre-emption on a set R of renewable resource types. Activity i has a deterministic 

duration dielN and requires TikelN units of resource type k, keR, which has a constant 

availability ak throughout the project horizon. We assume that Til< ::; ak, ieN, keR. The 

dummy start and end activities 0 and n have zero duration while the other activities have a 

non-zero duration; the dummies also have zero resource usage. A is the set of pairs of 
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activities between which a finish-start precedence relationship with time lag 0 exists. We 

assume graph G(N,A) to be acyclic. A schedule 5 is defined by an (n+1)-vector of start times 

s = (so, ... ,Sn) which implies an (n+1)-vector of finish times e (ej=sj+dj, ViEN). A schedule is 

said to be feasible if the precedence and resource constraints are satisfied. The objective of 

the RCPSP is to find a feasible schedule such that the schedule makespan en is minimised. 

The research on the RCPSP has widely expanded over the last few decades, and reviews can 

be found in Brucker et al. (1999), Herroelen et al. (1998b), Icmeli et al. (1993), Kolisch and 

Padman (2001) and Ozdamar and Ulusoy (1995). Numerous exact solution approaches have 

been advanced, with Brucker et al. (1998), Demeulemeester and Herroelen (1992, 1997), 

Mingozzi et al. (1998) and Sprecher (2000) perhaps the most noteworthy. However, the 

RCPSP, being a generalisation of the job shop scheduling problem, is strongly NP-hard 

(Blazewicz et al. 1983), and the computation times for exact algorithms can be excessive even 

for moderately sized instances. This has motivated numerous researchers to develop 

heuristic methods for dealing with RCPSP-instances of practical sizes. Kolisch and 

Hartmann (1999) and Hartmann and Kolisch (2000) present a classification and performance 

evaluation of different such heuristics. Additional recent sources include Alcaraz and 

Maroto (2001), Bouleimen and Lecocq (2003), Fleszar and Hindi (2004), Harbnann (1998, 

2002), Nonobe and Ibaraki (2002), Palpant (2001), Palpant et al. (2002), and Valls et al. (2001, 

2003). 

In this paper, we describe a new heuristic for the RCPSP, inspired by recent advances in the 

development of meta-heuristics. The procedure combines elements from scatter search (55), 

a population-based evolutionary search method, and a recently introduced heuristic method 

for the optimisation of unconstrained continuous functions that simulates the 

electromagnetism theory of physics, hereafter referred to as the electromagnetism (EM) 

meta-heuristic (Birbil and Fang 2003). We extend the EM heuristic for combinatorial 

optimisation problems and integrate it in a scatter search framework. In Section 2, we 

describe the main elements of the EM heuristic applied to unconstrained continuous 

optimisation. Section 3 discusses how we represent and evaluate RCPSP solutions to be 

used in a scatter search framework. In Section 4, we show how the EM methodology can be 

modified and enhanced to be used in a combinatorial optimisation setting and how it can be 

integrated with scatter search for the RCPSP. Section 5 and 6 discuss intensification and 

diversification strategies employed to enhance the effectiveness and efficiency of the 

2 



algorithm. Section 7 contains the computational results on benchmark datasets, as well as a 

comparison with other current state-of-the-art heuristics. We conclude with Section 8. 

2. The electromagnetism meta-heuristic 

Birbil and Fang (2003) propose a so-called electromagnetism (EM) optimisation heuristic for 

unconstrained global optimisation problems, i.e. the minimisation of non-linear functions. 

In a multi-dimensional solution space where each point represents a solution, a charge is 

associated with each point. This charge is related to the objective function value associated 

with the solution point. As in evolutionary search algorithms, a population, or set of 

solutions, is created, in which each solution point will exert attraction or repulsion on other 

points, the magnitude of which is proportional to the product of the charges and inversely 

proportional to the distance between the points (Coulomb's Law). The principle behind the 

algorithm is that inferior solution points will prevent a move in their direction by repelling 

other solution points in the population, and that attractive points will facilitate moves in 

their direction. This can be seen as a form of local search in Euclidian space in a population

based framework, similar to scatter search. The main difference with existing methods is 

that the moves are governed by forces that obey the rules of electromagnetism. Birbil and 

Fang (2003) provide a generic pseudo-code for the EM algorithm: 

Algorithm EM(maxiter, LSiter) 
iter :=1 
while iter<maxiter do 

local(LSiter) 
compute_forces 
apply_forces 
iter++ 

endwhile 

The function EM requires two parameters, maxiter defining the number of iterations or 

populations, and LSiter defining the number of iterations in a local search sub-procedure 

local, which is applied before a new population is created. The function local explores the 

immediate (Euclidian) neighbourhood of individual points. The total force exerted on each 

point by all other points is calculated in function computeJorces, which depends on the 

charge of the point under consideration as well as of the points exerting the force. The 

charge of each point Xi is determined by its objective function value f(Xi) in relation to the 

objection function value of the current best point xbest in the population, with better objective 
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function values resulting in higher charges. For a minimisation problem, the charge qi of 

particle Xi is determined according to equation (2.1). 

[ f(x)- f(x b"') J 
qi = exp - d 2::~1 (f(xk) _ f(xb"')) (2.1) 

The parameter m represents the population size, d is the dimension of the solution space. In 

the function compute.Jorces, a set of force vectors Fi is determined, i=l, .. . ,m, that are exerted 

on particle Xi: 

(2.2) 

The point with a relatively good objective function value attracts the other one, the point 

with the inferior objective value repels the other. The forces exerted on i by each of the other 

points are combined by means of vector summation, as shown in the example in Figure 1. In 

the example, F13 is the force exerted by Xl on X3 (repulsion: the objective function value of X3 

is better than that of Xl) and F23 is the force exerted by X2 on X3 (attraction: the objective 

function value of X3 is worse than that of X2). The total force exerted on X3 equals F3=F13+F23 . 

...... 
. ..... 

/ 
......... 

X2 J 
Figure 1. Example of exertion of forces 

The movement according to the resulting forces is performed in apply.Jorces, which 

generates a new population. Contrary to the simplified example in Figure 1, the imposed 

force is normalised, by dividing it by its norm, and therefore only identifies the direction of 

the move, not the magnitude. The magnitude of each move is determined for each 

dimension separately, and is equal to a value randomly selected from domain [0; maxmove], 

where maxmove indicates the maximum allowable move in the particular dimension. 
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Birbil and Fang (2003) use maxiter iterations, or populations, although other termination 

criteria could be applied, such as a maximum number of iterations without improving the 

current best solution. Convergence details for the heuristic are provided in Birbil et al. 

(2003). 

EM is a 'population based' or 'evolutionary' algorithm, since it operates on a population of 

solutions rather than on a single solution at a time. This makes it most closely related to 

genetic algorithms (GA, Goldberg 1989) and to scatter search (SS, Glover et al. 2003). SS, 

being a generic methodology, can be seen as a generalisation of the GA procedure (Taillard 

et al. 2001). SS is a population-based method where new solutions are constructed using 

convex or non-convex linear combinations of solutions. In our procedure, the selection and 

combination rules for SS are provided by the EM framework, which, not unlike GA, can be 

seen as a particular form of the S5 algorithm. In the following section, we will discuss how 

we have extended the EM methodology for combinatorial optimisation and the RCPSP in 

particular, and how it can be integrated in a general SS framework. 

3. Representation, schedule generation and solution evaluation 

The backbone of most improvement heuristics for solving the RCPSP, where an initial (set 

of) solution(s) is gradually improved, is a schedule representation scheme, a schedule generation 

scheme and a solution evaluation procedure. Typically, an RCPSP improvement heuristic 

does not operate directly on a schedule, but on some representation of a schedule that is 

convenient and effective for the functioning of the algorithm. After an operation on a 

solution (i.e. on a schedule represented in a particular way) has been performed, the newly 

obtained solution is transformed into a schedule using a schedule generation scheme (SGS). 

Kolisch and Hartmann (1999) distinguish between various representations for schedules in 

the development of heuristics for the RCPSP. The two most important ones are the random

key (RK) representation and the activity-list (AL) representation. In RK form, a solution 

corresponds to a point in Euclidian (n+1)-space, such that the i-th vector element functions 

as a priority value for the i-th activity. Using a serial schedule-generating scheme, these 

priority values can then be used to construct an active schedule by scheduling each activity 

one-at-a-time and as soon as possible within the precedence and resource constraints. 

Alternatively, a parallel 5GS could be used, although Kolisch (1996) has shown that, 
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contrary to the serial SGS, the parallel SGS is sometimes unable to reach an optimal solution. 

In the AL representation, a schedule is represented by a linear extension of the partial order 

induced by the precedence constraints, such that a SGS gives priority to the activity that 

comes first in the list containing a complete order on N. This is similar to list scheduling in 

machine scheduling. 

Hartmann and Kolisch (2000) report that in general, procedures that make use of the AL 

representation perform better than those based on the RK form. This claim is based solely 

on computational tests, and no underlying reasons are cited. We believe that the main 

reason for the inferior performance of the RK representation lies in the fact that one single 

schedule can have many different representations. This results in a larger solution space, 

and the issue that the structure of a solution or schedule representation does not necessarily 

contain information about the quality of the associated schedule, which sometimes prevent 

(meta-) heuristics operating on schedule representations from making improvements. The 

AL representation also suffers from this, in that a single schedule can be represented by 

different activity lists. This problem, however, occurs more frequently using the RK 

representation, for reasons we will explain below. 

The RK representation, however, has the advantage that each solution corresponds to a 

point in Euclidian (n+1)-space, so that geometric operations can be performed on its 

components. Since this is one of the cornerstones of both the SS and EM methods, we adopt 

the RK representation, allowing us to perform mathematical operations on solutions. We 

have modified the standard RK representation in order to eliminate the problem stated 

above, thereby removing its comparative disadvantage relative to the AL form. 

There are four underlying reasons why a schedule can be represented by different RK forms, 

caused by (1) scaling, (2) precedence constraints, (3) timing anomalies and (4) activities with 

identical starting times. We will discuss these problems one by one and show how these 

problems can be eliminated using a unique, standardised form of the RK representation. 

Note that problems (3) and (4) also occur for activity lists. By eliminating all four problem 

areas, our unique RK representation will perform better than both the standard RK as well 

as the standard AL forms. 
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We introduce the example project depicted in Figure 2, with a single renewable resource 

type with availability al=2. A feasible schedule for this scheduling problem, with a 

makespan equal to 18, is given in Figure 3. Assuming that lower RK values correspond to 

higher priorities, the schedule in Figure 3 can be obtained with the following RK vector: Xl= 

[0.9; 1.1; 2.6; 2.9; 2.1; 3.5; 0.7; 1.9; 3.2] (we omit the RK values for the dummy start and end 

activity). 

Figure 2. Example project 

2 

3 
2 

8 

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Figure 3. A schedule for the example project 

(1) Scaling in Euclidean space 

Scaling the priority values of any RK representation up or down results in a different 

RK representation, which, however, will always result in the same schedule. In fact, 

there exist an infinite number of RK representations with different priority values, but 

with the same priority structure. For our example, X2= [8; 13; 31; 32; 26; 52; 3; 17; 48] 

results in the same schedule. We eliminate this problem by replacing the priority values 

by their rank values. For the example, we can transform Xl or X2 into X3= [2; 3; 6; 7; 5; 9; 

1; 4; 8], which also yields the schedule in Figure 3. 
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(2) Precedence constraints 

In an RK representation, priority values are not constrained by the precedence 

constraints, in the sense that the RK of an activity can be higher than the RK of one of its 

predecessors. Essentially, this is not a problem since a SGS will take the precedence 

relations into account, but it can lead to different RK representations for a single 

schedule. In our example, we can see in X3, that activity 7 has a higher priority (a lower 

RK) than activities I, 2, 3 and 4, the predecessors of activity 7. A serial SGS would 

schedule the activities in the following order: I, 2, 8, 5, 3, 4, 6, 7 and finally 9, i.e. taking 

into account the precedence relations. Another RK representation such as X4= [1; 2; 6; 7; 

5; 9; 3; 4; 8] would result in the same schedule. To eliminate this problem, we set the RK 

values of each activities equal to their rank order in the activity list obtained using a 

serial SGS. This results in an RK representation with priority values "in line" with the 

precedence constraints. For our example, we obtain Xs= [1; 2; 5; 6; 4; 7; 8; 3; 9]. 

(3) Timing anomalies 

The previous two problems arise only with the RK representation. There are two more 

problems, associated with both the RK and AL representation. The first is caused by the 

following phenomenon. If an activity al starts earlier than another activity a2 in a 

schedule, then an AL representation of this schedule exists with al before a2. If, 

however, none of the activities starting after al and before a2 in the activity list, nor a2 

itself, could be scheduled earlier if activity al is removed from the schedule (because of 

precedence and/ or resource constraints), then there also exists an AL representation for 

the same schedule in which al right comes after a2. 

In the example schedule of Figure 3, activity 5 starts earlier than activity 8. Therefore, 

there is an AL in which activity 5 has higher priority than activity 8. Nevertheless, in 

Xs= [1; 2; 5; 6; 4; 7; 8; 3; 9], which leads to the schedule in Figure 3, the RK of activity 5, 

namely 4, is higher than the RK of activity 8, namely 3, and thus activity 5 receives 

lower priority although its starts earlier. This is due to the fact that even in the absence 

of activity 5, activity 8 cannot be scheduled earlier due to activity 1 and 2 requiring a 

Significant amount of the resource in periods 1 through 6. Activity 5, consuming less 

resource and taking less time, can be inserted into the schedule at time 0 both before 

and after activity 8 is included. In other words, there are at least two priority vectors 

leading to the same schedule. 
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To deal with this problem, we propose to use a topological-order (TO) representation of 

schedules (Valls et al. 1999, 2003): for a schedule 5, a TO representation of 5 is any 

vector x containing the numbers from 0 to n+1 and for which Si(S) <Sj(S) implies Xi<Xj. 

Adhering to the TO representation eliminates the problem discussed above. For the 

example schedule in Figure 3, activity 5 receives the second highest priority in the TO 

representation. Consequently, Xs is replaced by X6 = [1; 3; 5; 6; 2; 7; 8; 4; 9]. 

(4) Activities with the same starting times 

Even with the TO representation, there can still be multiple representations of a single 

schedule. If two activities al and a2 start at the same time, the position of al and a2 in an 

AL can be interchanged without affecting the associated schedule. To prevent this, we 

take the average of the rankings in the AL of activities starting at the same time, which 

will be the same for all the activities under consideration. By doing so for the example 

schedule, we end up with X7 = [1.5; 3; 4.5; 6; 1.5; 7; 8; 4.5; 9], a unique standardised 

random key (SRI<) representation for the schedule. 

Using the SRI< schedule representation, each population member is uniquely associated 

with a schedule. The EM algorithm, however, transforms the priority vectors by moving 

them in Euclidian space according to the (electromagnetic) forces exerted on them. These 

new priority vectors may again suffer from any of the four problems mentioned above. 

Therefore, we re-write each new priority vector in SRK-form, while at the same time 

evaluating the associated objective function value, as follows. When a priority vector x E 

]Rn+l is transformed into a vector y, we compute a schedule S=o(y), using a SGS 0; with 

associated objective function value equal to the makespan en(o(Y)). We then replace x by 

SRI< priority vector n(o(y)), where 7l"transforms the schedule to SRI<-standardised priorities, 

based on the activity starting times in o(x). 

4. Modifying the EM algorithm for the RCPSP 

In the basic EM algorithm, all points in a population exert a force on all other points. We 

generalise this concept by allowing a variable number b of points to act on any given point, 

with bE [1;m-1], where m is the population size. The selected set of points is referred to as B. 

Furthermore, we generalise the basic EM algorithm as follows. When determining the force 

exerted on point i by pointj, we do not use fixed charge qi and qj to compute the attraction or 

repulsion force, but rather a charge qji that depends on the relative difference in objective 
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function value between i and j. So, contrary to the basic EM algorithm, point charges are not 

computed independently but based on the point they exert force on: 
_ f(x,) - f(x j ) 

q)l- f(x wors, )_ f(Xb"') (4.1) 

with x worst and xbest the worst and best solutions in the current generation. As a result, 

qj;E[-1;1] and 'better' points j have higher scores on qji. More specifically, if f(x;»f(Xj), i.e. 

when point i has higher makespan than particle j, qji is positive and particle j attracts particle 

i. The opposite is true when f(x;)<f(Xj) and repulsion occurs. No action results when 

f(x;)=f(Xj). In our implementation, forces are computed as follows: 

with 

B ( c, q. + c2S.. J Pi = I(Xj -Xi) II II 

j=l D(x"x j )+C2 
I" 

ifqji >0 

ifqji =0 

ifqji <0 

(4.2) 

(4.3) 

C1 and C2 are parameters that allow to calibrate the importance of the distance measure 

D(Xi,Xj), which is the sum of the absolute values of the component-wise difference between Xi 

andxj. 

Based on the calculated forces and resulting attraction and repulsion, points are 

transformed, i.e. moved in Euclidian space, resulting in a new population. In the basic EM 

algorithm, forces are exerted in each dimension. For the RCPSP, this corresponds to a 

change in the priority of each activity. We generalise this concept by allowing forces to act 

only in a particular subset of the dimensions or activities. We randomly select pminE[1;n-1] 

and pmaxE[2;n], with pmin :s; pmax, and update only the RK values between pmin and pmax 

(inclusive) according to the forces exerted in these dimensions. Note that due to the SRK 

representation, the thus updated activities all start within a particular time interval. The 

other RK components are not left unchanged, but are updated as follows. We subtract the 

constant value n from all RK values lower than Pmirv and add this same constant to all values 

higher than pmax. Doing this preserves the priority structure of the activities unaffected by 

the forces, and the relative priorities of the three resulting subsets of activities. The resulting 

RK vector is not in SRK form but can be transformed in SRK format. 

We again consider the example project presented in Section 3, SRK-vector X7 = [1.5; 3; 4.5; 6; 

1.5; 7; 8; 4.5; 9], pm;n= 3 and pmax=6. In Table 1, the components of X7 in interval [pmm; pmax] are 
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underlined, and the force F imposed on X7 is given. The vector added to X7 is referred to as 

F', and x7+F'=x;. 

Activities 1 2 3 4 5 6 7 8 9 

X7 1.5 1 4.5 Q 1.5 7 8 4.5 9 

F 0.6 2.2 0.4 -0.9 0 -2.2 1.2 1.9 0.5 

F' -10 2.2 0.4 -0.9 -10 10 10 1.9 10 

x' 7 -8.5 5.2 4.9 5.1 -8.5 17 18 6.4 19 

Table 1. lllustration of the execution of a move according to a force 

5. Intensification using local search 

The makespan en( o(x» associated with a solution x is obtained using a serial SGS a: In order 

to improve the intensification characteristics of the algorithm, we use an enhanced 

generation scheme if that iteratively looks for improvements in the priority vector using 

forward and backward global shifts of individual activities. The scheme d" guarantees that 

en( d"(x» ~ en( a(x» so that we can replace x by solution n( if(x». Our method is based on the 

basic principles described by Ii and Willis (1992) and Ozdamar and Ulusoy (1996). 

First we apply (j on x, yielding an active, i.e. left-justified schedule. Next, we iteratively 

perform backward and forward passes. The priorities used in these passes are based on the 

RK-vector consisting of the ending times (backward) and starting times (forward) in the 

schedule, which results in a right-justified and left-justified schedule, respectively. It is 

guaranteed that the schedule makespan of each intermediate schedule is never higher than 

the makespan of the previous one. In effect, rather than completely rescheduling, we exploit 

opportunities for global right and left shifts of individual activities in order to reduce the 

makespan. 
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Figure 4. Stepwise improvement of the makespan 

A computational example will illustrate our approach: consider the project of Figure 2 and 

RK-vector Xl = [0.9; 1.1; 2.6; 2.9; 2.1; 3.5; 0.7; 1.9; 3.2]. a(XI) was depicted Figure 3, which is 

repeated at the top of Figure 4. The schedule has a makespan of 18 time units. We now try 

to reduce the makespan by scheduling each activity as much as possible to the right, in 

decreasing order of activity end times, without affecting the project makespan. Activity 9 

and 7 cannot be scheduled later. Activity 6 can be right shifted to start at time 15. Activity 4 

can be shifted two time units and start at time 10. Since the global right shift of activity 6 has 

made some additional resources available, activity 8 can be shifted three time units to start 

at time instant 9. Activities 3, 2 and 1 can shift two time units. Finally, activity 5 is shifted to 

time 14. In this way, we obtain a schedule with a makespan of 16 units. Further 

improvements of the schedule are possible by shifting activities as much as possible to the 

left. This reduces the makespan by one further time unit, as illustrated in Figure 4. This 

procedure is continued until no further improvements can be found. 

As in the original EM algorithm, we can use a function local to improve population members 

in the foregoing manner. Contrary to the original algorithm, however, we perform this 
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search immediately after new members are added to the population as a result of the 

function applyJorces, rather than at the start of each iteration. 

6. Diversification using mutation 

In order to prevent the population from becoming overly homogeneous, we introduce a 

means of diversification using mutation, by swapping the RK values of two randomly 

chosen activities that are not precedence related. This mutation is imposed right after a force 

is executed, and only afterwards, makespan evaluation takes place. Additionally, we 

replace the population by new points when the makespans of the schedules in the 

population are identical. The initial population is also generated randomly to ensure a 

diversified starting solution. 

7. Computational experiments 

We have coded the procedure in Visual C++ 6.0 and performed computational tests on an 

Acer Travelmate 634LC with a Pentium IV 1.8 GHz processor using two different testsets. 

The first set is composed of instances generated by RanGen (Demeulemeester et al. 2003) and 

is used to study the impact of the different parameters on the performance of the algorithm. 

The second testset is the well-known PSPLIB testset (Kolisch and Sprecher 1997), used to 

report computational results of our procedure and to compare with other state-of-the-art 

results. 

7.1. Impact of the parameters 

To test the impact of the different parameters on the effectiveness and efficiency of the 

procedure, we have constructed a dataset containing 480 instances using RanGen 

(Demeulemeester et al. 2003). Each instance contains 75 activities and has been generated 

with the following settings. The order-strength is set at 0.25, 0.50 or 0.75, resource usage at I, 

2,3 or 4 and the resource-constrainedness at 0.2, 0.4, 0.6 or 0.8. Using 10 instances for each 

problem class, we obtain a problem set with 480 network instances. 

This approach is similar to the way Valls et al. (2001, 2003) derive their computational 

results. The authors optimise the values of the different parameters based on a subset of the 

J120 instances, and then test the effectiveness of the algorithm on the complete testset. 

Although the results would be improved by optimising the parameter values for the 
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complete testset, the approach by Valls et al. (2001,2003) is more suitable since the results do 

not rely on customising the parameters for that particular set. We opt for a similar 

approach, but take it one step further by not optimising the parameter values on the testset 

at all, not even on a subset, but on a completely different testset as described in this section. 

Table 2 illustrates the influence of the size of the population m and the parameter b, i.e. the 

number of points exerting a force on any given point, on the performance of the algorithm. 

The column "Sum" contains the sum of the 480 project makespans, and the column 'Avg. 

Dev.' contains the average deviation from the critical path based lower-bound. The table 

reveals that the algorithm performs best with a population size of 8 and b equal to 1, 

although the algorithm seems very robust with respect to these parameter values. Similarly, 

optimal values for parameters C1 and C2 were found to be 15 and 10. 

m=6 m=8 m=10 

Sum Avg. Dev. Sum Avg.Dev. Sum Avg. Dev. 

b=1 91,153 276% 91,149 276% 91,153 276% 

b=2 91,157 276% 91,230 277% 91,261 277% 

b= m-1 91,407 278% 91,488 278% 91,513 278% 

Table 2. Impact of parameters m and b 

7.2. Comparative results with best known solutions 

In order to compare with the best results from literature, we use the well-known J30, J60, J90 

and J120 instances of the PSPLIB testset (Kolisch and Sprecher 1997). Table 3 shows the 

results. The row labelled "Sum" contains the sum of the makespans of all problem 

instances. The row labelled "A vg. Dev. CPM" reports the average deviation from the 

critical path based lower-bound. Since all J30 problem instances have been solved to 

optimality by branch-and-bound procedures from the literature, we do not report the 

deviation for this problem set. The row labelled "Avg. Dev. Best" displays the average 

percentage deviation from the current best solution in PSPLIB as reported on September 12, 

2003. For the J30 set these solutions are all optimal. The fourth row, labelled "Best" shows 

the number of instances for which our heuristic algorithm reports a makespan equal to the 

current best solution. The last rows, labelled "Avg. CPU" and "Max. CPU", indicate the 
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average and maximal computation time to solve a problem instance. Each cell of the table 

displays the results for a run with maximum 1,000, 5,000,50,000 and 500,000 schedules. 

Problem Set J30 J60 J90 J120 
28,386 38,860 46,448 77,315 

Sum 28,339 38,632 46,166 76,087 
28,324 38,479 45,959 75,122 
28,319 38,416 45,859 74,757 

- 12.01% 11.61% 36.22% 
Avg. Dev. CPM 11.35% 10.93% 34.07% 

10.90% 10.43% 32.37% 
10.70% 10.18% 31.72% 

0.20% 1.09% 1.32% 3.89% 
Avg. Dev. Best 0.06% 0.62% 0.84% 2.54% 

0.02% 0.32% 0.50% 1.49% 
0.008% 0.18% 0.33% 1.08% 

437 (480) 359 (480) 362 (480) 194 (600) 
Best 462 (480) 376 (480) 370 (480) 215 (600) 

473 (480) 381 (480) 381 (480) 247 (600) 
477J480) 424(480) 391 (480) 279 (600) 

0.02 0.06 0.14 0.21 
Avg.CPU 0.11 0.30 0.61 1.01 
(seconds) 1.10 3.02 6.08 10.18 

10.96 30.17 60.95 102.82 
0.05 0.12 0.34 0.37 

Max. CPU 0.17 0.48 1.01 1.72 
(seconds) 1.57 4.56 10.11 15.29 

14.60 46.78 100.36 155.04 

Table 3. Computational results 

The results indicate that the algorithm is capable of providing near-optimal solutions for set 

J30 within very small computation times, and competitive solutions for the other problems 

sets, all with limited computational effort. Also, the results show only a moderate increase 

in required computational effort when the problem size increases, which is an encouraging 

result since this allows the solution of very large scale instances. 

7.3. Comparative results with 5,000 schedule limit 

In the following tables we report a comparison with the best heuristic procedures as 

reported in the literature. In order to have a fair base of comparison, we only compare the 

results with a limit of 5,000 schedules, and omit procedures that do not report such results 

(these will be discussed later). To measure the effectiveness of the algorithms, we report the 

average deviation of the heuristic solutions from the critical path, except for J30, where we 

report the average deviation from the optimal solution. We also provide a rank order of 
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effectiveness for each problem set in column uRn. Empty cells denote that, to the best of our 

knowledge, no results have been reported in literature. Table 4 reveals that our new 

algorithm performs consistently well over all problem sets, and outperforms the current 

best-performing procedure in each class. 

Problem Set J30 J60 J90 J120 

Author Dev. (%) R Dev. (%) R Dev. (%) R Dev. (%) R 

Hartmann (1998) 0.25 5 11.89 4 - - 36.74 5 

Hartmann (2002) 0.22 3 11.70 2 - - 35.39 2 

Nonobe and Ibaraki (2002) - - - - - - 35.86 3 

Alcaraz and Maroto (2001) 0.12 2 11.86 3 - - 36.57 4 

Bouleimen and Lecocq (2003) 0.23 4 11.90 5 - - 37.68 6 

Our procedure 0.06 1 11.35 1 10.93 1 34.07 1 

Table 4. Comparative computational results with limit on number of schedules 

7.4. Comparative results with extended time limit 

In this section we provide a comparison with other state-of-the-art heuristics for which 

computational results with a limited number of schedules are not available. These include 

Valls et al. (2001), Valls et al. (2003) and Fleszar and Hindi (2004). We also compare with 

results obtained by the algorithm of Nonobe and Ibaraki (2002) without a limit on the 

number of schedules (Valls 2003). Because the results for the different algorithms have been 

obtained using different computers, a direct comparison is not possible. Rather, we will 

show that our algorithm is able to outperform these heuristics with a specific limit on the 

number of schedules generated. As measures of algorithmic effectiveness and efficiency, we 

report the sum of the project makespans, the average deviations from the critical path 

(except for J30, where we report the average deviation from the optimal solution) and 

average and maximum CPU times, where available. 

Nonobe and Ibaraki (2002) developed a tabu search algorithm for RCPSP, for which new 

computational results are reported by Valls et al. (2003). These results, given in Table 5, 

show that we are able to outperform their results using only 5,000 schedules, except for J30, 

where we need slightly more. We therefore outperform their results with far less required 
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computation time, even if we take into account the difference in computers (Sun Ultra 2 

running at 300 MHz versus 1.8 GHz PC). 

Problem Set J30 J60 

Sum Dev. Avg. Max. Sum Dev. Avg. Max. 

Author (%) CPU CPU (%) CPU CPU 

Nonobe & lbaraki 28,337 0.06 9.07 - 38,697 11.55 26.49 -

Fleszar & Hindi - - 0.64 5.86 - 10.94 8.89 80.70 

VaIls et aI. (2003) 28,335 0.06 1.61 6.15 38,671 11.45 2.76 14.61 

Vails et aI. (2001) 28,361 0.13 0.38 1.54 38,512 10.98 1.14 7.03 

Our (5,000) 28,339 0.06 0.11 0.17 38,632 11.35 0.30 0.48 

Our (50,000) 28,324 0.02 1.10 1.57 38,479 10.90 3.02 4.56 

Our (500,000) 28,319 0.008 10.96 14.60 38,416 10.70 30.17 46.78 

Problem Set J90 J120 

Sum Dev. Avg. Max. Sum Dev. Avg. Max. 

Author (%) CPU CPU (%) CPU CPU 

Nonobe & lbaraki 46,294 11.25 181.41 - 76,600 34.99 645.33 -

Fleszar & Hindi - - 32.43 247.91 - 33.10 219.86 1,126.97 

Valls et al. (2003) 46,247 11.12 4.63 25.49 76,356 34.53 17.00 43.94 

VaIls et aI. (2001) 45,967 10.44 2.53 17.57 75,009 32.18 14.52 60.80 

Our (5,000) 46,166 10.93 0.61 1.01 76,087 34.07 1.01 1.72 

Our (50,000) 45,959 10.43 6.08 10.11 75,122 32.37 10.18 15.29 

Our (500,000) 45,859 10.18 60.95 100.36 74,757 31.72 102.82 155.04 

Table 5. Comparative computational results 

Recently, Fleszar and Hindi (2004) have developed a heuristic for the RCPSP based on 

variable neighbourhood search. They report good computational results, but requiring 

substantial computational effort For sets J60 and J120, Fleszar and Hindi (2004) report 

average deviations from the critical-path lower bound of 10.94% and 33.10%. Our algorithm 

is capable of producing deviations of only 10.70% and 31.72% with 500,000 schedules, and 

10.90% and 32.37% with 50,000 schedules, respectively. This indicates that we are 

outperforming their results, even with a maximum of 50,000 schedules, whereas Fleszar and 

Hindi (2004) do not set a limit on the number of schedules, which runs to a maximum of 

more than 1 million for J60 and more than 10 million for J120. They also report high 
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computation times up to a maximum of 1,127 seconds (1 GHz processor), compared to 

slightly more than 15 seconds for our procedure (with 50,000 schedules on a 1.8 GHz 

processor). Based on these results, our results clearly outperform those of Fleszar and Hindi 

(2004). 

Valls et al. (2003) present a heuristic based on critical activity re-ordering. Although their 

results for the J30 set are good, and require a 50,000 schedule-limit for our procedure to be 

able to outperform it, the results are rather disappointing for sets J60, J90 and J120, where 

our algorithm can produce better results with only 5,000 schedules. The CPU time required 

by Valls et al. (2003) is limited, but even considering the different processor speeds (400 

MHz versus 1.8 GHz), our procedure requires even less time. This is especially clear for set 

J120, where Valls et al. (2003) require 17 times the CPU time we need to outperform them. 

Valls et al. (2001) report excellent results, especially for sets J60, J90 and J120, as shown in 

Table 6. In their paper, Valls et al. (2001) show that their results outperform all other state

of-the-art heuristics, although their procedure is not subjected to a schedule limit, whereas 

the other procedures are. The authors show, however, that even with extended time limits, 

the other heuristics are not able to outperform their results. Using our new procedure, we 

are able to outperform these results, using 5,000 schedules for J30; 50,000 schedules for J60 

and J90; and 500,000 schedules for J120. Note, however, that in order to outperform the 

results of Valls et al. (2001), our procedure requires more CPU time if we take into account 

the difference in processor speed (400 MHz versus 1.8 GHz). 

8. Conclusions 

In this paper, we have presented a new heuristic procedure for solving the resource

constrained project scheduling problem (RCPSP), one of the most challenging combinatorial 

optimisation problems in scheduling. The procedure is a population-based evolutionary 

method, and combines elements from scatter search and a novel method originally 

introduced for optimising unconstrained continuous functions based on an analogy with 

electromagnetism theory. We have shown how this electromagnetism heuristic can be 

extended for application to combinatorial optimisation problems and the RCPSP, and how it 

can be integrated into a scatter search framework. The procedure is equipped with 

intensification and diversification methods to improve its effectiveness. The computational 

results show that the procedure outperforms other state-of-the-art heuristics in the literature, 
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and that it is competitive with the procedure of Valls et al. (2001), which is probably the 

most effective heuristic presented in the literature to date. 
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