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Abstract. Various benchmarking studies have shown that artificial neu-
ral networks and support vector machines have a superior performance
when compared to more traditional machine learning techniques. The
main resistance against these newer techniques is based on their lack of
interpretability: it is difficult for the human analyst to understand the
motivation behind these models’ decisions. Various rule extraction tech-
niques have been proposed to overcome this opacity restriction. However,
most of these extraction techniques are devised for classification and only
few algorithms can deal with regression problems.

In this paper, we present ITER, a new algorithm for pedagogical re-
gression rule extraction. Based on a trained ‘black box’ model, ITER
is able to extract human-understandable regression rules. Experiments
show that the extracted model performs well in comparison with CART
regression trees and various other techniques.

1 Introduction

While newer machine learning techniques, like artificial neural networks and sup-
port vector machines, have shown superior performance in various benchmarking
studies [1,10] the application of these techniques remains largely restricted to re-
search environments. A more widespread adoption of these techniques is foiled
by their lack of explanation capability which is required in some application ar-
eas, like medical diagnosis or credit scoring. To overcome this restriction, various
algorithms [2,4,5,6,8] have been proposed to extract meaningful rules from such
trained ‘black box’ models. These algorithms’ dual goal is to mimic the behavior
of the black box as closely as possible with a minimal amount of rules. The main
part of these extraction algorithms focus on classification problems, with only a
few exceptions devised especially for regression.

In this paper, we present ITER, a new algorithm for pedagogical regression
rule extraction. Based on a trained ‘black box’ model ITER is able to extract
human-understandable regression rules. The algorithm works by iteratively ex-
panding a number of hypercubes until the entire input space is covered.

In the next section, a small overview of related research is given. While al-
gorithms for classification rule extraction are more widespread, we will cover
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some techniques that are able to extract regression rules either directly from
the data points or from an underlying ‘black box’ regressor. In the third sec-
tion, the inner workings of the ITER algorithm are explained in great detail
and the performance of this algorithm is compared with other machine learning
techniques.

2 Related Research

Regression trees [3,7] are usually constructed directly from the available training
observations and are therefore not considered to be rule extraction techniques
in the strict sense of the word. A CART regression tree [3] is a binary tree with
conditions specified next to each non-leaf node. Classifying a new observation is
done by following the path from the root towards a leaf node, choosing the left
node when the condition is satisfied and the right node otherwise, and assigning
the observation the value below the leaf node. This value below the leaf nodes
equals the average y-value of training observations falling into this leaf node.

The regression tree is constructed by iteratively splitting nodes, starting from
only the root node, so as to minimize an impurity measure. Often, the impurity
measure of a node t is calculated as:

R(t) =
1
N

∑

xn∈t

(yn − y(t))2 (1)

with (xn, yn) the training observations and y(t) the average y-value for observa-
tions falling into node t. The best split for a leaf-node of the tree is chosen such
that it minimizes the impurity of the newly created nodes. Mathematically, the
best split s* of a node t is that split s which maximizes:

ΔR(s, t) = R(t) − pLR(tL) − pRR(tR) (2)

with tL and tR the newly created nodes. Construction of the tree is terminated
when certain stopping criteria are met. Pruning of the nodes is performed after-
wards to improve generalization behavior of the constructed tree.

Although most regression tree algorithms can be applied directly on the train-
ing data, it is also possible to apply these techniques for pedagogical rule extrac-
tion. Instead of using the original targets, the target values are provided by a
trained black box model and the regression tree is constructed on these new data
points. In our empirical experiments, we will use CART with both approaches.

3 ITER

3.1 Description

The pedagogical ITER-algorithm1 can be used to build predictive regression
rules from a trained regression model (e.g., a neural network or support vector
1 Iter=latin for ‘journey’.
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machine). With minor adaptations it is suitable for classification problems as
well. The main idea of the algorithm is to iteratively expand a number of (hy-
per)cubes until they cover the entire input space. Each of these cubes can then
be converted into a rule of the following format:

if Var 1 ∈ [ValueLow
1 ,ValueHigh

1 ] and Var 2 ∈ [ValueLow
2 ,ValueHigh

2 ]

. . . and Var M ∈ [ValueLow
M ,ValueHigh

M ] then predict some Constant

with M the dimension of the input space. The algorithm starts with the creation
of a user-defined number of random starting cubes. These cubes are infinitesi-
mally small and therefore correspond to points in the input space. Afterwards,
these initial cubes are gradually expanded until they cover the entire input space
or until they can no longer be expanded. During each update the following steps
are executed:

1. For each hypercube i=1,. . . ,N and for each dimension j=1,. . . ,M calculate
how far the cube can be expanded to both extremes of the dimension be-
fore it intersects with another cube, call these distances LowerLimitji and
UpperLimitji .

2. For each hypercube i=1,. . . ,N and for each dimension j=1,. . . ,M calculate
the size of the update. The update equals MinUpdatej , a user-specified con-
stant, unless this size would result in overlapping cubes. If this is the case
then the update is smaller such that the two blocks become adjacent.
Mathematically: LowerUpdatej

i= minimum{LowerLimitji , MinUpdatej}
and UpperUpdatej

i = minimum{UpperLimitji , MinUpdatej}
3. For each hypercube i=1,. . . ,N and for each dimension j=1,. . . ,M create two

temporary cubes adjacent to the original cube along the opposite sides of
dimension j with a width of respectively LowerUpdatej

i and UpperUpdatej
i .

For each of both cubes, create a number of random points lying within
the cube and calculate the mean prediction for these points according to
the trained continuous regression model. Call the difference between each
of both means and the mean prediction for the original cube respectively
LowerDiff j

i and UpperDiff j
i .

4. Find the global minimum over all cubes of these differences and combine the
temporary cube for which the difference was minimal with its original cube.
Update the mean prediction for this cube and remove all other temporary
cubes.

A small example will help to clarify the above procedure. In Figure 1, a two-
dimensional input space (M=2) is shown with two cubes (N=2). We have chosen
MinUpdate1 equal to MinUpdate2, a small positive constant. The numbers
within the cubes are the mean predictions of the continuous black box model for
points lying within that cube.

For both cubes we create four new cubes that surround the original cube.
In Figure 1, these cubes are dark-shaded. The height of the cubes on the top
and bottom (expanding along Y-dimension) equals MinUpdate2. Similarly, the
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Fig. 1. Example for Iter-algorithm

width of the cubes on the left and right equals MinUpdate1. However, if the
first cube is expanded MinUpdate1 units to the right, it would overlap with
the second cube. Therefore the update to the right is smaller so that the two
blocks become adjacent and non-overlapping. The same situation occurs with
the update of the second block to the left (striped regions in Figure 1). For
each of the dark shaded cubes, a number of random observations lying within
that cube are generated and the predictions of the original ‘black box’ model
for these data points are averaged. Finally, we select the shaded cube for which
the difference between this average and the average prediction for the original
cube is minimal. In the example, this is the shaded cube most to the right with
a difference of 0.1. This cube is then combined with its original cube and the
mean prediction for this cube is updated. The above steps are iterated until no
further updates are possible.

3.2 Discussion

Size of Input Space. Before the first iteration of the algorithm, ITER calcu-
lates the size of the surrounding hypercube, i.e. the cube that surrounds all of
the training observations. When calculating the allowed update size, ITER takes
this surrounding cube into consideration and never creates cubes that lie out-
side the surrounding cube. The surrounding cube is also used to retrieve default
values for the MinUpdatej ’s. Unless the user specifies otherwise, the defaults
equal a twentieth of the size of each dimension. For example, if the values of
the training observations for some dimension lie within the interval [0,1] then
MinUpdate=0.05.

Non-exhaustivity
While ITER creates rules that are non-overlapping, it is not always able to cover
the entire input space. With other words, the rules created by ITER are exclusive
but not necessarily exhaustive. In Figure 4(f), a small example of this situation
is given. None of the four cubes can expand towards the middle because each
cube is blocked by another cube. The shaded area will therefore not be covered
by any rule. To ensure exhaustivity, we have to add a number of cubes that cover
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the remaining gaps. Fortunately, from initial experiments we have observed that
generally the number of cubes to add remains relatively small.

New Cube Creation
By specifying the number of starting cubes, the user automatically indicates the
desired number of rules because ITER will never create extra cubes during exe-
cution. Only to make the resulting rule set exhaustive, the algorithm is allowed
to construct additional cubes. There are several disadvantages, such as a strong
dependence of the results on the number and location of the starting cubes, that
make it worthwhile to give the algorithm the opportunity to create a new cube
when the current update is deemed not ‘good’ enough. In this definition, we con-
sider an update to be ‘good’ when the global minimum of step 4 is smaller than
a user-specified threshold. We will therefore modify step 4 of the algorithm to:

New Step 4
Find the global minimum over all cubes of these differences.
– If this global minimum is smaller than the threshold then combine the tempo-

rary cube for which the difference was minimal with its original cube. Update
the mean prediction for this cube and remove all other temporary cubes.

– If this global minimum is larger than the threshold then create a new cube
on the position of the temporary cube for which the difference was the global
minimum. The size of each side of the hypercube equals MinimumUpdatej

(smaller if this results in overlapping cubes)

BLOCK 1
(5.1)

5.2

5.3

5.5

MinUpdate 1

MinUpdate 25.9

Fig. 2. New Cube Creation

By setting the threshold to a very large value, all updates will be considered
good and the results of the updated step 4 will be similar to the original. In
Figure 2, the creation of a new cube is shown. When the threshold is smaller
than 0.1, a new cube will be created at the right hand side of the original cube.
The size of each dimension of this new cube equals MinUpdatej .

4 Empirical Results

In this section, ITER is applied to several artificial datasets with 2 continuous
inputs from the interval [0,1]. Each of the datasets consists of 1000 observations,
500 for training and 500 for testing, and implements the following rules:
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Table 1. Datasets

ARTI1 ARTI2
if x ≤ 0.5 and y ≤ 0.5 then z=0.7 + α RAND if x ≤ 0.5 and y ≤ 0.5 then z=0 + α RAND
if x ≤ 0.5 and y > 0.5 then z=0.4 + α RAND if x ≤ 0.5 and y > 0.5 then z=1 + α RAND
if x > 0.5 and y ≤ 0.5 then z=0.3 + α RAND if x > 0.5 and y ≤ 0.5 then z=1 + α RAND
if x > 0.5 and y > 0.5 then z=0.0 + α RAND if x > 0.5 and y > 0.5 then z=0 + α RAND

ARTI3 ARTI4
z= x + y + α RAND z= 1 − (x − 0.5)2 − (y − 0.5)2 + α RAND
a linear function a parabole

with RAND a uniform random number in the interval [-1,1] and α a parameter
to control the amount of randomness in the data. Although ARTI1 and ARTI2
may seem very similar, the symmetry in ARTI2 will cause considerable problems
for a greedy algorithm like CART.

Several models are evaluated for each of these datasets and the influence of
noise is tested by applying different values for α. The different models are Lin-
ear Regression (LR), K-Nearest Neighbor (KNN), Least-Squares Support Vec-
tor Machines (LS-SVM) [9] and CART. For the LS-SVMs we use a RBF-kernel
with regularization and kernel parameters selected by a gridsearch procedure as
described in [9]. CART trees were applied both directly on the data and as a
pedagogical algorithm. For the pedagogical approach, we replace the original tar-
gets with values provided by the best performing ‘black box’, usually a LS-SVM
model. Subsequent pruning of the tree is performed by minimizing the 10-fold
cross-validation error on the training data to improve generalization behavior of
the tree.

For a comparison of ITER with the other models, we initialize the algorithm
with one random start cube and the default update sizes. For the selection of
an appropriate threshold value, a simple trial-and-error approach was followed.
For different values of the threshold we plot the average number of extracted
rules and the performance on the training data over 100 independent trials. In
Figure 3, we show this plot for ARTI 1 with α set to 0. It can be observed that
small values for the threshold result in better performance but that it comes at
the cost of an increased number of rules. A threshold somewhere between 0.1 and
0.25 might be preferred as it provides both interpretability and accuracy. Notice
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Fig. 4. Original LS-SVM Model (a) and extracted rules (b) for ARTI1 (α = 0)

that the choice for a small threshold will result in rules that better approximate
the underlying ‘black box’ model but that it will not lead to overfitting as long
as the underlying model generalizes well. In Figure 4, execution of the algorithm
is shown for ARTI1 with the threshold set to 0.2.

In Table 2, an overview of the results is given. For each of the models, we
calculate the Mean Absolute Error (MAE) and R2 value as follows:

MAE =
1
N

N∑

i=1

| yi − ŷi | (3)
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R2 = 1 −
∑N

i=1 (yi − ŷi)2∑N
i=1 (yi − ȳ)2

(4)

with N the number of observations, yi and ŷi respectively the target value and
model prediction for observation i and ȳ the mean target value. For the rule
extraction techniques, MAE Fidelity and R2 Fidelity show to what extent the
extracted rules mimic the behavior of the underlying model. The same formu-
las (3) and (4) were used to calculate these measures, but with yi and ŷi rep-
resenting the model prediction of respectively the ‘black box’ model and the
extracted rules.

From Table 2, one can conclude that ITER is able to mimic accurately the
behavior of the underlying models with only a limited amount of rules. For
several of the experiments, ITER even achieves the same level of performance

Table 2. Overview of Out-of-Sample Performance

MAE R2 # Rules MAE Fidel. R2 Fidel. MAE R2 # Rules MAE Fidel. R2 Fidel.

ARTI1 (α=0) ARTI1 (α=0.5)

LR 0.11 74.79 0.27 32.61
KNN(k=5) 0.02 93.10 0.27 27.90
LS-SVM 0.03 94.93 0.27 35.28
CARTdirect 0.00 99.52 4 0.26 37.99 4
CARTLS−SV M 0.01 97.41 12.95 0.02 97.80 0.26 36.26 51.31 0.03 97.47
ITERthreshold=0.05

LS−SV M
0.02 94.93 36.25 0.02 98.61 0.26 35.73 73.33 0.03 97.45

ITERthreshold=0.1
LS−SV M

0.02 95.12 12.94 0.02 97.75 0.26 35.74 16.40 0.05 91.19
ITERthreshold=0.2

LS−SV M
0.03 90.73 4.50 0.04 93.54 0.27 32.30 4.98 0.08 79.90

ARTI2 (α=0) ARTI2 (α=0.5)

LR 0.50 -0.65 0.48 -0.45
KNN(k=5) 0.05 92.18 0.30 59.15
LS-SVM 0.01 95.20 0.29 61.75
CARTdirect 0.00 98.40 11.96 0.27 68.15 11.01
CARTLS−SV M 0.01 97.11 11.35 0.01 96.15 0.28 65.38 41.20 0.07 96.27
ITERthreshold=0.1

LS−SV M
0.04 92.85 31.55 0.03 93.51 0.29 62.13 82.59 0.07 96.36

ITERthreshold=0.15
LS−SV M

0.04 92.94 26.72 0.03 93.43 0.29 63.48 35.64 0.08 94.31
ITERthreshold=0.20

LS−SV M
0.04 92.79 21.20 0.04 93.31 0.29 63.03 18.88 0.10 91.56

ARTI3 (α=0) ARTI3 (α=0.5)
LR 0.02 99.50 0.26 63.81
KNN(k=5) 0.03 99.17 0.28 56.74
LS-SVM 0.03 99.49 0.26 63.75
CARTdirect 0.05 97.48 86.41 0.28 55.65 15.11
CARTLS−SV M 0.06 97.09 74.88 0.05 97.75 0.26 63.68 77.10 0.04 98.19
ITERthreshold=0.05

LS−SV M
0.04 98.63 190.25 0.03 99.16 0.26 63.18 162.31 0.03 99.08

ITERthreshold=0.10
LS−SV M

0.07 96.08 51.90 0.06 96.61 0.27 61.54 44.58 0.06 96.35
ITERthreshold=0.15

LS−SV M
0.09 92.24 25.00 0.09 92.76 0.27 58.51 22.33 0.09 92.27

ITERthreshold=0.2
LS−SV M

0.12 87.02 15.34 0.12 87.53 0.28 54.98 13.39 0.11 87.11

ARTI4 (α=0) ARTI4 (α=0.25)
LR 0.08 -0.39 0.14 0.52
KNN(k=5) 0.01 98.22 0.14 17.76
LS-SVM 0.00 100.00 0.13 26.70
CARTdirect 0.02 94.27 92.08 0.14 17.56 14.48
CARTLS−SV M 0.02 93.49 59.15 0.02 93.50 0.13 24.35 65.09 0.02 94.59
ITERthreshold=0.04

LS−SV M
0.02 92.58 68.60 0.02 92.59 0.13 24.57 75.02 0.02 93.68

ITERthreshold=0.05
LS−SV M

0.03 88.71 44.82 0.03 88.71 0.13 23.22 49.00 0.03 90.24
ITERthreshold=0.1

LS−SV M
0.05 63.32 10.99 0.05 63.33 0.14 17.72 11.97 0.05 67.32
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as the underlying black box models. However, one can also observe that ITER
has difficulties with finding the exact boundaries when the update size is chosen
too large. For example, in Figure 4(f) ITER makes the first cube too large along
the Y-axis because it uses the default update size of 0.05. A smaller update size
would allow for better performance but at the cost of an increase in iterations
and computation time. We are therefore looking into the use of adaptive update
sizes so that larger updates are applied when the underlying ‘black box’ function
is flat and smaller update sizes when the algorithm encounters slopes.

The results show that CART slightly outperforms ITER on most datasets,
but what can not be observed from the results is the advantage of ITER’s non-
greedy approach for the interpretability of the extracted rules. For example,
CART will fail to find good rules for ARTI2 because it is unable to find a split
for the root node that significantly decreases impurity. It will therefore choose
a more-or-less random split, x2<0.95, that does not correspond to any of the
optimal splits (x1<0.5 or x2<0.5). ITER’s expanding of hypercubes does not
face this problem of looking only one step ahead and will be able to find rules
that correspond more closely to those of Table 1.

5 Conclusion

In this paper, we presented a new algorithm for regression rule extraction and
compared its performance with CART regression trees and several ‘black box’
regression techniques. While we believe that ITER can become a worthwhile
alternative to CART’s recursive partitioning approach, there is one major im-
provement recommended before ITER is able to assume this role. The use of
adaptive update sizes can increase performance of the extracted rules in combi-
nation with a reduction of the required number of iterations. Our current work
is focused on the implementation of this adaptive update rates. Future research
will expand the algorithm to allow nominal variables as inputs and consequents
for the rules that can be linear functions of the inputs.
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