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Abstract 

More and more companies today discover the advantages of using knowledge bases for their 
processes and services. Recently, fuzzy set theory has also captured the attention due to good 
performances within control systems. Therefore, it is very appealing to combine the 
advantages of these two areas into a fuzzy knowledge base. However, obtaining the results of 
control systems in a knowledge based environment is not so straightforward. This paper will 
investigate one aspect of the reasoning process, namely the behavior of the implication. From 
the different tests performed, four main behaviors of implications can be found. First of all, 
there are the implications not always resulting in a convex set. A second class - the so-called 
impotent implications- doesn't change the predefined set at all. A third grouping reveals 
always a constant value portion, that rises or falls according to the changed input. A final 
division shifts the complete set in its whole conformably the intuition. 
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1. Introduction 

Today the number of companies interested in knowledge-based systems is continuously 
increasing. More and more firms discover the advantages of using knowledge bases for their 
processes and services. Several companies have already build a system giving financial 
advice, determining the insurance premium, controlling processes in chemical plants, etc. 

Together with this growing interest for knowledge bases, fuzzy set theory gets also more and 
more attention of businesses. For example, fuzzy set theory was used in an automatic 
transmission system, in washing machines, in vacuum cleaners and also in a H2-leakage 
system [7]. The general conclusion in this paper was that 'fuzzy control appears to be very 
useful when applied to the identification and control of ill-structured systems, where e.g. 
linearity and time invariance cannot be assumed, the process is characterized by significant 
transport lags, and is subject to random disturbances.' They also stated that 'fuzzy control 
systems are often characterized by their robustness, easy maintainability, and their ability to 
achieve good controls with comparatively low development and implementation efforts and 
costs' . 

With this increasing interest for knowledge bases and fuzzy set theory, it is challenging to try 
to combine both concepts into a fuzzy knowledge base. However, both concepts have their 
critical points which have to be overcome if the integration wants to be successful. A first 
critical point when developing a knowledge base is the acquisition of the knowledge. 
Knowledge can either be extracted out of the underlying processes or out of the expert. 
However, the difficulty is that the expertise which the specialist has build up over the years 
has become more like an intuition to him. It is therefore not so easy for the expert to explicitly 
give all the relevant data and rules. Also when examining the processes, it is possible that not 
all important elements are noted and that some critical aspects which are implicitly embedded 
into the process, are not observed. So, it can well be that after the consultation of either the 
processes or the expert, the acquired knowledge is incorrect. Above that, a second critical 
point when building a knowledge base is, that the number of rules in reality can amount to 
several hundreds or even thousands. In such a case, testing becomes enormous and it is very 
difficult to keep an overview of the reasoning process. To overcome these problems, certain 
methodologies have been developed. Hwang [8] for example has developed the Knowledge 
Acquisition tool for Fuzzy Expert Systems (KAFES) to extract the knowledge and build the 
fuzzy knowledge base. 

A critical point for the fuzzy side is, that the results of a fuzzy system are hard to predict. The 
deduction of new knowledge -also called the inference process- needed to determine the 
necessary action, is still not so predictable as with classical knowledge bases. Fuzzy control 
systems, don't experience this as a great drawback since they can adjust their action by the use 
of feedback loops. Opposed to fuzzy control systems, fuzzy knowledge bases cannot make use 
of those feedback loops to fine-tune the outcome. So the requirement that the first result has to 
be correct, puts a lot of emphasis on the inference process. Since the deduction of the new 
knowledge is done by the implication, it is very important to be able to determine the behavior 
of implications. That is what this paper is investigating. 
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This paper is organized as follows: the first section starts with an short introduction of fuzzy 
set theory. Subsequently, the importance of the implication in the inference process of a fuzzy 
knowledge base is explained. Then, the behavior of several fuzzy implication functions IS 

studied. Finally, some concluding remarks are given. 

2. Fuzzy set theory and knowledge bases 

2.1 Introduction to fuzzy set theory 

Fuzzy set theory was founded by Zadeh in 1965 [9] and can be seen as an extension of 
classical reasoning in such a way that, while classical logic only works with values of zero 
(the statement is false) or one (the statement is true), this new kind of reasoning allows also 
values between 0 and 1. By doing so, a better representation of the information is possible. If 
one has to rank cars by their volume and if one isn't very sure whether the considered car is 
big or small, the car gets a value of 0.5. This figure has to be interpreted as follows: the car 
belongs to the set of big cars to the degree of 50 percent. Another car could for example have 
a value of 0.7. These values given to the statement 'this car belongs to the set of big cars' are 
called membership values, because they express the degree by which an item is member of a 
specified set. If we denote this membership value by ~A(m), where m is a specific car and A 
the set of big cars. When all possible volumes are placed on one axis and the according 
membership values on the other, ~A represents the membership function, defined as follows: 
~A : U ~ [0,1], where U represents the universe of discourse, containing all possible values. 
The membership function gives thus for each value of the fuzzy set the according membership 
value. While for each object of the universe a value can be determined, a fuzzy set considers 
only those objects that are relevant. So a fuzzy set is a subset of the universe. 
Typical membership functions are the Gamma function, the Lambda function and the bell
shaped function (see Figure A). 

0:[1 
D.' 

OJ 

Ofil 
0.5 

0.4 

0.3 

0.2 

OJ ... 
o 2 

Figure A: Bell function 

These functions are used to define several states of a certain condition. When, for example, a 
condition amount of rain is needed, the state 'low rain' can be modeled by the Lambda 
function, the state 'medium rain' by the bell-shaped function and the state 'high rain' by the 
function. In that way, three 'variables' of the condition amount of rain can be modeled and 
used. 
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2.2 Fuzzy expert systems and inferencing 

As already stated in the introduction, the result of the reasoning process of a fuzzy expert 
system is not so easy to predict as the one of a classical system. The reason therefore is 
twofold. First, fuzzy set theory is a generalization of classical logic. So, instead of working 
with only two possible values (0 and 1), a continuous range of values between zero and one is 
to be considered. Because the combination of two values through the use of a certain 
implication can now result in any value between zero and one, it is clear that this dilation 
yields a higher complexity and makes is hard to predict. The second reason is that one can 
easily create an implication himself, since the only condition that an implication has to fulfill 
is to generate values between one and zero. Hence, the same two values but combined with 
another implication can result in a different value. To better understand these reasons, it is 
useful to have an insight in the inference process. 

The inference process is based on a generalization of the 'modus ponens': 

If X = A then Y = B 
X=A' 
Y=B', 

which means that when A ' is entered as input, the rule comes up with B' as the result. Suppose 
that the following rules are in a knowledge base: 

If rain is low then harvest is high; 
If rain is medium then harvest is medium; 

If rain is high then harvest is low; 
When during consultation the state nwre or less high (=A ') is entered for the condition 
rain(=X), the knowledge base has to know which rule to fire because a value can now belong 
to different states of the same condition. Therefore, a method is used to compare two fuzzy 
sets, called the closeness measure, introduced by Zadeh, is defined as 

SUP MINxE x (A(x), B(x)) 

This means that, for each x, the minimum of the function value for A and B is taken. When 
this is done for each x, the maximum of those minima is taken as a measure of the similarity 
for A and B. So using this measure, we find a closeness measure of 0.32 between medium and 
more or less high and a closeness measure of 1 for high and our new input. Graphically 
interpreted, this measure calculates the highest value of the intersection of the two sets. Hence 
the new input matches best with the condition state high and the last rule is fired. 

Now that one of the three rules is chosen, the firing of that rule consists of four stages which 
are given in Figure B. First, there has to be a relation between rain and harvest to be able to 
alter the set of harvest to B' when the set high of rain changes. This relation between A and B 
is defined by the implication, shown in the first quadrant of Figure B. Secondly, to deduct the 
new result, the changed set has to be presented in three dimensions. Therefore a technique, 
called cylindrical extension, is used and does nothing else than elongating the set over the new 
dimension, as illustrated in the second quadrant. The third step compares the former two 
graphs by taking the minimum. The result is pictured in the third quadrant. Finally, the 
resulting set has to be retranslated to a two-dimensional set. For that purpose, the chart is 

3 



projected on the dimensions of harvest. This projection, together with the old set B, is already 
shown in the lower right corner of Figure B, but is repeated in the fourth quadrant with the 
stars representing the old set B. In this example, Kleene-Dienes was used as the implication. 

theoretical implication extended new input 
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Figure B: Rule firing in a fuzzy environment 

2.3 The Behaviour of Fuzzy Implications 

In the former section, it is illustrated that the choice of the implication can have a significant 
impact on the deduction of new knowledge. Consequently, it is important to be aware of the 
behavior of the chosen implication. In particular the implications of Table A will be examined 
on some -at first sight- very logical characteristics. Although, several of them don't even 
fulfill these intuitive requirements. 

Early Zadeh MAX( I-x, MIN(x,y) ) 
Lukasiewicz MIN( 1, I-x+y) 
Mamdani MIN( x,y) 
Standard Strict I if x::; y, else 0 
Godel (Standard Star) I if x::; y, else y 
Standard Strict-Star MIN( Strict(x,y), Godel(l-x, I-y) ) 
Standard Star-Strict MIN( Godel(x,y), Strict(l-x,I-y» 
Standard Star-Star MIN ( Godel( x,y), Godel( 1-x, 1-y) ) 
Standard Strict-Strict MIN( Strict(x,y), Strict(l-x,l-y» 
Kleene-Dienes MAX( I-x, y) 
Gaines 1 ifx ::; y, else y/x 
modified Gaines MIN( 1, y/x, (l-x)/(l-y) if x> 0 and y < 1 ) 
Kleene-Dienes-Lukasiewicz 1 - x + xy 
Willmott MIN( Max(I-x, y), Max(x, I-x), Max(y, l-y» 
Standard Sharp I if x < I or y= 1, else 0 
WuI 1 if x::; y, else MIN( l-x,y) 
Wu2 o if x < y, else y 
Yager yX 

Table A: Fuzzy implication operators 
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The following tests, proposed in [3] and [4], will be conducted: 

• A' =A 
• A' = more or less A 
• A' = unknown 
• A' = very, very low, i.e. no rain 

2.3.1 A' = A 

Intuitively, one could expect that when the input is exactly the same as the predefined 
conditions, the resulting action remains also the same. Surprisingly, several implications of 
Table A don't fulfill this requirement. The results can be divided in three categories. The first 
class contains all implications which come up with an horizontal line. This is what Chang et 
al. in [3] calls a 'constant value portion'. One example of that class is Figure C, showing the 
inference process of the Early Zadeh implication. To this class also belongs Lukasiewicz, 
Kleene-Dienes, Kleene-Dienes-Lukasiewicz, Willmott and Standard Sharp. 

theoretical implication e).tended neW input 
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new implication new vs. old set 
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Figure C: Early-Zadeh implication 

A second class gives a very similar fuzzy set as the theoretical action. The idea of what the 
fuzzy set stands for, stays the same. Figure D illustrates the inference of the Standard Strict 
implication. Other operators with the same behavior are Standard Strict-Star, Standard Strict
Strict, Gaines, modified Gaines, Wul and Yager. A third group comes up with exactly the 
same theoretical action and are actually the only ones who fulfill this requirement. This 
category consists of Mamdani, Godel, Standard Star-Strict, Standard Star-Star and Wu2. 
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Figure D: The inference of the Standard Strict implication 
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2.3.2 A' = more or less A 

The next step in the research consists in slightly shifting the input set to see whether the action 
also alters in the same degree. Chang et af [3] have found in previous research that a shift 
towards lower values didn't have the same effect as a shift in the opposite direction. When the 
input function is moved to the right of the graph (towards higher values of 'rain'), it is clear 
that the action doesn't change. When shifted to the left although, the intersection determined 
by the MIN-operator between the new input function and the theoretical inference graph 
reveals a constant value portion. This portion rises the greater the shift to the left is. This does 
not mean that shifting to the right can always reduce the constant value portion for each 
implication. Under the former requirement, the Early Zadeh operator gave already such a high 
constant value portion that a small move won't reduce it. The reason seems to be the presence 
of a frontal plane, whereby frontal has to be seen in the direction of the projection. Due to the 
cylindrical extension, the new input will likewise be extrapolated, i.e. frontal to the projection 
dimension. These two frontal planes will certainly create a 'hill' in the third quadrant and 
likewise a constant value portion. Such a new action is not the result which one would 
intuitively expect. Based on the rule 'if rain is high then harvest is low' and knowing that the 
amount of fallen rain is a bit lower then what is defined as 'high', the new action becomes 'a 
bit higher then low'. When this fuzzy set is to be displayed, one will draw an L-shaped 
function shifted to the right of 'low'. 

To exclude this constant value portion, Chang et af [3] proposed to give each function a 'tail'. 
This means that, instead of going immediately to zero, the function drops first to a value pretty 
close to zero (let's say 0.0001) and then flattens out to zero. So, the 'insignificant' part of the 
function changes from zero to 'close to zero'. The effect on the meaning of the fuzzy set due 
to the redefinition is nil. By using the 'tail' definition for the condition as for the action, the 
constant value portion is omitted when using the Godel-implication. 

Surprisingly, this redefinition is not only helpful when using the Godel implication but also 
works -in the meaning of giving intuitive expected results- for Standard Strict and Wu 1. The 
implications where this redefinition doesn't help are Early Zadeh, Lukasiewicz, Kleene
Dienes, Kleene-Dienes-Lukasiewicz and Willmott. After taking a closer look at the function 
prescription, they all seem to have an (I-x) in some way or the other, causing a frontal plane. 
This founding confirms again the statement that frontal planes, combined with the cylindrical 
extension, have a great chance of giving a constant value portion which is hard to get rid of. 

A different class are the combinations of G6del and Standard Strict, producing problems with 
the tail definition. The redefinition fails to alter the summit on the coordinates (0,0) and these 
combinations will be treated differently in the following tests. Other implications where the 
new definition doesn't succeed are Gaines, modified Gaines, Standard Sharp and Yager. 
Standard Sharp reveals to be very hard to influence. Concerning Gaines and modified Gaines, 
redefinition cuts only a sphere out of the theoretical function, so that only for large left shifts, 
the result is low-alike (see Figure E). 
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Figure E: Gaines implication 

Now that we have discussed the effect of a redefinition with a tail in order to omit the constant 
value portion, let us reconsider the issue of a shift in the input data. It appears that the classes 
deducted above are still useful. First, Mamdani and Wu2 still come up with the same 
theoretical set as the new result. Early Zadeh, Lukasiewicz, Kleene-Dienes, Gaines, modified 
Gaines, Kleene-Dienes-Lukasiewicz, Willmott and Yager allow the constant value portion to 
move upwards. For a knowledge base, this kind of behaviour is contra-intuitive and therefore 
unacceptable. The third category, lets the new set shift to the right which is a comportment 
fully compatible to intuition. In this last group reside Standard Strict, Gbdel and Wu1. 

Standard Sharp still gives a horizontal line on 1, meaning that each value of the universe 
belongs to the new set to the same degree. The interpretation behind this is, that nothing can 
be concluded from this solution. The different combinations of Gbdel and Standard Strict 
come up with strange and complex responses because the new sets are not convex. 

2.3.3 A' = unknown 

Here, the following requirement is tested: 

if X is A then Y is B 
A' is unknown 
B' is unknown 

where unknown stands for a membership value of lover the whole universe. Remark that the 
minimum of a plane on membership value 1 and a theoretical inference graph, is again the 
theoretical graph. Since every implication has somewhere a little plane lying on membership 
value 1, the projection will result in a set on 1. So the majority of the implications will fulfill 
this requirement. The only ones who don't satisfy this test are Madman, Wu2 (both giving 
again the identical set) and the combinations of Gbdel and Standard Strict. Willmott also 
belongs to the last group, not meeting this demand. 

7 



2.3.4 A' = no rain 

This last characteristic comes out of the paper of Chang et al [3] : 

if X is A then Y is B 
A' is very very A 
B I is very very B 

This paragraph tests with what kind of result the inferencing process will come up with when 
the set '(virtually) no rain' is entered as input. This final test yields two categories. Early 
Zadeh, Lukasiewicz, Standard Star-Strict, Standard Star-Star, Kleene-Dienes, Kleene-Dienes
Lukasiewicz, Willmott and Yager all give the identical theoretical set 'low' as the result. The 
second class transforms the theoretical set to 'very very high'. Only Standard Strict, Standard 
Strict-Star, Standard Strict-Strict, modified Gaines and Wul belong to that class and fulfill at 
the same time the characteristic. Figure F illustrates the inference process when Standard 
Strict is used as the implication. Mamdani and Wu2, together with Godel and Gaines who 
normally belong to the second category, present just like the first grouping also the theoretical 
set 'low'. 

From a paper of Theunissen [5], the following requirement is found: 
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The conclusion B' may never be more precise then the fuzzy set B. Or put differently, 
'---

tlie support o]B--'--is supposea to be equal to or greater than the one of B. 

After the testing, it turns out that only the first class meets this characteristic. It is clear that 
from an intuitive point of view, it cannot be accepted that when the input is transformed to 
'very very A', the result B' can only reach the theoretical set B. 

theoretical implication 
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Figure F: Standard strict implication 

2.4 Recapitulation of the test results 

To conclude, the considered implications can be categorized as follows: 



Category 1 Category 2 Category 3 Category 4 
'constant 'intuitive' 'impotent' 'not always 

value convex' 
portion' 

Early Zadeh x 
Lukasiewicz x 
Mamdani x 
Standard Strict x 
GOdel x 
Standard Strict-Star x 
Standard Star-Strict x 
Standard Star-Star x 
Standard Strict-Strict x 
Kleene-Dienes x 
Gaines x 
modified Gaines x 

Kleene-Dienes-Lukasiewicz x 
Willmott x 

Standard Sharp x (nearly 
always 1) 

Wu1 x 

Wu2 x 

Yager x 

Table B: Categorization of the implications 

Standard Sharp actually belongs also to the group of impotent implications, but differs from 
the other two in that a horizontal line close to 1 is continuously the result instead of the 
theoretical set. Similarly the combinations of Standard Strict and Godel are left out of the 
conclusion because they often come up with a non-convex result. These non-convex results 
not only give difficulties in the interpretation but also in the fulfillment of basic conditions for 
a fuzzy set. From the tests performed the following conclusions can be made: 

Some implications don't even meet the identity condition that if A' equals A, B' should equal 
B. More specific, these operators are Early Zadeh, Lukasiewicz, Kleene-Dienes, Kleene
Dienes-Lukasiewicz and Willmott. When using one of these implications, one has to be fully 
aware of the fact that this very intuitive requirement is not met. Although Yager belongs to the 
first category, it corresponds to the intuitive behaviour. 

The solution of Chang et al in [3] to reduce the constant value portion via the tail-redefinition 
for the Godel-implication, is also useful for other operators, such as Standard Strict, Standard 
Star-Strict, Standard Star-Star and Wu I. These are almost the same as the ones from the 
second class except for Gaines and modified Gaines. The effect of a redefinition by those two, 
results only in a decline of the constant value portion at the point (10,0). 

The effect of slightly shifting the fuzzy input set, depends on the category to which the 
implication belongs. Shifting in the first class results merely in a shift of the constant value 
portion. The second grouping gives only a horizontal shift and fits intuition. Again Gaines and 
modified Gaines are exceptions of the second class: the fact that they couldn't get rid of their 
constant value portion by use of redefinition, causes both a horizontal as a vertical shift. 
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The implications of the first category meet the requirement of Theunissen, stating that under a 
large shift, a fuzzy set B' can at best only equal the predefined set B. No additional precision 
is added. Although Gaines and Godel don't belong to this class, they correspond to the same 
behavior. As stated earlier, this manner isn't conform the intuition and can therefore not be 
accepted. The other category gives intuitive results and transforms the predefined set to 'very 
very high'. Mamdani and Wu2 keep giving the theoretical predefined set B. 

The above conclusions are summarized in the next table, where the implications III italic 
belong to the first category, the bold ones to the second class, X and v stand respectively for 
not fulfilling and fulfilling the requirement, i indicates a horizontal shift and -7 a vertical 
shift. From the tests and using intuition as a reference, only Standard Strict and Wul with 
redefinition are recommended. 

A=A' tail-redefinition more or less A very very A 

Early Zadeh X X i identical 
Lukasiewicz X X i identical 
Mamdani V identical identical identical 
Standard Strict V V ~ V 

Gi:idel V V ~ identical 
Standard Strict-Star V X not convex V 

Standard Star-Strict V V not convex identical 
Standard Star-Star V V not convex identical 
Standard Strict-Strict V X not convex V 

Kleene-Dienes X X i identical 
Gaines V X ~and i identical 
modified Gaines V X ~and i V 

Kleene-Dienes-Lukasiewicz X X i identical 
Willmott X X i identical 
Standard Sharp X X always 1 constant portion 
Wul V V ~ V 

Wu2 V identical identical identical 
Yager V X i identical 

Table C: Summarizing table 

3. Conclusions and future research 

From the different tests performed, four main types of behavior of implications can be found. 
First of all, there are the implications not always resulting in a convex set. They add extra 
complexity in satisfying requirements and their results are very difficult to interpret. A second 
class doesn't change the predefined set at all - the so-called impotent implications. A third 
grouping reveals always a constant value portion, that rises or falls according to the shift of 
the input. A final division shifts the complete set in its whole conformably intuition. 

Further research is necessary to confirm the validity of the classification scheme. Considering 
the fact that it is very easy to create new implications, not all operators are included in the 
research. The utility of the classification is that it provokes reflections on how a specific input 
is translated by different implications and on whether that behavior is conform with intuition. 
This way of judging the behavior is more appropriate for fuzzy knowledge bases where a 
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human has to interpret the results than as for fuzzy control systems, where the result can be 
corrected by a feedback loop. 

Additional research is also needed to check the behavior in presence of several conditions. 
The example used in this paper was a rather simple one, with only one condition and action 
for each rule. Furthermore, no crisp values are included. So, a more elaborated example, 
including several conditions and crisp values, needs to be tested and the results have to be 
verified against these in this paper. 
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