
KATHOLIEKE 
UNIVERSITEIT 

LEUVEN 

DEPARTEMENT TOEGEPASTE 
ECONOMISCHE WETENSCHAPPEN 

RESEARCH REPORT 0334 

CANONICAL ANALYSIS BASED ON SCATTER 
MATRICES 

by 

S. TASKINEN 
C. CROUX 

A. KANKAINEN 
E.OLLILA 
H.ONA 

0/2003/2376/34 



Canonical Analysis based on Scatter Matrices 

Sara Taskinen~ Christophe Croux+, Annaliisa Kankainen* 

Esa Ollila#, and Hannu Oja* 

* Dept. of Mathematics and Statistics, University of Jyviiskylii 

+ Dept. of Applied Economics, K. U. Leuven 

# Signal Processing Laboratory, Helsinki University of Technology 

Abstract 

In this paper, the influence functions and limiting distributions of the canonical 

correlations and coefficients based on affine equivariant scatter matrices are developed 

for elliptically symmetric distributions. General formulas for limiting variances and 

covariances of the canonical correlations and canonical vectors based on scatter ma­

trices are obtained. Also the use of the so called shape matrices in canonical analysis 

is investigated. The scatter and shape matrices based on the affine equivariant Sign 

Covariance Matrix as well as the Tyler's shape matrix serve as examples. Their finite 

sample and limiting efficiencies are compared to those of the Minimum Covariance De­

terminant estimator and S-estimates through theoretical and simulation studies. The 

theory is illustrated by an example. 

Keywords: Canonical correlations, canonical variables, canonical vectors, shape ma­

trix, sign covariance matrix, Tyler's estimate 

• Corresponding author: Hannu Oja, Department of Mathematics and Statistics, University of Jyvaskyli:i, 

P.O. Box 35, Fin-40351 JyvaskyHi, Finland; email: Hannu.Oja@maths.jyu.fi 

1 



1 Introduction 

The purpose of canonical correlation analysis (CCA) is to describe the linear interrelations 

between two random multivariate vectors. New coordinate systems are found for both vectors 

in such a way that, in both systems, the marginals of the random variables are uncorrelated 

and have unit variances, and that the covariance matrix between the two random vectors is 

a diagonal matrix with descending positive diagonal elements. The new variables and their 

correlations are called canonical variates and canonical correlations, respectively. Moreover, 

the rows of the transformation matrix are called canonical vectors. Canonical analysis is one 

of the fundamental contributions to multivariate inference by Harold Hotelling (1936). 
To be more specific, assume that x and yare p- and q-variate random vectors, p ::::; q 

and k = p + q. Let F be the cumulative distribution function of the k-variate variable 

z = (xT, yTf. Decompose its covariance matrix (if it exists) as 

~ = ~(F) = (~""" ~",y) 
~Y'" ~yy 

where ~"'''' and ~yy are nonsingular. In canonical analysis, one thus finds a p x p matrix 

A = A(F), a q x q matrix B = B(F) and p xp diagonal matrix R = R(F) = diag(Pl,"" pp), 
Pl ~ ... ~ PP' such that 

(AT 0T) (~"'X ~Xy) (A 0) = ( Ip T (R,O)). 
o B ~yx ~yy 0 B (R,O) Iq 

(1) 

The diagonal elements of R are called the canonical correlations, the columns of A and 

B the canonical vectors and the random vectors 

give the canonical variates. 

Simple calculations show that 

and 

~;i~y",~;;~",yB = B(R, Of(R, 0). 

Therefore A and (the first p columns of ) B contain the eigenvectors of the matrices 

(2) 
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respectively. The eigenvalues of MA and MB are the same and are given by the diagonal ele­

ments of R2, so by the squared canonical correlations. We will assume throughout the paper 

that Pl > ... > Pq to avoid multiplicity problems. From (1) we see that the eigenvectors 

need to be chosen such that 

(3) 

Alternatively, one can also find eigenvalues and orthonormal eigenvectors Ao and Bo of 

symmetric matrices as 

and 

~;yl/2~yx~;;~Xy'£;;;yl/2 Bo = Bo(R, Of(R, 0), 

with A'6 Ao = Ip and B6 Bo = Iq. The regular canonical vectors are then A = r;;;/2 Ao and 

B = ~;i/2 Bo. For more information on the canonical analysis problem, see e.g. Johnson 

and Wichern (1998, chapter 10). 

To estimate the population canonical correlations and vectors one typically estimates ~ by 

the sample covariance matrix, and computes afterwards the eigenvalues and eigenvectors of 

the sample counterparts of the matrices MA and MB given in (2). This procedure is optimal 

for a multivariate normal distribution F, but it turns out to be less efficient at heavier tailed 

model distributions. Moreover, the sample covariance matrix is highly sensible to outliers, 

and a canonical analysis based on this matrix will then give unreliable results. For these 

reasons, it can be appropriate to estimate r; by other, more robust estimators. As such, 

Karnel (1991) proposed to use M-estimators and Croux and Dehon (2002) the Minimum 

Covariance Determinant estimator. However, no asymptotic theory has been developed yet 

for canonical analysis based on robust covariance matrix estimators. 

Is was only quite recently that Anderson (1999) completed the asymptotic theory for 

canonical correlation analysis based on the sample covariance matrix. In this paper we 

study the asymptotic distribution of estimates of canonical correlations and canonical vectors 

based on more general estimators of the population covariance matrix, the so called scatter 

matrices. The results will not be restricted to the normal case, but are valid for the class 

of elliptically symmetric model distributions. Moreover, also the asymptotic distribution for 

canonical analysis based on shape matrices has been derived. 

The plan of the paper is as follows. Section 2 reviews scatter matrices, and the general 

form of their influence function and limiting variance. We also treat shape matrices, which are 
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estimating the form of the underlying elliptical distribution, but have no size information. 

The main contribution of the paper is in Section 3, where expressions for the influence 

function, the limiting distribution and the limiting efficiencies are derived for canonical 

correlations and vectors based on any regular scatter and shape matrix estimator. In Section 

4, numerical values for the asymptotic efficiencies at normal distributions are presented for 

several scatter matrices: the Sign Covariance Matrix (Visuri et aI, 2000), the Minimum 

Covariance Determinant estimator (Rousseeuw 1985), and S-estimators (Davies 1987). We 

also consider Tyler's shape matrix (Tyler 1987) estimator. By means of a simulation study, 

the finite sample efficiencies are compared with the limiting ones. Finally, a real data example 

will illustrate the methods. The Appendix collects all the proofs. 

2 Scatter and shape matrices 

2.1 Some definitions 

A k x k matrix valued statistical functional C = C(F) is a scatter matrix if it is positive 

definite and symmetric (PDS(k)) and affine equivariant. We can denote C(F) alternatively 

as C(z) if z f'V F. Affine equivariance then means that C(DT z + b) = DTC(z)D for all 

k x k matrices D and k-vectors b. This implies that, for a spherically symmetric distribution 

Fo, C(Fo) = coh with some constant Co > O. If F is the cdf of the elliptic random vector 

z = DT Zo +b, where Zo f'V Fo and D is a positive definite k x k matrix, then C(F) = CODT D. 
As Co depends on the functional C and the distribution Fo, a correction factor is needed for 

having Fisher consistency towards the regular covariance matrix ~(F). Introducing such 

a correction factor also allows comparisons between different scatter matrix estimates at a 

specific model. 

A functional V = V(F), or alternatively V(z), is a shape matrix if it is PDS(k) with 

Det(V) = 1 and affine equivariant in the sense that 

The condition Det(V) = 1 is sometimes replaced by the condition Tr(V) = k but the former 

one is more convenient here (Ollila et al., 2003a). If C(F) is a scatter matrix then 

V(F) = {Det[C(F)]} -11k C(F) 

is the associated shape matrix. It can be seen as a standardized version of C(F). A shape 

matrix can, however, be given without any reference to a scatter matrix; the Tyler's shape 
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matrix serves as an example and will be discussed in detail later. For the above elliptical 

distribution F of z = DTzo + b, V(F) = [Det(DTD)J-l/kDTD. This means that in the 

elliptic model, shape matrices estimate the same population quantity and are directly com­

parable without any modifications. Note that in several multivariate inference problems, the 

test and estimation procedures are based on the shape matrix only. 

Finally note that if C(F) is a scatter matrix, the functional S(F) = Det(C(F)) is a 

global scalar valued scale measure. The scale measure Det(L:.(F)) given by the regular 

covariance matrix is the well-known Wilks' generalized variance. In general, we will say 

that S(F) is a scale measure if it is nonnegative and affine equivariant in the sense that 

S(Gz) = Det(G)2S(z) for all non singular k x k matrices G. Finally note, that if V(F) is 

a shape matrix and S(F) is a scale measure, then 

yields a scatter matrix. Thus the shape and scale information may be combined to build a 

scatter matrix. 

2.2 Influence functions 

Influence functions are often used for robustness considerations. The influence function 

measures the robustness of a functional T against a single outlier, that is, the effect of an 

infinitesimal contamination located at a single point z on the estimator (see Hampel et al., 

1986). Consider herefore the contaminated distribution 

F, = (1 - f)F + ft.,., 

where t.,. is the cdf of a distribution with probability mass one at a singular point z. Then 

the influence function of T is defined as 

I F(z; T, F) = lim T(F,) - T(F) . 
,-to f 

Lemma 1 in Croux and Haesbroeck (2000) states that, for any scatter functional C(F), 
there exist two real valued functions J'c(r) and 6c (r) such that the influence function of C 
at a spherical Fa, symmetric around the origin and with C(Fo) = h, is given by 

(4) 
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where r = Ilzll and u = Ilzll-1z. Then one easily finds for the associated shape functional 

and for the associated size functional 

IF(z; Det(C), Fo) = IF(z; Tr(C), Fo) = ,),c{r) - kc5c (r). (5) 

Vice versa, for any shape matrix V and any scale measure S as defined above, we have 

that the influence functions at spherical Fo should be of the form 

and 

IF(z;S,Fo) = c5s (r), 

respectively. Then the resulting combination scatter matrix C = [Det(S)]l/kV has influence 

function 

IF(z; C, Fo) = ')'v(r)uuT - ~[')'v(r) - c5s(r)]h. (6) 

Due to equivaraince properties, we readily find that at the elliptic distribution F of 

z = DTzo + b, with C(F) = DTD, 

IF(z; Det(C), F) = Det(D)[')'c{r) - kc5c (r)], 

and finally for the associated shape matrix: 

where 

. ) _ ,),c{r) T [ T 1 ] 
IF(z,V,F - Det(D)2D uu -,/k D, 

r2 = (z - bf(DTD)-l(Z - b) and u = ~(DTD)-1/2(Z - b) 
r 

are the squared Mahalanobis distance and the Mahalanobis angle of z. 
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2.3 Limiting variances 

Assume next that Zl, ... , Zn is a random sample from a spherical distribution with cdf Fa 
and covariance matrix h. Let en be the estimator associated to the functional C, that 

is en = C(Fn) where Fn is the empirical distribution function computed from the sample. 

Assume that a correction factor is used to adjust the estimate so that C(Fo) = h. It is then 

often true that the limiting distribution of Vn( en - Ik ) is multivariate normal with zero 

mean matrix and variance EFo[IF(z;C, Fa) ® IF(z; C, Fof]. The limiting variances of the 

diagonal and the off-diagonal elements of Vn( en - Ik) are then given as 

and 

2(k-1) 2 1 2 
ASV(Cn ; Fo) = k2(k + 2) Ebdr)] + k2E[(-yc(r) - k8c(r)) ] 

Eb~(r)] 
ASV(C12; Fo) = k(k + 2) , 

respectively, and the limiting covariances between the diagonal elements are 

ASC(Cn , C22 ; Fa) = ASV(Cn ; Fa) - 2ASV(C12; Fo). 

All other limiting covariances vanish. More formally, the limiting distribution of Vnvec (en -
I k ) is k2-variate normal with zero mean vector and covariance matrix 

where vec vectorizes a matrix and Ik,k is a k2 x k2 matrix with (i, j)-block being equal to a 

k x k matrix that is 1 at entry (j, i) and zero elsewhere. 

Similarly, the limiting distribution of VnveceVn - h) is k2-variate normal with zero mean 

vector and covariance matrix 

with 
Eb~(r)] 

ASV(V12; Fa) = k(k + 2) . 

The limit distribution of the shape matrix estimator is thus characterized by one single num­

ber, where the limiting distribution of a scatter matrix estimator is completely determined 

by 2 numbers. The latter follows already from Tyler (1982). 
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3 Canonical correlations and canonical vectors 

3.1 Definitions 

Assume that the k-variate distribution of z = (xT, yTf is elliptic with cumulative distribu­

tion function F and that p :::; q. Consider the scatter matrix 

C = C(F) = (Cxx Cxy). 
Cyx Cyy 

with nonsingular Cxx and Cyy . The matrices A = A(F), B = B(F) and R = R(F) chosen 

such that 

C ((~::)) = C ((CB:::fy)) = CR~~f CjqO)) 
then yield the canonical vectors and correlations. The canonical correlations in R are the 

same for all scatter matrices C. Note that, if the p canonical correlations are distinct, then 

the p x p matrix A and q x p matrix Bl are unique up to a sign and the q x (q - p) matrix 

B2 is unique up to multiplication on the right by an orthogonal (q - p) x (q - p) matrix. The 

values of the canonical vectors A and B will depend on the used scatter functional C via the 

constant Co. If, however, the scatter functional is such that C(F) = 2;, then the canonical 

vectors become comparable over different scatter matrix estimators used. 

Now let A(F), B(F) and R(F) be determined by a shape matrix functional V = V(F) 
such that 

V ((A: x)) = Vet (( Ip T (R, 0))) -11k ( Ip T (R,O)). 
B y (R,O) Iq (R,O) Iq 

One has now that the same canonical correlations R are obtained again, but the canonical 

vectors are only unique up to a constant. We therefore make the choice to take A* and B* 
such that A*TVxxA* = Ip and B*TVyyB* = Iq. If the shape functional V is associated to a 

scatter functional C as described in Section 2.1, then 

A* = [Vet(C)p/2k A and B* = [Det(C)p/2k B. 

We call A* and B* the standardized canonical vectors. These standardized canonical 

vectors are comparable between any two scatter or shape matrix functional used, whether a 

correction factor has been used or not. 
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3.2 Influence functions 

Let Z = (::cT, yT)T follow the k = (p + q) dimensional model distribution F, and denote F' 
the cdf of the canonical variates 

As the canonical correlation and vector estimates are affine equivariant, for computation of 

the influence function it is enough to consider the distribution F' where 

R(F') = diag(pt, ... ,pp), A(F') = Ip and B(F') = (Ip 0), 
o B22 

and B22 is an orthogonal (q - p) x (q - p) matrix. Then Gxx(F') = Ip, Cyy(F') = Iq and 

Cxy(F') = C;x(F') = (R,O). The influence functions of A, B and R at F' are obtained as 

follows. 

From the conditions ATCxxA = Ip and BTCyyB = Iq we directly have 

IF(z'; AT, F') + IF(z'; Cxx, F') + IF(z'; A, F') = 0 

and 

IF(z'; BT, F') (~ ~2) + (; o ) IF(z" C F') (Ip 0) 
B"J; ,yY' 0 B22 

+ (Ip 0) IF(z" B F') = o. 
o B~ " 

Further, the conditions ATGxyB = (R,O) and BTCyxA = (R,O)T yield 

and 

IF(z';AT,F')(R,O) + IF(z'; Cxy,F') (lop 0) 
B22 

+ (R, O)IF(z'; B, F') = IF(z'; (R, 0), F') 

IF(z" BT F')(R O)T + (Ip 0) IF(z" C F') " , 0 B"J; , yx, 

+ (R,OlIF(z';A, F') = IF(z'; (R, ol, F'). 
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The diagonal elements of (7) and (8), for i = 1, ... ,p, then give 

IF(z';Aii,F') = -~IF(z';[C",,,,lii,F') 

and 

IF(z'; Bii , F') = -~IF(z'; [Cyyl ii , F'). 

From the diagonal elements of (9) and (10) one gets 

I F(z'; Rii, F') = PiI F(z'; Aii , F') + I F(z'; [CxY]ii, F') + PiI F(z'; Bii , F'), 

i = 1, ... ,po Combining the 4 equations (7), (8), (9), and (10), one obtains for the off­

diagonal elements of A ( i, j = 1, ... ,p, i -I- j ) that 

(p; - pDIF(z'; Aj, F') = -IF(z'; [C",xlij, F')PJ + IF(z'; [Cxyl ij , F')pj 

+ pJF(z'; [Cyx]ij, F') - pJF(z'; [Cyy]ij, F')pj' 

For off-diagonal elements of B, i = 1, ... ,q, j = 1, ... ,p, i -I- j one has 

(p; - pf)IF(z'; Bij , F') = -IF(z'; [CYY]ij, F')PJ + I F(z'; [Cyx]ij, F')pj 

+ PiIF(z'; [C"'Y]ij, F') - pJF(z'; [Cxx]ij, F')pj, 

where Pi = 0 as q ~ i > p. 
Write now the canonical variates z' as 

where r stands for the Mahalanobis distance of the canonical variates z', which equals 

the Mahalanobis distance of the untransformed variable z. The influence functions at the 

elliptical F are now obtained using the equivariance and invariance properties of A(F), B(F) 
and R(F) and are as follows (all proofs are in the Appendix): 

Theorem 1. Let C be the affine equivariant scatter matrix functional used to obtain the 

canonical correlations R and the canonical vectors A and B1 . Then the influence functions 

of the functionals R, A, and Bl at the k-variate elliptic distribution Fare 

IF(z; R, F) = 'Yc(r)Hl(u, v; R) 
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and 

IF(z;A,F) = A(F) [rc(r)H2(U,V;R) + ~Oc(r)Ip] 
and 

IF(z;Bl,F) = B(F) [rc(r)H3(U'V;R)+~oc(r) (~)]. 
Here Hl is a diagonal matrix with diagonal elements 

[ 1 2 1 2 
Hl(u,v;R)]jj = UjVj - "2PjUj - "2'pjVj , j = 1, .. . ,p. 

The elements of H3 are 

[H ( . R)] .. = pj(Uj - pjVj)Vi + Pi(Vj - PjUj)Ui 
3 u, V, <] 2 2 ' 

Pj - Pi 

for i = 1, ... , q, j = 1, ... ,p, i =I j and Pi = 0 as i > p, and 

[Ha(u, v; R)]jj = -~vJ, j = 1, ... ,po 

Finally, the elements of H2 are 

[H2(u, v; R)]ij = [H3(V, u; R)]ij, i,j = 1, ... ,po 

The influence functions of the canonical correlations R, and the standardized canonical 

vectors A* and Bi based on a shape matrix functional V are obtained using the fact that 

A* = [Det(C)]1/2k A and B; = [Det(C)p/2k B l , 

where C is a related scatter matrix constructed as C(F) = S(F)l/kV(F) for a given scale 

measure S, as described in Section 2.1. 

Theorem 2. Let V be the affine equivariant shape matrix functional used to obtain the 

canonical correlations R and the standardized canonical vectors A* and Bi. Then the in­

fluence functions of the functionals R, A *, and Bi at the k-variate elliptic distribution F 

are 

and 

IF(z; R, F) = rV(r)Hl(u, v; R) 

IF(z; A*, F) = A*(Fhv(r) [H2 (U, v; R) + 21kIp] 
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and 

IF(z;B;,F) = B*(Fhv(r) [H3(U,V;R) + 21k (~)], 
with Hi, H2 and H3 as in Theorem 1, and with rand (uT, vTf as the Mahalanobis distance 

and Mahalanobis angle of the canonical variates z' = (AT x, BT y)T, respectively. 

Note that the above influence functions factorize in a product of a function of rand 

a function of (u, v), where we know that the distribution of rand (u, v) are statistically 

independent. Since Hl ( u, v, R), H2 ( u, v, R) and H3(U, v, R) are continuous functions on the 

periphery of an ellipsoid, it follows that the influence functions for the canonical correlations 

and standardized canonical vectors are bounded as soon as the associated IV is bounded. 

3.3 Limiting distributions 

Write now R and A and Bl for the canonical correlation and vector estimates based on C. 
Assume that Pi > ... > Pp > 0 and that the limiting distribution of fo vec( C - C) is 

multivariate normal with zero mean vector and covariance matrix 

E[vec{IF(z; C, F)}vec{IF(z; C, F)V]. 

Then the limiting distributions of R, A and Bl are as follows. 

Theorem 3. At an elliptical distribution F, we have that the limiting distribution of fo vec(R­

R) is multivariate normal with zero mean matrix and covariance matrix 

ASV(R; F) = E[vec{IF(z; R, F)}vec{IF(z; R, F)}T] 

= E[r~(r)]E[vec{Hl(u, v; R)}vec{Hl(u, v; R)V]. 

Furthermore, the limiting distribution of fovec(A - A) is multivariate normal with zero 

mean matrix and covariance matrix 

ASV(A; F) = E[vec{IF(z; A, F)}vec{IF(z; A, F)V] 

= (Ip 0 A)ASV(A; F')(Ip 0 AT). 

and the limiting distribution of fo vec(Bl - Bl ) is multivariate normal with zero mean 

matrix and covariance matrix 

ASV(Bl; F) = E[vec{IF(z; Bll F)}vec{IF(z; B l , F)V] 

= (Ip 0 B)ASV(Bl; F')(Ip 0 B T). 
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Now let R, A* and B~ be the canonical correlation and standardized canonical vector 

estimates based on a shape matrix V. If PI > ... > Pp > 0 and the limiting distribution of 

Vn vec(V - V) is multivariate normal with zero mean matrix and covariance matrix 

E[vec{ I F(z; V, F)}vec{ IF(z; V, F)}T] , 

then the limiting distributions of R, A* and B~ are given by similar expressions as in Theorem 

3. 

Theorem 4. At an elliptical distribution F, we have that the limiting distribution of Vn vec(R­

R) is multivariate normal with zero mean matrix and covariance matrix 

ASV(R; F) = E[vec{IF(z; R, F)}vec{IF(z; R, F)}T] 

= Eb~(r)]E[vec{HI(u, V; R)}vec{HI(u, V; R)Y]. 

Furthermore, the limiting distribution of Vn vec(A* - A*) is multivariate normal with zero 

mean matrix and covariance matrix 

ASv(if*; F) = E[vec{IF(z; A*, F)}vec{IF(z; A*, F)}T] 

= c~ (Ip @ A*)ASV(A*; F')(Ip @ A*T) 

and the limiting distribution of Vnvec(B~ - Bn is multivariate normal with zero mean 

matrix and covariance matrix 

ASV(Bi; F) = E[vec{IF(z; Bi, F)}vec{IF(z; Bi, F)Y] 

= c~ (Ip @ B*)ASV(Bi; F')(Ip @ B*T), 

In the next subsection we explicit further the limiting variances of canonical correlation 

and vector estimates. 

3.4 Limiting covariances and efficiencies 

Let F be again an elliptical model distribution and consider first the canonical distribution 

F' of the canonical variates z'. As before, the spherical version of F will be denoted by Fo. 

The limiting covariances of the elements of R, A and BI based on scatter matrix C at r 
are listed in the following theorem. 
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Theorem 5. Let C12 be any off-diagonal and Cu any diagonal element of the scatter matrix 
C. At the canonical distribution F' we have that: 

(i) For 1 ::; i ::; p, the asymptotic covariance matrix of [fi, au, bii]T is 

[0 0 0] [(1 - p~) - 1p. - 1P'] 1 z 2' 2' 

4 0 1 1 ASV(Cu ; Fa) + (1 - pn -~Pi 0 -~ ASV(C12 ; Fa). 
o 1 1 _1p. -1 0 

2 ' 2 

(ii) For 1::; i =I- j ::; p, the asymptotic covariance matrix between [a",b"lT and [ajj,bjjlT is 

1 [1 1] ~ 1 [1 1] ~ 4 1 1 ASV(Cu ; Fa) -"2 1 1 ASV(C12; Fa). 

(iii) For 1 ::; i =I- j ::; p, the asymptotic covariance matrix oj[ (pJ- pt) a,j, (pt - p;) aj,lT and 

also of rep; - p;)bij , (pt - p;)bji]T, is given by 

[(1- pJ)(pt + p; - 2Ptp;) (1- pml- pJ)(p~ + P;)] ASV(C . F.) 
(1 - pt) (1 - p;) (pt + pJ) (1 - pt)(pt + p; - 2Pt pJ) 12, a 

(iv) For 1 ::; i =I- j ::; p, the asymptotic covariance matrix between rep; - pn aij, (Pt - p;) aji]T 
and rep; - pf) bij, (p; - p;) bjilT is given by 

[P,pj(2 - Pt - 3p; + PtP; + Pj) 2PiPj(1- p;)(l - p;) ] ASV(C . F.) 
2PiPj(1- pt)(l - p;) PiPj(2 - p; - 3Pt + PtP; + pi) 12, a, 

(v) For j = 1, ... ,p, and with q ~ i > p, the asymptotic variance ofb'j is given by 

(pj2 _ 1)ASV(C12 ; Fa), 

All the other limiting covariances between elements of ii, A or 131 are equal to zero. 

The special case of the the sample covariance matrix CoV at normal distribution give lim­

iting covariances obtained earlier by Anderson (1999). In this special case ASV(CfoVu ; Fa) = 
2 and ASV(CfoV12 ; Fa) = 1, and expressions (i), (iii) and (iv) correspond with those of An­

derson (1999). Note that the second statement of Theorem 5 gives, for the special case of the 

normal distribution and the sample covariance matrix, a zero asymptotic covariance matrix 

between [a,i, b'iJT and [ajj,bjj]T. Anderson (1999) also assumed p = q, and therefore did not 

reported the last statement of Theorem 5 for CfoV. 
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From Theorems 3 and 5 the marginal distributions of the canonical correlation and vector 

estimates at elliptical F can readily be obtained. Denote a1, ... ,ap the columns of Ii and 

b1 , . .. , bp the columns of B1 . 

Corollary 1. Let F be an elliptical distribution, then VR(Tj - Pj), VR(aj - aj) and 

VRCbj - bj ) have limiting normal distribution with zero mean and asymptotic variances 

and 

for every 1 ::; j ::; p. For q ~ k > p, we put Pk = O. 

Note that the multiplication of B2 = (bp+1,"" bq ) by an orthogonal matrix does not 

affect the value of the asymptotic variances ASV(bj ; F) of the first p canonical vectors. 

Moreover, corollary 1 implies that the asymptotic relative efficiency at elliptical F of the 

estimate fj,e based on a scatter matrix 8 with respect to fj,G' based on a scatter matrix fjt 
is simply 

ARE(r r· " F) = ASV(~{2; Fo) 
),e, ),e, ASV(C12 ; Fo)' 

and the asymptotic relative efficiencies of two canonical vector estimates aj,e and aj,e' are 

determined by the following ratios 

and 
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The above relative efficiencies equal thus relative efficiencies of on- and off-diagonal elements 

of the scatter matrices at Fa. 

At F' all asymptotic covariances of estimates R, A' and Hi based on shape matrix 11 
are as follows. 

Theorem 6. Let V12 be any off-diagonal and Vn any diagonal element of the shape matrix 

V. Denote CR = IIp - R2 l- 1/ 2k . At the canonical distribution F', where we have that: 

(i) For 1 :::; i :::; p, the asymptotic covariance matrix of [f;, CR a- ii, CR b- iilT is 

(ii) For 1 :::; i =1= j :::; p, the asymptotic covariance matrix between CR [a-ii, b-ii]T and 

CR [a- jj, b-jjjT is 

1 [1 1] ~ - 2k 1 1 ASV(V'i.2; Fa). 

(iii) For 1 :::; i =1= j :::; p, the asymptotic covariance matrix of CR[(PJ- p;) a-ij, (p; - PJ) a-jiY 

and also of CR [(pJ- pr) b- ij , (pr - pJ) b-jiY, is given by 

[ (1- PJ)(pr + PJ- 2PTPJ) (1 - pD(l- pJ)(p; + PJ)] ASV(C . F,) 
(1 - p;)(l - PJ)(PT + PJ) (1 - pT)(p; + PJ - 2PtPJ) 12, 0 

(iv) For 1 :::; i =1= j :::; p, the asymptotic covariance matrix between CR [(pJ - pT) a-ij, (p; -
2) "]T d [( 2 2) b",; (2 2) b'"; ]T· . b Pj cRa ji an Pj - Pi ij, Pi - Pj ji zs gwen Y 

(v) For j = 1, ... ,p, and with q ::::: i > p, the asymptotic variance of b-ij is given by 

(pj2 - 1)ASV(f;.2; Fa), 

All the other limiting covariances between elements of R, A- or B-1 are equal to zero. 
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Combining Theorems 4 and 6 it is again immediate to obtain the marginal distributions 

of the canonical correlations and standardized canonical vectors based on a shape matrix 

estimator. 

Corollary 2. Let F be an elliptical distribution, then ../N(Tj - Pj), .IN(uj - aj) and 

..;N(b; - bj) have limiting normal distribution with zero mean and asymptotic variances 

and 

where Pk = 0, as k > p. 

Note that now all the asymptotic efficiencies of canonical correlation and vector estimates 

based on V relative to estimates based on V' are given by 

ASV(V{2; Fa) 

ASV(~2;Fa) 

Table 1 lists these asymptotic relative efficiencies of canonical correlation and vector es­

timates based on robust shape matrices with respect to the estimates based on classical 

shape matrix at k-variate normal distribution. Considered robust shape matrices are based 

on affine equivariant sign covariance matrix (SCM), a 25% breakdown S-estimator with 

biweight loss-functions, a 25% breakdown Reweighted Minimum Covariance Determinant 

(RMCD), Tyler's M-estimate and the 25% breakdown MCD-estimator. Asymptotic vari­

ances for the SCM were obtained by Ollila et al (2003b), for S-estimators results of Lopuhaa 

(1989) have been used, for the MCD and RMCD scatter estimators asymptotic variances 
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have been computed by Croux and Haesbroeck (1999), and finally Tyler (1987) showed that 

the asymptotic variance of Tyler's M-estimate equals k/(k + 2). The estimators appearing 

in Table 1 have been sorted in decreasing order of efficiency. The SCM estimator, being a 

covariance matrix build from affine equivariant spatial sign vector, has a very high efficiency 

at the normal model. S-estimators have a slightly lower efficiency, but in contrast to the 

SCM they have a high breakdown point. The other high breakdown point estimators RMCD 

and MCD suffer from larger losses in efficiency. Tyler's M estimate has a low breakdown 

point, but is very fast to compute (see Hettmansperger and Randles, 2002), and has good 

efficiency in larger dimensions. 

Table 1: Asymptotic Relative Efficiencies the canonical correlation and vector estimates 

based on several robust shape matrices relative to the estimates based on the classical sample 

covariance matrix at a k-variate normal distribution. 

k SCM S RMCD Tyler MCD 

4 0.982 0.953 0.786 0.667 0.284 

6 0.991 0.975 0.837 0.750 0.356 

8 0.994 0.984 0.864 0.800 0.403 

10 0.996 0.988 0.881 0.833 0.438 

20 0.999 0.995 0.917 0.909 0.529 

4 Small sample studies 

4.1 Finite-sample efficiencies 

In this Section we compare by means of a modest simulation study finite-sample efficiencies 

of canonical correlation and vector estimates based on the robust shape matrices with corre­

sponding estimates based on the classical shape matrix. A number of M = 1000 samples of 

sizes n = 20,50,100,300 were generated from three different 2p-variate normal distributions 

with fixed covariance matrices 

~ = (Ip R) 
R 1 ' p 
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where R = diag(Pl, ... , pp). Our choices for canonical correlations were (a) PI = 0.8, P2 = 0.2 

(b) PI = 0.6, P2 = 0.4 and (c) PI = 0.9, P2 = 0.6, P3 = 0.3. The estimated quantities were the 

canonical correlations and the standardized canonical vectors. The estimated values were 

compared with the theoretical ones by the following mean squared errors (MSE). The MSE 

of the jth canonical correlation is given by 

M 

MSE(fj) = ~ L(rjm) _ pj)2, 
m=1 

where Pj is the true canonical correlation and rjm) the corresponding estimate computed 

from the mth generated sample. Further, the MSE of the jth canonical vector is measured 

by 

MSE(~*) 1 ~ ( -1 ( lajTajCm) I )) 2 

aj = M ~ cos lIajll'lla:j(m)11 ' 

where aj is the theoretical vector and aj(m) the estimate obtained from the mth generated 

sample. Thus, this MSE is the average squared angle between the estimated and the true 

standardized canonical vectors. Working with the angle has the advantage that the same 

MSE are obtained, whether one works with the standardized or unstandardized canonical 

vectors. The estimated efficiencies were then computed as ratios of the simulated MSE's and 

are listed in Tables 2-4. 

As seen in Table 2, the finite-sample efficiencies convergence to the asymptotic ones 

listed in the previous Section. For the SCM and the S-estimator the finite-sample efficiencies 

are very stable over the different sample sizes, but the results for the MCD- and RMCD­

estimators appear to be unstable at smaller samples sizes (n = 20, n = 50). For small 

samples, Tyler's estimator seems to be more efficient than RMCD. Note that the MCD is 

more efficient and the RMCD less efficient at small sample sizes than one would expect from 

the asymptotic results. 

In the second case samples were generated from a 4-variate normal distribution, such 

that the true canonical correlations were closer to each other than in the previous case. 

Corresponding finite-sample efficiencies are given in Table 3. As compared to the earlier case, 

now the differences between the finite-sample and asymptotic efficiencies ar more pronounced 

in particular for small sample sizes. Even in the case n = 300, the efficiencies are still quite 

different from the asymptotical ones for some estimators. The SCM- and S-estimators seem 

to be the most stable, whereas RMCD- and MCD-estimators behave as unsteadily as in the 

previous case. This simulation experiments suggest that convergence to the limit distribution 
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Table 2: Finite-sample efficiencies of the canonical correlation and vector estimates based on 

five robust shape matrices relative to estimates based on the classical shape matrix. Samples 

were generated from a 4-variate normal distribution. The quantities to be estimated were 

Pl = 0.8, P2 = 0.2, aiT = (1, of and a:f = (0, l)T. 

SCM S RMCD Tyler MCD 

r\ : n = 20 1.008 0.950 0.614 0.747 0.512 

n= 50 0.985 0.955 0.606 0.633 0.345 

n = 100 0.946 0.975 0.753 0.698 0.323 

n = 300 0.973 0.959 0.746 0.660 0.308 

T2 : n = 20 1.077 0.960 0.641 0.767 0.523 

n= 50 1.044 0.972 0.741 0.726 0.482 

n = 100 0.983 0.936 0.741 0.668 0.420 

n = 300 0.965 0.947 0.758 0.675 0.313 
~* n= 20 1.102 0.942 0.381 0.592 0.283 a 1 : 

n = 50 1.032 0.957 0.495 0.637 0.226 

n = 100 0.988 0.948 0.685 0.651 0.265 

n = 300 1.072 0.955 0.757 0.694 0.289 
~* n = 20 1.088 0.946 0.523 0.696 0.405 a2 : 

n= 50 0.995 0.944 0.562 0.650 0.290 

n = 100 0.987 0.936 0.720 0.661 0.313 

n = 300 1.098 0.969 0.766 0.692 0.312 

n= 00 0.982 0.953 0.786 0.667 0.284 

is slower when the canonical correlations are closer to each other, and hence the canonical 

vectors of different orders harder to distinguish. 

In the third case samples were generated from a 6-variate normal distribution, so p = 
q = 3. Efficiencies of the first canonical correlation and vector estimates are reported in 

Table 4. Again, as n increases, the efficiencies seem to converge to the asymptotic ones. 

Similar conclusions as for the first simulation scheme hold; again the convergence of RMCD­

and MCD-estimators is slower than the convergence of the others. 

To compute the estimators, the FAST-MCD algorithm of Rousseeuw and Van Driessen 

(1999) was used for computation of the 25% breakdown point MCD and RMCD estimators. 
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Table 3: Finite-sample efficiencies of the canonical correlation and vector estimates. Samples 

were generated from a 4-variate normal distribution. The quantities to be estimated were 

Pl = 0.6, P2 = 0.4, aiT = (1, oV and af = (0,1)T. 

SCM S RMCD Tyler MCD 

ri : n = 20 1.081 0.942 0.513 0.655 0.403 

n = 50 0.933 0.934 0.582 0.628 0.294 

n = 100 1.016 0.928 0.701 0.693 0.302 

n = 300 1.034 0.977 0.782 0.672 0.291 

r2 : n = 20 0.975 0.986 0.738 0.786 0.688 

n = 50 1.001 0.956 0.645 0.717 0.399 

n = 100 0.996 0.956 0.715 0.642 0.324 

n = 300 0.936 0.972 0.759 0.647 0.287 
~* n = 20 1.054 0.952 0.775 0.860 0.716 a 1 : 

n = 50 0.962 0.915 0.646 0.704 0.471 

n = 100 1.088 0.984 0.677 0.658 0.339 

n = 300 1.004 0.965 0.696 0.635 0.202 

a:; : n = 20 1.075 0.960 0.812 0.859 0.745 

n = 50 0.959 0.905 0.681 0.708 0.506 

n = 100 1.093 0.979 0.693 0.672 0.381 

n = 300 1.022 0.961 0.719 0.652 0.222 

n=oo 0.982 0.953 0.786 0.667 0.284 
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Table 4: Finite-sample efficiencies of the first canonical correlation and vector estimates. 

Samples were generated from a 6-variate normal distribution. The quantities to be estimated 

were PI = 0.9 and af = (1, of. 
SCM S RMCD Tyler MCD 

ri: n = 20 1.025 0.996 0.493 0.729 0.454 

n = 50 0.987 0.961 0.675 0.724 0.422 

n = 100 0.970 0.964 0.758 0.706 0.394 

n = 300 0.991 0.940 0.793 0.688 0.350 
~* n = 20 1.043 0.922 0.281 0.691 0.270 a l : 

n = 50 0.955 0.931 0.477 0.690 0.301 

n = 100 0.966 0.969 0.656 0.698 0.316 

n = 300 0.972 0.952 0.783 0.701 0.345 

n= 00 0.991 0.975 0.837 0.750 0.356 

The S-estimator has been computed with the surreal algorithm of Ruppert (1992). For the 

computation of the SCM, the same approximations as in Ollila et al (2003b, section 7) were 
used. 

4.2 An example 

In this Section we apply the proposed methods through a simple example. We consider 

the Linnerud data (Tenenhaus, p. 15) consisting of 20 observations and wish to describe 

the relationships between two sets of variables, namely Xl =weight, x2=waist measurement, 

x3=pulse and Yl =pull-ups, Y2=bendings, Y3=jumps. In order to compare the methods pro­

posed above, we consider canonical correlation and vector estimates obtained from different 

shape matrices. Estimates as well as corresponding standard deviations, obtained using the 

asymptotic results given in Corollary 2, are listed in Table 5. The coefficients of the different 

canonical vectors are often used to interpret the canonical variates, since they give the weight 

of every variable. By reporting the standard error around these coefficients, one can quickly 

see whether these coefficients are significantly different from zero or not. Although reporting 

these standard errors is no common practice in canonical analysis (probably also because the 

asymptotic distribution of the canonical vectors has only been established recently, even in 

the classical case), it helps to detect non-significant coefficients and it helps avoiding over-
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interpretation. For example, one sees that for all shape matrices considered a~ is mainly 

determined by X2, and to a lesser extend by Xl. On the other hand, b~ is mainly determined 

by Y2, and to a lesser extend by Ya. Note that standard errors are larger for the less efficient 

estimators, like the MCD. Differences between the different estimation procedures do not 

seem to be substantial. A more detailed look is revealed by the plot of the the first canonical 

variates (x~, yD in the Figure 1. The fitted lines are resulting from the canonical analysis, 

having as equation y~ = ihX~. We see that the Classical and the SCM approach, both having 

a zero breakdown point, have been attracted by the outliers in the upper right and lower left 

corner of the plot. The MCD and RMCD have been more resistant with respect to these 

outliers, and the data cloud is more concentrated around the linear fit, as is also witnessed 

by the higher values for the first correlation coefficent of these estimators. 

5 Conclusion 

Results concerning the asymptotic distribution for the canonical correlations only have re­

ceived much attention in the literature (e.g. Hsu 1941, Eaton and Tyler 1994), but much 

less attention has been given to the limiting distribution of canonical vectors. Anderson 

(1999) reviews previous work on the asymptotics of canonical analysis, and clearly states the 

asymptotic variances and covariances of both canonical correlations and vectors derived from 

the sample covariance matrix. It is not without interest to have information on the asymp­

totic variance of the canonical vectors since it allows, for example, to compute (asymptotic) 

standard errors around the coefficients of the canonical vectors. Since these coefficients are 

often interpreted as the contributions of the original marginal variables to the canonical 

vectors, it is useful to check on their significance. 

In this paper a full treatment of the asymptotic distribution of the canonical correlations 

and canonical vectors derived from any regular affine equivariant scatter matrix estimator is 

given. Results do not only hold at the normal, but at any elliptical distribution where the 

scatter matrix being used is well defined and asymptotically normal. Moreover, we allow for 

a different dimension of the two multivariate variables :z: and y, a situation often occuring 

in practice. The advantage of working with shape matrices, yielding standardized canonical 

vectors, has also been pointed out. Also here, a full treatment of the asymptotic distribution 

of the canonical correlations and standardized canonical vectors derived from any regular 

affine equivariant shape matrix estimator has been presented. 
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Table 5: Canonical correlation and vector estimates for the Linnerud data given by the 

classical shape matrix, the SCM-, the S-, the RMCD- based, Tyler's, and the MCD-based 

shape matrix. The standard deviations are reported between parentheses. 

Classical SCM S 
r 0.796 0.201 0.073 0.774 0.168 0.010 0.768 0.122 0.036 

(0.082) (0.215) (0.222) (0.090) (0.218) (0.225) (0.093) (0.223) (0.226) 
~* a 1 0.332 -5.213 0.087 0.336 -5.432 0.128 0.336 -5.552 0.112 

(0.154) (1.069) (0.271) (0.163) (1.141) (0.287) (0.176) (1.228) (0.318) 
~* 
a2 -0.807 3.897 -0.339 -0.741 4.247 0.355 -0.562 3.518 0.813 

(0.186) (2.750) (2.050) (0.475) (1.988) (2.004) (1.444) (7.155) (3.086) 

as 0.082 -1.670 -1.540 -0.342 0.733 -1.516 -0.682 3.290 -1.462 

(1.097) (5.485) (0.510) (0.998) (5.906) (0.526) (1.202) (7.664) (1. 741) 
~* 

b1 0.699 0.178 -0.148 0.719 0.178 -0.150 0.584 0.182 -0.150 

(0.476) (0.044) (0.047) (0.495) (0.044) (0.052) (0.484) (0.044) (0.055) 

b; -0.751 0.021 0.219 -0.956 0.036 0.221 -1.415 0.052 0.213 

(3.457) (0.283) (0.127) (3.228) (0.260) (0.164) (4.361) (0.373) (0.327) 

b; 2.592 -0.209 0.086 2.436 -0.192 0.117 2.063 -0.175 0.153 

(1.101) (0.065) (0.300) (1.345) (0.076) (0.299) (3.026) (0.126) (0.455) 

RMCD Tyler MCD 

r 0.826 0.431 0.110 0.801 0.084 0.014 0.868 0.442 0.144 

(0.078) (0.199) (0.241) (0.092) (0.256) (0.258) (0.092) (0.302) (0.367) 
~* 
al 0.432 -7.402 0.275 0.271 -5.825 -0.006 0.328 -6.479 0.443 

(0.192) (1.676) (0.352) (0.192) (1.465) (0.325) (0.225) (2.112) (0.426) 

a2 0.715 4.963 -1.581 0.741 -4.406 1.633 -0.552 3.668 -1.516 

(0.347) (3.206) (0.333) (1.965) (11.533) (1.157) (0.634) (5.217) (0.481) 
~. 

a3 0.523 -3.114 -0.355 -0.611 3.542 0.351 -0.683 4.629 0.255 

(0.465) (3.799) (0.977) (2.386) (14.307) (5.253) (0.577) (4.672) (1.480) 

~ 0.154 0.191 -0.195 0.304 0.187 -0.200 0.362 0.161 -0.157 

(0.343) (0.036) (0.077) (0.382) (0.045) (0.076) (0.430) (0.049) (0.093) 

b; 0.675 0.030 -0.315 -1.650 0.080 0.179 0.341 0.054 -0.312 

(1.026) (0.090) (0.097) (3.331) (0.482) (0.976) (1.657) (0.130) (0.118) 

b; 1.825 -0.109 0.087 1.035 -0.149 0.304 1.877 -0.117 0.055 

(0.507) (0.062) (0.203) (5.310) (0.266) (0.583) (0.583) (0.092) (0.309) 

24 



Classical 

; " 

S 

o 00 

; " 

o 0 

Tyler 

o 
o 

SCM 

RMCD 

MCD 

o '" 

o 
o 

, 0 

o 

Figure 1: Scatterplot of the first canonical variates based on classical and robust shape 

matrices. 
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Appendix 

Proof of Theorem 1 The canonical variates z' follow an elliptical distribution F' with 

C(F') as described at the beginning of Section 3.2. Then there exists a symmetric positive 

definite matrix H = C(F')-1/2 such that Za = Hz' follows a spherical distribution Fa. Write 

r2 = II zall 2 = z,TC(F')-lZ' and za/lizall = (sT,tTf. Then rand (ST,tT) are independent 

and the latter variable is uniformly distributed at the periphery of the k-variate unit-sphere. 

It turns out to be convenient to write canonical variates as functions of spherical variables: 

(11) 

where 

H-1 = (L:~=1 Hj 0) 
o I q_ p 

and Hj is a 2p x 2p matrix with four non-zero elements namely [Hj]i,i = [Hi]p+i,P+i = 
(1 + 6.n-1/2 and [Hj]i,p+i = [Hi]p+i,i = 6.i (l + 6.D-1/2 , where Pi = 2.6.i (1 + 6.;)-1 for 
1 ~ i ~ p. The Mahalanobis angle of z' equals then (uT, VT)T = H-1(ST, tT)T. 

Equation (4) gives 

and affine equivariance of C yields 

IF(z';C,F') = H-1IF(Hz';C,Fa)(H-1f 

=1c(r) (:) (uT ,vT )-8c(r) CR~~f (R,O)) . 
Iq 

(12) 

Combining (12) with the formulas derived before stating the theorem already yield the 

expressions for the influence functions at F'. 

Write now R(G), A(G) and B(G) as R(XT,yTf, A(XT,yT)T and B(XT,yTf if the cdf 

of (xT, yT)T is G. The affine invariance and equivariance properties imply then 

R(xT, yT)T = R(AxT, ByTf 

A(xT,yTf = AA(AxT,ByTf 

B1(XT,yT)T = BB1(AxT, ByTf· 
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for every p x p matrix A and every q x q matrix B. Then by the definition of the influence 

function and equivariance and invariance properties we have 

IF(z; R, F) = IF(z'; R, F'), 

IF(z; A, F) = lim A(FE) - A(F) = lim A((l- E)F + E~%) - A(F) 
E~O E E~O € 

= A(F) lim A((l- €)F' + €~%I) - A(F') = A(F)IF(z'; A, F') 
E~O € 

and similarly 

IF(z;B1,F) = B(F)IF(z';BbF'). 

From the above relations between the influence functions at F and F', the desired influence 

functions follow. 

Proof of Theorem 2 First note that the canonical correlations derived from V or the 

associated scatter matrix C are the same. Therefore it follows form Theorem 1 and (6) that 

IF(z'; R, F') = 'Yv(r)H1(u,v; R). 

By Theorem 1 the influence functions of A* = [Det(C)j1/2k A and Bi = [Det(C)J1/2k Bl are 

IF(z'; A*, F') = [Det(C(F'))j1/2k IF(z'; A, F') + A(F')IF(z'; [Det(C)j1/2k, F') 

= IIp - R211/2k [IF(Z'; A, F') + 2~ IIp - R21-1 IF(z'; Det(C), F')] 

I 211/2k [ 1 1 1] = Ip - R 'Yc(R)H2(u, V; R) + '2 tlc(r)Ip + 2k 'Yc(r)Ip - 2'tlc(r)Ip 

= IIp - R211/2k 'Yv(r) [H2(U, V; R) + 2~Ip] , 

where it was used that IF(z';Det(C),F') = Det(C(F'))IF(zo;Det(C),Fo) together with 

(5). Similarly 

IF(z'; B~, F') = IIp - R211/2k 'Yv(r) [H3(U, V; R) + 21k (;) ] . 

The affine invariance and equivariance properties of the functionals R, A* and B* yield 

R(a;T, yTf = R(Aa;T, ByTf 

A*(a;T, yTf = IIp - R21-1/2k AA*(Aa;T, ByTf 

B~(a;T, yTf = IIp - R21-1/2k B B~(Aa;T, ByT)T. 
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for every p x p matrix A and every p x q matrix B. SO at elliptical F the influence functions 

become 

and 

IF(z; R, F) = IF(z'; R, F') = iv(r)Hl(u, v; R), 

IF(z; A*, F) = IIp - R21-l/2k A*(F) IF(z'; A*, F') 

= A*(Fhv(r) [H2(U,v; R) + 21k1p] 

IF(z;Bl,F) = B*(Fhv(r) [H3(V,V;R) + ;k (;)]. 

Proof of Theorem 3 The asymptotic normality of R, A and Hl follows simply by the 

delta-method, see for example Anderson (1999). The asymptotic variances are obtained by 

using Theorem 1 and the following property of vec-operator: vec(BC D) = (DT ® B)vec( C). 

Consider for example the asymptotic variance of A(F). Write 

Then 

IF(z; A, F) = A(F) [iC(R)H2(U, v; R) + ~c5c(r)Ip] := AJ. 

ASV(A; F) = E [vec{AJlp}vec{AJlpV] 

= E [(Ip ® A)vec{J} [(Ip 181 A)vec{J}f] 

= (Ip 181 A)E [vec{J}vec{J}T] (Ip 181 AT) 

= (Ip 181 A)ASV(A; F')(Ip 181 AT). 

Proof of Theorem 4 As the proof of Theorem 3. 

Proof of Theorem 5 Consider for example the limiting variance of Ti, for an 1 :::: i :::: p. 

Theorem 4 gives 

ASV(r;; F') = E[IF(z'; ~i' F'?] = E b~(r)Hl(u, v, R(F')ti] 

= E[i~(r) ( UiVi - ~PiUt - ~Pivt) 2] 
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Use now the transformation given in the first paragraph of the proof of Theorem 1: 

where Si and ti are different marginals of a vector distributed uniformly on the periphery 

pf the k dimensional unit sphere, and also independent of r. Then, after some tedious 

calculations, 

ASV(ri; F') = (1- pn2 Eb~(r)]E[s~t;] 

= (1 _ p2)2 E bb(r)] 
, k(k + 2) 

= (1- pn2ASV(C12 ;Fo). 

When carrying out the calculations, symmetry properties of Si and ti can be used, together 

with E[st] = 11k, E[st] = 3/(k(k + 2)), and E[s~t~] = I/(k(k + 2)) (see lemma 5 in Ollila et 

al.,2003b) 

Other limiting variances and covariances are obtained in a more or less similar way, by 

carefully carrying out computations along the lines above. 

Proof of Theorem 6 As the proof of Theorem 5. 
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