
DEPARTEMENT TOEGEPASTE

ECONOMISCHE WETENSCHAPPEN

ONDERZOEKSRAPPORT NR 9818

QUEUE LENGHTS AND WAITING TIMES IN THE TWO­

CLASS TWO-SERVER QUEUE WITH NONPREEMPTIVE

HETEROGENEOUS PRIORITY STRUCTURES

by

H. LEEMANS

G.DEDENE

Katholieke Universiteit Leuven

Naamsestraat 69, 8-3000 Leuven

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6468919?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ONDERZOEKSRAPPORT NR 9818

QUEUE LENGHTS AND WAITING TIMES IN THE TWO­

CLASS TWO-SERVER QUEUE WITH NONPREEMPTIVE

HETEROGENEOUS PRIORITY STRUCTURES

011998/2376118

by

H. LEEMANS

G. DEDENE

Queue Lengths and Waiting Times in
the Two-Class Two-Server Queue

with Nonpreemptive Heterogeneous
Priority Structures

H. Leemans
G. Dedene

Abstract

Our aim is to analyze a multiserver queue with nonpreemptive het­
erogeneous priority structures, which arises in the performance eval­
uation of batch initiator settings in MVS. We use matrix-geometric
methods and derive the stationary distribution of queue lengths and
waiting times for the Markovian two-class two-server case.

1 Introduction

Priorities arise very naturally in many real life queueing applications. Also,
in many of these applications, the system consists of more than one server.
Customers typically belong to a specific class and observe the same priority
structure on all servers. However, it also happens that the priority struc­
ture differs amongst the servers of the same system. Such models arise in
batch job processing within the mainframe operating system MVS. Batch
jobs are divided in classes based on their resource requirements (e.g. cpu
seconds, memory requirements, ...) and they are executed in separate ad­
dress spaces, called initiators. The number of initiators has to be defined by
the performance manager; this definition includes a list of classes the initiat­
ors are allowed to execute. A simple initiator definition example, with only
four initiators and four job classes, is shown below.

1

INITDEF

INITOOl

INIT002

INIT003

INIT004

PARTNUM=4

CLASS=AB, START, NAME=I1

CLASS=AB, START, NAME=I2

CLASS=CD, START, NAME=I3

CLASS=DC, START, NAME=I4

The order in which the classes are listed imposes a priority structure on the
classes. In the example above, class A has priority over class B on initiators
I1 and 12; the priority structures on these initiators are homogeneous. Ini­
tiators 13 and 14 are defined to execute class C and class D jobs. However,
their priority structures are heterogeneous: on 13, class C has priority over
class D, whereas class D has priority over class C on 14. The priorities are
nonpreemptive.

In practice, we typically find multiple job classes assigned to multiple
initiators with a variety of priority structures. In this paper, we restrict
ourselves to the simplified system consisting of two servers (S1 and S2) and
two job classes (A and B) as illustrated in Figure 1. On server S1, class A has
nonpreemptive priority over class B; on server S2, class B has nonpreemptive
priority over class A. Both classes have Poisson arrivals with parameters Aa
and Ab respectively. Service times are exponentially distributed with average
1/ /-la and 1/ /-lb where /-la may differ from /-lb. When both servers are idle, an
arriving job is served by the server which offers the highest priority. Service
discipline within each class is FCFS.

Figure 1: Two-class two-server priority queueing model with heterogeneous pri­
ority structures.

We analyze the queues of this model assuming that the system is stable.
We therefore require that Pa + Pb < 2, which is the well-known stability
condition for a two-class two-server queue without priorities. A proof of this
condition may be given using an argument of drift. See Gail et al. [GHT88],
as well as Leemans [Lee98] for details.

Multiserver priority queueing models have been analyzed before. The
two-class Markovian multiserver queue with homogeneous priority structures

2

has been solved exactly by Gail, Hantler and Taylor [GHT88, GHT92] and
Mitrani and King [MK81] using classical transform methods. Our model
differs from those models in that our priority structures are heterogeneous.
Two-class Markovian queues with heterogeneous priority structures have been
studied by Fayolle and Iasnogorodski [FI79] (two coupled processors) and
Fayolle, King and Mitrani [FKM82] (two-class MIMic with mixed prior­
ities) using the boundary value approach. Those models differ from our
model in that their priorities are preemptive and therefore, the state space
is two-dimensional. As we shall see, our two-class model with nonpreempt­
ive priorities has a three-dimensional state space, for which the boundary
value approach is no longer directly applicable. Moreover, these methods
only consider the stationary distribution of queue lengths.

All of these models have later been analyzed with matrix-geometric meth­
ods, mainly to illustrate the power and elegance of this method (see Kao and
Narayanan [KN91]' Miller [Mi192] and Rao and Posner [RP86]). We also
apply matrix-geometric methods to analyze the queues of our model and we
derive the stationary distribution of queue lengths and waiting times. The
remainder of this paper is organized as follows. In Section 2, we define the
matrix-geometric model and we show how the joint stationary distribution
of queue lengths is obtained. Using these results, we establish in Section 3
an algorithm to obtain the stationary distribution of waiting times. The
algorithm is illustrated with with some numerical results.

2 Stationary Distribution of Queue Lengths

Let us denote the state of the system by the tuple (na,nb,x,y), where na
and nb respectively represent the number of class A and class B jobs in the
system (in the queue or in service). As such, na and nb can take the integer
values 0,1,2, ... The indices x and y refer to the class of job that is being
served on 51 and 52 respectively. Consequently, their values may be A, B
or 0; the latter indicates that the respective server is idle. It is necessary
to include this information as a third dimension in the state description:
the server that becomes idle determines the class that is served next and
influences the path that is followed through the chain and therefore also the
stationary distribution of queue lengths.

By ordering the states lexicographically, we find that the generator matrix

3

for this Markov process has the following structure:

Boo BOl
BlO Bl1 BI2

B2I Al Ao
Q= A2 Al Ao (1)

A2 Al

The entries of Q are infinite blocks, each corresponding with a group of states
with the same value of n a , called a level. Formally, the level £(i) is defined
as {(na, nb, x, y)lna = i, 0 :::; nb}. Within each level, we find groups of states
with the same value of nb, called the major phase. Formally, the major
phase w(j) within the level£(i) is defined as {(na,nb,x,y)lna = i,nb = j).
Finally, each major phase has a number of minor phases, representing all
valid combinations of values for x and y. The minor phases for each major
phase within each level are shown in Table 1. It is easy to see that the levels
£(0) and £(1) are different from the levels £(i), i ?: 2. The levels £(0) and
£(1) are therefore called the boundary levels; the levels £(i), i ?: 2, are the
homogeneous levels.

level
£(0)
£(1)
£(i), i > 2

w(O)
(0,0)
(A, 0), (0, A)
(A,A)

w(l)
(0, B), (B, 0)
(A, B), (B, A)
(A, A), (A, B), (B, A)

w(j),j > 2
(B,B)
(A, B), (B, A), (B, B)
(A, A), (A, B), (B, A), (B, B)

Table 1: Number of minor phases for each major phase within each level.

The matrix Q is the generator of a Quasi-Birth-and-Death (QBD) pro­
cess. Transitions are only allowed between neighboring levels, or between
adjacent major phases within the same level. The matrices BOl , BI2 and
Ao describe the rates at which the process moves to a higher level; B lO , B21
and A2 represent transition rates to a lower level; Boo, Bl1 and Al indicate
the transitions within the level. The structure of the matrices Ao, Al and
A2 is shown below. Empty positions indicate that no transition is possible
between the corresponding major phases. The block 6* denotes an appro­
priately sized diagonal matrix, the elements of which are such that the row
sums of Q equal zero.

4

/':,* LBO

[LAO J MBO /':,* LEl
LAl MEl /':,* LB

AD = LA A l =
MB /':,*

[MAO J MAl
A 2 = MA

with

LAO = Aa, LAl = Aah, LA = AaI4,

[A, 1 LBO = [Ab .J, LEl = : Ab LB = AbI4,
Ab

["" /l-a J, ["" /l-a "" l MAO = 2/l-a, MAl = /l-a M A = /l-a

Mno = [~:J. MBl =
[I"

/l-b J ME = [p,
/l-b J /l-b /l-b

The states in the subblocks of Ao, Al and A2 are ordered lexicographically,
as in Table 1. Zero elements in these subblocks are indicated by a dot. The
structure of the boundary matrices (Boo, BOl , B lO , B ll , B12 and B 21) is more
messy and is therefore omitted here; details may be found in [Lee98].

Neuts [Neu81] has shown that the invariant probability vector 71 of a
QBD has a matrix-geometric form. For our model, it means that

Ri-2
7Ii = 712 , i 2: 2, (2)

where 7Ii is the subvector of 71 corresponding to the level.€(i); it is in turn
composed of subvectors 7Ii,j corresponding to each major phase w(j) and
containing one entry for each minor phase. R is the rate matrix; it is the
minimal nonnegative solution to the matrix-quadratic equation

5

The boundary probability vectors 7ro, 7r1 and 7r2 are defined by solving

7roEoo + 7rIElO 0,

7roEO! + 7rIEll + 7r2E21 0,

7rIEl2 + 7r2(AI + RA2) 0,

7rol + 7r11 + 7r2(I - R)-II 1.

Several algorithms have been developed to determine the rate matrix of a
QBD, the most efficient one so far being the algorithm LR (the Logarithmic
Reduction algorithm, see Latouche and Ramaswami [LR93]). The algorithms
apply for finite as well as for infinite A-matrices, but a numerical implement­
ation requires them to be finite. We shall therefore have to truncate on the
major phase in each level, more specifically, we shall not allow the number
of class E jobs in the system to exceed !vI. The effect of this truncation on
the results of the analysis is discussed in Leemans [Lee98] and in Leemans
and Dedene [LD98].

If we define P(i, j) as the limiting probability that na = i and nb = j, we
have that P(i, j) = 7r iZi,j, where Zi,j is a column vector of the same size as
the corresponding row vector 7ri, with ones on the positions corresponding
to the major phase 'W(j) and with zeroes elsewhere. In practice, we have
to define Zi,j for i = 0,1,2 only, because the matrix-geometric property (2)
allows us to write P(i,j) = 7r2Ri-2Z2,j, for i 2: 2.

The joint stationary distribution is thus completely determined as soon
as the rate matrix and the boundary probability vectors have been defined.
It is now also straightforward to derive the marginal stationary distributions
and their moments. We omit the details here, since they are not needed for
the derivation of the waiting time distribution in the next section.

3 Stationary Distribution of Waiting Times

The waiting time is defined as the time between the arrival of a unit to
the queue and the moment at which it enters service. Ramaswami and Lu­
cantoni present in [RL85] an efficient algorithm for the derivation of the
complementary distribution function of stationary waiting times in phase­
type queues and QBD processes; their algorithm is based on the technique of
tagging and randomization. We adapt this algorithm here to account for the
paths through the messy boundary states and we establish a set of recursion
formulas for the complementary waiting times.

Consider a tagged job of class A entering the system. Its waiting time is
first of all determined by the number of class A jobs waiting upon its arrival.

6

All further class A arrivals have no influence on its waiting time; therefore
we set Aa = o. Consequently, the matrices Ao, BOl and B 12 , representing
transitions to a higher level, become zero matrices.

Waiting is over if the tagged job enters service; the states in which this
occurs are the absorbing states and the waiting time is simply the time until
absorption. Some of the states in the boundary levels £(0) and £(1) are
absorbing states, while other states are non-absorbing. The absorbing states
in £(0) and £(1) are aggregated into one absorbing state *:

* = {(O, 0, 0, 0), (0, 1,0, B), (0, 1, B, 0), (1, 0, A, 0), (1, 0, 0, An.

If the tagged job, for example, finds only class B jobs and no class A jobs
present, which means that the process starts in £(0), then still, the class
A job must wait until one of the class B jobs leaves since priorities are
nonpreemptive. Or, if on the other hand, the process starts in £(1) with
no class B jobs present, the tagged class A job is immediately served (zero
waiting time). We emphasize that, here, the level indicates the number of
jobs of class A ahead of the tagged job, not the total number of class A jobs
as in the previous section. The probability of starting in * is then given by
Pr(*) = 110,0+110,11+111,01; this is the stationary probability liV(O) that there
is no waiting at all. The absorbing states in * are removed from £(0) and £(1)
and from their probability vectors 110 and 111, so that iro = (110,2,110,3, ...)

and ir1 = (111,1,111,2, ...).

The generator for this service process is now given by

0 0
bo Boo 0
b1 BIO Bll 0

Q= b2 B21 Al 0 (3)

A2 Al

The first row and column correspond to the absorbing state *. The column
vectors bo, b1 and b2 contain elements that indicate transitions from £(0), £(1)
and £(2) into the absorbing state *. We omit the details on the structure of
the vectors bo, bi and b2 and of the matrices Boo, BIO , Bll and B2I ; they are
presented in [Lee98J. The matrix Al in (3) is equal to Al in (1), with Aa = o.

Vve now apply the technique of randomization, i.e., we uniformize the
service process with a Poisson process with rate e = maxi(-Q)ii, so that the

7

generator is transformed into the discrete time transition probability matrix

1 -
[{ = (jQ + I,

1 0
Co [{oo

Cl [{10 [{U
C2 [{21 [{I

[{2 I{1

In this uniformized process, points of a Poisson process are generated with
rate 8 and transitions occur at these epochs only. The probabilities that, at
such an epoch, a transition is made towards a lower level are given by [{2 for
all £(k) (k > 2), [{21 for a transition from £(2) to £(1), or [{10 for a transition
from £(1) to £(0). The probabilities that, at such an epoch, a transition only
involves a change in the major phase are given by [{I for all £(k) (k ~ 2),
[{ll for £(1), or [{oo for £(0). From this transition matrix, we calculate the
stationary probabilities P[W ~ xl that the process is not absorbed at time
x. The probability that n Poisson points are generated in time x equals
e-ex(8x)njn!. Then, the process that starts in £(k) is not absorbed at time
x if at most k of the n transitions generated in time x involve a decrease of
the level.

We now define the matrix Tin) to be such that it records the probability
that the process goes down i homogeneous levels in n steps. It is easy to see
that

with

T (n) _ T(n-l) T/ + T(n-l) ["
i - i~1 1't2 i 111,

T(n) = { I,
~ 0,

i = n = 0,
n > i.

(4)

We also define the matrix it); this matrix records the conditional probability
that the process goes down to £(i), i = 0 or 1, in n steps, given that it started
in f(k):

with

r.-(n) - r.(n)
2,2 - 0

T-(n-l) 1>~ + T-(n-l) F
k,i+l 1ii+l,i k,i iiii, k<2 - ,

Tk - 2 ® T2 ,i, k > 2,

and T(n) = { I,
k,z 0 ,

i = k AND n = 0,
i > k OR n > k - i.

8

(5)

(6)

Expression (6) requires a few words of explanation. If the process starts in
a level £(k), k > 2, and goes down to a level £(i), i = 0 or 1, it makes a
number of transitions through the homogeneous levels first and goes further
down then to, or through, the boundary levels. The transition matrices for
the boundary levels differ from the transition matrices in the homogeneous
levels. Therefore, we write the probability of going down from £(k), k :::: 3,
to £(i), i = 0,1, in n steps as the probability of going down to £(2) first and
then moving from f(2) to f(i). This is denoted in (6) by the convolution (0).
We may now also write (6) as

n
T-(n) _ "T(t-l)}, T-(n-t)

k,t - 6 k-3 '"2 2,t . (7)
t=l

This equation gives the probability that - for any value of t (1 ::; t ::; n) -
the process is in f(3) at time t - 1 (given by T1~-;1)) AND goes down to f(2)
for the first time at time t (given by K 2) AND goes down to f(i) in n - t steps
(. b T-(n-t)) gIVen y 2,; .

Let W k(x) denote the conditional probability that the process is not
absorbed at time x, given that it starts in f(k). The probability that the
process starts in f(k) is - by the PASTA property - given by 7rk, as derived
in the previous section. The stationary probability VV(x) that a unit of class
A has to wait more than x units of time before entering service is then clearly
given by

00

W(x) = L 7rkTVk(X) 1.
k=O

As it was shown in [RL85],

(8)

The series dn is calculated only once for all values of x. The infinite sum in (8)
is truncated at n = N so that dN < c, with c arbitrarily small. The smaller
c, the higher the accuracy of the waiting time distribution. The stationary
waiting time distribution is then simply

{
I - W(x),

Hf(x) =-
Pr(*),

Vx> 0,
(9)

x = O.

We now derive an expression for dn . From the definition of the service
process, we know that it is absorbed when it enters the state *. If the process

9

starts in £(0), it is not absorbed until it goes one level down. If the process
starts in £(k), it can go down at most k levels without being absorbed in *.
vV (x) is then written as the sum of

iroW o(x)l: the probability of starting in one of the
non-absorbing states of level £(0)
and not being absorbed at time x,

irl WI (X) 1: the pro babili ty of starting in one of the
non-absorbing states of level £(1)
and not being absorbed at time x, and

:Zk=2 7rkWk(x)l: the probability of starting in a level £(k), k 2 2
and not being absorbed at time x.

Starting from £(0), the process is not absorbed at time x if it has not gone
down in any of the n steps generated by the Poisson process with parameter
() during the interval (0, x]. The conditional probability of not going down in

n steps, given that the process started in £(0), is given by the matrix TJ~). ,
Conditioning on the number of Poisson points generated in the interval (0, x],
it follows that

- W ()1 ~ _()x(()x)n_ rf,(n)l
7ro ° X = L.. e --,-7r01.0,0,

n=O n.

From the recursion formula (5), it is clear that

t:(n) - t:(n-l) J(
0,0 - 0,0 00,

with iJ~ = I, since no transition can be made in zero steps. ,

(10)

(11)

Starting from £(1), the process is not absorbed if, at time x, it is in one
of the non-absorbing states of £(1) or £(0). The conditional probability of

remaining in £(1) in each of the n steps is given by the matrix if~); the ,
conditional probability of going down from £(1) to £(0) in n steps is given by

the matrix if~. Proceeding as for iro vVo(x) 1, we can write

- W () ~ -()x(()xt - (T-(n) T-(n))
7rl 1 X 1 = L.. e -n-,-7r1 1,1 1 + 1,0 1 .

n=O .

(12)

10

Again, from (5), it follows that

y(n-1) FT
1,1 111,

'i'(n-1) y + t(n-1) y
1,1 110 1,0 100,

(13)

(14)

with t1°! = I and t1~ = 0, since no transition can be made in zero steps. , ,

Given that the process starts in £(k) (k ~ 2), it is not absorbed if, at time
x, it is in some homogeneous level between £(k) and £(2), or in one of the
non-absorbing states of the boundary levels £(1) or £(0). The probability of
starting in £(k) and going down at most k - 2 homogeneous levels in n steps
is given by

k-2
7r 2 R k - 2 LT}n)1. (15)

i=O

The probability of starting in £(k) and going down to £(1) in n steps is

Rk - 2T-(n)1
7r2 k,l' (16)

Finally, the probability of starting in £(k) and going down to £(0) in n steps
equals

Rk - 2T-(n)1
7r2 k,O' (17)

Combining (15), (16) and (17), summing over aU levels k > 2 and con­
ditioning on the number of Poisson points generated in the interval (0, xl,
2::%"=2 7r k TV k (x) 1 becomes

00 _ 00 (Bx)n L 1rkWk(x)l = L e-ex_,-1r2

k=2 n=O n.

{E R k - 2 ~ Ti(n) 1 + 6. (n)l + n(n) I} , (18)

with
00 00

6. (n) = L Rk-2t1~) and n(n) = L Rk-2'i'1~·
k=2 k=2

11

The first term in the curly braces of (18) is simplified proceeding as in [RL85],
so that

n k <Xl n

I:= Rk I:= T/n) 1 + I:= Rk I:= T/n) 1 ,
k=2 i=O k=O i=O k=n+1 i=O

since r(n) = 0 for i > n , ,
n n

I:= I:= RkT/n)1 + (I - Rt1 R n+11,
i=O k=i

. ",n T(n)
Slllce L.i=O i 1 = 1,

n

(I - Rt1 I:= RiT/n)1,
i=O

(19)

with H(n) = 2:7=0 RiTi(n). A recursion formula for H(n) is developed using
the formula (4):

n

I:= Ri (T2~;1) J{2 + T/n - 1) J{1) ,

i=O
n n-1

I:= RiTt~;l) J{2 + I:= R iT/n- 1) J{l,

i=l i=O

R H(n-1) J{ + H(n-1) J(
2 1, (20)

with H(O) = I.

Next, L~,.(n) is simplified as follows:

<Xl

'""' Rk - 2T T~ ,.,,(n) L k-2 (>9 2,1 + 1.2,1' by (6),
k=3

<Xl n
"" Rk - 2 "" T(t-l) F T~ (n-t) + ,.,,(n)
L L k-3 1\2 2,1 1. 2,1 , by (7),
k=3 t=l

n <Xl

I:= R I:= RkT~t-1) J(/fJ~-t) + Td~),
t=l k=O

n

R "" H(t-l) J{ t(n-t) + t(n) L 2 2,1 2,1 .
t=l

12

A recursion formula for 6 (n) is now established by

n-l
6 (n) = R'" H(t-l) [{ j(n-t) + RH(n-l) [{ t(O) + j(n)

~ 2 2,1 2 2,1 2,1 ,
t=l

n-1
R L H(t-1) [{2 (Td n - t - 1) [{21 + TJ,~-t-1) [{n)

t=l

+ (r. (n-1) Dr + T~ (n-l) 7: r)
o 1\.21 2,1 1'1l,

by (5) and since tJ~2 = 0,

(R ~ H(t-l) [{2TJn-t-1) + TJn-1)) [{21

t=l

6 (n) = <[>(n-l) [{21 + 6 (n-l) [{ll, (21)

The recursion (21) for 6 (n) in turn requires a recursion formula for <[>(n) ,

which is obtained proceeding as for (21) and which is given by

(22)

with <[>(0) = I.

We simplify n(n) in (18) in a similar way as we did for 6(n) and we obtain
that

n
n(n) = R'" H(t-l) [{ t(n-t) + j(n)

~ 2 2,0 2,0'
t=l

with the recursion formula

n(n) = 6 (n-1) [{10 + 0(n-1) [{OO, (23)

where 0(0) = o.

We now insert (19) into (18) and sum all components (10), (12) and (18) of
TIV(x) to find (8), with

13

(24)

The values of dn are calculated iteratively, starting with n = 0 and using the
recursion formulas (11), (13), (14), (20), (21), (22) and (23).

Note that the algorithm results in the distribution of waiting times for
the class on the level of the process. It is straightforward to derive the
distribution for the other class by simply switching the classes.

4 Numerical examples

The algorithms for the queue length and waiting time distributions are eas­
ily implemented. For the queue lengths, most of the computation effort is
spent on the calculation of the rate matrix R. It was shown in Latouche and
Ramaswami [LR93] that the execution time for the algorithm LR is O(m3),

where m is the number of phases. In our calculations, the number of iter­
ations within LR depends on the load of the class on the level, while the
computation time per iteration increases with the number of major phases,
indicated by the truncation parameter !VI. The execution time for the wait­
ing time algorithm mainly increases with the desired level of accuracy as well
as with the load of the class on the level and the number of major phases.

As an illustration, we have calculated and plotted in Figure 2 the station­
ary distribution of waiting times for class A and class B. The load of class
A is fixed and equal to 0.9, class B load is successively changed from 0.3 to
0.6 and 0.9. Class B jobs are twice as large as class A jobs, i.e., /-la = 2/-lb,
with /-la equal to unity.

The graphs clearly illustrate the effect of varying class B load on the
waiting times for class A. Unlike in the FCFS M/M/2 queue - where waiting
times are equal for both classes (see Figure 3) - the impact here is stronger
for class B than for class A. Notice also how the waiting times differ from
those of the M/M/l queue, as illustrated in Figure 4. The differences arise
from a 'limited sharing' of the servers in our model, a property that makes
of this model an appealing scheduling alternative in other situations as well.

The algorithms are readily applicable for similar models with multiple
classes and/or servers. The execution time, however, will strongly increase
as the number of minor phases in each major phase increases with each
additional class and server (see [Lee98]).

14

0.9

0.8

0.1

Waiting Time CJass A

- tho_b=0.3

... rho_b = 0.6

- - rho_b = 0.9

~~--~~~~--~--~5--~--~--~--~~
10

Time units

0.9

0.8

0.4

0.3

0.2

0.1

0
0

, , , , , ,

, ,

Waiting Time Class B

5
Time units

- rho_b=O.3

.... rho_b= 0.6

- - rho_b:: 0.9

10

Figure 2: Stationary distribution of waiting times for class A and class B with
f.La = 1, f.Lb = 0.5 and Pa = 0.9.

0.9

0.8

0.3

0.2 "

0.1

Waiting time distribution in the fefs MlMl2 queue

- rho_h=0.3

tho_b= 0.6

- - rho_b = 0.9

~L-~--~--~--~---5~~~~~~--~---"'0

Time units

Figure 3: Waiting times in the FCFS

M/M/2 queue.

Acknow ledgement

0.9

0.3

0.2

0.1

Waiting time distribution In the MfMl1 queue

-rho=O.3

..... rho::O.6

-- rho=O.9

~L-~--~--~--~--~5~~~~--~--~--~'0
Time units

Figure 4: Waiting times
M/M/l queue.

III the

The authors would like to thank Guy Latouche (D.L.B., Belgium) for his
invaluable help in this research.

15

References

[FI79] G. Fayolle and R. Iasnogorodski. Two coupled processors: the re­
duction to a Riemann-Hilbert problem. Z. WahTscheinlichkeitsth.,
47:325-351, 1979.

[FKM82] G. Fayolle, P. J. B. King, and 1. Mitrani. The solution of certain
two-dimensional Markov models. Adv. Appl. Prob., 14:295-308,
1982.

[GHT88] H. R. Gail, S. L. Hantler, and B. A. Taylor. Analysis of a non­
preemptive priority multi server queue. Adv. Appl. Prob., 20:852-
879, 1988.

[GHT92] H. R. Gail, S. 1. Hantler, and B. A. Taylor. On a preemptive
Markovian queue with multiple servers and two priority classes.
Mathematics of Operations ReseaTch, 17:365-391, 1992.

[KN91] E. P. C. Kao and K. S. Narayanan. Modeling a multiprocessor sys­
tem with preemptive priorities. Mgmt. Sci., 37(2):185-197, 1991.

[LD98] H. Leemans and G. Dedene. Bounds for the mean queue lengths in
a two-class two-server system with heterogeneous priority. To ap­
pear in PToceedings of the 2nd Intemational Conference on Matrix­
Analytic Methods in Stochastic Models, A. Alfa and S. Chakrav­
arthy (editors), Notable Publications Inc., New Jersey, 1998.

[Lee98] H. Leemans. The Two-Class Two-Server Queueing fl,fodel with
Nonpreemptive Heterogeneous Priority Structures. PhD thesis,
K.U.Leuven, Department of Applied Economic Sciences, 1998.

[LR93] G. Latouche and V. Ramaswami. A logarithmic reduction al­
gorithm for Quasi-Birth-Death processes. J. Appl. Prob., 30:650-
674, 1993.

[Mi192] D. R. Miller. Steady-state algorithmic analysis of MIMic two­
priority queues with heterogeneous servers. In R. L. Disney and
T. J. Ott, editors, Applied Probability - Computer Science, The
Interface, volume II, pages 207-222. Birkhaiiser, Boston, 1992.

[MK81] 1. Mitrani and P. J. B. King. Multiprocessor systems with pree­
mptive priorities. Performance Evaluation, 1:118-125, 1981.

16

[Neu81] M. F. Neuts. l'vfatrix-Geometric Solutions in Stochastic Models.
An Algorithmic Approach. The John Hopkins University Press,
Baltimore, Md., 1981.

[RL85] V. Ramaswami and D. Lucantoni. Stationary waiting time distri­
bution in queues with phase type service and in Quasi-Birth-and­
Death processes. Commun. Statist. - Stochastic Models, 1(2):125-
136, 1985.

[RP86] B. M. Rao and M. J. M. Posner. Parallel exponential queues
with dependent service rates. Computers and Operations Research,
13(6):681-692, 1986.

17

