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Abstract 

Our aim is to analyze a multiserver queue with nonpreemptive het­
erogeneous priority structures, which arises in the performance eval­
uation of batch initiator settings in MVS. We use matrix-geometric 
methods and derive the stationary distribution of queue lengths and 
waiting times for the Markovian two-class two-server case. 

1 Introduction 

Priorities arise very naturally in many real life queueing applications. Also, 
in many of these applications, the system consists of more than one server. 
Customers typically belong to a specific class and observe the same priority 
structure on all servers. However, it also happens that the priority struc­
ture differs amongst the servers of the same system. Such models arise in 
batch job processing within the mainframe operating system MVS. Batch 
jobs are divided in classes based on their resource requirements (e.g. cpu 
seconds, memory requirements, ... ) and they are executed in separate ad­
dress spaces, called initiators. The number of initiators has to be defined by 
the performance manager; this definition includes a list of classes the initiat­
ors are allowed to execute. A simple initiator definition example, with only 
four initiators and four job classes, is shown below. 
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INITDEF 

INITOOl 

INIT002 

INIT003 

INIT004 

PARTNUM=4 

CLASS=AB, START, NAME=I1 

CLASS=AB, START, NAME=I2 

CLASS=CD, START, NAME=I3 

CLASS=DC, START, NAME=I4 

The order in which the classes are listed imposes a priority structure on the 
classes. In the example above, class A has priority over class B on initiators 
I1 and 12; the priority structures on these initiators are homogeneous. Ini­
tiators 13 and 14 are defined to execute class C and class D jobs. However, 
their priority structures are heterogeneous: on 13, class C has priority over 
class D, whereas class D has priority over class C on 14. The priorities are 
nonpreemptive. 

In practice, we typically find multiple job classes assigned to multiple 
initiators with a variety of priority structures. In this paper, we restrict 
ourselves to the simplified system consisting of two servers (S1 and S2) and 
two job classes (A and B) as illustrated in Figure 1. On server S1, class A has 
nonpreemptive priority over class B; on server S2, class B has nonpreemptive 
priority over class A. Both classes have Poisson arrivals with parameters Aa 
and Ab respectively. Service times are exponentially distributed with average 
1/ /-la and 1/ /-lb where /-la may differ from /-lb. When both servers are idle, an 
arriving job is served by the server which offers the highest priority. Service 
discipline within each class is FCFS. 

Figure 1: Two-class two-server priority queueing model with heterogeneous pri­
ority structures. 

We analyze the queues of this model assuming that the system is stable. 
We therefore require that Pa + Pb < 2, which is the well-known stability 
condition for a two-class two-server queue without priorities. A proof of this 
condition may be given using an argument of drift. See Gail et al. [GHT88], 
as well as Leemans [Lee98] for details. 

Multiserver priority queueing models have been analyzed before. The 
two-class Markovian multiserver queue with homogeneous priority structures 
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has been solved exactly by Gail, Hantler and Taylor [GHT88, GHT92] and 
Mitrani and King [MK81] using classical transform methods. Our model 
differs from those models in that our priority structures are heterogeneous. 
Two-class Markovian queues with heterogeneous priority structures have been 
studied by Fayolle and Iasnogorodski [FI79] (two coupled processors) and 
Fayolle, King and Mitrani [FKM82] (two-class MIMic with mixed prior­
ities) using the boundary value approach. Those models differ from our 
model in that their priorities are preemptive and therefore, the state space 
is two-dimensional. As we shall see, our two-class model with nonpreempt­
ive priorities has a three-dimensional state space, for which the boundary 
value approach is no longer directly applicable. Moreover, these methods 
only consider the stationary distribution of queue lengths. 

All of these models have later been analyzed with matrix-geometric meth­
ods, mainly to illustrate the power and elegance of this method (see Kao and 
Narayanan [KN91]' Miller [Mi192] and Rao and Posner [RP86]). We also 
apply matrix-geometric methods to analyze the queues of our model and we 
derive the stationary distribution of queue lengths and waiting times. The 
remainder of this paper is organized as follows. In Section 2, we define the 
matrix-geometric model and we show how the joint stationary distribution 
of queue lengths is obtained. Using these results, we establish in Section 3 
an algorithm to obtain the stationary distribution of waiting times. The 
algorithm is illustrated with with some numerical results. 

2 Stationary Distribution of Queue Lengths 

Let us denote the state of the system by the tuple (na,nb,x,y), where na 
and nb respectively represent the number of class A and class B jobs in the 
system (in the queue or in service). As such, na and nb can take the integer 
values 0,1,2, ... The indices x and y refer to the class of job that is being 
served on 51 and 52 respectively. Consequently, their values may be A, B 
or 0; the latter indicates that the respective server is idle. It is necessary 
to include this information as a third dimension in the state description: 
the server that becomes idle determines the class that is served next and 
influences the path that is followed through the chain and therefore also the 
stationary distribution of queue lengths. 

By ordering the states lexicographically, we find that the generator matrix 
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for this Markov process has the following structure: 

Boo BOl 
BlO Bl1 BI2 

B2I Al Ao 
Q= A2 Al Ao (1) 

A2 Al 

The entries of Q are infinite blocks, each corresponding with a group of states 
with the same value of n a , called a level. Formally, the level £( i) is defined 
as {(na, nb, x, y)lna = i, 0 :::; nb}. Within each level, we find groups of states 
with the same value of nb, called the major phase. Formally, the major 
phase w(j) within the level£(i) is defined as {(na,nb,x,y)lna = i,nb = j). 
Finally, each major phase has a number of minor phases, representing all 
valid combinations of values for x and y. The minor phases for each major 
phase within each level are shown in Table 1. It is easy to see that the levels 
£(0) and £(1) are different from the levels £(i), i ?: 2. The levels £(0) and 
£(1) are therefore called the boundary levels; the levels £( i), i ?: 2, are the 
homogeneous levels. 

level 
£(0) 
£(1) 
£( i), i > 2 

w(O) 
(0,0) 
(A, 0), (0, A) 
(A,A) 

w(l) 
(0, B), (B, 0) 
(A, B), (B, A) 
(A, A), (A, B), (B, A) 

w(j),j > 2 
(B,B) 
(A, B), (B, A), (B, B) 
(A, A), (A, B), (B, A), (B, B) 

Table 1: Number of minor phases for each major phase within each level. 

The matrix Q is the generator of a Quasi-Birth-and-Death (QBD) pro­
cess. Transitions are only allowed between neighboring levels, or between 
adjacent major phases within the same level. The matrices BOl , BI2 and 
Ao describe the rates at which the process moves to a higher level; B lO , B21 
and A2 represent transition rates to a lower level; Boo, Bl1 and Al indicate 
the transitions within the level. The structure of the matrices Ao, Al and 
A2 is shown below. Empty positions indicate that no transition is possible 
between the corresponding major phases. The block 6* denotes an appro­
priately sized diagonal matrix, the elements of which are such that the row 
sums of Q equal zero. 
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/':,* LBO 

[ LAO J MBO /':,* LEl 
LAl MEl /':,* LB 

AD = LA A l = 
MB /':,* 

[ MAO J MAl 
A 2 = MA 

with 

LAO = Aa, LAl = Aah, LA = AaI4, 

[ A, 1 LBO = [ Ab .J, LEl = : Ab LB = AbI4, 
Ab 

[ "" /l-a J, [ "" /l-a "" l MAO = 2/l-a, MAl = /l-a M A = /l-a 

Mno = [ ~:J. MBl = 
[ I" 

/l-b J ME = [ p, 
/l-b J /l-b /l-b 

The states in the subblocks of Ao, Al and A2 are ordered lexicographically, 
as in Table 1. Zero elements in these subblocks are indicated by a dot. The 
structure of the boundary matrices (Boo, BOl , B lO , B ll , B12 and B 21 ) is more 
messy and is therefore omitted here; details may be found in [Lee98]. 

Neuts [Neu81] has shown that the invariant probability vector 71 of a 
QBD has a matrix-geometric form. For our model, it means that 

Ri-2 
7Ii = 712 , i 2: 2, (2) 

where 7Ii is the subvector of 71 corresponding to the level.€(i); it is in turn 
composed of subvectors 7Ii,j corresponding to each major phase w(j) and 
containing one entry for each minor phase. R is the rate matrix; it is the 
minimal nonnegative solution to the matrix-quadratic equation 
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The boundary probability vectors 7ro, 7r1 and 7r2 are defined by solving 

7roEoo + 7rIElO 0, 

7roEO! + 7rIEll + 7r2E21 0, 

7rIEl2 + 7r2(AI + RA2 ) 0, 

7rol + 7r11 + 7r2(I - R)-II 1. 

Several algorithms have been developed to determine the rate matrix of a 
QBD, the most efficient one so far being the algorithm LR (the Logarithmic 
Reduction algorithm, see Latouche and Ramaswami [LR93]). The algorithms 
apply for finite as well as for infinite A-matrices, but a numerical implement­
ation requires them to be finite. We shall therefore have to truncate on the 
major phase in each level, more specifically, we shall not allow the number 
of class E jobs in the system to exceed !vI. The effect of this truncation on 
the results of the analysis is discussed in Leemans [Lee98] and in Leemans 
and Dedene [LD98]. 

If we define P( i, j) as the limiting probability that na = i and nb = j, we 
have that P( i, j) = 7r iZi,j, where Zi,j is a column vector of the same size as 
the corresponding row vector 7ri, with ones on the positions corresponding 
to the major phase 'W(j) and with zeroes elsewhere. In practice, we have 
to define Zi,j for i = 0,1,2 only, because the matrix-geometric property (2) 
allows us to write P(i,j) = 7r2Ri-2Z2,j, for i 2: 2. 

The joint stationary distribution is thus completely determined as soon 
as the rate matrix and the boundary probability vectors have been defined. 
It is now also straightforward to derive the marginal stationary distributions 
and their moments. We omit the details here, since they are not needed for 
the derivation of the waiting time distribution in the next section. 

3 Stationary Distribution of Waiting Times 

The waiting time is defined as the time between the arrival of a unit to 
the queue and the moment at which it enters service. Ramaswami and Lu­
cantoni present in [RL85] an efficient algorithm for the derivation of the 
complementary distribution function of stationary waiting times in phase­
type queues and QBD processes; their algorithm is based on the technique of 
tagging and randomization. We adapt this algorithm here to account for the 
paths through the messy boundary states and we establish a set of recursion 
formulas for the complementary waiting times. 

Consider a tagged job of class A entering the system. Its waiting time is 
first of all determined by the number of class A jobs waiting upon its arrival. 
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All further class A arrivals have no influence on its waiting time; therefore 
we set Aa = o. Consequently, the matrices Ao, BOl and B 12 , representing 
transitions to a higher level, become zero matrices. 

Waiting is over if the tagged job enters service; the states in which this 
occurs are the absorbing states and the waiting time is simply the time until 
absorption. Some of the states in the boundary levels £(0) and £(1) are 
absorbing states, while other states are non-absorbing. The absorbing states 
in £(0) and £(1) are aggregated into one absorbing state *: 

* = {(O, 0, 0, 0), (0, 1,0, B), (0, 1, B, 0), (1, 0, A, 0), (1, 0, 0, An. 

If the tagged job, for example, finds only class B jobs and no class A jobs 
present, which means that the process starts in £(0), then still, the class 
A job must wait until one of the class B jobs leaves since priorities are 
nonpreemptive. Or, if on the other hand, the process starts in £(1) with 
no class B jobs present, the tagged class A job is immediately served (zero 
waiting time). We emphasize that, here, the level indicates the number of 
jobs of class A ahead of the tagged job, not the total number of class A jobs 
as in the previous section. The probability of starting in * is then given by 
Pr(*) = 110,0+110,11+111,01; this is the stationary probability liV(O) that there 
is no waiting at all. The absorbing states in * are removed from £(0) and £(1) 
and from their probability vectors 110 and 111, so that iro = (110,2,110,3, ... ) 

and ir1 = (111,1,111,2, ... ). 

The generator for this service process is now given by 

0 0 
bo Boo 0 
b1 BIO Bll 0 

Q= b2 B21 Al 0 (3) 

A2 Al 

The first row and column correspond to the absorbing state *. The column 
vectors bo, b1 and b2 contain elements that indicate transitions from £(0), £(1) 
and £(2) into the absorbing state *. We omit the details on the structure of 
the vectors bo, bi and b2 and of the matrices Boo, BIO , Bll and B2I ; they are 
presented in [Lee98J. The matrix Al in (3) is equal to Al in (1), with Aa = o. 

Vve now apply the technique of randomization, i.e., we uniformize the 
service process with a Poisson process with rate e = maxi( -Q)ii, so that the 
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generator is transformed into the discrete time transition probability matrix 

1 -
[{ = (jQ + I, 

1 0 
Co [{oo 

Cl [{10 [{U 
C2 [{21 [{I 

[{2 I{1 

In this uniformized process, points of a Poisson process are generated with 
rate 8 and transitions occur at these epochs only. The probabilities that, at 
such an epoch, a transition is made towards a lower level are given by [{2 for 
all £(k) (k > 2), [{21 for a transition from £(2) to £(1), or [{10 for a transition 
from £(1) to £(0). The probabilities that, at such an epoch, a transition only 
involves a change in the major phase are given by [{I for all £(k) (k ~ 2), 
[{ll for £(1), or [{oo for £(0). From this transition matrix, we calculate the 
stationary probabilities P[W ~ xl that the process is not absorbed at time 
x. The probability that n Poisson points are generated in time x equals 
e-ex(8x)njn!. Then, the process that starts in £(k) is not absorbed at time 
x if at most k of the n transitions generated in time x involve a decrease of 
the level. 

We now define the matrix Tin) to be such that it records the probability 
that the process goes down i homogeneous levels in n steps. It is easy to see 
that 

with 

T (n) _ T(n-l) T/ + T(n-l) [" 
i - i~1 1't2 i 111, 

T(n) = { I, 
~ 0, 

i = n = 0, 
n > i. 

(4) 

We also define the matrix it); this matrix records the conditional probability 
that the process goes down to £(i), i = 0 or 1, in n steps, given that it started 
in f(k): 

with 

r.-(n) - r.(n) 
2,2 - 0 

T-(n-l) 1>~ + T-(n-l) F 
k,i+l 1ii+l,i k,i iiii, k<2 - , 

Tk - 2 ® T2 ,i, k > 2, 

and T(n) = { I, 
k,z 0 , 

i = k AND n = 0, 
i > k OR n > k - i. 
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Expression (6) requires a few words of explanation. If the process starts in 
a level £(k), k > 2, and goes down to a level £(i), i = 0 or 1, it makes a 
number of transitions through the homogeneous levels first and goes further 
down then to, or through, the boundary levels. The transition matrices for 
the boundary levels differ from the transition matrices in the homogeneous 
levels. Therefore, we write the probability of going down from £(k), k :::: 3, 
to £(i), i = 0,1, in n steps as the probability of going down to £(2) first and 
then moving from f(2) to f(i). This is denoted in (6) by the convolution (0). 
We may now also write (6) as 

n 
T-(n) _ "T(t-l)}, T-(n-t) 

k,t - 6 k-3 '"2 2,t . (7) 
t=l 

This equation gives the probability that - for any value of t (1 ::; t ::; n) -
the process is in f(3) at time t - 1 (given by T1~-;1)) AND goes down to f(2) 
for the first time at time t (given by K 2 ) AND goes down to f( i) in n - t steps 
( . b T-(n-t)) gIVen y 2,; . 

Let W k( x) denote the conditional probability that the process is not 
absorbed at time x, given that it starts in f(k). The probability that the 
process starts in f( k) is - by the PASTA property - given by 7rk, as derived 
in the previous section. The stationary probability VV( x) that a unit of class 
A has to wait more than x units of time before entering service is then clearly 
given by 

00 

W(x) = L 7rkTVk(X) 1. 
k=O 

As it was shown in [RL85], 

(8) 

The series dn is calculated only once for all values of x. The infinite sum in (8) 
is truncated at n = N so that dN < c, with c arbitrarily small. The smaller 
c, the higher the accuracy of the waiting time distribution. The stationary 
waiting time distribution is then simply 

{
I - W(x), 

Hf(x) =-
Pr(*), 

Vx> 0, 
(9) 

x = O. 

We now derive an expression for dn . From the definition of the service 
process, we know that it is absorbed when it enters the state *. If the process 

9 



starts in £(0), it is not absorbed until it goes one level down. If the process 
starts in £( k), it can go down at most k levels without being absorbed in *. 
vV ( x) is then written as the sum of 

iroW o(x)l: the probability of starting in one of the 
non-absorbing states of level £(0) 
and not being absorbed at time x, 

irl WI ( X ) 1: the pro babili ty of starting in one of the 
non-absorbing states of level £( 1) 
and not being absorbed at time x, and 

:Zk=2 7rkWk(x)l: the probability of starting in a level £(k), k 2 2 
and not being absorbed at time x. 

Starting from £(0), the process is not absorbed at time x if it has not gone 
down in any of the n steps generated by the Poisson process with parameter 
() during the interval (0, x]. The conditional probability of not going down in 

n steps, given that the process started in £(0), is given by the matrix TJ~). , 
Conditioning on the number of Poisson points generated in the interval (0, x], 
it follows that 

- W ()1 ~ _()x(()x)n_ rf,(n)l 
7ro ° X = L.. e --,-7r01.0,0, 

n=O n. 

From the recursion formula (5), it is clear that 

t:(n) - t:(n-l) J( 
0,0 - 0,0 00, 

with iJ~ = I, since no transition can be made in zero steps. , 

(10) 

(11) 

Starting from £(1), the process is not absorbed if, at time x, it is in one 
of the non-absorbing states of £(1) or £(0). The conditional probability of 

remaining in £( 1) in each of the n steps is given by the matrix if~); the , 
conditional probability of going down from £(1) to £(0) in n steps is given by 

the matrix if~. Proceeding as for iro vVo(x) 1, we can write 

- W () ~ -()x(()xt - (T-(n) T-(n)) 
7rl 1 X 1 = L.. e -n-,-7r1 1,1 1 + 1,0 1 . 

n=O . 

(12) 
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Again, from (5), it follows that 

y(n-1) FT 
1,1 111, 

'i'(n-1) y + t(n-1) y 
1,1 110 1,0 100, 

(13) 

(14) 

with t1°! = I and t1~ = 0, since no transition can be made in zero steps. , , 

Given that the process starts in £( k) (k ~ 2), it is not absorbed if, at time 
x, it is in some homogeneous level between £(k) and £(2), or in one of the 
non-absorbing states of the boundary levels £(1) or £(0). The probability of 
starting in £( k) and going down at most k - 2 homogeneous levels in n steps 
is given by 

k-2 
7r 2 R k - 2 LT}n)1. (15) 

i=O 

The probability of starting in £( k) and going down to £( 1) in n steps is 

Rk - 2T-(n)1 
7r2 k,l' (16) 

Finally, the probability of starting in £(k) and going down to £(0) in n steps 
equals 

Rk - 2T-(n)1 
7r2 k,O' (17) 

Combining (15), (16) and (17), summing over aU levels k > 2 and con­
ditioning on the number of Poisson points generated in the interval (0, xl, 
2::%"=2 7r k TV k ( x) 1 becomes 

00 _ 00 (Bx)n L 1rkWk(x)l = L e-ex_,-1r2 

k=2 n=O n. 

{E R k - 2 ~ Ti(n) 1 + 6. (n)l + n(n) I} , (18) 

with 
00 00 

6. (n) = L Rk-2t1~) and n(n) = L Rk-2'i'1~· 
k=2 k=2 
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The first term in the curly braces of (18) is simplified proceeding as in [RL85], 
so that 

n k <Xl n 

I:= Rk I:= T/n ) 1 + I:= Rk I:= T/n ) 1 , 
k=2 i=O k=O i=O k=n+1 i=O 

since r(n) = 0 for i > n , , 
n n 

I:= I:= RkT/n )1 + (I - Rt1 R n+11, 
i=O k=i 

. ",n T(n) 
Slllce L.i=O i 1 = 1, 

n 

(I - Rt1 I:= RiT/n )1, 
i=O 

(19) 

with H(n) = 2:7=0 RiTi(n). A recursion formula for H(n) is developed using 
the formula (4): 

n 

I:= Ri (T2~;1) J{2 + T/n - 1) J{1) , 

i=O 
n n-1 

I:= RiTt~;l) J{2 + I:= R iT/n- 1) J{l, 

i=l i=O 

R H(n-1) J{ + H(n-1) J( 
2 1, (20) 

with H(O) = I. 

Next, L~,.(n) is simplified as follows: 

<Xl 

'""' Rk - 2T T~ ,.,,(n) L k-2 (>9 2,1 + 1.2,1' by (6), 
k=3 

<Xl n 
"" Rk - 2 "" T(t-l) F T~ (n-t) + ,.,,(n) 
L L k-3 1\2 2,1 1. 2,1 , by (7), 
k=3 t=l 

n <Xl 

I:= R I:= RkT~t-1) J(/fJ~-t) + Td~), 
t=l k=O 

n 

R "" H(t-l) J{ t(n-t) + t(n) L 2 2,1 2,1 . 
t=l 
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A recursion formula for 6 (n) is now established by 

n-l 
6 (n) = R'" H(t-l) [{ j(n-t) + RH(n-l) [{ t(O) + j(n) 

~ 2 2,1 2 2,1 2,1 , 
t=l 

n-1 
R L H(t-1) [{2 (Td n - t - 1) [{21 + TJ,~-t-1) [{n) 

t=l 

+ (r. (n-1) Dr + T~ (n-l) 7: r ) 
o 1\.21 2,1 1'1l, 

by (5) and since tJ~2 = 0, 

( R ~ H(t-l) [{2TJn-t-1) + TJn-1)) [{21 

t=l 

6 (n) = <[>(n-l) [{21 + 6 (n-l) [{ll, (21) 

The recursion (21) for 6 (n) in turn requires a recursion formula for <[>(n) , 

which is obtained proceeding as for (21) and which is given by 

(22) 

with <[>(0) = I. 

We simplify n(n) in (18) in a similar way as we did for 6(n) and we obtain 
that 

n 
n(n) = R'" H(t-l) [{ t(n-t) + j(n) 

~ 2 2,0 2,0' 
t=l 

with the recursion formula 

n(n) = 6 (n-1) [{10 + 0(n-1) [{OO, (23) 

where 0(0) = o. 

We now insert (19) into (18) and sum all components (10), (12) and (18) of 
TIV(x) to find (8), with 
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(24) 

The values of dn are calculated iteratively, starting with n = 0 and using the 
recursion formulas (11), (13), (14), (20), (21), (22) and (23). 

Note that the algorithm results in the distribution of waiting times for 
the class on the level of the process. It is straightforward to derive the 
distribution for the other class by simply switching the classes. 

4 Numerical examples 

The algorithms for the queue length and waiting time distributions are eas­
ily implemented. For the queue lengths, most of the computation effort is 
spent on the calculation of the rate matrix R. It was shown in Latouche and 
Ramaswami [LR93] that the execution time for the algorithm LR is O(m3 ), 

where m is the number of phases. In our calculations, the number of iter­
ations within LR depends on the load of the class on the level, while the 
computation time per iteration increases with the number of major phases, 
indicated by the truncation parameter !VI. The execution time for the wait­
ing time algorithm mainly increases with the desired level of accuracy as well 
as with the load of the class on the level and the number of major phases. 

As an illustration, we have calculated and plotted in Figure 2 the station­
ary distribution of waiting times for class A and class B. The load of class 
A is fixed and equal to 0.9, class B load is successively changed from 0.3 to 
0.6 and 0.9. Class B jobs are twice as large as class A jobs, i.e., /-la = 2/-lb, 
with /-la equal to unity. 

The graphs clearly illustrate the effect of varying class B load on the 
waiting times for class A. Unlike in the FCFS M/M/2 queue - where waiting 
times are equal for both classes (see Figure 3) - the impact here is stronger 
for class B than for class A. Notice also how the waiting times differ from 
those of the M/M/l queue, as illustrated in Figure 4. The differences arise 
from a 'limited sharing' of the servers in our model, a property that makes 
of this model an appealing scheduling alternative in other situations as well. 

The algorithms are readily applicable for similar models with multiple 
classes and/or servers. The execution time, however, will strongly increase 
as the number of minor phases in each major phase increases with each 
additional class and server (see [Lee98]). 
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