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Abstract 

Starting from the moment generating function of the annuity certain with stochastic interest rate written by 
means of a time discretization of the Wiener process as an n-fold integral, a straightforward evaluation of the 
corresponding distribution function is obtained letting n tend to infinity. The advantage of the present method 
consists in the direct calculation technique of the n-fold integral, instead of using moment calculation or 
differential equations, and in the possible applicability of the present method to varying annuities which could 
be applied to IBNR results, as well as to pension fund calculations, etc. 

I Work performed under OT/93/5 



1. Introduction 

In the actuarial literature, the problem of how to incorporate the randomness of interest rates 
in the evaluation of actuarial quantities, has been given a lot of attention. 

Different models for modelling the interest rates, as well as other types of rates, such as 
growth rates, inflation rates, etc., are studied. A lot of papers only obtain results for first and 
second order moment of the actuarial quantities under investigation. We mention e.g. the 
papers of Beeckman and Fuelling (1990,1991). 

The papers by Yor (1992,1993), De Schepper et al (1992, 1994), give also results for the 
distribution of the annuity certain. Both authors make use of different techniques, to obtain 
the same result for the distribution. The randomness of the interest rates, is measured in both 
cases by a Wiener process. 

The problem dealt with in the present paper is the straightforward evaluation of the generating 
function of the annuity certain with random interest rate 

- fe-lit -x(t) d-r 
all II ~ " 

where x("C) represents a Brownian motion, and () denotes the risk free interest intensity. This 
means that we aim at the direct evaluation of 

by considering a discretization of the Wiener process with respect to the time variable, in n 
subintervals and subsequently letting n tend to infinity. 
The expectation can be obtained by taking the integral over XI =x(t) of the expression 

K( t ,x(t); ° ,x(O)) lim 1 
n-+CIJ ~11 v2nE 

f··· f 

as explained in De Schepper et al (1992). 

rr"-1 ~ (X-X_ 1)2 -O·E-t 
dx .. exp{ -(~ 1 J +Eue ?Ii)} 

j=1 1 j=1 2E 

The present method differs from the existing methods because straightforward evaluation of 
the (n-I)-fold intergral is presented instead of using differential equations or moment 
calculations. 

The same methods will also enable us to obtain some limiting distributions of GARCH 
processes, as will be explained in a forthcoming paper. 
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2. Transformation of the (n-l)-fold Wiener integral 

We start with the linear transformation of the variables 8j £ + x. = y. in the expression of 
/ J 

K(t,x(t);O,x(O)). This results in : 

~8'1 +8(x(l) -x(O)) 

K(t,x(t);O,x(O)) = e 2 Ko(t,x(t) +8t;O,x(O)) 

with 

Ko(t,x(t) +8t;O,x(O)) = lim 1 
n--+oo ~/l 

V21t £ 
J ... J 

In the notation of Feynman integrals extended to imaginary time, the right hand side of this 
expression can be written as follows 

(/,y{/)) I 

Ko(t,y(t);O,y(O)) = f Dy('r) exp{-!.. f y2dr - u f e-Ydt} 
(0,j.{0)) 2 ! ! 

(2) 

where 

yeO) = x(O) and yet) = x(t) + 8t 

The multiple integration in (1) is transformed by means of the coordinate transformation 
yet) = -K lnq(t) or rather in the discritized version of the coordinates y. = -K lnq .. For a 

./ ./ 

general coordinate transformation the interested reader is referred to Khandekar and Lawande 
(1986). 

and 
- q./. + q/'-I q. = . 

./ 2 
then the following approximation for 

lnq. in terms of f::..q. and q. is obtained (preserving terms up to order £2) : 
./ J./ 

Inq Inq. 
f::..q. 1 f::..q2 1 1 f::..q 3 1 2 0(£2) = + ./ J + J + - --

./ ./ 2 - 4 2 -2 8 6 -3 q. q. q . 
./ ./ J 

from which an expression for part of the argument of the exponential in (1) can be given in 
terms of the new coordinate variables qj 
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f:...q 
(~ + 

q, 
f:...q2 1 

1 

2£ - 2 q 
1 

_1 ) + 0(£3/2) 
-2 
q 

1 

In order to obtain a Wiener process, a new stochastic time is defined for the q("C) process by 
means of 

where a j denotes the new length of the time interval related to the new time variate t'. For 
symmetric reasons with respect to the indices the relation defining the new time is 
transformed as follows 

12a (f:... qy 
£ _1 (1 + J) + 0 (£ 3/2) 

-2 -2 q. 4q 
1 } 

The continuous equivalent of this time relation gives, performing the integration of the time 
relation expression the following connection between the 'old time' t and the process 
depending 'new time' t' 

As a first result of this transformation the following equality (up to terms in £3/2) is obtained: 

as well as the transformed term 

n n 
~ V 1 ~ - >;:-2 312 

U ~ Ee-' J = UK-~q. a + O(E ) 
1 1 

.1=1 i=1 

In order to be able to express the (n-l) fold integral in (1) in terms of an (n-l) fold integral 
over the q-variates, we still have to evaluate the Jacobian of the transformation 

4 



1 n dy = nn-I Kdqj nil vqjqj-I (1 + 0(£)) 
~11""-.I ~ y2n£ .1=1 .1=1 qj .1=1 Ky2ncrj 

1 11-1 11 1 
vqoqn - II dqj II (1 + 0(£)) 

K .1=1 .1=1 v2ncr 
.I 

Consequently the following intermediate result is obtained for the integrandum in the integral 
representation of Ko (t,y(t) ; O,y(O)) (before taking the limit) 

n (b.qy 
exp{ -L .I 

.1=1 2crj 

1 -- II dqj 
V2ncr j=1 

.I 

n-I 

n 1 (b.q)4 

+ L 24 -/ 
.1=1 q. cr. 

.I .I 

n 

- u12L qjK-2 cr) (1 + 0 (£)) 
.1=1 

Because still an integration over the qj 's has to be performed the second summation in the 
argument of the exponential is transformed using 

+00 k2 

f k4 e - 2<3 dk 
+00 kl ! (2cr)2 f e - 2<3 dk 

-00 -00 

such that 

+O'J k2 +00 k2 
-vk' - -31'0'-_ f e 2<3 dk = f e 2<3 dk +0 (if), as also explained in Khandekar ans Lawande (1986) 

-00 -co 

Consequently within the integrand of the (n-l) fold integral, taking into account q 2 
.I 

1 b.q4 1 cr 
the factor exp(- __ .I ) may be changed into the form exp(- _.I ). 

24 -2 8 - 2 
qFj q, 

(I 

One still has to connect the old time t to the new time t' by means of the relation t= f 0dr . t q 2( -r;) 
This can be done introducing a 8-function, and we make use of following relation 

[
{I 1 +00 . ( Ir d K' ) 

8 t - f d-r;~ = _1_ f e {a (- t t q2(t) da 
~ q2(-r;) 2n -00 

Performing the additional integration over the stochastic time 1', we obtain an integrandum 
of the following form 

5 



+00 

f dae iu, 

J 
-00 

1 

Integrating with respect to qj 's, we obtain the following result in terms of the notation used 
in (2) . 

We use the notation D + q( "C) to indicate that the integrations over q, only have to be performed 
over R+. 

Finally, performing the additional integration over XI' we obtain the following result for the 
generating function of an annuity certain with the random interest is described as a Wiener 
process: 
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3. Analytical results 

For special choices of the parameter value K, some tractable integrations over q are obtained. 
Indeed, for the choice K=4, a special case of theorem 1 of Vanneste et al is applicable. In this 
case, we find the following result : 

I I co +00 Cf) 1 I 

M(u)=E[e -ua,lR IX(O) =XO] = ~ e 8'"2+°8 L dx,eO(x,-X,,) L dae ia, ! dt' e 8 x"+8-" 

(I ',exp( -x/4-01/4)) I I 

f D+qCt)exp{ - ~ f q2 dr: + r d: (~ -16ia) - 16u f q2dr:} 
(O,expLi4)) t t q t 

Theorem 1 of Vanneste et al can be applied. In this case , we have 

g = 16ia - ~ 
8 

and 

vCt) = 32 vCr:) giving llCt) sinh(4~T) and ~(T) = cosh(4~ T), 

4~ 

This gives the following result for the moment generating function : 

with 

Z = XI + 8t and T sinh(4~t) 

and Ik(x) denotes as usual a modified Bessel function. 

Transforming the Fourier transform with respect to a into an inverse Laplace transform with 
respect to s, the same original function is obtained in case the imaginary argument of the 
Fourier transform is considered as the variable of the image function in the Laplace transform. 
Hence, one obtains : 
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The inverse Laplace transform with respect to s can be worked out based on a result given 
in De Schepper (1994) resulting in 

_8' !.... 
M(u) 4Vu 1 

-- --e 2 e 1 ~r;;:l x" 
exp{ -2 V2u (e 2" + e :)} 

{inyt T2r;;:l 
00 -8y' 16 1 _ x" _ = 
f dy e-(- sinhy sin(~) exp{ -4{i; -e 4" 4coshy} 
~ t T 

One is still faced with one additional Laplace inversion with respect to u ---+ x 

with 

A = 2{2 r;;:l (e-~ 
·F 

One finally obtains: 

5 A' 1 --__ (A2_2x) x 2 e 4x 

4{i 

= ~I : 

+ e "2) + 4{2 ..!. e 4" "4 coshy 
T 

T 

On the other hand, if we take K to be equal to 2, the complexity of the problem in our present 
setting diminish substantially. We have 
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1 ." 1 8 I '" CI) I I 

JvJ(u) = E[e- lIa'l"lx(O)=xoJ = -;/'2+ 41, dx1eI'J...x,-t,,) L dae ial I dt'e-4Z1I'e4X"+4X' 

(t ',exp{ -x/2 -0(/2» I 1 

,f . J D+q(T)exp{ - ~ r q2 dT + f d~ (~ -4ia)} 
(O,exp -.,,,!_» t t q 

Theorem 1 of Vanneste et al can be applied with V(T) 0 giving 11(T) = T and S(T) 1, 
resulting in 

where 

z = xt + 8 t and 4t' = x 

In this case, we find immediately the inverse with respect to u. On the other hand, let~-' 
denote the inverse Laplace transform, then we get (transforming the Fourier transform into 
a Laplace transform) : 

from this we find the same result, as obtained by A. De Schepper (1994), using differential 
equations, and by M. Yor (1993) : 

-fi" ~ 2rr2 ex:> Xo = 
e 2 elf dze 8(=-xo) e 2' '2 

-00 

v2 4 _ .fU _:: 

-2::..... -_" -,- ., coshy 4rcy 
dy e 1 e x sinhy sin(-_) 

t 
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