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Abstract

The vast majority of research efforts in project scheduling concentrates
on developing procedures to generate workable baseline schedules that mini-
mize the project makespan in a deterministic environment. However, a
real-life project is inevitably subject to uncertainty during execution. This
dissertation aims to introduce procedures that cope with disruptions during
execution. We limit ourselves to the treatment of time uncertainties caused
by the fact that actually realized activity durations during project execution
may deviate from the expected activity durations.

When dealing with uncertainty in a scheduling environment, there are,
generally spoken, two main approaches. Proactive scheduling focuses at in-
corporating safety in the schedule to absorb future disruptions, while reactive
scheduling denotes how to react when a disruption occurs. Both approaches
are inescapably related. We will investigate how several proactive-reactive
scheduling decisions can help a project manager to increase the quality of a
project.

The text of this dissertation is organized as follows. Chapter 1 in-
troduces the problem of proactive-reactive project scheduling and situates
it in the extensive project scheduling literature. Chapter 2 formulates the
problem at hand and defines the concepts required in the remainder of the
thesis. The trade-off between makespan and stability in project scheduling
of Chapter 3 justifies the research efforts made in Chapters 4, 5 and 6 to
add safety to the baseline schedule. Mainly two approaches to add safety
are discussed in this thesis. First, a schedule is made proactive in Chapter 4
by deciding how the resources flow throughout the project. Next in Chapter
5, we develop efficient and effective procedures to add idle time (buffers)
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Abstract

into a schedule to anticipate unforeseen events. Chapter 6 contains an ex-
tension of Chapters 4 and 5 by merging scheduling, resource allocation and
buffer allocation decisions into an integrated approach. The reactive proce-
dures that are required to decide how to react to disruptions that cannot
be absorbed by the baseline schedule are introduced in Chapter 7. In Chap-
ter 8 an extensive simulation-based experiment is set-up to evaluate several
predictive-reactive resource-constrained project scheduling procedures pro-
posed in the previous chapters. Chapter 9 applies the proactive-reactive
project scheduling methodology to a real-life project that stems from our
experience in the Belgian construction industry. Accordingly, a risk manage-
ment framework is introduced to detect and analyze the risks that constitute
the uncertainty implied in the project. In a last chapter, some overall con-
clusions and recommendations are provided.
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Samenvatting

Het merendeel van de onderzoeksinspanningen in projectplanning heeft
de ontwikkeling van een werkbaar basisplan met een zo kort mogelijke duur-
tijd van het project tot doel. Hierbij wordt vaak uitgegaan van de veronder-
stelling dat de duurtijden van de activiteiten gekend en deterministisch zijn.
Een realistisch project zal echter steeds onderhevig zijn aan verstoringen.
In deze thesis worden procedures voorgesteld die helpen om met zulke ver-
storingen om te gaan. We beperken ons onderzoek tot de behandeling van
onzekerheid ten gevolge van activiteiten die tijdens de uitvoering langer of
minder lang blijken te duren dan oorspronkelijk verwacht.

Men kan twee denkrichtingen onderscheiden om met onzekerheid om te
gaan in een project. Proactief plannen probeert op toekomstige verstoringen
te anticiperen door veiligheid in het projectplan in te bouwen, terwijl de re-
actieve tegenhanger voorschrijft hoe te reageren op een zich voordoende ver-
storing. Beide benaderingen zijn onvermijdelijk verbonden. In deze thesis
wordt onderzocht hoe proactieve en reactieve planningsbeslissingen project-
managers kunnen helpen om de kwaliteit van een project te verhogen.

De indeling van de thesistekst is als volgt. Het eerste hoofdstuk leidt
het proactieve-reactieve planningsprobleem in en geeft een situering in de
reeds bestaande literatuur omtrent projectplanning. Hoofdstuk 2 geeft een
formele beschrijving van het onderzochte probleem en definieert een aan-
tal concepten die in de volgende hoofdstukken veelvuldig zullen gebruikt
worden. De afweging tussen de verwachte duurtijd en de robuustheid als
prestatiemaatstaven van een projectplan wordt besproken in Hoofdstuk 3
en zet ons aan tot de verdere ontwikkeling van robuuste planningsmethoden
in Hoofdstukken 4, 5 en 6. Twee benaderingen om veiligheid in een basis-
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Samenvatting

plan in te bouwen worden besproken in deze thesis. Ten eerste wordt een
plan in Hoofdstuk 4 proactief gemaakt door vast te leggen hoe de vereiste
hulpmiddelen tussen de verschillende activiteiten van het project circuleren.
Vervolgens worden in Hoofdstuk 5 efficiënte en effectieve algoritmes ont-
worpen om buffers in een plan in te voegen om te anticiperen op risico’s.
Hoofdstuk 6 bespreekt een uitbreiding van Hoofdstukken 4 en 5 waarin het
eigenlijke plannen, de hulpmiddelentoewijzing en het toevoegen van buffers
gëıntegreerd worden. De reactieve procedures die zorgen voor een toepas-
selijke reactie op verstoringen die niet kunnen opgevangen worden door de
ingebouwde veiligheid worden in Hoofdstuk 7 aan een grondige studie on-
derworpen. In Hoofdstuk 8 wordt door middel van simulatie een uitgebreid
experiment opgezet om verscheidene proactieve en reactieve technieken uit
de vorige hoofdstukken te analyseren en evalueren. Hoofdstuk 9 past de
methodologie van het proactief-reactief plannen toe op een reëel project uit
de Belgische bouwnijverheid. Hiervoor wordt er vooreerst een structurele
methode voor risicodetectie en risicoanalyse vooropgesteld, die de project-
manager helpt om de inherente onzekerheid te kwantificeren. Het proef-
schrift wordt besloten met een aantal algemene conclusies en aanbevelingen.
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Chapter 1

Introduction

The research field of proactive-reactive project scheduling is just emerg-
ing. Before giving a rigorous definition of the proactive-reactive project sche-
duling problem (Chapter 2), this chapter positions the research efforts made
in this dissertation into the broad project scheduling literature. A first sec-
tion is devoted to the concepts of project management and project scheduling.
Afterwards, the standard problem in project scheduling is shortly revisited.
We conclude this chapter with a short introduction of stable project sche-
duling, the sub-domain of project management that is the subject of this
dissertation.

1.1 Project management and scheduling

Projects are of all times. The ancient Egyptian pyramids and the Maya
temples are often considered as the world’s first large projects. Nowadays,
a report of the Project Management Institute (PMI 2003 at www.pmi.org)
estimates that businesses spend $2.3 trillion annually on projects in the
U.S. alone. The growing interest in the field of project management has
resulted in many new theories, techniques and computer applications to
support project managers in achieving their objectives. However, a sur-
vey by the Standish Group International (www.standishgroup.com) in 2003
showed that only 34% of all examined recent projects finished within time
and budget, which is already a substantial improvement compared to the
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1.2. The RCPSP

16% success rate measured in the 1994 report. The average cost overrun
decreased from 180% in 1994 of the project budget to 43% in 2003 thanks
to a greater awareness of the relevance of project management. However,
most projects are obviously still far from being perfectly managed.

Project scheduling is the part of project management that involves the
construction of a baseline schedule which specifies for each activity the prece-
dence and resource feasible start times that will be used as a baseline for
project execution. Such a schedule helps to visualize the project and is a
starting point for both internal and external planning and communication.
Careful project scheduling has been shown to be an important factor to
improve the success rate of the project. An internal study by Maes et al.
(2000) has found that inferior planning is the third1 reason of company fail-
ure in the Belgian construction industry. This incites researchers to further
develop new project scheduling methods.

1.2 The RCPSP

Most research done in resource-constrained project scheduling concen-
trates on minimizing the project duration in either deterministic or stochas-
tic environments. The resource-constrained project scheduling problem
(RCPSP) aims to minimize the duration of a project subject to finish-start
zero-lag precedence constraints (see Section 2.1.1) and renewable resource
constraints (see Section 2.1.3) in a deterministic environment. Blazewicz
et al. (1983) have shown that the RCPSP is NP -hard in the strong sense.
Many exact and heuristic algorithms have been described in the literature to
construct workable baseline schedules that solve the deterministic RCPSP.
For extensive overviews we refer to Herroelen et al. (1998), Kolisch & Pad-
man (1999), Kolisch & Hartmann (1999), Brucker et al. (1999) and De-
meulemeester & Herroelen (2002).

1It is only preceded by (1) inadequate human capital and (2) mismanagement.
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CHAPTER 1. INTRODUCTION

1.3 Uncertainty in project scheduling

During project execution, however, a real-life project will never execute
exactly as it was planned due to uncertainty. Many definitions of uncertainty
have been proposed since Knight (1921) introduced this concept on the
economic scale. Uncertainty can originate form multiple sources. It can
be ambiguity resulting from subjective estimates that are prone to human
errors or it can be variability arising from unexpected events or risks. Risks
are defined by Knight as follows:

A risk is present when future events occur with measurable probability.

Remark that the common understanding tends to presume that these
risks induce a negative impact on the project when occurring, otherwise
the term opportunity is often used. More recent definitions of risk do how-
ever specify a positive or negative effect on project objectives (cf. PMI at
www.pmi.org).

Risks can take many forms. Resources can become temporarily un-
available (see Lambrechts et al. (2006ab) and Drezet (2005)), activities may
have to be inserted or dropped (Artigues & Roubellat 2000), due dates may
change, activities may take longer or less long than original expected, etc.
The common practice of dealing with these uncertainties by taking deter-
ministic averages of the estimated parameters might lead to serious fallacies
(Elmaghraby 2005).

The stochastic RCPSP (Stork 2001) is an extension of the RCPSP with
stochastic activity durations. Because of the stochastic nature of this prob-
lem, a schedule, which is a list of activity starting times, does no longer con-
tain all the required information for a solution to this problem. A solution
for the stochastic RCPSP needs to define the appropriate reactive action for
every possible disruptive event during project execution, given the current
state of the project and the a priori knowledge of future activity distribu-
tions. Möhring et al. (1984, 1985) call such a reactive way of generating
a solution a scheduling policy or scheduling strategy and give a complete
characterization of policies and corresponding subclasses. In pure dynamic
scheduling (Stork 2001), the use of schedules is even eliminated altogether.
A policy makes dynamic scheduling decisions during project execution at
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1.3. Uncertainty in project scheduling

stochastic decision points, usually corresponding to the completion times
of activities. Stork implemented branch-and-bound procedures to minimize
the expected makespan for different classes of policies. Research on heuristic
procedures for solving the stochastic RCPSP is also just emerging (Golenko-
Ginzburg & Gonik (1998), Ballestin (2006),...).

However, the absence of a schedule has some consequences from an eco-
nomic point of view. The baseline schedule (pre-schedule, predictive sche-
dule) namely serves a number of important functions (Aytug et al. (2005),
Mehta & Uzsoy (1998)), such as facilitating resource allocation, providing a
basis for planning external activities (i.e. contracts with subcontractors) and
visualizing future work for employees. By consequence, a baseline schedule
often needs to be sought before the beginning of the project as a prediction
of how the project is expected to unfold.

Yang (1996) claims that using a baseline schedule accompanied with
a dispatching rule, i.e. proactive-reactive scheduling, often leads to a lower
expected makespan than pure dynamic scheduling procedures. Recently,
Ballest́ın (2006) also remarked that working with an average project2 and de-
ducing a priority list from this schedule, results in better expected makespan
for the stochastic RCPSP than simply working with the reactive policies
without using a baseline schedule at all.

In general terms, a baseline schedule that is rather ‘insensitive’ to dis-
ruptions that may occur during project execution is called robust . Many
different types of robustness have been identified in the literature. We refer
to Section 2.2 for a detailed overview. In this work, constructing a baseline
schedule (instead of using a policy) that performs well on makespan or any
due date related performance measure for a wide range of execution scenar-
ios, corresponds to building a quality robust schedule, i.e. a schedule that is
insensitive to the disruptions that affect the value of the performance met-
rics used to evaluate the quality of the schedule. Very few efforts have been
made in order to construct such baseline schedules. The well-known critical
chain buffer management approach of Goldratt (1997) might be considered
as a quality robust baseline scheduling method because it adds buffers to

2The deterministic schedule deduced from the stochastic scheduling problem by setting

the activity durations equal to its expected durations.
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the schedule in order to ensure good makespan performance.

1.4 Stable project scheduling

All research efforts described in the previous section aim to minimize
the expected time overrun of the project in a stochastic environment. How-
ever, the Standish Group survey also mentioned cost overrun as an impor-
tant reason of project failure. Research on this topic is far less extensive. The
time/cost trade-off problem (defined by Fulkerson (1961)) is a well-known
cost minimizing problem that recognizes that the majority of activities can
be performed in shorter durations by increasing the resources available to
them. Mostly this increased resource allocation comes at a higher cost.

In real-life stochastic project settings, not only activity crashing but
also delaying the activity behind its planned schedule start time, might
induce a cost. Constant rescheduling in order to improve the expected
makespan, might strongly decrease the predictive value of the baseline sche-
dule. Project schedules should also include some solution robustness to cope
with the uncertainties during project execution such that the realized project
schedule, i.e. the list of actually realized activity start times during project
execution, will not differ too much from the original baseline schedule.

One possibility to maximize solution robustness is to include safety
in the baseline schedule in order to absorb the anticipated disruptions as
well as possible. This is called proactive scheduling . A second approach,
reactive scheduling , consists of defining a procedure to react to disruptions
that cannot be absorbed by the baseline schedule.

Note that a pure proactive scheduling is an utopia, incorporating safety
in a baseline schedule that allows to cope with every possible disruption
would lead to a baseline schedule with a very large makespan. Every baseline
scheduling method needs to be accompanied by a reactive procedure, but the
number of interventions by the reactive procedure will be inversely related
to the degree of proactiveness included in the baseline schedule.

In this dissertation, we concentrate on the development of efficient
proactive-reactive scheduling procedures to introduce solution as well as
quality robustness in a stochastic project environment. In the next chapter,
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notations and definitions will be provided to formally describe the problem
that will be tackled in the remaining chapters.
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Chapter 2

Definitions and problem

formulation

In this chapter a definition of the proactive-reactive project schedu-
ling problem will be given. Section 2.1 introduces project representations
that can assist us in illustrating the procedures that will be proposed in
later chapters. Afterwards, we propose a rigorous definition of the concepts
quality and solution robustness, which both will be main issues throughout
this thesis (Section 2.2). Section 2.3 describes the activity weights that are
used in the stability cost function and Section 2.4 gives an overview of the
proactive-reactive scheduling problem discussed in this thesis.

2.1 Project representations

A project consists of a number of events and activities or tasks that
have to be performed in accordance with a set of precedence and resource
constraints. Each activity has a duration. The deterministic expected du-
ration of activity j will be expressed as dj , while in an uncertain scheduling
environment, the stochastic activity durations will be denoted by dj .

In order to illustrate the working principles of a number of proactive-
reactive scheduling procedures, we introduce a project that will be used as
our vehicle of analysis throughout the entire thesis. Table 2.1 provides an
overview of the data. The project consists of 10 activities (activity 0 and
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Table 2.1: Data for the problem instance

j dj wj rj successorsj

0 0 0 0 1, 2, 3
1 4 2 5 4, 7
2 5 7 3 4
3 2 4 4 5
4 4 5 4 6
5 5 3 3 8
6 4 7 5 9
7 2 5 3 9
8 2 5 6 9
9 0 38 0 /

activity 9 are dummy activities representing the project start and finish)
and is subject to finish-start, zero-lag precedence constraints and a single
renewable resource constraint (see Section 2.1.3). The single renewable re-
source is assumed to have a constant per period availability a of 10 units.
Expected activity durations dj , activity weights wj (see Section 2.3) and
resource requirements (see Section 2.1.3) are also given. In the remainder of
this section we offer an overview of several possible project representations.

2.1.1 Project network

The main focus of the project network is the representation of the
precedence relationships between the activities of the project. Precedence
relationships may be of different types. We restrict our research to the
best-known type of precedence relationships (PERT, CPM and RCPSP are
also restricted to them), i.e. the finish-start relationships with zero time
lag. The impact of Generalized Precedence Relationships (Elmaghraby &
Kamburowski 1992) on proactive-reactive scheduling lies outside the scope
of this dissertation.

A project network is a graphical representation of the events, activities
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and precedence relations of the project. A network is a directed graph
G = (N,A), consisting of a set of nodes N and a set of arcs A. The
transitive closure of a graph G = (N,A) is a graph TG = (N,TA) which
contains an edge from i to j whenever there is a directed path from i to j

in the original graph.
There are two network notation schemes commonly used in project

scheduling. The activity-on-arc (AoA) representation uses the set of nodes
N to represent events and the set of arcs A to represent the activities,
while in the activity-on-node (AoN) notation scheme the set N denotes the
activities and the set A represents the precedence relationships. The arcs TA

of the transitive closure TG = (N,TA) represent in this case all direct and
transitive precedence relationships in the original network. In the remainder
of this thesis we will opt for the AoN network representation. Figure 2.1
denotes the AoN project network for the project described in Table 2.1.

Figure 2.1: Problem network instance

2.1.2 Project schedules

A schedule S is defined in project scheduling as a list S = (s0, s1, . . . , sn)
of intended start times sj ≥ 0 for all activities j ∈ N . A Gantt chart (intro-
duced by H. Gantt in 1910) provides a typical graphical schedule represen-
tation by drawing the activities on a time axis.

A schedule is called feasible if the assigned activity start times respect
the constraints imposed on the problem. In deterministic project scheduling,
a feasible schedule is a sufficient representation of a solution. Figure 2.2
depicts a solution schedule for our example network presented in Table 2.1.
It will be shown in Chapter 5 that this schedule corresponds to the optimal
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Figure 2.2: A minimum duration schedule

RCPSP schedule found by the branch-and-bound code of Demeulemeester
& Herroelen (1992, 1997).

In stochastic scheduling a schedule needs to be accompanied by a re-
active policy or strategy (see Chapter 7) to compose a solution. However,
this does not reduce the importance of schedules as visualization tools for
project management. Many types of schedules are relevant in proactive-
reactive project scheduling.

2.1.2.1 Baseline schedule

A baseline schedule (pre-schedule or predictive schedule) is a list of ac-
tivity start times generated under the assumption of a static and determin-
istic environment that is used as a baseline during actual project execution.
A baseline schedule is generated before the actual start of the project (time
0) and will consequently be referred to as S0. It serves a number of im-
portant functions (Aytug et al. (2005), Mehta & Uzsoy (1998), Wu et al.
(1993)) One of them is to provide visibility within the organization of the
time windows that are reserved for executing activities in order to reflect the
requirements for the key staff, equipment and other resources. The baseline
schedule is also the starting point for communication and coordination with
external entities in the company’s inbound and outbound supply chain: it
constitutes the basis for agreements with suppliers and subcontractors (e.g.
for planning external activities such as material procurement and preventive
maintenance), as well as for commitments to customers (delivery dates). An
important decision to be made in the proactive-reactive scheduling problem
is the amount of safety to include in the baseline schedule. Chapters 4, 5
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and 6 are completely devoted to this decision.

2.1.2.2 Initial schedule

As will be seen later in this chapter, we mostly adopt a two-stage
approach that starts building a stable baseline schedule from an unprotected
initial schedule. This initial schedule or unbuffered schedule SU will mostly
either be:

• an already existing schedule in the organization;

• a schedule obtained by a commercial software package;

• a schedule generated by one of the procedures from the extensive de-
terministic RCPSP literature.

The fact that initial schedule selection might have a substantial impact
on solution robustness, will be further examined in Chapter 6.

2.1.2.3 Realized schedule

A realized schedule ST is a list of actually realized activity start times
sT that is generated once complete information of the project is gained.
The proactive-reactive scheduling decisions made during project execution
influence the actually obtained realized schedule ST . In a stochastic envi-
ronment, the realized schedule will thus typically be unknown before the
project completion time T . We will refer to this stochastic schedule by ST .

2.1.2.4 Projected schedule

A projected schedule as introduced by Leach (2000) in the CC/BM
methodology (see Section 3.2) is available at every moment in time and re-
flects a prediction of how the project scheduler expects the realized schedule
will look like. As a project executes in an uncertain environment, at each
decision time t (0 < t < T ) gradually more information about the project
becomes available, which will lead to a constant updating of the projected
schedule St.

11
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2.1.2.5 Ex-post schedule

An ex-post schedule is defined as the best schedule that could have
been obtained for a given quality measure if full information about the
realized activity durations would have been available in the project planning
phase. It is unrealistic to expect that the realized schedule equals this ex-
post schedule. However, it might be interesting to construct the ex-post
schedule in order to compare the obtained objective function value of the
realized schedule with the utopian objective function value that would have
been obtained if full information had already been available in the project
planning phase. The ex-post schedule will be indicated as S∗.

2.1.3 Resource usage and representations

In resource-constrained project scheduling, project activities require
resources to guarantee their execution. Multiple resource categories exist
(Blazewicz et al. 1986). In this thesis (as in the RCPSP), we will limit
our scope to renewable resources that are available on a period-by-period
basis and for which only the total resource use in each time period is con-
strained for each resource type. Every activity j requires an integer per pe-
riod amount rjk of one or more renewable resource types k (k = 1, 2, ...,K)
during its execution. The renewable resources have a constant per period
availability ak. The resource constraints can thus be written as:∑

∀j∈Pt

rjk ≤ ak ∀k = 1, 2, ...,K ∀t = 1, . . . , sn (2.1)

in which Pt denotes the set of activities that are active at time t.
The network (see Section 2.1.1) and schedule (see Section 2.1.2) rep-

resentations of the project do not visualize the resource allocation. Hence,
additional resource-based project representations are introduced in this sec-
tion.

2.1.3.1 Resource profile

A resource profile is an extension of a Gantt chart that additionally
indicates the variation in resource requirement of a single renewable resource

12



CHAPTER 2. DEFINITIONS AND PROBLEM FORMULATION

type over time for each activity. Resource requirements and availability are
denoted on the Y-axis. Each resource type requires its own resource profile.
The resource profile for the single renewable resource type corresponding to
the minimum duration schedule of Figure 2.2 is given in Figure 2.3.

Figure 2.3: Resource profile for example project

2.1.3.2 Resource flow network

Artigues et al. (2003) introduce resource flow networks (or transporta-
tion networks) to identify the amount of resources transported from the
end of one activity to the beginning of another activity after scheduling has
taken place. fijk denotes the amount of resources of type k, flowing from
activity i to activity j. The resource flow network is a network with the
same nodes N as the original project network, but with arcs connecting two
nodes if there is a resource flow between the corresponding activities, i.e.
∃k : fijk > 0. We define R as the set of flow carrying arcs in the resource
flow network. The resource arcs in R may induce extra temporal constraints
to the project. Policella et al. (2004) introduce the similar concept of a par-
tial order schedule to represent the extra temporal constraints required to
solve the resource allocation problem.

Remark that a schedule may allow for different ways of allocating the
resources so that the same schedule may give rise to different resource flow
networks. Not every feasible resource allocation implies an equal amount of
stability. Solving the resource allocation problem for stability will be the
topic of Chapter 4.

Relying on the one-pass algorithm of Artigues et al. (2003) to compose
a resource flow network for the schedule of Figure 2.2, results in the resource

13
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flow network G = (N,R) presented in Figure 2.4. Activity 8, for example,
has a per period resource requirement of six units. It uses three resource
units released by its predecessor activity 5, two units passed on by activity
7 and one unit released by activity 6. The arcs (1,3); (3,7); (6,8), (7,6)
and (7,8) represent extra precedence relations that were not present in the
original network. The arc (7,9) was present in A, but is not drawn in Figure
2.4 because there is no resource flow from 7 to 9.

Figure 2.4: Resource flow network for the example project

Figure 2.5: Resource profile with resource allocation

In Figure 2.5 we have redrawn the resource profile of Figure 2.3 to il-
lustrate the use of the individual resource units along the horizontal bands.
This project representation includes all information present in schedule, re-
source profile and resource flow network and will thus become our preferred
representation in the remainder of this dissertation if there is only one re-
source type, as is the case in the example network. Only the precedence
relationships of the original network G = (N,A) are not explicitly repre-
sented in Figure 2.5.
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2.2 Robustness types and measures

In Chapter 1, we already introduced the concept of schedule robustness,
i.e. a schedule’s insensitivity to disruptions that may occur during project
execution. The robustness concept has been used in many disciplines (see
e.g. Kouvelis & Yu (1997), Roy (2002), Billaut et al. (2005)). Many different
types of robustness have been identified in the literature, calling for rigorous
robustness definitions and the use of proper robustness measures.

A robustness measure can be single or composite. Two often used types
of single robustness measures have been distinguished: solution and quality
robustness (Sörensen (2001), Herroelen & Leus (2005)). The main difference
between quality robustness and solution robustness is that in the former case,
it is the quality of the solution that is not allowed to change. This quality
is usually measured in terms of makespan or due date performance. In the
latter case, it is the solution itself that is not allowed to change. For other
typologies we refer to Sanlaville (2004).

2.2.1 Solution robustness or schedule stability

Solution robustness or schedule stability refers to the difference be-
tween the baseline schedule and the realized schedule. The difference or
distance ∆(S0, ST ) between the baseline schedule S0 and the realized sche-
dule ST for a given execution scenario can be measured in a number of ways:
the number of disrupted activities, the difference between the planned and
realized activity start times, etc.

For example, the difference can be measured by the weighted sum of
the absolute deviation between the planned and realized activity start times,
i.e.

∆(S0, ST ) =
∑

j

wj

∣∣s0
j − sT

j

∣∣ , (2.2)

where s0
j denotes the planned starting time of activity j in the baseline

schedule S0, sT
j denotes the actual starting time of activity j in the realized

schedule ST , and the weights wj represent the disruption cost of activity j

per time unit, i.e. the non-negative cost per unit time overrun or underrun on
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the start time of activity j (see Section 2.3). In a stochastic environment,
the realized activity starting times are stochastic variables sT

j for which
the actual realized values sT

j for a given execution scenario depend on the
disruptions and the applied reactive policy. The objective of the proactive-
reactive scheduling procedure is then to minimize∑

j

wjE
∣∣s0

j − sT
j

∣∣ , (2.3)

with E denoting the expectation operator, i.e. to minimize the weighted sum
of the expected absolute difference between the planned and the realized ac-
tivity start times. It should be observed that the analytic evaluation of
this objective is very cumbersome, the PERT problem being #P -complete
(Hagstrom 1988)1. Mostly this objective function will be evaluated by simu-
lation. The obtained objective function values will then be dependent on the
simulated disruptions and the applied reactive procedure (Leon et al. 1994).

Sanlaville (2004) suggests to measure solution robustness as

max
I

∆(S0, ST ), (2.4)

the maximum difference between the baseline schedule S0 and the realized
schedule ST over the set of execution scenarios I. The objective of the
proactive-reactive scheduling procedure then is to minimize this maximum
distance.

Remark that the above solution robustness measures rely on knowledge
of the realized schedule ST and are thus very hard to evaluate. Monte Carlo
simulation or approximation schemes (for overviews see Ludwig et al. (2001),
Herroelen & Leus (2005) and Dodin (2006)) for the distribution functions of
the activity starting times are required to approximate the stochastic start-
ing times sT

j in ST . In the following, some objective functions are introduced
that do not require these computationally costly techniques to evaluate the

1Hagstrom in fact proved that calculating the probability of a single point in the

cumulative distribution function of sn is #P complete in the case of two-point distributions

of the activity durations. It is generally assumed that these results can be extended to more

general distribution functions of the activity duration such that efficient procedures for

calculating the expected project duration are very unlikely to exist. This result authorizes

simulative evaluation of the objective functions instead of analytical evaluation.
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solution robustness. We will call them surrogate objective functions or pre-
dictive objective functions.

Schwindt (2005) uses the concepts of early free float (EFF) and late free
float (LFF) to calculate solution robustness. EFFj and LFFj are defined as
follows for the schedule S with starting times sj , precedence relationships
A and resource flow network G(N,R):

EFFj = sj − max
(i,j)∈(A∪R)

(si + di) ∀j ∈ N (2.5)

LFFj = min
(j,i)∈(A∪R)

si − (sj + dj) ∀j ∈ N (2.6)

He then introduces a solution robustness metric that maximizes the total
weighted free float:

max
∑
j∈N

wj(EFFj + LFFj) (2.7)

in which wi can be chosen to reflect the degree of uncertainty with respect
to start time si.

Rather than working with free floats, Leus (2003) suggests to base
surrogate objective functions for stability on pairwise floats PFij :

PFij = max(0, sj − (si + di)) ∀i ∈ N ;∀j ∈ N. (2.8)

MSPFij is then defined as the minimal sum of pairwise floats between all
subsequent activities on a path from activity i to activity j. If (i, j) /∈
T (A ∪R), MSPFij = 0.

Hence, he proposes the objective function min
∑

(i,j)∈TA

wjPFij to eval-

uate several buffer insertion techniques for a given graph G(N,A ∪ R). In
Deblaere et al. (2006), a solution robust resource allocation R for a given
schedule S is found by maximizing:∑

∀(i,j):si+di≤sj

MSPFij , (2.9)

where they set MSPFij equal to a constant if there exists no path between
i and j. A different surrogate objective function based on MSPFij will be
introduced in Chapter 5 of this dissertation (Eq. 5.6).
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Lambrechts et al. (2006a) suggests an objective function that is based
on diminishing costs per extra unit of free slack. They suggest to maximize
the following solution robustness measure:

n∑
i=1

CIWi

FFi∑
j=1

e−j , (2.10)

where FFi denotes the (late) free float of activity i and CIWi is the cu-
mulative instability weight, which is calculated by adding wi to the sum of
the weights of all direct and indirect successors of i. The idea behind this
objective function is that the necessity to buffer an activity diminishes as
the activity is already buffered.

Policella et al. (2004) aim to obtain a solution robust resource allocation
by minimizing the deviation in several evaluation criteria between the origi-
nal project graph G = (N,A) and the partial order schedule G = (N,A∪R)
obtained after resource allocation. The fluidity metric is taken from Cesta
et al. (1998) and defined as follows:

fldt = 100×
∑
i6=j

slackij

H × n× (n− 1)
, (2.11)

where H is the predefined horizon of the problem, n is the number of activi-
ties and slackij is the width of the allowed distance interval between the late
finish time of activity i and the early start time of activity j. The hope is
that the higher the value of fldt, the less the risk of a domino effect, and the
higher the probability of localized changes. The flexibility (flex ) measure
is taken from Aloulou & Portmann (2003) and counts the number of pairs
of activities that are not precedence related in G(N,A ∪ R). The rationale
for this measure is that when two activities are not precedence related, it is
possible to shift one of them in time without moving the other one. Hence,
the higher the value of flex, the lower the degree of interaction among the
activities and this will eventually lead to improved solution robustness. The
work of Policella et al. (2004) will be discussed in more detail when the
resource allocation problem is tackled in Chapter 4.
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2.2.2 Quality robustness

Quality robustness refers to the insensitivity of some deterministic ob-
jective value of the baseline schedule to distortions. The goal is to generate
a solution for which the objective function value does not deteriorate when
disruptions occur. Contrary to solution robustness, quality robustness is not
concerned with the solution itself, only with its value on the performance
metric. It is measured in terms of the value of some objective function z. In
a project setting, commonly used objective functions are project duration
(makespan), project earliness and tardiness, project cost, net present value,
etc.

When stochastic data are available, quality robustness can be mea-
sured by considering the expected value of the objective function, such as
the expected makespan E [Cmax], the classical objective function used in
stochastic resource-constrained project scheduling (Stork 2001).

It is logical to use the service level as a quality robustness measure, i.e.
to maximize P (z ≤ z), the probability that the objective function value of
the realized schedule stays within a certain threshold z. For the makespan
objective, we want to maximize the probability that the project completion
time does not exceed the project due date δn, i.e. P (sT

n ≤ δn), where sT
n

is a stochastic variable that denotes the starting time of the dummy end
activity in the realized schedule. We will refer to this measure as the timely
project completion probability (TPCP). It should be observed that also the
analytic evaluation of this measure is very troublesome in the presence of
ample resource availabilities.

Quality robustness can also be measured by comparing the solution
value z of the realized schedule obtained by the proactive-reactive scheduling
procedure and the optimal solution value z∗ computed ex-post by applying
an exact procedure on the basis of the realized activity durations. Herroelen
& Leus (2001), for example, have used the percentage deviation of Cmax, the
project duration of the realized schedule, from the ex-post optimal makespan
C∗

max computed by applying a branch-and-bound procedure on the basis of
the actually realized activity durations, as a measure of quality robustness.

Al-Fawzan & Haouari (2005) consider the objective of quality robust-
ness maximization by stating that a schedule is more robust if the total
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sum of free slacks over all its activities is larger. Free slack ensures that
disruptions will not be propagated to later stages of the schedule, which will
improve the realized project makespan.

2.2.3 Composite robustness measures

The robustness measures described above are all single measures. It
is also possible to use composite objectives. For extensive overviews of
multicriteria scheduling, we refer the reader to T’kindt & Billaut (2006)
and Hoogeveen (2005). We are interested in the bi-criteria objective of
maximizing the timely project completion probability and minimizing the
weighted sum of the expected absolute deviation in activity starting times:

F (P (sT
n ≤ δn),

∑
wjE

∣∣sT
j − s0

j

∣∣) (2.12)

We assume that the composite objective function F (.,.) is not a priori known
and that the relative importance of the two criteria is not known in the initial
schedule development phase, i.e. the decision maker has no knowledge of e.g.
a linear combination that reflects his preference.

2.3 Activity weights

The weighted sum of the absolute deviations between the planned and
realized activity start times has been suggested as a solution robustness
measure in previous sections. This section devotes attention to these activity
dependent weights which play a central role in this thesis.

Once a project schedule has been negotiated, constructed and an-
nounced to all stakeholders, modifying this schedule comes at a certain
penalty cost. This cost corresponds to the importance of on-time perfor-
mance of a task to avoid internal and external stability costs. Internal
stability costs for the organization may include unforeseen storage costs, ex-
tra organizational costs or just a cost that expresses the dissatisfaction of
employees with schedule nervousness. They can also reflect the difficulty in
shifting the booked time window on the required resources. Costs related to
(renegotiating) agreements with subcontractors, penalty clauses, goodwill
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damages, etc. are examples of stability costs that are external to the orga-
nization. In practice, these penalties may be considerable. For example,
the penalty for not meeting the delivery date of the renovated Berlaymont
building, housing the European Commission in Brussels, was set to 221,000
e per month of delay (European Commission 2004).

The activity-dependent weights wj used in this dissertation represent
the marginal cost of starting the activity j later or earlier than planned in
the baseline schedule. The assumptions that earliness costs equal tardiness
costs and that these costs have constant marginal returns per extra unit
could easily be relaxed. Because most procedures proposed in this disser-
tation heavily rely on simulation to evaluate the objective function, these
relaxations would not change the validity of our research.

The start of the dummy end activity of a project network represents the
project completion time. We assume that the project will not be penalized
for completing earlier than its predefined project due date δn. The weight of
the dummy end activity wn identifies the cost of delivering the project later
than planned and will typically be higher than the cost of rescheduling an
intermediate activity. The ratio wp = wn/wavg between the weight of the
dummy end activity and the average of all other activity weights is called
the weighting parameter, wp. This wp will later be shown to be the driving
force of the trade-off between stability and makespan.

2.4 Problem definition and organization of the

thesis

In the previous sections of this chapter, several definitions and assump-
tions for the proactive-reactive scheduling problem were introduced. Table
2.2 gives a concise overview of the most important assumptions that will be
made in this dissertation. In the remainder of this section, we will situate
the proactive-reactive project scheduling problem discussed in this thesis
by positioning it on the project life cycle (see Demeulemeester & Herroelen
(2002)).

The aim of this thesis is to propose procedures for making a project
with renewable resources and start-finish precedence relationships solution
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Table 2.2: Overview of the assumptions made in this dissertation

Objective function

• Minimize
∑

j wjE
∣∣∣s0

j − sT
j

∣∣∣
• Marginal earliness costs and marginal lateness

costs are constant and equal

Activities

• Activity durations are stochastic

• Multiple disruptions are possible

• Realized activity durations are only known at
the activities’ completion time

• Activity preemption is not allowed

• Activities have a single execution mode

Precedence re-
lationships

• No generalized precedence relationships

Resource usage

• Resource requirements and availabilities are de-
terministic and constant over time

• Only renewable resources

Scheduling
• Activity starting times are integer

• Project due date is predefined

Reactive

• On schedule breakage, we try to repair the base-
line schedule in the best possible way

• Activities are not allowed to start earlier than
planned (except in Chapter 7)
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robust without neglecting the importance of quality robustness. Many de-
cisions have to be made during the project life cycle that can influence the
quality of the project. In Figure 2.6 the proactive-reactive project planning
decisions are situated on the project life cycle. We limit our elucidation of
the project life cycle to the relevant concepts for our research. We refer to
Demeulemeester & Herroelen (2002) for comprehensive phase definitions.

Figure 2.6: Proactive-reactive scheduling decisions to be made over the project
life cycle

During project initiation an organization identifies the need for a project.
In the next phase (project definition), a clear definition of the exact expec-
tations of the project has to be formulated. Already in this early phase, a
very important decision has to be made for the proactive-reactive project
planning: the organization has to decide upon the objectives of the project.
Also, the scope of the project has to be defined.

The project planning phase identifies the project activities, temporal
relationships, resource usages, etc. Crucial to this phase for the problem
discussed in this thesis is the need for careful estimates of expected durations,
variations of durations, activity weights, etc. We must stress that the quality
of the efforts made in subsequent phases of the project life cycle is highly
dependent on the quality of these estimates. In Chapter 9 will be explained
how risk detection can be tackled in real-life projects.

Once the project and its components have been properly defined, the
actual project scheduling can take place. The work in this thesis is mainly
located in this phase. The desired output of the project scheduling phase
is a workable baseline schedule (see Section 2.1.2), which can guide the or-
ganization during the execution of the project. We concentrate on making
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this baseline schedule quality and solution robust, such that it will be little
sensitive to unanticipated disruptions. During the scheduling phase several
decisions have to be made that may influence the robustness of the project.
All these decisions influence the robustness of the baseline schedule and are
inevitably interrelated. Integrating them into one overall robust scheduling
approach is the topic of Chapter 6, but this might become computation-
ally too troublesome to be acceptable for commercial software packages and
real-life projects. In this thesis, a two-stage approach will be applied. In
the first stage, an initial resource and precedence feasible schedule SU is
generated without looking at robustness. In the second stage, this initial
schedule will be transformed into a more robust baseline schedule S0. The
rationale for relying on such a two-stage approach is that we want to allow
for the possibility to generate solution robust schedules starting from an
existing precedence and resource feasible but unprotected schedule (e.g. the
currently available project schedule in the organization or a schedule gene-
rated using any exact or heuristic solution for the RCPSP) without having
to resolve the resource allocation problem. Adding solution robustness can
be done in several ways. The robustness of a predictive schedule can be
improved by defining a clever way to perform the resource allocation among
the activities (Chapter 4). Inserting idle time (buffer allocation) into the
previously unbuffered schedule can also improve the robustness and will be
the main concern of Chapter 5.

The control phase embodies the implementation of the project during
project execution. Progress must be constantly monitored and measured.
Uncertainty leads to unforeseen events. Every proactive baseline schedule
has to be accompanied by a reactive procedure (Chapter 7) that defines
how to update the projected schedule whenever a disruption occurs that
could not be absorbed. The reactive scheduling policy is along with initial
scheduling, resource allocation and buffer allocation, the fourth factor that
will influence the ultimate quality of the solution.

Project termination is the last phase of the project life cycle. Here we
will evaluate whether the objectives have been met, whether our proactive
and reactive decisions have been satisfactory, etc. Customer satisfaction is
the ultimate aim of every project.
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Chapter 3

Trade-off between stability

and makespan

During the last decade a lot of research efforts in the project schedu-
ling literature have concentrated on resource-constrained project scheduling
under uncertainty. Most of this research focuses on protecting the project
makespan against disruptions during execution. Few efforts have been made
to protect the starting times of intermediate activities. In this chapter, we
address the issue whether to concentrate safety time in order to protect the
planned project completion time (quality robustness) or to scatter safety
time throughout the baseline schedule in order to enhance stability (solu-
tion robustness).

The chapter is organized as follows. In Section 3.1 we present a simple
heuristic procedure for generating stable resource-constrained baseline sche-
dules and provide illustration on the example problem introduced in Section
2.1.1. In Section 3.2 we exploit the same problem instance to describe our
implementation of the critical chain (CC/BM) scheduling methodology for
generating so-called buffered baseline schedules and unbuffered projected
schedules. The experimental results are described in Section 3.3. A last
section presents some overall conclusions.
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3.1. A heuristic procedure for generating stable schedules

3.1 A heuristic procedure for generating solution

robust schedules

Herroelen & Leus (2004) and Leus (2003) describe a heuristic procedure
for generating buffered baseline schedules for projects with ample renewable
resource availability. Basically, their adapted float factor heuristic (ADFF)
is an adaptation of the float factor model which was originally introduced
by Tavares et al. (1998) to generate a schedule S in which the start time of
activity i is obtained as

si(S) := si(ESS) + α(si(LSS)− si(ESS)) (3.1)

where α ∈ [0, 1] is the so-called float factor , si(ESS) denotes the earliest
possible start time of activity i and si(LSS) represents the latest allowable
start time of activity i. Both start times are derived from critical path
calculations for a given project due date. Instead of using a single float
factor α for all the activities, ADFF adopts an activity dependent float factor
which is calculated as

αi = βi/(βi + λi) (3.2)

where βi is the sum of the weight of activity i and the weights of all its
transitive predecessors, while λi is the sum of the weights of all successors
of activity i in the transitive closure TA. In doing so, ADFF inserts longer
time buffers in front of activities that would incur a high cost if started later
than originally planned.

Obviously, when applied to a resource-constrained project, ADFF scat-
ters intermediate time buffers throughout a baseline schedule but does not
prohibit resource conflicts from occurring because neither the early start
schedule nor the late start schedule are guaranteed to be resource feasible.
To ensure that the buffered baseline schedule is resource feasible, the ADFF
procedure is modified as follows.

The first step is to obtain a good precedence and resource feasible
starting schedule. A number of exact and metaheuristic procedures for gen-
erating minimum duration schedules for the RCPSP have been described
in the literature (see Demeulemeester & Herroelen (2002)). For illustra-
tive purposes, we use the branch-and bound procedure of Demeulemeester
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CHAPTER 3. TRADE-OFF BETWEEN STABILITY AND MAKESPAN

& Herroelen (1992, 1997) for generating an unbuffered resource-constrained
schedule SU . The project network introduced in Chapter 2 (Table 2.1) will
be our vehicle of analysis. The initial unbuffered schedule obtained by the
branch-and-bound procedure is shown in Figure 2.2. The critical sequence,
i.e. the precedence and resource-constrained chain of activities that deter-
mines the 15-period makespan is the chain < 0, 2, 4, 6, 8, 9 >. The project
due date δn is set to 20, a 30% increase above the critical sequence length.
Note that alternative initial schedules are possible. Figure 3.1 gives the
right-justified schedule that identifies all the latest allowable starting times
to obtain the project due date in the deterministic case. For every activity
i, the float value float(i) is calculated as the difference between its latest
allowable starting time (its starting time in Figure 3.1) and its scheduled
starting times sU

j in the unbuffered initial schedule of Figure 2.2.

Figure 3.1: Right-justified schedule

In a second step the starting time of each activity i is calculated as

si(S) := sU
i + αifloat(i) (3.3)

However, using the ADFF float factors αi = βi/(βi + λi), does not
ensure that the resulting si(S) are resource feasible. Indeed, although both
the activity starting times in the minimum duration schedule and in the
right-justified schedule are resource feasible, this might not be the case for
the computed si(S). In order to obtain a precedence and resource feasible
schedule, a set of different float factors αi has to be used. For this purpose a
resource flow network (see Section 2.1.3.2) is constructed. Multiple possible
flow networks can be deduced. The next chapter of this thesis will be com-
pletely devoted to the importance of resource allocation in robust project
scheduling. For now, we have opted for the single-pass procedure described
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by Artigues et al. (2003) to generate a resource flow network that is feasible
for each resource type.

The βi’s will now be calculated as the sum of wi and the weights of all
its predecessors in TG = (N,T (A ∪ R)). Similarly, the (transitive) succes-
sors of activity i in both the original and the resource flow network are used
to calculate the λi’s. The weights of activities that start at time 0 are not
included in these summations because it is assumed that these activities can
always start at their planned start time and thus do not need any buffering
to cope with possible disruptions of their predecessors. The resulting re-
source flow dependent float factors αi consequently ensure that the RFDFF
heuristic inserts longer time buffers in front of activities that would incur a
high cost if started earlier or later than originally planned and that resource
constraints will always remain satisfied in the resulting schedule.

Table 3.1 lists for each activity of the example project of Table 2.1
the values needed for the computation of the resource flow dependent float
factor αi and the scheduled starting time si. Note that we set w1 = w2 = 0
because activities 1 and 2 start at time 0. Activity 6 has activity 4 as its only
direct predecessor in the project network of Figure 2.1 and activities 4 and 7
as direct predecessors in the resource flow network of Figure 2.4. Activities
0, 1, 2 and 3 are its transitive predecessors in these networks. This results
in β6 = w6 +w3 +w4 +w7 = 21. Similarly, summing the weights of all direct
and transitive successors of activity 6 in the networks of Figure 2.1 and
Figure 2.4 gives λ6 = w8 +w9 = 43. We thus find α6 = 21/(43+21) = 0.328
and s6 = 9 + 0.328× 5 = 10.64, which is discretized (rounded to the nearest
integer) to 11. The starting times of the other activities can be calculated
equivalently, resulting in the RFDFF schedule of Figure 3.2.

Figure 3.2: RFDFF schedule
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Table 3.1: Values for the RFDFF heuristic

i sU
i float(i) wi βi λi αi si

0 0 5 0 0 67 0 0
1 0 6 0 0 67 0 0
2 0 5 0 0 55 0 0
3 4 6 4 4 58 0.065 4
4 5 5 5 5 50 0.091 5
5 6 7 3 7 43 0.140 7
6 9 5 7 21 43 0.328 11
7 6 6 5 9 50 0.153 7
8 13 5 5 29 38 0.433 15
9 20 5 38 67 0 1 20

When an RFDFF schedule (or any other buffered baseline schedule)
is executed, the included safety times have to be preserved in one way or
another in order to preserve their stability advantage. The common project
scheduling practice of starting activities as soon as possible during execution,
is irreconcilable with buffer inclusion. Chapter 7 focuses on solution robust
reactive procedures.

For now, buffers will be preserved by impeding activities to start ear-
lier than their starting times s0

j in the baseline schedule S0
j . This execution

policy is commonly referred to as railway scheduling , because of its compa-
rability with the scheduling of trains in a railway station, which states that a
train is not allowed to leave the railway station earlier than planned because
the time table holds commitments with travelers. In our example network,
activity 5 for example will never start earlier than at time 7, even if its
predecessors have already finished and all required resources are available.

3.2 Critical chain buffer management (CC/BM)

It has been advocated that project planning practitioners should rely
on the well known critical chain/buffer management (CC/BM) methodol-
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ogy (Goldratt 1997) - the direct application of the Theory of Constraints
(TOC) to project management - to ensure that a project can be delivered
on time in an uncertain project environment. In the experimental set-up of
the next section, CC/BM will be used as the quality robust project schedu-
ling method to examine the trade-off between makespan and stability. The
fundamental working principles of CC/BM have been discussed by Goldratt
(1997), Newbold (1998) and Herroelen & Leus (2001).

CC/BM builds a baseline schedule using aggressive median or average
activity duration estimates. The safety in the durations of activities that
was cut away by selecting aggressive duration estimates is concentrated at
the end of the schedule in the form of a project buffer (PB) which should
protect the project due date from variability in the critical chain activities.
The critical chain is defined as the chain of precedence and resource depen-
dent activities that determines the overall duration of a project. If multiple
candidate critical chains exist, a random one is chosen. Feeding buffers (FB)
are inserted whenever a non-critical chain activity joins the critical chain.
This basically means that non-critical chains are pushed back in time. By
doing this, new resource conflicts can be invoked. The literature is not that
clear on how those conflicts should be solved. For executing a project, on
the other hand, the CC/BM approach does not rely on the buffered sche-
dule but on a so-called projected schedule. This schedule is precedence and
resource feasible, contains no buffers and is to be executed according to
the roadrunner mentality , i.e. the so-called gating tasks (activities with no
non-dummy predecessors) are started at their scheduled start time in the
buffered schedule while the other activities are started as soon as possible.
The projected schedule is recomputed when disruptions occur. Neither the
buffered schedule nor the projected schedule are constructed with a view to
stability (solution robustness). In this section we will explain the implemen-
tation of CC/BM that we use in the remainder of this chapter.

First we solve the deterministic RCPSP by running the branch-and-
bound code of Demeulemeester & Herroelen (1992, 1997). Because CC/BM
starts with an as late as possible baseline schedule, we run the procedure on
the inverse network and reverse the resulting schedule again to obtain a right-
justified resource feasible unbuffered schedule. For our example network of
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Table 2.1, this results in the schedule of Figure 3.3. The unique critical
chain in this schedule is < 0, 2, 4, 6, 8, 9 >.

Figure 3.3: Right-justified schedule

Besides identifying the critical chain, we also have to compute the feed-
ing buffers. For the example network in Figure 2.1, clearly three non-critical
chains can be discovered. CC/BM adds feeding buffers between the last ac-
tivity of a non-critical chain and the activity of the critical chain where this
feeding chain joins the critical chain. In the example, we will add three
feeding buffers, namely between the feeding chain < 1 > and critical activ-
ity 4, between < 3, 5 > and 8 and between < 1, 7 > and 9. In this text,
the size of a feeding buffer is set to 50% of the length of its feeding chain.
For a detailed analysis of the impact of feeding buffer sizes on the trade-off
between stability and makespan, the reader is referred to Van de Vonder
et al. (2006b). Recently, Tukel et al. (2006) have described various more
advanced methods to introduce feeding buffer sizes.

As has been demonstrated by Herroelen & Leus (2001), simply start-
ing the feeding chains earlier in time to make room for the feeding buffers
may introduce new resource conflicts. Instead of using some heuristic to
resolve these resource conflicts, we opt for a complete rescheduling proce-
dure (again by running the branch-and-bound code of Demeulemeester &
Herroelen (1992, 1997)) in which the buffers are properly sized and con-
sidered as extra dummy activities with positive duration and no resource
requirements, while assuring that the sequential order of the critical chain
activities is kept unchanged. For the example network, this results in the
buffered baseline schedule of Figure 3.4 where three feeding buffers and a
project buffer of 50% of the critical chain length have been inserted.

For project execution, however, CC/BM does not rely on this buffered
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Figure 3.4: The buffered CC/BM baseline schedule

baseline schedule, but on the so-called projected schedule, which has been
introduced earlier in this section. The alert reader will observe that the con-
struction of such a projected schedule requires some additional information,
which can for example be obtained by fixing the flows of a resource flow net-
work. The derivation of the earliest possible activity starting times in the
projected schedule not only depends on the original precedence constraints,
but also on the resource flows between activities. All activities that pass on
resources to other activities should be completed by the time these other
activities start. Clearly, when disruptions occur during project execution,
the projected schedule has to be recomputed. Figure 3.5 shows the initial
projected schedule for our example network. Activity 7 is started earlier in
time than in Figure 3.4, i.e. at the completion time of activity 5.

Figure 3.5: The initial CC/BM projected schedule

Figure 3.5 shows that CC/BM and RFDFF do not result in the same
minimal project due date if implemented as described above. For RFDFF, a
project buffer of 0% of project due date prolongation means that the project
due date equals the critical chain length found by the RCPSP procedure.
Contrarily, in CC/BM the critical chain does not necessarily start at time 0
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because of the insertion of the feeding buffers. For example, in Figure 3.5, we
remark that activity 2 only starts at time 1.5. This results in a project due
date of 16.5 instead of 15, the value obtained by the RCPSP procedure of
Figure 2.2. We will call this delay of 1.5 time units the critical chain delay .
Thus, adding a zero-sized project buffer to the CC/BM schedule results in
a makespan that equals the CC length plus CC delay. In order to obtain an
honest comparison between both methods, we add the critical chain delay
to the due date that is imposed on RFDFF to ensure that both methods
have equal due dates.

3.3 Experimental results

We refer to Van de Vonder et al. (2006b) for an extensive computational
experiment that aims to compare stability and makespan performance be-
tween a makespan protecting (i.e. quality robust) schedule and a stable or so-
lution robust schedule. They set up a factorial design to examine the impact
of buffer sizing decisions and of several parameter settings for project char-
acteristics, such as the order strength OS (Mastor 1970), the resource factor
RF (Pascoe 1966) and the resource constrainedness RC (Patterson 1976)
on a set of 30-activity network instances generated by the RanGen project
network generator of Demeulemeester et al. (2003).

In this text, we do not intend to revisit the detailed results of the fac-
torial experiment, but rather limit our focus to the main conclusion drawn
from that paper. It is intuitively clear that protecting for makespan perfor-
mance, as done by CC/BM, will perform well on quality robustness measures
such as TPCP. On the other hand, protecting individual activities for pos-
sible disruptions, as done by RFDFF, will certainly decrease the stability
cost. The interesting issue addressed in this section, however, is the magni-
tude of the loss of makespan performance when protecting the intermediate
milestones compared to the magnitude of the loss of stability when only
protecting the makespan. In other words, we are interested in the perfor-
mance of CC/BM and RFDFF on the composite robustness measure that
was introduced in Eq. 2.12.

The importance of the weighting parameter wp should be emphasized.
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This weighting parameter has been defined in Section 2.3 as the ratio be-
tween the weight of the dummy end activity and the average of the distri-
bution of all other activity weights:

wp =
wn

wavg
. (3.4)

Its impact on the stability objective measures is immense for both solution
robust and quality robust baseline schedules. For RFDFF, the value of
wp does not only affect the objective function values, but also the baseline
schedules themselves (e.g. the schedule in Figure 3.2 assumed wp = 10). A
higher wp means that the RFDFF procedure allocates a larger buffer to the
dummy end activity. As such, a high wp improves the quality robustness of
the solution robust schedule.

Figure 3.6: Comparing RFDFF and CC/BM for total buffering equal to 50% of
CC length

Figure 3.6 summarizes the established trade-off. The bold curve indi-
cates the ratio between the CC/BM stability cost for a 50% project due date
delay compared to the RFDFF stability cost for the same due date. Obvi-
ously this advantage of RFDFF decreases for higher wp, but the difference
remains substantial for every wp value considered. The dashed curve, on
the other hand, denotes the difference in TPCP percentage points between
CC/BM and RFDFF. This advantage of CC/BM in terms of makespan
performance seems to decrease much more rapidly for increasing wp. We
remark in Figure 3.6 that the dashed line even reaches negative values for
large wp-values. In that case, the makespan advantage of CC/BM com-
pletely disappears because of the above described critical chain delay. For
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real-life projects, low settings of wp are mostly unrealistic because the cost
of not meeting the project due date will most probably greatly exceed the
cost of not meeting an average planned activity starting time.

All of this leads to a paradoxical conclusion. The CC/BM philosophy
tries to protect project completion because it assumes that project comple-
tion is much more important than the timely completion of intermediate
activities (actually CC/BM rejects the use of milestones). However, Figure
3.6 shows that exactly when the weight wn of the ending project activity is
high, CC/BM becomes hard to defend. Even if we would make abstraction
of the critical chain delay, we see that the huge advantage of RFDFF in sta-
bility cannot be compensated by the difference in makespan performance.
The RFDFF procedure schedules activities in such a way that for high wn

values the resulting schedule is quality robust without compromising on so-
lution robustness.

The above conclusions are very similar to the ones found in Van de
Vonder et al. (2005c) for the non-resource-constrained case. Relaxing the
resource constraints does lower stability cost, but almost equally for RFDFF
and CC/BM. So, the stability cost ratio will hardly change. The difference
in TPCP percentage points also shifts marginally between both cases, but
not to the extent that it would change any conclusions.

3.4 Conclusions of the chapter

This chapter described a trade-off between makespan performance and
stability, which is an important issue for every project. We have observed
that the advantages of the two scheduling approaches developed in this chap-
ter depend highly on the relative importance attributed to timely project
completion compared to the importance attributed to timely completion
of intermediate activities. The paradoxical fact that makespan protect-
ing schedules (such as CC/BM) were shown to be hard to defend when
makespan becomes very important, is an interesting conclusion. Improving
project managers’ awareness of the different scheduling strategies and their
strengths and weaknesses is the ultimate aim.

We have drawn two important lessons from the CC/BM approach to
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elaborate on in the remainder of this dissertation. First, buffer inclusion is
able to substantially improve robustness. Second, project managers should
schedule their project by using aggressive activity duration estimates (we as-
sume them in the entire thesis), rather than directly including some amount
of safety in these estimates. Coping to work with such tight activity dura-
tions is considered as a concern of communication and close project control.
However, this chapter adds the comment that safety should not necessarily
be grouped in a project buffer at the end of the project. Project charac-
teristics and extensive risk analysis (see Chapter 9) should decide on both
the position and the size of the buffer. More advanced heuristics for buffer
insertion will be introduced in Chapter 5.

The examined trade-off between stability and makespan serves as an
eye-opener for the importance of solution robust project scheduling. We
proved that scheduling for stability does not necessarily invoke a lower
makespan performance, while project (stability) costs can be largely re-
duced. The obtained results incite us to further develop algorithms that
optimize the RCPSP for stability under uncertainty in the remainder of this
thesis. In the next chapters, we will focus on the far less examined solu-
tion robustness rather than on quality robustness. Obtaining a satisfiable
makespan performance will be achieved by developing solution robust pro-
cedures (such as RFDFF) that result in a schedule with sufficient attention
for quality robustness. Estimates of wn or wp are responsible for the quan-
tification of the proportional importance that should be attributed to both
robustness measures. The next chapters (4, 5 and 6) will concentrate on the
proactive component, while Chapter 7 will focus on the reactive component
of this problem.
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Chapter 4

Solution robust resource

allocation

Introducing robustness into a project schedule can be done in several
ways. The robustness of a predictive schedule can be improved by defining a
clever way in which the resources are allocated to the activities. In Section
2.1.3.2, a resource flow network has been defined as a graph G(N,R) with
the same set of nodes (N) as the original project network G = (N,A), but
resource arcs (R) are connecting two nodes i and j if there is a resource
flow f(i, j, k) of any resource type k between the corresponding activities.
It denotes the way in which renewable resource units are transferred among
the various project activities in the baseline schedule. However, a given
baseline schedule may allow for different ways of allocating the resources
so that the same schedule may be represented by different resource flow
networks.

Resource allocation decisions may affect the robustness of the schedule
in two ways. First, in our two-stage proactive scheduling approach (see
Section 2.4), buffer insertion is always applied after resource allocation. This
means that the resource flow network constructed on the initial schedule SU

remains valid for the buffered baseline schedule S0. Second, as we will
see in Chapter 7, a possible approach to react during project execution to
disruptions that could not be absorbed by the proactive schedule, is to keep
the resource flows intact. In doing so, the resource flows will dictate how
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the schedule is repaired at each schedule breakage until a realized schedule
ST is obtained. Investing time to generate a robust resource allocation then
becomes highly rewarding.

The outline of this chapter is as follows. In Section 4.1, we summarize
the specialized literature on robust resource allocation. Next, we introduce
a new approach to develop a robust resource allocation for a given schedule.
In a last section some conclusions about the impact of the resource flows
on robustness will be given. Computational results of our approach will be
given in the integrated experimental design of Chapter 8. For an exten-
sive overview and computational comparison of several resource allocation
methods, we refer the reader to Deblaere et al. (2006).

4.1 Literature on robust resource allocation

For a given schedule, several possible resource allocations exist that dif-
fer in terms of robustness. Artigues et al. (2003) present a simple method for
generating a feasible resource flow by extending a parallel schedule genera-
tion scheme to derive the flows. However, this procedure cannot be regarded
as a robust resource allocation procedure and will only serve as benchmark
algorithm.

Leus (2003) and Leus & Herroelen (2004) propose a branch-and-bound
procedure that solves the NP -hard robust resource allocation problem for
a single resource type. Constraint propagation is applied during the search
to accelerate the algorithm. Extension to multiple resource types would
require a revision of the branching decisions taken by the branch-and-bound
procedure and the consistency tests involved in the constraint propagation.

Policella et al. (2004) and Policella (2005) introduce heuristic chaining
procedures that are applied to transform an initial schedule into a chained
Partial Order Schedule (POS). They define a POS as a set of solutions
for the RCPSP that can be compactly represented by a temporal graph
G(N,A∪R), which is an extension of the precedence graph G(N,A), where
N denotes the set of nodes (activities) and A denotes the precedence arcs.
A set of additional resource arcs R is introduced to remove the so-called

38



CHAPTER 4. SOLUTION ROBUST RESOURCE ALLOCATION

minimal forbidden sets1.
In total three chaining procedures are introduced by the authors, i.e. ba-

sic chaining, ISH and ISH2. While in basic chaining the pairs of activities
that are chained are basically picked randomly, ISH also starts by picking a
random chain for one resource unit, but then gives priority to add an extra
unit of resource flow to an arc (i, j) for which the activities i and j were
already chained ((i, j) ∈ R). This reduces the number of resource suppliers
in R for each activity j ∈ N . ISH2 no longer starts by randomly picking
a chain. Priority is given to chain activities that were already precedence
related in the original project graph G(N,A).

Recently, three new heuristics based on surrogate mixed integer pro-
gramming (MIP) formulations of the strongly NP -hard resource allocation
problem have been introduced by Deblaere et al. (2006). The MinEA

heuristic minimizes the number of extra precedence relations imposed by
the resource allocation decisions, the MaxPF heuristic maximizes the sum
of pairwise floats (see Eq. 2.9) in the network G(N,A∪R) and the MinED

heuristic minimizes an approximation of the weighted stability cost. We
remark that these procedures rely on a MIP solver such as ILOG’s CPlex
to solve the integer programming problems.

We refer to Policella et al. (2004) and Deblaere et al. (2006) for more
details on the algorithms introduced in this section.

4.2 A constructive resource allocation algorithm

Our approach is quite different from the algorithms discussed in the
previous section. Instead of using a surrogate objective function, we aim
to minimize the non-stability cost

∑
j∈N

wjE|sT
j − s0

j | by iteratively running

for each activity the procedure MABO (myopic activity based optimization).
The procedure is myopic because we do not look at other activities while
deciding upon the best possible resource allocation for an activity. Un-
like most existing resource allocation procedures, MABO also works rather

1A minimum forbidden set is defined as the minimal set of precedence unrelated ac-

tivities which cannot be scheduled together due to the resource constraints (Igelmund &

Rademacher 1983).
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activity-based than resource-based. Before giving a detailed description of
MABO (Section 4.2.2), we describe a preprocessing step (Section 4.2.1) that
aims to reduce the complexity of the resource allocation problem through
the identification of unavoidable resource arcs.

4.2.1 Problem complexity reduction

In this section, we aim to reduce the complexity of the resource al-
location problem by introducing the concept of unavoidable resource arcs.
Two activities i and j are connected by an unavoidable resource arc in the
resource flow network for a given input schedule, if the schedule causes an
unavoidable strict positive amount f(i, j, k) of resource units of some re-
source type k to be sent from activity i to activity j. Defining AU ⊂ R

as the set of unavoidable resource arcs in a feasible resource flow network
G = (N,R), the conditions to be satisfied by the activities i and j such that
(i, j) ∈ AU can be formally specified as described in Theorem 1, in which
Psj is the set of the activities that are in progress at time sj and Z is the
set of activities that have a baseline starting time sz: si + di ≤ sz < sj .

Theorem 1 ∀i ∈ N ;∀j ∈ N with sj ≥ si + di :

(i, j) ∈ AU ⇐⇒

∃k : ak −
∑

l∈Psj

rlk −max(0, rik −
∑
z∈Z

rzk) < rjk (4.1)

Proof At time sj , the total amount of renewable resources of resource type
k equals its per period availability ak. The resource units that are currently
allocated to the set of active activities Psj are unavailable for activity j.
This results in ak −

∑
l∈Psj

rlk available resource items of type k at time sj .

These resource items are either currently allocated to activity i or to any
other activity h with sh+dh ≤ sj . We know that at time si+di, rik resource
items of type k were released by activity i and that only the activities in set
Z, with an aggregated resource requirement of

∑
z∈Z

rzk, have been started

40



CHAPTER 4. SOLUTION ROBUST RESOURCE ALLOCATION

since and could have decreased the number of resources allocated to i. At
least rik −

∑
z∈Z

rzk remain allocated to activity i at time sj . The maximum

amount of resource units of type k that can be supplied to activity j at
time sj from other activities than activity i thus can be specified as in the
left-hand side of Eq. 4.1. If this number is smaller than rjk, there is an
unavoidable resource flow between i and j.

The exact amount and resource type of the flows carried by the unavoid-
able resource arc are irrelevant for the time being. We are only interested in
the fact that an arc (i, j) must be added to the set of unavoidable resource
arcs AU .

A similar approach has been proposed in the branch-and-bound proce-
dure of Leus & Herroelen (2004), where in each node constraint propagation
is used to update lower bounds LBij and upper bounds UBij of the flows be-
tween each pair of activities (i, j). If constraint propagation in the root node
is able to detect an activity pair (i, j) with LBij > 0 then these activities
are connected by an unavoidable resource arc.

Figure 4.1: Minimum duration schedule

Consider our example project described in Section 2.1.1. Figure 4.1 is
an alternative minimum duration schedule for this problem. We can show
that this schedule requires an unavoidable resource arc from activity 7 to
activity 3. At time s3 = 6 only activity 4 is in progress with r4 = 4. Because
activity 3 starts when activity 7 ends, Z is obviously void. This results in
the left-hand side of Eq. 4.1 being equal to 10− 4−max(0, 3− 0) = 3 which
is smaller than r3 = 4. (7, 3) should thus be added to AU . To investigate
the existence of an unavoidable resource arc between activities 3 and 6, we
again check Eq. 4.1. The left hand-side becomes: a− r5−max(0, r3− r5) =
10− 3− (4− 3) = 6 which exceeds the requirement of activity 6. A feasible
resource allocation without a flow between activities 3 and 6 is thus possible.
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The complete set of unavoidable resource arcs for the schedule of Figure 4.1 is
AU = {(0, 1); (0, 2); (1, 7); (7, 3); (3, 5); (4, 6); (6, 8); (8, 9)}. More important
than this set AU is the subset AU \ A of unavoidable resource arcs that do
not correspond with a precedence arc in the original network G(N,A). For
our example schedule, we find AU \A = {(7, 3); (6, 8)}.

4.2.2 MABO

The MABO procedure consists of three steps which have to be executed
for each activity j ∈ N . Step 1 examines whether the current predecessors
of activity j have sufficient resource units available for j. If not, extra pre-
decessors are added in a next step, while minimizing the impact on stability.
Step 3 then defines resource flows f(i, j, k) from predecessor activities i to
activity j. The detailed steps of the procedure are depicted in the pseudo-
code of Algorithm 4.1.

In the initialization step, the set of resource arcs R is initialized to
the set of unavoidable arcs AU . For each resource type k , the number of
resource units alloc0k that may be transferred from the dummy start activity
0 is initialized to the resource availability ak. The project activities are
considered in increasing order of their planned starting times with decreasing
weight as tie break rule.

In Step 1, we calculate the amount of resource units availjk(A ∪ R)
currently allocated to the predecessors of activity j in A ∪ R. If there ex-
ists any resource type k for which this amount of available resource units
is not sufficient, new precedence constraints have to be added to R in Step
2. We define the set Hj of all possible arcs between a potential resource
supplier h of the current activity j and j itself. By running a small recur-
sion problem, we can find the subset H∗

j of Hj that accounts for the missing
resource requirements of j for any resource type k at a minimum stability
cost Stability cost(A ∪ R ∪ H∗

j ). This stability cost is the average stability

cost
∑
j∈N

wjE|sj − sj |, computed through simulation of 100 executions of

the (partial) schedule, keeping the resource flows fixed (see Chapters 7 and
8), and respecting the additional precedence constraints R ∪H∗

j that were
not present in the original project network diagram. For alternative MABO
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Algorithm 4.1 MABO

Initialize: R = AU and ∀k : alloc0k = ak

Sort the project activities by increasing sj(tie break: decreasing wj)
Take next activity j from list

1. Calculate availjk(A ∪R) =
∑

∀i:(i,j)∈A∪R

allocik for each k

2. If ∃k : availjk(A ∪R) < rjk

2.1 Define the set of arcs Hj

with (h, j) ∈ Hj ⇐⇒
(h, j) /∈ A ∪R

sh + dh ≤ sj

∃k : allochk > 0
2.2 Find a subset H∗

j of Hj

such that ∀k : availjk(A ∪R ∪H∗
j ) >= rjk

and Stability cost(A ∪R ∪H∗
j ) is minimized

2.3 Add H∗
j to R

3. Allocate resource flows f(i, j, k) to the arcs (i, j) ∈ (A ∪R) :
For each resource type k:

3.1 Sort predecessors i of j by:
Increasing number of successors l of i

with sl > sj and rlk > 0
Tie-break 1: Decreasing finish times si + di

Tie-break 2: Decreasing variance σ2
i of di

Exception: Activity 0 is always put last in the list
3.2 While allocjk < rjk

Take next activity i from the list
f(i, j, k) = min(allocik, rjk − allocjk)
Add f(i, j, k) to allocjk

Subtract f(i, j, k) from allocik
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formulations, the stability cost function used in Step 2.2 can be replaced by
a surrogate objective function (see Chapter 2) to reduce the computational
requirements. However, it should be mentioned that more dedicated pro-
cedures for optimizing surrogate objective functions have been proposed in
Deblaere et al. (2006).

The set of arcs H∗
j is added to R such that the updated availjk(A∪R) ≥

rjk and the resource allocation problem for the current activity is solved in
a myopic way.

In Step 3, we allocate the actual resource flows f(i, j, k) to the prede-
cessors of j in A∪R and we update the number of resource allocik items allo-
cated to each activity. Following Step 2 we know that availjk(A∪R) ≥ rjk for
each activity j and each resource type k. If availjk(A∪R) = rjk the available
units are all allocated to the corresponding resource flows. If availjk(A∪R)
is strictly larger than rjk for resource type k, an excess of resource items of
this type is available and we have to decide which predecessors will account
for the resource flows and which are left vacant. We try to do this in an
intelligent way, because a greedy algorithm would even reinforce the myopic
character of MABO imposed in Step 2. The predecessors i are sorted by
increasing number of their not yet started successors l with rlk > 0, be-
cause these successors might count on these resources to be available. Two
tie-break rules are used: decreasing finish times and decreasing activity du-
ration variances. The idea is that the predecessors earlier in the sorted list
normally have a higher probability to disrupt future activities. Having them
as a resource supplier would thus in general be unfavorable for solution ro-
bustness. However, when these activities occur in the list of predecessors, it
is advisable to consume as much as possible of the resource units they release
such that their possible high impact on upcoming activities is neutralized.
This allocation procedure is redone for every resource type k independently.

After all this we restart the three-step procedure for the next activity
in the list until we have obtained a complete feasible resource allocation at
the end of the list. The procedure uses an optimal recursion algorithm for
each activity, but is not necessarily optimal over all activities.

As an illustration, we run MABO on the minimum duration schedule of
Figure 4.1. Because the problem instance has a single resource type, we omit
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the index k in further notations. We start by ordering the activities, yielding
the list (0, 2, 1, 7, 4, 3, 5, 6, 8, 9). All available resource units are allocated to
the dummy start activity (alloc0 = 10).

Activity 2 is next on the list. It has dummy activity 0 as single pre-
decessor, so that avail2 = alloc0 = 10. As avail2 > r2 (10 > 3), no extra
precedence relations have to be added and we can proceed to Step 3. We
set f(0, 2) = min(alloc0, r2 − alloc2) = 3, alloc0 = 7 and alloc2 = 3.

Also activity 1 poses no problems because its only predecessor (activity
0) still has 7 transferrable resource units and r1 = 5. Thus, f(0, 1) = 5,
alloc0 = 2, alloc1 = 5.

Activity 7 is the next activity on the list and we calculate in Step 1 that
avail7((1, 7)) = alloc1 = 5, while r7 = 3. Step 2 can thus again be skipped
and the algorithm decides in Step 3 that f(1, 7) = min(alloc1, r7− alloc7) =
3, alloc1 = 2 and alloc7 = 3.

Activity 4 is next. avail4((1, 4), (2, 4)) = 2 + 3 = 5 while r4 = 4.

Step 3 gives priority to activity 2, because neither activity 1 nor activity 2
has any not started successors left, but activity 2 ends later in the baseline
schedule and is thus a greater stability threat for activities further in the
list. This results in f(2, 4) = min(alloc2, r4 − alloc4) = 3 and alloc4 = 3
and alloc2 = 0. Then f(1, 4) = min(alloc1, r4 − alloc4) = 1, alloc1 = 1 and
alloc4 = 4. Activities 3 and 5 are processed in a similar way.

When activity 6 is looked at, the current situation is alloc0 = 1,
alloc1 = 1, alloc3 = 1, alloc4 = 4 and alloc5 = 3, resulting in avail6(4, 6) =
alloc4 = 4, which is smaller than r6 = 5. Thus, for the first time, an ex-
tra precedence relationship has to be added to supply 1 resource unit from
H6 = {(0, 6), (1, 6), (3, 6)}. Two subsets of H6, namely {(0, 6)} and {(1, 6)}
can resolve the resource allocation problem for activity 6 without extra cost.
This is no surprise because both 0 and 1 are already transitive predecessors
of 6. Activity 1 is selected to supply the missing resource unit and thus
(1, 6) is added to R. The procedure then moves on, until a complete feasible
resource allocation is found.

Figure 4.2 shows the resource profile for the obtained robust resource
allocation for the schedule of Figure 4.1. The horizontal bands define the
resource flows between the activities. The random procedure of Artigues
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et al. (2003) would result in the resource allocation illustrated in Figure
4.3. Obviously, especially the resource flow between activities 3 and 6 would
account for an increased stability cost if the resource flows were preserved
as reactive policy.

Figure 4.2: Robust resource allocation for schedule 4.1

Figure 4.3: Random resource allocation for schedule 4.1

4.2.3 Lower bounds on schedule stability cost

In this section, we derive a lower bound on the schedule stability cost
for a given schedule. Such a lower bound is independent of the resource allo-
cation decisions and permits us to quantify the quality of the initial schedule
SU . Deriving a tight lower bound allows to evaluate the performance of the
resource allocation procedures. We refer to Deblaere et al. (2006) for a com-
putational analysis of the lower bounds of this section. For the subproblem
with one renewable resource type, the performance of the resource alloca-
tion heuristics can be compared with the optimal results obtained by the
branch-and-bound procedure of Leus & Herroelen (2004).

The lower bound calculations identify the stability cost contributions
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that are indispensable. These include stability cost contributions due to
the original precedence relations A and the unavoidable resource arcs AU

identified in Section 4.2.1. Stability cost(A ∪ AU ) is thus a lower bound on
the schedule stability cost that is independent of the resource allocation
decisions. We will refer to this weak lower bound as LB0.

Algorithm 4.2 presents a tighter lower bound which can be found by
focusing on the resource allocation decisions that are not resolved by taking
into account the unavoidable arcs A∪AU . We calculate for each activity j the
best case scenario to solve the myopic resource allocation problem. We begin
by calculating the minimal number of resource items allocik allocated at time
sj to each activity i with si < sj as max(0, rik −

∑
z∈Zi

rzk). Zi denotes again

the set of activities that have a baseline starting time sz: si + di ≤ sz < sj .
Summing up

∑
i∈N

allocik might result in a total number of allocated resource

units that is smaller than ak. The difference allocxk = ak −
∑
i∈N

allocik

represents the number of resource units of type k from unknown origin at
the current time.

As in step 1 of the MABO procedure, we need to know the number of
resource units that are allocated to predecessors of activity j in A ∪AR. It
is not sure whether the unknown origins of the allocxk units are predecessors
of activity j or not. In any case, there are no more than availjk = allocxk +∑
∀i:(i,j)∈A∪AR

allocik resource units of type k allocated to predecessors of j at

time sj . If there exists a k for which availjk < rjk, activity j must have non-
predecessors as resource suppliers. Steps 2.1, 2.2 and 2.3 of MABO decide
upon the best non-predecessors to supply extra resource units and calculate
Stability cost(H∗

j ∪A∪AR). The current minimal allocations allocik are used
as input.

After doing this for every activity, we identify the bottleneck activity j∗

that is the most costly to resolve and calculate Stability cost(H∗
j∗ ∪A∪AR).

The so found stability cost is a tighter lower bound on the schedule stability
cost. We will refer to this improved lower bound as LB1.

During the calculation of the lower bound LB1, we might encounter
some activities for which the resource allocation problem cannot be solved
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Algorithm 4.2 LB1

LB1 ←∞
for each activity j with sj > 0 do

for each resource type k do
for each activity i with si < sj do

allocik = max(0, rik −
∑

z∈Zi
rzk)

allocxk = ak −
∑

i∈N, si<sj
allocik

availjk(A ∪AR)max = allocxk +
∑

∀i:(i,j)∈A∪AR
allocik

if ∃k : availjk(A ∪AR)max < rjk then
Define the set of arcs Hj with (h, j) ∈ Hj ⇐⇒

(h, j) /∈ A ∪AR

sh + dh ≤ sj

∃k : allochk > 0
Determine all minimal subsets H1

j ,H2
j , . . . ,Hm

j ⊆ Hj such that
∀k : availjk(A ∪AR ∪H i

j)
max ≥ rjk, i = 1, . . . ,m

Identify the subset H∗
j ∈ {H1

j ,H2
j , . . . ,Hm

j } such that
Stability cost(A ∪AR ∪H∗

j ) is minimized
LB1 ← min(Stability cost(A ∪AR ∪H∗

j ), LB1)
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Algorithm 4.3 LB2

I ← ∅
LB0 ← Stability cost(A ∪AR)
Step 1:
for each activity j with sj > 0 do

for each resource type k do
for each activity i with si < sj do

allocik = max(0, rik −
∑

z∈Zi
rzk)

allocxk = ak −
∑

i∈N, si<sj
allocik

availjk(A ∪AR)max = allocxk +
∑

∀i:(i,j)∈A∪AR
allocik

if ∃k : availjk(A ∪AR)max < rjk then
Define the set of arcs Hj with (h, j) ∈ Hj ⇐⇒

(h, j) /∈ A ∪AR

sh + dh ≤ sj

∃k : allochk > 0
Determine all minimal subsets H1

j ,H2
j , . . . ,Hm

j ⊆ Hj such that
∀k : availjk(A ∪AR ∪H i

j)
max ≥ rjk, i = 1, . . . ,m

Identify the subset H∗
j ∈ {H1

j ,H2
j , . . . ,Hm

j } such that
Stability cost(A ∪AR ∪H∗

j ) is minimized
if Stability cost(A ∪AR ∪H∗

j ) > LB0 then
I ← I ∪ {j}
store Lj = {H1

j ,H2
j , . . . ,Hm

j }
Step 2:
Given I = {j1, j2, . . . , jp} with p ≥ 2, identify the combination of subsets
H∗

j1
∈ Lj1 ,H

∗
j2
∈ Lj2 , . . . ,H

∗
jp
∈ Ljp such that

Stability cost(A ∪AR ∪H∗
j1
∪ . . . ∪H∗

jp
) is minimized

LB2 ← Stability cost(A ∪AR ∪H∗
j1
∪ . . . ∪H∗

jp
)
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without extra stability cost, i.e. Stability cost(A ∪ AR ∪ H∗
j ) > LB0 for

certain activities j. If this number of stability cost increasing activities is
at least two, we can tighten the lower bound LB1 even further, by looking
at the combined effect of solving the resource allocation problem for each
of these activities. The detailed steps of this tightened lower bound LB2

are presented in Algorithm 4.3. The procedure consists of two steps. The
first step is very similar to the calculation of LB1: we identify all stability
cost increasing activities, we add them to a set I and store the subsets of
arcs able to solve their resource allocation problem. In a second step, we
calculate the stability cost for all possible combinations of these subsets.
As we are sure that one of these combinations of subsets will appear in an
optimal resource flow network (w.r.t. schedule stability), the combination
of subsets with minimal stability cost gives us a tightened lower bound.

4.3 Conclusions on resource allocation

In this chapter, we pointed out that resource allocation decisions might
influence the solution robustness of a project baseline schedule. We have in-
troduced a new approach to set up a robust resource flow network for a given
schedule. We refer to Deblaere et al. (2006) for an extensive experimental
analysis of several resource allocation methods and of the lower bounds pro-
posed in this chapter. MABO shows to be among the best on PSPLIB J30
network instances and to be the very best for larger instance sizes. Its com-
putational requirement even remains small (on average < 0.6 s on PSPLIB
J120) for larger network sizes, while in that case the required computation
time for the MIP formulations typically explodes exponentially.

In later chapters, MABO will be used as a robust resource allocation
procedure and its effectiveness will be further analyzed in the computational
experiment of Chapter 8. Fixing the resource allocation during project ex-
ecution will be one of several reactive scheduling procedures discussed in
Chapter 7. We will investigate in Chapter 8 the impact of using MABO
compared to using the benchmark resource allocation procedure of Artigues
et al. (2003) for this purpose.
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Chapter 5

Solution robust buffer

allocation

It has been demonstrated in Chapter 3 that when projects have to
be executed in the face of uncertainty, proactive-reactive project schedu-
ling procedures are capable of combining schedule stability and makespan
performance. The use of an objective function aiming at schedule stability
pays off. Several ways of enhancing the robustness of a schedule have been
recognized. While the previous chapter dwelled on solution robust resource
allocation, Leus (2003) also identified buffer insertion as a way to generate
proactive project schedules.

The objective of this chapter is to develop and validate a number of
heuristic and exact buffer insertion procedures for generating stable project
baseline schedules. The algorithms described in this chapter all consider
a deterministic project due date δn and start from an initial schedule SU

in which time buffers are inserted in order to protect against anticipated
disruptions. Any feasible solution for the deterministic resource-constrained
project scheduling problem (RCPSP) using mean activity durations (prob-
lem m, 1|cpm|Cmax (Herroelen et al. 2000)) can serve as an initial unbuffered
schedule. The impact of the choice of the initial unbuffered schedule on ro-
bustness will be examined in the next chapter. The included time buffers
are idle periods (gaps) in the schedule between the latest planned finish time
of the predecessors of an activity and the planned starting time of this ac-
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tivity itself. The buffers should act as cushions to prevent propagation of a
disruption throughout the schedule.

Before including buffers, the resource allocation problem is solved as
explained in the previous chapter. The buffered baseline schedule S0 will
respect the resource allocation decision made on the unbuffered initial sche-
dule SU . This ensures that the buffered schedules that are generated remain
resource feasible.

The chapter is organized as follows. Section 5.1 introduces the differ-
ent heuristic and exact procedures. Section 5.2 presents the computational
results, while a last section is devoted to overall conclusions.

5.1 Algorithms for solution robust buffer alloca-

tion

Figure 5.1: Problem network instance

Figure 5.2: Resource flow network for example project

Including buffers into an initial schedule SU in order to transform it
into a solution robust baseline schedule S0 is no easy task. The number of
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possible schedules with integer activity starting times that can be built on
a certain resource flow network is highly dependent on the project network
size, the amount of slack present in SU , the project network structure and
the predefined project due date. For the example project network of Figure
5.1 (see also Figure 2.1), the number of feasible schedules that follow the
resource allocation of Figure 5.2 (see also Figure 2.4) and have a due date
that equals the minimum makespan sU

n , can be easily verified as being equal
to 8 if we assume that activities 1 and 2 always start at time 0. The schedules
are shown in Figure 5.3, in which the shaded activities are those that start
later than their starting time in the unbuffered schedule. It can be shown
for this example that by increasing the due date by one time unit from
sU
n +B−1 to sU

n +B time units, the possible number of additional schedules
is:

B∑
x=0

(x + 1).
x+1∑
i=0

(4 + B + x− 2i)(i + 1) (5.1)

Proof Consider a full enumeration tree in which the branching levels corre-
spond to the activities, considered in non-increasing order of their starting
times in the unbuffered schedule SU . For the example project, the resulting
activity list is (9, 8, 6, 7, 5, 4, 3, 2, 1, 0). In the root node (level 0), the dummy
end activity is set equal to the due date.

Consider that the due date is increased by one time unit from sU
n +B−1

to sU
n + B. This means that at level 1, one extra node arises that allows to

start activity 8 at time sU
8 +B. This node creates a total of B+1 new nodes

at level 2. Indeed, given the decision made in level 1, activity 6 can now
start at sU

6 , . . . , sU
6 + B. The possible starting times for activity 7 at level

3, depend on the starting time of activity 6. If s6 = sU
6 + x, x + 2 feasible

starting times for activity 7 exist. This results in a total of
x=B∑
x=0

(x + 2)

additional nodes at level 3. Each of these nodes leads to B + 2 nodes at
level 4, because the possible starting times of activity 5 only depend on the
starting time of activity 8, its sole predecessor in G(N,A∪R). Each of these

(B + 2)
x=B∑
x=0

(x + 2) nodes at level 4 corresponds to x + 1 nodes at level 5, in
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which x equals s6 − sU
6 . This gives us a total of (B + 2)

x=B∑
x=0

(x + 1)(x + 2)

nodes at level 5. Enumerating the feasible starting times for activity 3 is
more complex because the latest feasible finish time of activity 3 equals the
minimum of the starting times of activities 5 and 7. The number of nodes

at level 6 can be verified to equal
B∑

x=0

(x + 1).
x+1∑
i=0

(4 + B + x− 2i)(i + 1). By

assuming that activities 1 and 2 always start at time 0, this number also
equals the number of nodes at branching levels 7 and 8 and by consequence
equals the number of additional feasible schedules by increasing the project
due date to sU

n + B.

This means that for the project due date δn = 20 already 4326 different
schedules exist with sn ≤ δn that respect the resource allocation of Figure
5.2. For more complex and larger projects, the buffer insertion problem will
obviously become far more complex.

It should be clear that enumerating and evaluating all candidate buffered
schedules for a given resource flow network is unrealistic. Both heuristic and
metaheuristic buffer allocation algorithms will be proposed, as well as an ex-
act branch-and-bound procedure. Sections 5.1.1, 5.1.2 and 5.1.3 introduce
simple heuristic procedures, while Sections 5.1.4 and 5.1.5 propose meta-
heuristics. Finally, an exact buffer allocation procedure is provided. They
all aim to cleverly incorporate safety time into a schedule. Figure 5.4 il-
lustrates a buffer allocation that makes a schedule proactive by including
safety time in front of activities 5, 6 and 7. The project due date δn equals
20.

Two factors are taken into consideration in determining the size of the
buffer in front of an activity i. First, the variability of all the activities that
precede activity i in the schedule (measured by the standard deviation σj

of their duration) is taken into account, because it affects the probability
that activity i can start at its scheduled starting time. Second, the weight
of activity i, and both the weights of its predecessors and successors contain
relevant information, because they reflect how costly it is to disrupt the
starting time of activity i in relation to its predecessors and successors in
the schedule.
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Figure 5.3: All feasible schedules with sn = δn = 15

Figure 5.4: Inserting time buffers in a baseline schedule
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Remark that during project execution, activities will never be allowed
to start earlier than planned in order to preserve the stability advantage of
the idle times in the schedule. This execution policy is commonly referred
to as railway scheduling as already described in Section 3.1.

5.1.1 RFDFF

The resource flow dependent float factor model proposed in Section
3.1 is a buffer allocation heuristic that relies completely on the activity
weights and does not exploit the available information offered by the activity
duration distributions in making its buffering decisions.

We recall that the starting time of activity j in the RFDFF schedule
is calculated as

sj(S) := sU
j + αj × float(j), (5.2)

where sU
j is the starting time of j in the initial schedule and αj denotes

the activity dependent float factor, and is dependent on the weights of the
predecessors and successors of activity j in TG = (N,T (A ∪ R)), i.e. the
transitive closures of the union of the original project network and the re-
source flow network. We refer to Section 3.1 for a more thorough description
of this heuristic. Figures 3.2 and 5.4(b) denote the RFDFF schedule for our
example project network of Figure 5.1.

5.1.2 VADE

The virtual activity duration extension (VADE) heuristic starts from a
different point of view. The standard deviations σj of the activity durations,
assumed known, are used to iteratively compute virtual duration extensions
for the non-dummy activities. These virtual activity durations are used to
update the activity start times and, by doing so, insert time gaps in the
baseline schedule. The updated activity starting times are then used to
generate the buffered baseline schedule using the original expected activity
durations.

The iterative procedure works as described in the pseudo-code of Algo-
rithm 5.1. Initially each non-dummy activity duration d′j for j = 1, 2, ..., n−1
is set equal to its expected value E(dj) and all vj = 1, where vj counts
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Algorithm 5.1 VADE

For j = 1, 2, ..., n− 1 do d′j = E(dj) and vj = 1;
Compute s′j , j = 1, 2, ..., n;
While s′n ≤ δn do

Find j∗ : vj∗
σj∗

= minj

{
vj

σj

}
(tie-break: max swj =

∑
i=succ(j) wi);

vj∗ = vj∗ + 1;
d′j∗ = d′j∗ + 1;
Compute S′ and s′n;

Generate the buffered baseline schedule

the number of times that the duration of activity j has been virtually ex-
tended. The activity starting times s′j are initially computed by creating
an early start schedule for G(N,A ∪ R) using the activity durations d′j .
As long as the project duration stays within the due date δn, the activity
start times are iteratively updated as follows. Determine the activity j∗

for which vj∗
σj∗

= minj

{
vj

σj

}
. Ties are broken by selecting the activity for

which the sum of the weights of all its non-dummy successors is the largest.
Set vj∗ = vj∗ + 1 and d′j∗ = d′j∗ + 1. Afterwards, ∀(j∗, k) ∈ (A ∪ R) : if
s′j∗ + d′j∗ > s′k then the schedule needs to be updated by postponing s′k by
1 time unit. This approach will be repeated for the successors of k until
a resource and precedence feasible updated schedule S′ is obtained. That
schedule will be the input of the next iteration step. At every iteration
step, S′ will be evaluated by simulation and the schedule that minimizes
Σwj(sj − s′j) will be the output schedule of the VADE procedure.

The standard deviations of the activity durations of our project exam-
ple are given in Table 5.1. As v4

σ4
= 1.19 = minj

{
vj

σj

}
, d′4 = 4 + 1 = 5

and v4 = 1 + 1 = 2, so that v4
σ4

= 2.38. The virtual duration extension of
activity 4 generates a one-period delay in the starting times of its successor
activities 6 and 8 in the resource flow network, so that s′6 = 10 and s′8 = 14.
Next, v5

σ5
= 1.59 = minj

{
vj

σj

}
so that d′5 = 5 + 1 = 6, v5 = 1 + 1 = 2 and

v5
σ5

= 3.17. The current schedule does not need to be modified because of the
two-period gap between the completion time of activity 5 and the starting
time of activity 8. Now we have that v7

σ7
= 1.69 = minj

{
vj

σj

}
, d′7 = 2+1 = 3
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Table 5.1: Values for the VADE heuristic

j E(dj) σj swj

1 4 0.56 14
2 5 0.31 5
3 2 0.40 8
4 4 0.84 7
5 5 0.63 5
6 4 0.28 5
7 2 0.59 12
8 2 0.20 0

and v7 = 1 + 1 = 2, so that v7
σ7

= 3.39. Activity 7 has a two-period float,

so there is no need to update the schedule. Now v1
σ1

= 1.79 = minj

{
vj

σj

}
,

d′1 = 5, v1 = 2 and v1
σ1

= 3.57. Continuing the procedure in this manner
leads to the virtual duration updates d′4 = 6, d′3 = 3, d′2 = 6, d′5 = 7, and
d′7 = 4. Now we have v1

σ1
= v4

σ4
= v6

σ6
= 3.57 = minj

{
vj

σj

}
. Invoking the

tie-break rule (see column swj in Table 5.1) leads to the update d′1 = 6.

Subsequently, d′4 = 7 and d′6 = 5. However, this very last activity duration
prolongation does not show any improvement when the objective function
is evaluated by simulation. The current solution will thus not be stored as
best so far, but will still be executed in order to continue the search. At this
juncture, updating d′4 = 8 would move the expected project duration beyond
the project due date. The algorithm terminates and yields the schedule of
Figure 5.5.

Figure 5.5: VADE schedule
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5.1.3 STC

The starting time criticality heuristic (STC) exploits information about
both the weights of the activities and the variance structure of the activity
durations. The basic idea is to start from an unbuffered schedule SU and it-
eratively create intermediate schedules by inserting a one-time period buffer
in front of the activity that is the most starting time critical in the current
intermediate schedule, until adding more safety would no longer improve
stability. The starting time criticality of an activity j is defined as

stc(j) = P (sj > sj)× wj = γj × wj (5.3)

where γj denotes the probability that activity j cannot be started at its
scheduled starting time.

The iterative procedure runs as follows. At each iteration step (see
pseudocode below) the buffer sizes of the current intermediate schedule are
updated. The activities are listed in decreasing order of the stc(j). The list
is scanned and the size of the buffer to be placed in front of the currently
selected activity from the list is augmented by one time period such that the
starting times of the activity itself and of the direct and transitive successors
of the activity in G(N,A ∪ R) are increased by one time unit. If this new
schedule has a feasible project completion (sn < δn) and results in a lower
approximated stability cost (

∑
j∈N stc(j)), the schedule serves as the input

schedule for the next iteration step. If not, the next activity in the list is
considered. Whenever we reach an activity j for which stc(j) = 0 (all activi-
ties j with sj = 0 are by definition in this case) and no feasible improvement
is found, a local optimum is obtained and the procedure terminates.

Regrettably, the probabilities γj are not easy to compute. We define
k(i, j) as the event that predecessor i disturbs the planned starting time
of activity j. The probability that this event occurs can be expressed as
P (k(i, j)) = P (si + di + LPL(i, j) > sj) in which LPL(i, j) is the sum of
the durations dh of all activities h on the longest path between activity
i and activity j in the graph G(N,A ∪ R). γj can then be calculated as
γj = P (

⋃
i k(i, j)) for ∀i : (i, j) ∈ T (A ∪ R). STC makes two assumptions

in approximating γi: (a) predecessor i of activity j starts at its originally
planned starting time when calculating P (k(i, j)) and (b) only one activity
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Algorithm 5.2 The iteration step of the STC heuristic
Calculate all stc(j)

Sort activities by decreasing stc(j)

While no improvement found do

take next activity j from list

if stc(j)=0 : procedure terminates

else add buffer in front of j

update schedule

if improvement & feasible do

store schedule

goto next iteration step

else

remove buffer in front of j

restore schedule

at a time disturbs the starting time of activity j. Assumption (b) means that
we estimate P (

⋃
i k(i, j)) by

∑
i P (k(i, j)), i.e. we assume that P (k(i1, j) ∩

k(i2, j)) = 0 for each i1, i2. Assumption (a) boils down to setting si = si.
Combining both assumptions yields

γ′j =
∑

i

P (di > sj − si − LPL(i, j)) (5.4)

such that stc(j) = γ′j×wj . Because si, sj and LPL(i, j) and the distribution
of di are all known, we can now easily calculate the values of γ′j and stc(j)
for every activity j. This results in the measure for stability that is depicted
in Eq. 5.5.

min
∑
j∈N

stc(j) = min
∑
∀j∈N

wj

∑
∀i:(i,j)∈T (A∪R)

P (di > sj−si−LPL(i, j)) (5.5)

Besides its repetitive use in STC, this expression can also be used as a
surrogate objective function for the objective of Eq. 2.3. For that purpose,
Eq. 5.5 can be rewritten as Eq. 5.6 where the closely related minimum sum of
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Table 5.2: The longest path lengths from i to j

LPL(i, j) 1 2 3 4 5 6 7 8 9
1 0 0 2 4 2 8 10
2 0 4 8 10
3 0 2 0 6 8
4 0 4 6
5 0 2
6 0 2
7 0 4 6
8 0

pairwise floats MSPFij concept (see Chapter 2) is used instead of LPL(i, j)1.

min
∑
j∈N

stc(j) = min
∑
∀j∈N

wj

∑
∀i:(i,j)∈T (A∪R)

P (di > di + MSPFi,j) (5.6)

The application of STC to the problem example of Table 2.1 and the
schedule of Figure 2.2 runs as follows. First, the LPL(i, j) values need to
be calculated for all predecessors i for every activity j. For illustrative
purposes, we calculate LPL(1, 3), LPL(1, 5) and LPL(1, 8). A glance at the
minimum duration schedule of Figure 2.2 and the resource flow network
of Figure 5.2 reveals that activity 3 is immediately preceded by activity 1
and thus LPL(1, 3) = 0. The resource flow network of Figure 5.2 shows a
unique path < 1, 3, 5 > leading from activity 1 to activity 5. This results
in LPL(1, 5) = E(d3) = 2. Multiple paths exist between activity 1 and 8,
namely < 1, 3, 5, 8 >, < 1, 3, 7, 8 >, < 1, 3, 7, 6, 8 >, < 1, 7, 8 >, < 1, 7, 6, 8 >

and < 1, 4, 6, 8 > with a corresponding path length of 7, 4, 8, 4, 2, 6 and 8,
respectively. Thus, LPL(1, 8) = 8. Table 5.2 shows all LPL(i, j)-values. If
(i, j) /∈ T (A ∪R), the corresponding cell in the table is left blank.

The stc-values are first calculated for the initial minimum duration
schedule of Figure 2.2 with sn = δn = 20. For example stc(6) is calculated

1The advantage of using LPL in STC is that these values only need to be calculated

once in the iterative STC procedure because they are independent of activity starting

times.
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as w6 × (P (k(1, 6)) + P (k(2, 6)) + P (k(3, 6)) + P (k(4, 6)) + P (k(7, 6))) with
P (k(1, 6)) = P (d1 > s6 − s1 − LPL(1, 6)) = P (d1 > 5) = 0.11
P (k(2, 6)) = P (d2 > s6 − s2 − LPL(2, 6)) = P (d2 > 5) = 0.23
P (k(3, 6)) = P (d3 > s6 − s3 − LPL(3, 6)) = P (d3 > 3) = 0.01
P (k(4, 6)) = P (d4 > s6 − s4 − LPL(4, 6)) = P (d4 > 4) = 0.34
P (k(7, 6)) = P (d7 > s6 − s7 − LPL(7, 6)) = P (d7 > 3) = 0.05
This results in stc(6) = 7 × (0.11 + 0.23 + 0.01 + 0.34 + 0.05) = 5.18. All
the stc-values for the starting solution are shown in column Initial in Table
5.3.

∑
stc(i) = 16.93 denotes the total cost of the schedule and provides a

good measure for the stability of the schedule. Ordering the activities by
decreasing stc gives (6, 8, 7, 4, 5, 3, 9, 1, 2). Adding a one-time period
buffer in front of activity 6 yields updates of the starting times s6 = 10 and
s8 = 14 and provides the input schedule for Step 1.

Table 5.3: Computational steps of the STC procedure

Act Initial Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7
1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 1.20 1.20 1.20 1.20 1.20 1.20 1.20 0.44
4 1.71 1.71 1.71 1.71 1.71 0.25 0.25 0.25
5 1.47 1.47 1.47 1.47 1.47 1.47 0.35 0.09
6 5.18 1.69 2.02 2.02 0.62 0.58 0.58 0.60
7 2.45 2.45 0.58 0.58 0.58 0.58 0.58 0.15
8 4.88 2.22 2.45 0.48 0.20 0.20 0.20 0.20
9 0.04 0.04 0.04 0.04 0.04 0.27 0.27 0.27

Tot 16.93 10.78 9.47 7.50 5.82 4.55 3.43 2.00

The newly inserted buffer in front of activity 6 requires a recalcula-
tion of its stc-value and the stc-value of its successors activities 8 and 9.
However, observe that stc(9) does not change although the buffer between
activities 8 and 9 is reduced in size by one time period. Indeed, activity 8
has a very low variability and P (k(8, 9)) = 0, indicating that the buffer size
between activity 8 and 9 does not need to be increased. Table 5.3 shows the
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new values in the Step 1 column. Activity 7 now has the largest stc-value,
yielding the ordered list (7, 8, 4, 6, 5, 3, 9, 1, 2). Delaying the starting time
of activity 7 by one time period is feasible and leads to a reduction in the
total schedule cost.

In Step 2, stc(7) will decrease while stc(6) and stc(8) will increase be-
cause of the delay of s7. Activity 8 has the largest stc-value and will be
delayed by one time period in the input schedule of Step 3.

Similarly to Step 1, the buffer in front of activity 9 is large enough and
thus only stc(8) drops in value, resulting in the new ordered list (6, 4, 5, 3,
7, 8, 9, 1, 2). Inserting a second one-time period buffer in front of activity 6
will not cause any feasibility problems and will improve the total schedule
stability cost.

Figure 5.6: The input schedule for step 4

The input schedule for Step 4 is given in Figure 5.6. Obviously, the
insertion of the buffer in front of activity 6 will result in a decrease of stc(6).
Also stc(8) will slightly decrease. Activity now 4 has the highest stc- value
and will thus be delayed.

For the input schedule of Step 5, we find that s4 = 6. However, because
the buffer size in front of activities 6 and 8 were previously fixed at respec-
tively two and one time periods, also s6 and s8 will be delayed by one time
period. This results in the positive side effect that also stc(6) will decrease.
The ordered list becomes (5, 3, 6, 7, 9, 4, 8, 1, 2) and the total schedule
cost has decreased in value to 5.82.

In Step 6 the buffer size in front of activity 5 will be set to one time
period. No other activity shift is required. Observe the difference with the
previous step. Here the buffer size in front of activity 8 remains respected
by delaying a predecessor, while in Step 5, s8 had to be delayed in order to
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respect the time period buffer. Table 5.3 again shows the updated stc-values.
Activity 3 is now the most time critical and will be delayed.

Inserting a buffer in front of activity 3 results in a major shift in the
schedule. The starting times of activities 5 and 7 will both be delayed
by one time period in order to keep their previously allocated buffer sizes
fixed. The corresponding stc-values will decrease and

∑
stc(i) = 2. A

small increase of stc(6) is the only drawback. The Step 7 column in Table
5.3 shows the newly ordered list (6, 3, 9, 4, 8, 7, 5, 1, 2). The algorithm
continues by trying to delay activity 6. By doing so stc(4) would decrease
from 0.60 to 0.22 and stc(8) would decrease from 0.20 to 0.07, but stc(9)
would explode by a stunning 2.17 resulting in a higher total schedule cost.
Delaying activity 6 is thus infeasible and we proceed with the next activity
in the list, namely activity 3. However, buffering activity 3 or either of the
following activities in the list can also be proven to result in non-improving
moves. The procedure terminates and Figure 5.7 represents the schedule
found by the STC heuristic for our example project.

Figure 5.7: STC schedule

5.1.4 Improvement heuristic

The improvement heuristic starts from an initial solution. This can
be the schedule found by any of the heuristics discussed above or the un-
buffered schedule SU . The activities are entered in a list in decreasing order
of their starting time in the input schedule. The activities are considered in
the order dictated by the list. For the currently selected activity from the
list, it is determined how many periods the activity can be moved backward
and forward in time without affecting the starting time of any other activ-
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ity in the schedule. A neighborhood of the current solution is constructed
by including for each discrete time instant in this displacement interval a
schedule with sj equal to this time and all other starting times remaining
unchanged. These schedules are then all evaluated by simulation and the
time instant that yields the lowest stability cost, is chosen as the new start-
ing time of the current activity in the updated schedule. With this updated
schedule, we proceed to the next activity in the list. If the next activity in
the list is the dummy start activity, we restart the list. If the list is scanned
entirely without any improvement, a local optimum has been found and the
procedure terminates.

Basically the algorithm is a combination of steepest and fastest descent.
For an activity selected from the list, we examine all possible starting times
and select the best one (steepest descent). However, we do not examine
the entire range of starting times of all the activities and select the best,
but instead we already update the schedule if a better solution is found for
the current activity before proceeding to the next activity in the list. This
fastest descent part of the algorithm is included to speed up computations.

5.1.5 Tabu search

Descent approaches may terminate at a local optimum after some itera-
tions when no further improvement can be found in the direct neighborhood
of the current solution. Glover (1989, 1990) developed the principle of tabu
search algorithms, which allow to select the mildest ascent solution to con-
tinue the search whenever no improvement can be found. A tabu list keeps
track of recent solutions that will be forbidden moves in order to avoid cy-
cling.

The tabu search procedure starts with the STC schedule described
in Section 5.1.3. At each iteration step, the neighborhood of the current
solution contains at most 2×(n−2) solutions. For each non-dummy activity
of the project, we have two possible neighborhood solutions. One is obtained
by increasing the buffer in front of the activity in the schedule by one time
period, if possible (plus-move). The other is obtained by decreasing the
buffer size of this activity by one unit, if possible (minus-move). The buffers
in front of all other activities are left unchanged. Two tabu lists are kept,
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both of length bn/3c. The first list stores all recent plus-moves, while the
second one stores all recent minus-moves. Before allowing a new plus-move,
we have to check whether this activity is not in the second list. If a buffer
size decrease (minus-move) delivers the best solution in the neighborhood,
the first tabu list has to be checked. By doing so, we avoid cycling, but
we do allow an activity to be consecutively selected if the considered moves
have the same direction. The aspiration criterion defines that a move that
would yield a new best solution will be accepted even if it would normally
be prohibited by the tabu list. Because the tabu search described here only
adds or subtracts one unit of time buffer at a time, large shifts of the starting
time of an activity compared to its initial starting time will only occur if all
intermediate positions yield acceptable solutions. This might obstruct the
procedure to move an activity into its actual best positioning for all other
activity starting times considered fixed. To remove this inconvenience, one
iteration step of the improvement heuristic of Section 5.1.4 will be allowed
after a fixed number of iterations (100). The overall best found solution is
stored throughout the whole procedure. The tabu search stops after a fixed
number of iterations.

5.1.6 Exact algorithm

In this section, we propose a depth-first branch-and-bound procedure
for inserting time buffers in the initial schedule. The procedure examines
all possible buffer size combinations and tries to prune the search space by
calculating bounds. It should be stressed that the pruning rules proposed in
this section, are only valid if the resource flow network is preserved during
project execution. We run the STC heuristic to obtain an initial upper
bound UB on the stability cost.

The algorithm starts with a preprocessing phase. The activities are
listed in decreasing order of their earliest starting time esj = sU

j in the
unbuffered initial baseline schedule (ties broken by decreasing activity num-
ber). For the input schedule of Figure 2.2 this would yield the list L =
(l[1], l[2], ..., l[n]) = (9, 8, 6, 7, 5, 4, 3, 2, 1). We identify Nj− as the set of activ-
ities that precede j in the list and the set Nj+ as the set of successors of
activity j in the list.
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For each activity j in the network G(N,A ∪ R), the latest start time
lsj is calculated given that lsn = δn. The total float TFj of activity j equals
lsj − esj . It denotes the maximum amount of time by which activity j

may be delayed without violating the due date δn. The preprocessing phase
works as described in Algorithm 5.3.

Algorithm 5.3 The preprocessing phase

∀j ∈ N :
for FFj = 0 to TFj do

Simulate 100 executions scenarios of G(Nj+, A ∪R) with:
∀i ∈ Nj+ : si = esi

sj = esj + FFj

Calculate minstabj(FFj) = wjE|sj − sj |

Because all activities that succeed j in the list L are started at their
earliest starting time, minstabj(FFj) is a lower bound on the stability cost
induced by activity j when activity j is preceded by a buffer of FFj time
units.

After this preprocessing step, the algorithm starts with a depth-first
search. The activities are considered in the order dictated by the list L =
(l[1], l[2], ..., l[n]). We identify the activity under consideration as the current
activity. The first activity l[1] on the list is the dummy end activity n. We
generate the root node at level 0 of the search tree with s

′
n = δn. We move

to the second current activity c = l[2] on the list, and generate the left most
node at level 1 of the search tree with s

′
c = sc. We compute a lower bound

on the stability cost induced by this current activity c using simulation as

LB1c =
∑

l∈Nc−

wlE|sl − sl| (5.7)

If LB1c ≥ UB, then the node can be fathomed, as it is not necessary to
evaluate the starting times si > esi for any i ∈ Nc+, given that s′l has been
fixed for each l ∈ Nc−. Also, it is not necessary to evaluate later starting
times for c. Hence, we can backtrack to the previous activity in the list.

Backtracking is done by moving one level up in the search tree and by
investigating the next position s′(c′) + 1 for the current activity c′ explored

67



5.1. Algorithms for solution robust buffer allocation

at that level. If there exists no subsequent starting time of c′ such that
sc′ + dc′ ≤ max

∀m:(c′,m)∈(A∪R)
s′(m), then we continue backtracking until we

meet an activity with feasible subsequent starting times. When backtracking
reaches the root of the search tree the algorithm stops.

If LB1c < UB, we can compute a tighter lower bound LB2c. We start by
calculating latest starting times ls′i for i ∈ Nc+ given that ∀l ∈ (Nc−∪ {c}) :
ls′l = s′l. For any activity i ∈ (Nc+ ∪ {c}), the expression wiE|si − si| ≥
minstabi(ls′i − esi) holds for any schedule that would be generated in lower
branches of the search tree. Aggregation yields∑

i∈(Nc+∪{c})

wiE|si − si| ≥
∑

i∈(Nc+∪{c})

minstabi(ls′i − esi) (5.8)

We have shown above that
∑

i∈Nc−

wiE|si−si| ≥ LB1 holds in the current

branch of the search tree. This leads to

LB2 = LB1 +
∑

i∈(Nc+∪{c})

minstabi(ls′i − esi) ≤
∑
i∈N

wi.E|si − si| (5.9)

LB2 is thus a lower bound on the stability cost for all schedules with sj = s′j
and ∀ l ∈ Nj− : sl = s′l. The computations made in the preprocessing stage
make this bound rather easy to compute. If LB2 ≥ UB, the current node can
be fathomed and we can continue the search by evaluating the next integer
start time for current activity c. If LB2 < UB, the current branch needs
to be further explored by branching on the next activity in the ordered list.
When all activities i with esi > 0 have been branched on and LB2 < UB, a
new best solution has been found with stability cost LB2.

Figure 5.8 illustrates the search logic on a small fictive problem. The
current best solution found has a stability cost of 500. The node correspond-
ing to starting current activity l′ at time s

′
l′ could not be fathomed by either

LB1 or LB2. We thus have to branch to the next level, where activity j is
the current activity. Starting activity j at its earliest starting time esj yields
a LB1j < UB. The stability impact on the activities l ∈ Nj− is not large
enough to prune the current branch. However, an earliest starting time typ-
ically allows little slack in front of the activities that remain to be scheduled
in lower levels of the search tree, resulting in small values of FFi for i ∈ Nj+
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and thus large values of minstabi(FFi) and LB2. LB2j = 550 allows us to
fathom the node and to continue the search by evaluating sj = esj +1. LB1j

goes up to 400, but LB2j has decreased due to increased slack for the activ-
ities in Nj+. Because both lower bounds are smaller than the current best
solution, we branch to node 4 at the next level of the search tree. Updating
LB1 at the first branch of this level results in LB1i′ ≥ UB. This branch
and the subsequent branches can be pruned and we continue the search by
backtracking to level j. The next starting time position of j, namely esj +2,

also yields LB1j > UB. We backtrack to the previous level. The procedure
continues in this way until we are able to backtrack until the parent node.

Figure 5.8: A partial branch-and-bound tree

Running the optimal buffer insertion algorithm on the schedule of Fig-
ure 2.2 with δn = 20, yields the robust project schedule of Figure 5.9. Re-
mark that although this schedule is very different from the STC schedule, its
stability cost is only incrementally better in the simulation. Schedule 5.9 is
better at protecting the project due date at the cost of a higher intermediate
stability cost.

69



5.2. Experimental results

Figure 5.9: A robust buffered schedule

5.2 Experimental results

In this section, experimental results will be given for the different buffer
insertion procedures proposed in this chapter. The results of the heuristic
procedures are based on the results obtained in the paper of Van de Vonder
et al. (2005a). Section 5.2.1 will shortly revise the main conclusions drawn
in that paper for the simple heuristics, while Section 5.2.2 will do the same
for the improvement procedures. We refer to the extensive experimental
analysis of Chapter 8 for a more thorough examination of the most promising
among the heuristics. Finally, results for the exact algorithm of Section 5.1.6
are discussed in Section 5.2.3.

5.2.1 Simple heuristics

All heuristic algorithms evaluated in this section and the following sec-
tion have been coded in Microsoft Visual C++ 6.0. The procedures were
tested on the well-known J30, J60 and J120 PSPLIB data sets (Kolisch &
Sprecher 1997). For details on these instances we refer to the parameter
settings section of the PSPLIB website (http://129.187.106.231/psplib/).

The heuristic RCPSP solution obtained by the combined crossover al-
gorithm of Debels & Vanhoucke (2006) serves as the benchmark and is used
as initial unbuffered schedule for all buffer insertion procedures. The project
due date δn is set equal to b1.3×Cmaxc which has been found to be an ade-
quate due date for most project schedules in a recent study (Van de Vonder
et al. 2006b). The random procedure of Artigues et al. (2003) resolves the
resource allocation. Repairing the schedule on schedule breakage is done by
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applying a robust serial schedule generation scheme (see Section 7.2) to the
priority list that orders activities in non-decreasing order of their starting
time in the baseline schedule. Ties are broken by decreasing order of activity
weight, then by increasing activity number.

For every algorithm we calculate the average stability cost over all
networks and 100 simulated execution scenarios on both a training set and a
test set of simulated disruptions. The test set of executions is run to detect
overfitting as will be explained in the next section. Besides the average,
we also examine the percentage of network instances for which a certain
algorithm yields the minimum stability cost among the algorithms within
its class. Again, this measure will be calculated for training and test set
disruptions to examine the degree of overfitting. We feel that comparing
simple heuristics with improvement algorithms would give few additional
insights. Also the average computational times (in seconds) are looked at
for each algorithm.

The results obtained in Van de Vonder et al. (2005a) reveal that STC
gives by far the best results among the simple heuristics. Although VADE
and RFDFF have a much smaller stability cost than the unbuffered schedule,
they only outperform STC on a few network instances. RFDFF encounters
problems when dealing with networks with tight resource constraints. In
these networks many resource conflicts need to be resolved, which will lead
to more extra precedence relations in the resource flow network and eventu-
ally to a larger Cmax for the RCPSP and thus a larger δn. RFDFF typically
allocates a larger portion of the total safety to the dummy end activity than
the other heuristics. For networks with tight resource constraints, the total
safety included (recall that δn = b1.3×Cmaxc) might be too high such that
RFDFF overprotects the project completion and has to pay a high extra
stability cost for this unnecessary extra protection due to poorly buffered
intermediate activities. Also larger networks, i.e. networks with more activ-
ities, will in general result in a larger makespan and this explains the fact
that RFDFF performs exceptionally bad on the J120 data set. RFDFF also
scores relatively worse when the degree of uncertainty decreases because it
typically overprotects the project completion, causing poorly buffered inter-
mediate activities and unnecessary stability losses during execution.
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The required computational effort is highly correlated with the number
of time-consuming2 evaluations needed in the procedure, which is low for
all simple heuristics. The STC heuristic, for instance, runs on average in
slightly less than 2 seconds for the PSPLIB J120 network instances. Because
VADE selects the best out of a range of solutions, its computational time is
the most demanding among the simple heuristics. Especially for the J120
networks the computational time of VADE exceeds this of the other simple
procedures. For the same reason, VADE is slightly affected by overfitting.
However, this overfitting is clearly not critical.

5.2.2 Improvement heuristics

The improvement heuristic of Section 5.1.4 can start from any feasible
schedule. Results on the training set reveal that all stable project schedules
generated by a simple buffer insertion heuristic (STC, VADE and RFDFF)
provide good starting solutions for the improvement heuristic. Only starting
from the unbuffered schedule leads to substantially higher stability cost and
computational effort. As somewhat expected, the tabu search procedure of
Section 5.1.5 already obtains the best results of all heuristics for a restricted
number of iteration steps (100). However, the 2×(n−2) evaluations required
at each of the iteration steps of the tabu search procedure account for an
increase in computation time. When n = 120, the required computational
effort of the improvement heuristic becomes more demanding. Surprisingly,
VADE results in the best starting solution for the descent approach in more
cases than STC, while the latter has been shown to be the best simple
heuristic.

The algorithms proposed in Sections 5.1.4 and 5.1.5 select the best
neighborhood solution by evaluating several scenarios of disruptions drawn
from the stochastic activity duration density functions. Including informa-
tion about these simulated disruptions might make the buffer allocation de-
cision process subject to overfitting to these disruption scenarios. The best
schedule in the simulation experiment will not necessarily result in the best
schedule for the disruptions that will occur during the actual project execu-

2Remember that each evaluation consists of 100 simulated executions of the project

that have to be scheduled by using the robust parallel SGS.
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tion, even if we assume that they are drawn from the same density functions.
Hence, we also evaluate the schedules generated by the improvement heuris-
tics on the test set of disruptions. More information about overfitting will
be given in Section 8.3.3.

On the test set, we observe an overall increase in the average stability
costs compared to the training set results, while the mutual differences in
stability cost between the algorithms are largely reduced for J30 and J60.
These small differences make it harder to justify the high computational
burden of the tabu search procedure. We may conclude that especially
the tabu search is subject to overfitting. When the degree of uncertainty
decreases, the simple STC heuristic even obtains results that are very similar
to the improvement heuristics. The local searches only overfit the baseline
schedule on the simulated disruptions in the training set. Tabu search is
certainly not recommended in a low variable environment.

We attempted to reduce the computational time of tabu search and
the improvement phase, by replacing the objective function to evaluate the
neighboring solutions by the surrogate objective of Eq. 5.6 which does not
rely on simulation to be evaluated. However, it was found that it became
very difficult to obtain satisfying results if the ultimate objective function
remained to minimize

∑
j wj

∣∣∣s0
j − sT

j

∣∣∣.
5.2.3 Exact algorithm

The exact algorithm of Section 5.1.6 has not been included in the exper-
iment of Van de Vonder et al. (2005a) because the required computational
time is too extensive for the PSPLIB network instances. The practical use
of the procedure is thus very limited.

Also, whether a solution is optimal depends on the reactive procedure
used to evaluate the solution schedule. The exact algorithm of this chapter
requires that the resource flows are kept fixed during execution (see Section
7.4.2) to guarantee optimality. If not, the lower bounds of Equations 5.7
and 5.9 are not applicable and without these bounds, the procedure would
become a full enumeration of all possible solutions, which has been shown
to be unrealistic earlier in this chapter. The procedure of Artigues et al.
(2003) is again used to construct a feasible resource flow network.
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The exact algorithm was tested on a problem test set that was con-
structed using the RanGen project scheduling network instances generator
developed by Demeulemeester et al. (2003). All instances consist of 15
non-dummy activities. For all three project characteristics used in the ex-
perimental design to set op the data set (OS, RF, RC ), two values are used,
namely 0.3 and 0.7. The number of resource types in a project is fixed to
four. For each of the 23 parameter settings, 10 network instances were gene-
rated, yielding a total of 80 test instances. The unbuffered baseline schedule
is generated by the branch-and-bound code of Demeulemeester & Herroelen
(1992, 1997) with a project due due δn that is set equal to a 30% prolon-
gation of the project makespan. Remark that the required computational
time will be highly correlated with δn. Activity duration disruptions and
activity weights were drawn from the distribution that will be defined in the
experimental set-up of Chapter 8.

Table 5.4 gives the obtained results on our eighty 15-activity networks.
We compare them with the benchmark results obtained by the STC heuristic
and by running the descent algorithm of Section 5.1.4 on the STC schedule
(STC D) on both average solution robustness (in terms of the objective
function of Eq. 2.3) and average required computational time on a Pentium
IV 2.9 GHz workstation. We limited the computational time per network
instance to 30 minutes if necessary. It should be remarked that 67 out of
80 network instances could be solved optimally well before this time limit.
The average improvement of the exact algorithm is small compared to the
improvement heuristic, while the computational time explodes. The exact
algorithm ran on average just over 7 minutes, but the true average com-
putational time will be higher due to the 30 minutes limit. The median
computational time is much lower, i.e. 51 seconds.

The effectiveness of the lower bound mechanisms can be calculated
by dividing the number of nodes visited by the total number of nodes in
the branch-and-bound tree. This last number already becomes very large
for most 15-activity networks. We stopped the counting procedure at 1010

nodes and noticed that for 68 out of the 80 networks in our data set, the
search tree contains more nodes than that threshold. Our exact algorithm
visits on average just over 106 nodes. The lower bound mechanisms could
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Table 5.4: Results of the exact algorithm

Stability Time (in s.)
STC 21.22 < 10−2

STC D 19.00 0.02
Exact 18.89 427.51

thus already prune well over 99% of the counted nodes in the search tree.
This percentage would only increase by more precise calculations of the exact
number of nodes in the search tree. For more complex networks, the number
of nodes is exponentially large such that even after effective pruning a high
computational burden persists.

5.3 Conclusions of this chapter

Proactive project scheduling is concerned with building stable baseline
schedules that are able to absorb most of the anticipated disruptions during
project execution. In this chapter, various heuristic algorithms and an exact
algorithm for inserting time buffers in a project schedule were presented and
evaluated.

STC was shown to be a relatively fast heuristic that performs well on
small and large projects. It will be implemented in a real-life environment
in Chapter 9. Improvement algorithms and the exact algorithm require sim-
ulation to evaluate several candidate solutions and become computationally
infeasible for large-scaled projects. They may also be subject to overfitting.
Trying to avoid these drawbacks of simulation-based approaches by work-
ing with surrogate objective measures leads to inferior results on solution
robustness.

In this chapter buffers were allocated to an initial schedule SU after
resource allocation was decided by the algorithm of Artigues et al. (2003).
The evaluation of these buffered schedules was mostly done by a priority
rule based reactive procedure. The study of the impact of different initial
schedules on the efficiency and effectiveness of the buffer allocation process
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will be the main topic of the next chapter. In Chapter 8, a large-scale
experiment investigates the interactions between initial schedule selection,
resource allocation, buffer allocation and reactive procedures. Detailed re-
sults for some of the most promising buffer insertion procedures proposed
in this chapter will be included in that experiment.
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Chapter 6

Integrated solution robust

project scheduling

So far our methodology for generating proactive project schedules relied
on a two-stage approach. First, an initial baseline schedule was constructed
by solving the RCPSP under the minimum makespan objective without look-
ing at robustness. This schedule was then made solution robust in a second
stage. In the previous chapters we looked at resource allocation (Chapter
4) and buffer insertion (Chapter 5) to improve the solution robustness of a
baseline schedule.

The aim of this chapter is twofold. First, in the two-stage process to
construct a stable project schedule one traditionally devotes little attention
to the first stage, in which a feasible solution for the RCPSP is found.
Second, although we emphasized the advantages of a two-stage approach,
the interrelations between initial schedule selection, resource allocation and
buffer insertion should not be ignored. Hence, robust scheduling approaches
will be introduced that integrate the two-stage approach in one single stage.

The remainder of this chapter is organized as follows. In Section 6.1 a
branch-and-bound procedure is proposed that finds all feasible active sche-
dules with a makespan smaller than a given threshold. Sections 6.2 and
6.3 introduce two metaheuristics for initial schedule selection. The first one
basically consists of applying the STC heuristic of Section 5.1.3 to a range
of initial schedules. The second one relaxes the assumption that robust
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scheduling should follow a two-stage approach by integrating initial sche-
dule selection and buffer insertion. Experimental results with the proposed
procedures are given in Section 6.4. Potential future research directions
(Section 6.5) and some overall conclusions (Section 6.6) are presented at the
end of the chapter.

6.1 A branch-and-bound algorithm for initial sche-

dule selection

In previous chapters, a single initial schedule SU is generated by apply-
ing one of the procedures from the extensive RCPSP literature. However, for
most projects many minimum duration and near-minimum duration sche-
dules may be selected depending on the searching mechanism of the applied
procedure. These candidate initial schedules may differ in robustness. For
our example of Table 2.1 two alternative optimal schedules exists in addition
to the schedule of Figure 2.2. One of them has already been introduced in
Figure 4.1.

We adapt the branch-and-bound procedure of Demeulemeester et al.
(1992, 1997) so that it generates a family of optimal and near-optimal sche-
dules instead of a single optimal solution. First, the procedure is run to solve
the RCPSP instance to optimality in order to know the minimum makespan
C∗

max. Then, we rerun the procedure in such a way that it finds all mini-
mum duration schedules. For this purpose, several changes had to be made
to the algorithm. First, the upper bound with the current best solution
has to remain equal to C∗

max + 1 throughout the entire search. Second, all
minimum duration schedules have to be stored. Last, despite their efficiency
for solving the standard RCPSP, the dominance rules (f.i. the cutset dom-
inance rule) needs to be suppressed in order to find all optimal solutions
in the search space. Remark that this search space only comprises active
schedules.

Using a minimum duration schedule as input schedule in the two-stage
proactive scheduling procedure does not necessarily yield the most robust
baseline schedule for a project with a predefined project due date δn. One of
the objectives of the computational experiment in Section 6.4.1 is to inves-
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tigate the impact on solution robustness of using near-minimum makespan
schedules as initial schedules in step one of the two-stage procedure. In order
to find a set of such near-optimal schedules for a given project instance, the
above described procedure will be rerun several times with upper bound set
equal to C∗

max +∆+1, for ∆ = 0, 1, 2 . . . . This allows us to find all schedules
in the search space with a makespan equal to C∗

max + ∆.

6.2 Metaheuristic 1

The RCPSP is known to be NP -hard in the strong sense (for proofs see
Blazewicz et al. (1983) and Demeulemeester & Herroelen (2002)). Looking
for multiple solutions as described above may very well be computationally
inefficient.

In this section we create a metaheuristic that applies STC (see Sec-
tion 5.1.3) to different feasible RCPSP solutions, trying to find the best
combination of initial schedule and buffer insertion. Remember that re-
source allocation decisions need to be made before the STC algorithm can
be applied. In this metaheuristic, we generate feasible resource flows using
the procedure of Artigues et al. (2003). Compared to the branch-and-bound
procedure of the previous section, this metaheuristic tries to guide the search
to a solution that performs well on the stability objective function of Eq.
2.3. The main drawback of the approach followed by Metaheuristic 1 is that
the STC buffer insertion procedure needs to be applied numerous times.
Hence, Metaheuristic 1 can become rather demanding on computation time
for large projects, because the STC heuristic needs almost two seconds for
a 120-activity network.

6.2.1 The algorithm

In this section, the implementation details of the first metaheuristic
are described. Two sets of schedules are maintained throughout the search.
EliteSet contains solutions for the solution robustness maximization problem
that will hopefully improve through the iterations. Schedules will be buffered
by applying STC to an initial schedule SU before their inclusion in EliteSet.
They will be stored by maintaining an activity list and a buffer vector (see
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below). RCPSPSet is formed with (unbuffered) solutions for the RCPSP
that can be stored by only maintaining an activity list. The schedules in
RCPSPSet help to create new initial schedule candidates. We will denote the
cardinality of EliteSet and RCPSPSet respectively as nelite and nRCPSP.
Typically, nelite will be substantially smaller than nRCPSP. The parameter
settings for these and other parameters in our experimental analysis will be
given in Section 6.4.2.

Algorithm 6.1 Metaheuristic 1

1. Initialize EliteSet and RCPSPSet

2. For i = 0 to (niter -1)

(a) (Candidate, CandRCPSP) =

Path-Relinking(EliteSet,RCPSPSet)

(b) Evaluate Candidate

(c) Update(EliteSet, RCPSPSet, Candidate, CandRCPSP)

The procedure is summarized in Algorithm 6.1. The subsequent steps
in this algorithm are explained in more detail in the upcoming sections. Af-
ter initialization (see Section 6.2.1.1), new candidates for the EliteSet and
RCPSPSet are calculated with a Path-Relinking procedure at each iteration
step. These candidates are evaluated (see Section 6.2.1.3) and replace solu-
tions in the sets according to some criteria as will be explained in Section
6.2.1.4. The algorithm terminates when a predefined number of iterations
(niter) has been reached.

6.2.1.1 Initialization

We create nelite+nRCPSP schedules with the regret-based biased ran-
dom sampling procedure of Drexl (1991) under the latest finishing time rule.
We apply the double justification DJ (see Valls et al. (2005)) to all of them.
Double justification DJ(S) of a schedule S applies a left justification to
the right justification of S. Left (right) justification advances (delays) each

80



CHAPTER 6. INTEGRATED ROBUST PROJECT SCHEDULING

activity of S in such a way that it cannot start earlier (finish later) with-
out delaying (advancing) some other activity, or violating the constraints,
or increasing the makespan. It is a proven technique to improve solutions
for the RCPSP without requiring much computational time. This initial
solution strategy is used in HGA (cf. Valls et al. (2002)), one of the best
heuristic algorithms for the RCPSP, to create the initial population. Once
the schedules have been created, we order the solutions in increasing order
of their makespan. The nelite best solutions on makespan are evaluated for
stability (see Section 6.2.1.3) and form the EliteSet. The remaining nRCPSP
solutions form the initial RCPSPSet.

6.2.1.2 Path relinking

Algorithm 6.2 describes the path-relinking procedure that heavily relies
on the procedure PR of Algorithm 6.3. EliteSet(i) (RCPSPSet(i)) denotes
the i-th solution in the set. Candidate(i) represents a solution, but CandR-
CPSP is a set of solutions. The procedure PR requires two schedules A and
B and a parameter nsol as input and returns a set of solutions or the empty
set ∅. It will be described in detail in Algorithm 6.3.

In the procedure PR we denote a schedule by topological ordering
(TO)(cf. Valls et al. (1999)) instead of a traditional priority list. Given
a schedule S, any vector γ = (γ1, . . ., γn) of different integer numbers be-
tween 1 and n that satisfies: si < sj → γi < γj is called a TO representation
of schedule S. We can switch between a TO and an activity list λ with the
equation γi = λ−1(i) if λ satisfies si < sj → λ−1(i) < λ−1(j). Throughout
the algorithms we work with this type of activity lists. For an example pri-
ority list λ = (3, 1, 2) we see that activity 3 occupies the first position (i.e.
λ−1(3) = 1) such that γ3 = 1. The TO representation conform with λ is
γ = (2, 3, 1).

In Step 6 (e) of Algorithm 6.3 the serial SGS is applied to generate S

by selecting at each iteration the eligible activity with smallest weight γ3
j .

A similar operator was used in Valls et al. (2005).
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Algorithm 6.2 Path relinking

For i = 0 to (nelite− 1) do
{
For j = 0 to (nelite− 1) do
{
S = Solution with smallest makespan calculated in the procedure

PR(EliteSet(i),EliteSet(j),nsol1)
If (Candidate(i) = ∅ or S has smaller makespan than Candidate(i))

Candidate(i) = S

}
For j = 0 to (nRCPSP− 1) do

{
S = Solution with smallest makespan calculated in the procedure

PR(EliteSet(i),RCPSPSet(j),nsol2)
If (Candidate(i) = ∅ or S has smaller makespan than Candidate(i))

Candidate(i) = S

}
}

For i = 0 to (nRCPSP− 1) do
{
j = 0 to (nRCPSP− 1) do
{
CandRCPSP =

CandRCPSP ∪ PR(RCPSPSet(i),RCPSPSet(j),nsol2)
}

}
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Algorithm 6.3 PR(A, B, nsol)

1. Deduce activity lists λ1 and λ2 from schedules A and B

2. Set = ∅

3. Transform λ1 and λ2 in TO’s γ1 and γ2

4. Let N ′ = N

5. Let nact = |N ′|/(nsol + 1)

6. For i = 0 to (nsol− 1) do

(a) Randomly select nact activities from N ′

(b) Change = Change ∪ {selected activities}

(c) N ′ = N ′\ {selected activities}

(d) ∀j ∈ N :

i. If j ∈ Change: γ3
j = γ2

j

ii. Else: γ3
j = γ1

j

(e) Create a schedule S with the weights γ3
j

(f) S = DJ(S)

(g) If S is different from A, B and the solutions in Set: Set ∪ S

7. Return Set
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6.2.1.3 Evaluate

We evaluate Candidate(i) for i = 1, . . . ,nelite as follows. We first gener-
ate an initial unbuffered schedule SU by applying a serial SGS to the activity
list λ pertaining to Candidate(i) and then add buffers by applying the STC
heuristic to this initial schedule. Afterwards the objective function of Eq.
2.3 is evaluated through simulation on a training set with 100 repetitions.
If there are more than nelite schedules in Candidate, they are not evalu-
ated. This means that we evaluate at most nelite solutions at each iteration
step. Sometimes fewer solutions are evaluated because Candidate(i) might
be empty as can be seen in Step 6 (g) of Algorithm 6.3.

6.2.1.4 Update

Updating the sets is done as follows. Candidate(i) replaces EliteSet(i)
when it scores better on the objective function and the best of the list
CandRCPSP replaces RCPSPSet(i) when it performs better on makespan.

6.3 Metaheuristic 2

The first metaheuristic has two main drawbacks. First of all, we cannot
evaluate many solutions, since STC becomes CPU critical for multiple pro-
cedure calls for large networks. Secondly, not all solutions for our problem
can be reached through the combination of an active initial schedule and
the application of STC to this schedule to insert buffers. Possible buffer
insertions that are not generated by STC will be unjustly excluded from
consideration. In order to solve these problems we have created the second
metaheuristic that incorporates the buffers in the codification. This means
that next to an activity list λ and an SGS, a solution is also represented
by a vector of buffers β. For a given representation, a schedule is built by
applying the serial SGS to the activity list and then adding the buffers that
were stored in the buffer vector. Adding a buffer to activity i means that
the activity itself and all its successors in T (A∪R) are delayed by β(i), the
i-th element in the buffer vector. A buffer vector β = (0, 3, 0) for example
indicates that activity 2 and its successors will be delayed by three time
units compared to the schedule generated by applying the serial SGS to λ.
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Remark that as in the first metaheuristic, buffer insertion only occurs after
resource flow network G(N,R) has been fixed.

The buffers stored in β are usually far from optimal and worse than
those provided by STC. However, they evolve with the solutions, becoming
better through evolution. The idea is that it is a waste of time to calculate
(near) optimal buffers (by STC) for the solutions in the early stages of
the algorithm, because they are going to be replaced by better solutions
later in the search. Buffer insertion and initial schedule selection have been
integrated.

Recently, a similar approach has been proposed by Ballest́ın & Leus
(2006) in single-machine scheduling. The tabu search for buffer insertion
introduced in Section 5.1.5 and the tabu search of Lambrechts et al. (2006b)
for robust scheduling under stochastic resource availabilities also rely on
similar buffer list representations.

6.3.1 The algorithm

The proposed metaheuristic is a population-based algorithm. A popu-
lation of solutions (POP) is created and maintained through several itera-
tions. There is also an auxiliary population PopRCPSP formed by RCPSP
solutions. This population is used to refresh the main population. POP is
initialized by creating ninitial schedules with the regret-based biased ran-
dom sampling procedure under the LFT rule (see also Section 6.2.1.1). We
apply the above described double justification algorithm DJ to all of them.
We heuristically insert buffers in these solutions by adding iteratively one ex-
tra buffer size unit to ininact activities j selected from N with probabilities
proportional to wj

∑
∀i:(i,j)∈T (A∪R)

P (di > di + MSPFi,j) (cf. Section 5.1.3).

This iterative procedure terminates when a predefined number (= ininiter)
of iterations without improvement on the surrogate objective function of
Eq. 5.6 are reached. Finally, we select the best nPop solutions according to
their performance on the surrogate objective function and evaluate them by
simulation. For population PopRCPSP, we create nPopRCPSP schedules
with the regret-based biased random sampling procedure under the LFT
rule and apply the double justification algorithm to all of them.
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At each iteration one of four possible operators is chosen and applied
to one or two solutions of the population. The probabilities of selecting
operators A, B, C and D are 1/8, 3/8, 1/4 and 1/4 respectively. When
operator B or special operator D is selected, the auxiliary population will
be modified. When we introduce a solution in POP, we eliminate the worst
solution in it. When we select a solution of POP (PopRCPSP), those with
a better makespan have a bigger probability of being selected. The second
metaheuristic is summarized in Algorithm 6.4. More details on the operators
are given in the next section.

Algorithm 6.4 Metaheuristic 2

1. Calculate initial population POP and auxiliary population
PopRCPSP

2. While termination criterion not met

(a) Randomly select operator X from {A, B, C, D}

(b) i. If X is binary operator A then select two solutions of POP
and apply operator A to obtain two solutions that are in-
cluded in POP if they are better than any in POP

ii. If X is binary operator B then select one solution of POP
and one of PopRCPSP (S). Apply operator B and obtain
one solution that is included in POP if it is better than any
in POP. Obtain one solution that replaces S in PopRCPSP

iii. If X is unary operator C then select one solution of POP.
Change the buffers and evaluate it. It is introduced in POP
if it is better than any in POP

iv. If X is special operator D: apply several iterations of the
DJGA algorithm to the auxiliary population PopRCPSP.
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6.3.2 Operators

In this section, we describe the operators that are applied in Algorithm
6.4.

6.3.2.1 Operator A

Operator A returns a pair of new activity lists and is a generalization of
the two-point crossover used in the genetic algorithm of Hartmann (1998).
We draw two random integers q1 and q2 with 1 ≤ q1 < q2 ≤ n. λM

and λF are the activity lists corresponding to the mother solution and the
father solution respectively. βM , βF and βD denote the buffer vectors. The
daughter’s activity list λD is determined as follows:

• λD(p) = λM (p); βD(λD(p)) = βM (λD(p)) ; p = 1, . . . , q1;

• λD(p) = arg mink∈N{λ−1
F (p)|k /∈ {λD(1), . . . , λD(p− 1)}};

βD(λD(p)) = βF (λD(p)); p = q1 + 1, . . . , q2;

• λD(p) = arg mink∈N{λ−1
M (p)|k /∈ {λD(1), . . . , λD(p− 1)}};

βD(λD(p)) = βM (λD(p)); p = q2 + 1, . . . , n;

A simple example will clarify this operator. Assume a 5-activity net-
work, with the mother solution represented by λM = (1, 2, 3, 4, 5) and
βM = (0, 4, 3, 0, 2) and the father represented by λF = (5, 1, 3, 2, 4) and
βM = (0, 4, 0, 1, 0). q1 and q2 equal 1 and 3 respectively. The first q1 = 1
activities of the daughter are copied from the mother resulting in λD =
(1, x, x, x, x) and βD = (0, x, x, x, x), in which x denotes that the correspond-
ing element is yet undecided. Afterwards, the daughter proceeds with the
first q2−q1 activities from the father that are not yet in λD. This means that
activities 5 and 3 are added from the father resulting in λD = (1, 5, 3, x, x)
and βD = (0, x, 0, x, 0). The daughter is completed by adding the remaining
activities in the order of their appearance in λM . The representation of the
daughter is: λD = (1, 5, 3, 2, 4) and βD = (0, 4, 0, 0, 0).

Afterwards we apply a mutation, both to λD and βD. For the activity
list we have borrowed the mutation from Hartmann (1998) that states that
two subsequent activities in the activity list are swapped with a certain
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probability if the resulting sequence remains precedence feasible. To mutate
βD we randomly choose some activities and increase or decrease their buffers.
A sibling is created symmetrically, by swapping the roles of the mother and
father solutions.

6.3.2.2 Operator B

Operator B is similar to Operator A. The only difference is that one of
the solutions is taken from the PopRCPSP and consequently has the null
vector as buffer vector. The operator returns two solutions, described by an
activity list and a buffer list. The best one in makespan is added to POP
after buffer insertion and evaluation, the other one is added to PopRCPSP
with the null vector as buffer vector.

6.3.2.3 Operator C

Operator C is in fact a family of operators, since there are three of
them, all trying to improve the buffers of a solution. When operator C is
selected, one of three family members is picked randomly. Selecting activities
in operators C1 and C2 is not done randomly. Activities with high stability
cost and small current buffer sizes are more (less) likely to be selected when
we select activities in order to increase (decrease) buffer sizes.

Operator C1 starts from the input schedule S that can be represented
by activity list λS and buffer vector βS . It increases the buffers of nactC1
selected activities and reduces the buffers of another nactC1. This results
in schedule S∗ with λ∗S = λS and with the updated buffer vector β∗S . Then
it calculates the value on the surrogate objective function of Eq. 5.6 for
S∗. If this value is less than the objective value of schedule S, we repeat the
procedure with S = S∗. Else we return to the original schedule S and choose
new activities. This is done iteratively until a certain number (niterC1 ) of
iterations without improvement is reached.

Operator C2 randomly chooses nactC2 activities with repetition al-
lowed and decreases their buffers by 1 time unit. Then it applies the STC
procedure of Section 5.1.3, but it is stopped after a certain number of iter-
ations niterC2.
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Operator C3 is the complete STC procedure. Note that applying STC
needs less time than in the first metaheuristic, since we begin the procedure
with some buffers already included in the schedule.

6.3.2.4 Operator D

Operator D is applied to the auxiliary set of unbuffered schedules. It
applies the DJGA procedure (Valls et al. 2005), which is a simple but very
effective metaheuristic for the RCPSP. An iteration of this algorithm runs
as follows. The population PopRCPSP is divided in pairs and the two-point
crossover is applied to the nPopRCPSP/2 pairs, obtaining nPopRCPSP new
solutions, which are mutated, evaluated on makespan through applying the
serial SGS and to which the double justification procedure is applied. The
population for the next iteration is formed by selecting the nPopRCPSP
solutions with smallest makespan from all solutions in the original and the
newly generated population.

Remark that we will not apply the above when one of the following
conditions hold:

• the makespan of the best schedule in PopRCPSP equals the makespan
of the worst;

• a certain number (niterD) of iterations without improvement has passed.

If either condition holds, a mutation is applied to refresh the popula-
tion.

6.4 Experimental results

In this section we discuss the experimental results that we obtained
for the procedures described in this chapter. We will focus on both initial
schedule selection and the integration between this selection and robustness
decisions discussed in previous chapters. Section 6.4.1 will discuss the ma-
jor experimental findings for the branch-and-bound procedure, while Section
6.4.2 is devoted to results of the metaheuristic procedures. The actual pa-
rameter settings for the multiple parameters in the metaheuristic procedures
will also be discussed.
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6.4.1 Results of the branch-and-bound algorithm

The branch-and-bound procedure of Section 6.1 has been tested on the
480 PSPLIB J30 network instances. The number of alternative minimum
makespan schedules varies enormously over the network instances. Many
projects have a unique active RCPSP solution. In the J30 set, 120 network
instances have a resource strength (Cooper 1976) RS = 1. For these net-
works, the early start schedule will by definition equal the unique minimum
duration schedule because the peak resource requirement in this early start
schedule equals the resource availability ak for each resource type k. Nine
other networks with RS 6= 1 show to have a unique solution. On the other
hand, the number of alternative minimum duration schedules easily exceeds
10,000 for 25 network instances.

We ran the branch-and-bound several times with ∆ = 0, 1, 2, 3, . . . , 9 to
investigate the impact of the initial schedule makespan on stability. The first
iteration results in one minimum duration schedule with minimum makespan
C∗

max. The due date δn will be set equal to 1.3×C∗
max, rounded to the closest

integer value. In each subsequent iteration, the best stability cost and aver-
age stability cost for the obtained schedules with makespan ≤ C∗

max +∆ are
calculated. If necessary, we truncate each run of the branch-and-bound code
once a new solution has been found after more than one minute of compu-
tational time1 or whenever 100 solutions with makespan equal to C∗

max + ∆
have been found. The project executions were simulated by respecting the
resource flows that were decided by the MABO procedure.

We observe in Figure 6.1 that predictive schedules with near-optimal
makespan (∆ > 0) may on average (dashed line) result in a modestly im-
proved stability cost compared to minimum duration schedules. A schedule
with a larger makespan typically incorporates more slack for the intermedi-
ate activities. This will have a positive impact on stability cost. However,
an increasing makespan of the predictive schedule will also lead to an in-
creased percentage of due date violations. For increasing ∆, this negative
effect will become dominant and result in an overall negative effect on solu-
tion robustness. The full line in Figure 6.1 represents for each ∆ the lowest
stability cost among the schedules with makespan ≤ C∗

max + ∆. This curve

1Remark that this can take much more time than 1 minute.
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Figure 6.1: The impact of schedule makespan on stability

is by definition non-increasing.

Figure 6.2: The impact of schedule makespan on stability after buffer insertion

When time buffers are inserted to make the predictive schedule more
robust, the stability cost advantage of starting from a near-optimal initial
schedule disappears. In Figure 6.2, the average expected stability costs for
the STC schedules are represented by the dashed curve. The slack already
present in the non-optimal unbuffered schedules improves robustness, but
also reduces the freedom to add buffers (slack) by the buffer insertion pro-
cedure. STC is a very effective buffering procedure so that it pays off to
launch this procedure on a minimum duration schedule. We remark that
there is also hardly any improvement for the best schedule found when
we allow to start from non-minimum duration schedules. This also shows
that it is advantageous to allot more computational time to a single run of
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the branch-and-bound procedure in which we search for minimum duration
schedules only (∆ = 0), rather than to consider near-optimal schedules in
multiple runs. More detailed results of this approach will be given in the
computational experiment of Chapter 8.

When we are interested in finding a solution robust baseline schedule,
we need to draw attention to the integration of initial scheduling and buffer
insertion. Clever initial schedule selection can substantially improve robust-
ness, but we are unable to simply select the unbuffered schedule with the
lowest simulated stability cost or the lowest lower bound for stability (see
Section 4.2.3) and then add buffers to this schedule. It is recommended to
evaluate candidate schedules after buffer insertion. A simple heuristic such
as STC is required to allow for the evaluation of several candidate baseline
schedules.

6.4.2 Results of the metaheuristic procedures

In an experimental set-up with parameter settings equal to these of the
high variance, loose due date and high wp case that will be discussed in
Section 8.2, we have compared the performance of Metaheuristics 1 and 2
to benchmark results obtained by applying the STC procedure to an initial
schedule obtained by the combined crossover algorithm developed by Debels
& Vanhoucke (2006). Results are shown in Table 6.1.

Parameter settings are important for metaheuristics to achieve a good
performance. For PSPLIB J120, we set the parameters of Metaheuristic 1
as indicated in Table 6.2. Remark that nelite and niter are chosen such
that the total number of STC calls is less than 50. Indeed, we need nelite
STC applications in the initialization phase of Section 6.2.1.1 and maximally
nelite applications for each of the niter times that the set Candidate is eval-
uated. The parameter settings for the second metaheuristic are summarized
in Table 6.3.

Metaheuristic 1 obtains an improvement of more than 4% on the av-
erage stability cost for the 600 J120 network instances by applying STC
to several (i.e. niter × nelite) initial RCPSP solutions. The average com-
putational time required is 96 s, which roughly corresponds to the average
computational time required for 50 runs of the STC procedure.
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Table 6.1: Results on PSPLIB J120

Procedure Stability Time (s)
STC 150,07 1.69

Metaheuristic 1 143.52 96.10
Metaheuristic 2 131.68 62.30

Table 6.2: Parameter settings for Metaheuristic 1

Parameter Value
nelite 3

nRCPSP 30
niter 15
nsol1 9
nsol2 3

Table 6.3: Parameter settings for Metaheuristic 2

Parameter Value
nPop 15

nPopRCPSP 500
ninitial 30
ininiter 10
ininact 5
nactC1 5
niterC1 10
nactC2 20
niterC2 60
niterD 5
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The second metaheuristic is able to decrease the average stability cost
with 12% in on average 62.3 s compared to the benchmark results. Bet-
ter results are obtained for more than 500 out of 600 network instances.
Integrated buffer insertion and schedule selection pays off.

It should be mentioned that, contrary to the branch-and-bound pro-
cedure and the first metaheuristic, this procedure does no longer rely on
the STC procedure such that it is hard to tell whether its improvement is
based on a better initial schedule selection or rather on an insertion of better
buffers (stored in β) than those that would have been added by STC to the
initial schedule. In order to exclusively investigate the improvement on the
subject of initial schedule selection, the output schedule of Metaheuristic
2 should be either unbuffered or used as input for a more advanced buffer
insertion procedure (see Chapter 5). This will be done in Chapter 8.

6.5 Future research

The main difference between the second metaheuristic and the two-
stage approach of previous chapters is that the RCPSP optimization now
occurs simultaneously with the optimization of the stability problem. We no
longer look for a good RCPSP solution in stage one and buffer this solution
in stage two. Metaheuristic 2 directly solves the stability problem in one
integrated phase.

However, we are still in a way solving the RCPSP in both metaheuris-
tics proposed in this chapter. This approach has as major advantage that
it allows us to integrate very efficient procedures and techniques from the
extensive RCPSP literature. The main drawback arises from the fact that,
in contrast to the RCPSP (see Kolisch (1996b)), there does not necessarily
exist an optimal initial schedule for the stability problem in the class of ac-
tive schedules. All solutions obtained by the algorithms of this chapter add
buffers to an active initial schedule SU . During the buffer insertion process,
the resource allocation decisions made on SU will be respected. Consider a
small 3-activity project with activity durations d1 = 3, d2 = 2 and d3 = 2;
with resource requirements r1 = 2, r2 = 3 and r3 = 2 for a single renew-
able resource type with a = 4 and with a precedence relationship between
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activities 1 and 2. The sole active initial schedule for this project will have
activity starting times s1 = 0, s2 = 3 and s3 = 0. Following the definition
of an unavoidable resource arc in Eq. 4.1, we remark that any feasible re-
source allocation for this schedule contains a strictly positive resource flow
between activities 3 and 2. These resource flows would remain intact for
the buffered baseline schedules generated by the procedures of this chapter.
The non-active schedule depicted in Figure 6.3 in which activity 2 precedes
activity 3 will thus never be generated by any of them.

Figure 6.3: A non-active baseline schedule

Recently, we have been experimenting with a new metaheuristic in
which buffered schedules are generated by applying a serial SGS to priority
lists, but where the activity only becomes eligible for scheduling at its first
feasible starting time augmented by a time buffer that is stored in a buffer
vector β. In such an approach, the priority list λ = (1, 3, 2) and the buffer
vector β = (0, 0, 4) would result in the schedule of Figure 6.3. Activity 3
has a first feasible starting time of 0 and a buffer β(3) = 4. It thus becomes
eligible for scheduling at time 4 and will be scheduled at its first feasible
starting time after 4, i.e. decision time 5.

This new metaheuristic would completely integrate initial schedule se-
lection and buffer insertion and would make the resource allocation problem
redundant (except when resource flows are fixed as a reactive procedure).
It should, however, be mentioned that the enlarged solution space seriously
affects the computational time required to obtain a satisfactory solution.
Moreover, it may be intuitively unlikely that the extra solution space con-
tains many solution robust schedules.
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6.6 Conclusions

In the two-stage approach applied in this thesis we first solve the
RCPSP to find an initial schedule and afterwards augment its solution ro-
bustness. The commonly overlooked impact of initial schedule selection on
solution robustness has been investigated in this chapter. An exact branch-
and-bound algorithm and two metaheuristics have been proposed to deal
with this problem.

We found that drawing attention to the initial schedule selection pays
off in terms of solution robustness, but in general requires a lot of computa-
tional time. For the branch-and-bound procedure we can somewhat reduce
this computational burden by restricting the search to minimum duration
schedules, without comprising much on stability. This approach will be
taken in the computational experiment of Chapter 8.

The second metaheuristic relaxed the assumption that a two-stage ap-
proach for solution robust project scheduling should be applied. The initial
scheduling problem and buffer insertion problem were solved in an integrated
approach. The promising results of Metaheuristic 2 showed that initial sche-
dule selection and buffer allocation are heavily interrelated and that such
an integrated approach should be considered. Metaheuristic 2 will also be
included in the large-scale computational experiment of Chapter 8.
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Chapter 7

Reactive scheduling policies

In the previous chapters we discussed baseline scheduling methods with
a different ability to absorb disruptions. It is to be expected that for a
number of reasons none of them will ever be stable enough to cope with all
possible disruptions that may occur during project execution:

• proactive scheduling only employs statistical knowledge of disruptions;

• the process of obtaining this knowledge is subject to estimation errors;

• anticipating all possible disruptions would simply be infeasible.

A proactive scheduling procedure must therefore be combined with a re-
active scheduling procedure that, during schedule execution, allows to react
to schedule disturbances that cannot be absorbed by the proactive schedule.

In Section 7.1, reactive scheduling is monitored as a multi-stage de-
cision process. Before several robust reactive procedures are proposed in
Section 7.4, robust schedule generation schemes and its properties are intro-
duced in Sections 7.2 and 7.3. Some experimental results (Sections 7.5) and
conclusions (Section 7.6) conclude the chapter.

7.1 Reactive scheduling as a multi-stage decision

process

As stated above, we advise to react whenever the current project sche-
dule becomes unfeasible. Although this approach might be considered un-
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suitable in machine scheduling1, the large-scale nature of projects urges for
such a controlled execution. Essentially, proactive scheduling aims to reduce
schedule nervousness by limiting the need for rescheduling decisions.

While the proactive scheduling efforts of the previous chapters are made
before the actual start of the project, reactive project scheduling is a multi-
stage decision process that takes place during project execution. To con-
struct a predictive project schedule S0, best practice is to employ a priori
statistical knowledge about the stochastic project entities. Mostly, the ex-
pected or average duration E(dj ) of activity j is used to decide upon its
predictive starting time s0

j . The actual duration dj of project activity j is
only known with certainty at its completion. New information thus becomes
gradually available during project execution, possibly requiring a schedule
revision. At every point t in time, the projected schedule St (see Section
2.1.2.4) predicts how the project scheduler expects the project to unfold
given the information available at that time.

If an activity was projected to have finished at time t, but it has not, the
activity should remain active in the projected schedule. In Van de Vonder
et al. (2005b), we explicitly assumed that in that case, the exact realized
duration is known and the remainder of the disrupted activity could readily
be scheduled for its remaining duration dj −E(dj). This assumption might
be unrealistic and will be dropped in this chapter. The disrupted activity
will be continued for only one time period between t and t + 1 and its
continuation will be reconsidered iteratively until it finishes.

When the project finishes at stochastic time T , the projected schedule
becomes the realized schedule ST , that provides complete information about
the actual realizations of the activities. In a stochastic environment, the
realized schedule will be typically unknown before the project completion
time T . We will refer to this stochastic schedule by the variable ST .

The desired reactive scheduling procedure to generate a projected sche-
dule St at each decision time t depends on the objective function of the
project. Often a distinction is made between rescheduling and schedule re-
pair . Rescheduling means that the original scheduling problem is resolved

1In machine scheduling (see Vieira et al. (2003)) rescheduling occurs either periodically

or event driven.
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for the remainder of the project at schedule breakage. According to the ro-
bustness definitions of Chapter 2, this can be seen as quality robust reactive
scheduling.

When solution robustness comes into play, such rescheduling would no
longer be recommended. Solution robust reactive scheduling needs to ensure
that the decisions made to construct a projected schedule St during project
execution result in a small deviation ∆(S0, ST ). The baseline schedule is
thus repaired as well as possible at schedule breakage. The objective function
used to evaluate this performance metric is the minimum expected stability
cost function monitored in Eq. 2.3. We assume that the project is subject
to a predefined project due date δn and that the baseline starting time of
the dummy end activity s0

n is set equal to this δn. The cost of finishing
the project before δn is zero, while the unit cost of surpassing the due date
equals wn.

The literature concerning solution robust reactive project scheduling is
virtually void. Yu & Qi (2004) describe an ILP model for the multi-mode
RCPSP and report on computational results obtained by a hybrid mixed
integer programming/constraint propagation approach for minimizing the
schedule deviation caused by a single disruption induced by a known increase
in the duration of a single activity.

7.2 Schedule generation schemes

Reactive scheduling commonly relies on the application of so-called
scheduling policies or scheduling strategies (Möhring et al. (1984, 1985))
under the objective of minimizing the expected makespan. A scheduling
policy can be defined as a decision process that defines which set of activities
are started at certain decision points t.

The best-known class of scheduling policies is the class of priority poli-
cies which order all activities according to a priority list λ and at every
decision point select the next activities to start based on this priority list.

Often this selection occurs by applying a parallel schedule generation
scheme (parallel SGS). The parallel SGS iterates over time and starts at each
decision time t as many unscheduled activities as possible in accordance with
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the precedence and resource constraints. The priority list dictates the order
in which activities are considered.

In deterministic project scheduling, the serial SGS is the best-known
alternative for the parallel SGS to decide which activities to start at what
decision time. In each iteration, the next unscheduled activity in the priority
list is selected and assigned the first possible starting time that satisfies the
precedence and resource constraints.

To apply the serial SGS in a stochastic multi-stage decision process such
as reactive scheduling, at any decision time a complete schedule has to be
generated by applying a deterministic serial SGS. The observed past may not
be altered and only activities that have an assigned earliest possible starting
time that equals the current decision time are actually started. References
to the serial SGS later in this paper, will always imply this reactive serial
SGS , unless stated differently.

Figure 7.1: Partial schedule at time 2

The stochastic serial SGS (Ballest́ın 2006) used in an activity-based
priority policy (Stork 2001) works as the deterministic serial SGS but adds
the side constraint that si ≤ sj for any activity i that precedes activity j

in the priority list. The stochastic serial SGS might very well result in a
different scheduling decision than the deterministic serial SGS. Consider for
example the resource profile shown in Figure 7.1 for a project with a single
renewable resource type. Assume that at decision time 2, activity 3 (with
expected duration E(d3) = 3 and per period resource requirement r3 = 2)
and activity 4 (E(d4) = 4 and r4 = 1) are eligible for scheduling. The
stochastic serial SGS with priority list λ = (1, 2, 3, 4) will not start activity
4 at time 2 because activity 3, a predecessor of 4 in the list λ, has not
yet been scheduled. The deterministic serial SGS, on the other hand, will
first project activity 3 at time 3 and will decide that this decision does not
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impede the start of activity 4 at decision time 2.

Remember that we are primarily interested in robust reactive schedu-
ling procedures, while the previously described SGSs are all concerned with
minimizing the expected project makespan. Hence, we propose two new
SGSs, namely the robust parallel SGS and the robust serial SGS.

The robust parallel SGS operates similarly to the parallel SGS with
the side constraint that an activity j is only eligible to be scheduled if the
current decision time t ≥ s0

j , the starting time of activity j in the predictive
schedule. This approach is commonly referred to as railway scheduling .

Like the basic serial SGS, the robust serial SGS considers activities in
the order dictated by a priority list, but instead of starting these activities
as early as possible, they will be scheduled at their feasible positions that
are the closest possible to their planned starting times in the baseline sche-
dule. The deviation ε = |st

j − s0
j | will thus be minimized for each activity

j. Contrary to railway scheduling, this approach allows an activity j to be
scheduled earlier than s0

j . Scheduling activity j at s0
j − ε will even be given

priority to scheduling j at s0
j + ε if a tie needs to be broken between both

possibilities with equal ε. The non-retroactivity constraint that will be dis-
cussed in Section 7.3.1 dictates that at decision point t, an eligible activity
should not be scheduled earlier than t. Whenever ε > s0

j − t, the robust
serial SGS acts like the serial SGS and searches for the earliest resource and
precedence feasible starting time for activity j.

7.3 Properties of robust SGSs

In this section we analyze the basic properties of the priority rule-
based schedule generation schemes introduced in the previous section. We
investigate whether they satisfy the so-called non-anticipativity and non-
retroactivity constraints, whether they generate non-delay or active sche-
dules and whether they may suffer from the well-known Graham anomalies
(Graham 1966).
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7.3.1 Non-anticipativity constraint and non-retroactivity con-

straint

The non-anticipativity constraint (Fernandez & Armacost 1995) speci-
fies that reactive scheduling decisions can only be made on the basis of the
observed information from the past and the a priori statistical knowledge
of the future. This means that when we have to decide to schedule a set of
eligible activities, we do not know how long they will actually take.

As information becomes gradually available during project execution,
a scheduling decision made at time t may no longer be the best decision
at time t′ > t. For such cases, a constraint that is complementary to the
non-anticipativity constraint will be introduced, i.e. the non-retroactivity
constraint . This specifies that a reactive procedure may not overrule previ-
ous scheduling decisions by scheduling activities in the past. Violations of
this constraint may result in infeasible realized schedules.

Assume that we have a project consisting of three activities and a sin-
gle renewable resource type with constant availability a = 4. The activities
have expected durations E(d1) = 2, E(d2) = 2, and E(d3) = 3 and re-
source requirements r1 = 2, r2 = 3, and r3 = 2. Suppose that at time 0 we
decided to schedule them by applying a deterministic serial SGS to priority
list λ = (1, 2, 3) as shown in Figure 7.2. When at time 2, new informa-
tion becomes available that reveals that activity 1 will take one extra time
unit to complete, the schedule of Figure 7.3 would minimize the makespan,
but violates the non-retroactivity constraint because activity 3 cannot be
scheduled in the past.

Figure 7.2: Predictive schedule S0

Clearly, all SGSs described in the previous section respect both the
non-anticipativity and the non-retroactivity constraint. Remark that the
side constraint added in the stochastic serial SGS to ensure that si ≤ sj
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Figure 7.3: Impossible schedule at time 2

for any activity i that precedes activity j in the priority list, also preserves
non-retroactivity, but is too strong.

7.3.2 Non-delay and active schedules

A feasible schedule is called active if for all activities no local or global
left shift can be performed. A feasible schedule is called a non-delay schedule
if for all activities no local or global left shift can be performed even if
activities can be preempted at integer time points. A local left shift of an
activity j in a schedule is a left shift that can be obtained by successive one
period left shifts of the activity, i.e. all intermediate schedules in which the
starting time of activity j is successively decreased by one time unit have to
be feasible. A left shift which is not a local left shift is called a global left
shift (Brucker & Knust 2006).

Kolisch (1996b) has shown that for the RCPSP with constant resource
capacities and regular measures of performance, any schedule generated by
the parallel SGS belongs to the set of non-delay schedules and this set possi-
bly does not contain any optimal solution. On the other hand, any schedule
generated by the serial SGS belongs to the larger class of active schedu-
les and this class always includes at least one optimal solution for regular
performance measures.

The maximum stability objective function (see Eq. 2.3) used in this
thesis, however, is a non-regular performance measure. In our problem
setting, an optimal solution minimizes the expected difference between the
predictive schedule and the realized schedule (

∑
j wjE|sT

j − s0
j |). There is

no guarantee for non-regular performance measures that there always exists
an optimal non-delay schedule or an optimal active schedule.

Both the robust parallel and robust serial SGS do not necessarily gen-
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erate non-delay or active schedules. As with their non-robust variants, the
robust serial SGS generates a larger class of schedules than the robust paral-
lel SGS. Still, there does not always exist a priority list λ that would result
in the ex-post optimal schedule S∗ (see Section 2.1.2.5) even if a static sche-
duling problem with full information about the realized activity duration is
solved. For the robust parallel SGS, an activity will never be started before
its baseline starting time, while this might be the case for the ex-post opti-
mal schedule. For the robust serial SGS, an activity is scheduled as close as
possible to its baseline starting time. An activity is only scheduled before or
after its baseline starting time if scheduling it at its baseline starting time
is infeasible.

In short, both robust reactive scheduling schemes try to aggressively
repair the predictive schedule and do not intentionally provide any safety
cushion against future disruptions. Protecting a schedule against future dis-
ruptions is left as the sole responsibility of the proactive scheduling routine.

Figure 7.4: Predictive schedule S0

Given their scheduling characteristics, the robust parallel and robust
serial SGS do not necessarily generate optimal reactive schedules. Consider
a small project consisting of three activities that can only be scheduled
in series as illustrated in the predictive schedule of Figure 7.4. If activity 1
finishes early at time 2, both the robust serial and robust parallel SGS would
decide to project activities 2 and 3 at their baseline starting times. Assume
that P (d2 = 1) = 0.5 and P (d2 = 3) = 0.5. This means that there is a 50%
probability that starting activity 2 at its predicted start time s2

2 = 4 induces
a one period delay in the start of activity 3 with a cost equal to w3. The
total expected cost would then be 0.5(0)+0.5(w3). However, if we decide to
start activity 2 at time 3, one period earlier than planned, there would have
been a 100% probability that we induce a cost w2, while activity 3 could
start as originally planned. If w3 > 2×w2, such a proactive strategy would
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result in a lower expected stability cost than the cost obtained by either the
robust serial or the robust parallel SGS.

7.3.3 Graham anomalies

Given the type of activity duration uncertainty dealt with in this dis-
sertation, the parallel and serial SGS may suffer from the so-called Graham
anomalies (Graham 1966) that were identified for parallel machine schedu-
ling problems under the minimum makespan objective. For example, Figures
7.2 and 7.3 illustrate the anomaly that an activity duration extension may
result in a shorter makespan if the serial SGS is used in the determinis-
tic RCPSP setting with priority list λ = (1, 2, 3). A one-period duration
extension of activity 1 leads to a two-period reduction in makespan.

In this thesis, we are concerned about anomalies that may be induced
by activity duration reductions or extensions under the schedule stability
objective. Stated otherwise, we are interested to know whether it is possible
that an activity duration reduction deteriorates stability or that an activity
duration extension improves stability. In order to answer both questions,
two cases must be distinguished: (a) the activity disruption is a stand-alone
disruption, and (b) other activities are also disrupted (disruption scenario).

7.3.3.1 Stand-alone activity disruption

As long as there is no activity disruption, the projected schedule St is,
by definition, identical to the predictive schedule S0 with a stability cost of
∆(S0, S0) = 0. Because the stability cost is always non-negative, no activity
duration extension can ever decrease the stability cost, independently of the
SGS used. This limits our search for stability anomalies to an investigation
of the impact of activity duration reductions on stability.

If we apply non-robust SGSs, almost any duration reduction may gener-
ate the stability anomaly because a cost is also incurred if an activity starts
earlier than its predictive starting time and the successors of the disrupted
activity may start earlier.

A robust parallel SGS applies railway scheduling. As a result, a stand-
alone activity duration reduction does not affect the time that an activity
becomes eligible which equals its starting time in the predictive schedule.
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Because the predictive schedule was both precedence and resource feasible,
each activity will be scheduled at its baseline starting time, resulting in a
schedule with zero stability cost.

The robust serial SGS decides to plan each activity i at its feasible
starting time st

i with minimal deviation |st
i − s0

i | from its baseline starting
time s0

i . Because a stand-alone duration reduction never prevents an activity
i to start at s0

i , |st
i− s0

i | = 0 for each activity and the stability cost will thus
again remain zero.

Clearly, in the single activity disruption case, both the robust serial
and the robust parallel SGS do not suffer from stability anomalies induced
by changes in activity duration.

7.3.3.2 Disruption scenario

It can readily be shown that an activity duration extension (reduction)
can improve (deteriorate) stability if other disruptions already occurred.

Figure 7.5: Predictive schedule S0

Let us illustrate this anomaly on a 4-activity project with a single
renewable resource type with availability a = 2 and resource requirements
r1 = 1, r2 = 1, r3 = 2, r4 = 1. Assume that there are no precedence
constraints and that the expected activity durations are E(d1) = 2, E(d2) =
1, E(d3) = 2, and E(d4) = 1. Figure 7.5 shows a baseline schedule with
minimum makespan.

Assume that the reactive scheduling schemes use the priority list λ =
(1, 2, 3, 4). If at time 1, activity 2 has not yet finished, the robust SGSs
would both result in the projected schedule S1 of Figure 7.6, in which only
activity 4 does not start at its baseline starting time. The stability cost of
this schedule is thus 3×w4. An extension of activity 1, would result in the
projected schedule S2 of Figure 7.7 at time 2 with a stability cost of w3+w4.
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Figure 7.6: Projected schedule S1 at time 1

Figure 7.7: Projected schedule S2 at time 2

It is not difficult to find values for the weights such that this cost will be
smaller than the cost of S1 so that the second activity duration extension
would improve stability.

7.3.4 Dispatching

The parallel and robust parallel SGS operate as a dispatching or on-line
scheduling rule, making scheduling decisions dynamically over time. At each
decision point, a dispatching rule decides which activities to start without
having to decide when the not yet started activities will be projected.

The serial SGS is not commonly used in stochastic scheduling because it
does not behave as a dispatching rule. It requires at each decision point t the
calculation of a complete projected schedule St, including best guesses for
projected starting times of all the activities that have not yet been started.
Full rescheduling at each decision point obviously entails increased compu-
tational time. The same reasoning holds for the robust serial SGS. The
stochastic serial SGS is based on the serial SGS, but has the advantage that
it can be used as a dispatching rule because of its extra constraint that
si ≤ sj for any activity i that precedes activity j in the priority list.

For a solution robust reactive procedure that tries to minimize the
deviation between the projected schedule St constructed at current time t

and the predictive schedule S0, having knowledge of the complete projected
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schedule is essential. Later in this chapter, the parallel SGSs will be extended
so that they allow for a complete projected schedule to be generated at each
decision point.

7.4 Reactive scheduling procedures

In this section, several possible reactive procedures are defined. In
order to illustrate these reactive procedures, we start from the quality robust
schedule of Figure 2.2 (p. 10) with a project due date δ9 equal to 20 and we
explain how each procedure would react when the disruptions presented in
Table 7.1 would occur during project execution. Activity weights wi are also
included in this table. For illustrative purposes, these weights differ from
the previously introduced weights in Table 2.1.

In accordance with the definitions of Chapter 2, di denotes the ex-
pected activity duration and di the realized activity duration. Because of
the importance of resource constraints in the reactive phase, we will use
the resource profile representation of the project throughout this chapter.
Figure 7.8 replicates the resource profile for the minimum duration schedule
of Figure 2.2 that was previously shown in Figure 2.5.

Table 7.1: Activity duration disruptions for example network

Act i di di wi successorsi

Act 0 0 0 0 1, 2, 3
Act 1 4 7 2 4, 7
Act 2 5 5 1 4
Act 3 2 2 3 5
Act 4 4 5 1 6
Act 5 5 3 8 8
Act 6 4 3 1 9
Act 7 2 4 3 9
Act 8 2 3 6 9
Act 9 0 0 38 /
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Figure 7.8: Resource profile for the schedule of the example project

7.4.1 Complete rescheduling by resolving the RCPSP

The first reactive procedure studied is to completely regenerate a new
up-to-date schedule when schedule breakage occurs. Rescheduling is done
by applying the scheduling algorithm that was used to generate the baseline
schedule, but now to a modified project network. Activities that are already
finished at the schedule breakage point are omitted from the project network.
Activities that have already started but did not yet finish by the schedule
breakage point are kept in the network with the projected remainder of the
activity duration as their planned duration.

Figure 7.9: Realized schedule obtained by the RCPSP procedure

Figure 7.9 shows the realized schedule that was obtained by applying
the branch-and-bound procedure originally used to derive the baseline sche-
dule. It can be observed that activity 8 is scheduled in front of activity 6
in order to finish the project as soon as possible. Activity 6 cannot start at
time instant 11 due to the one-period disruption in activity 4, its predecessor
in the network. Activity 5 finishes earlier than originally planned, creating
the possibility for activity 8 to start at time instant 11. The project finishes
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at time 17 with a stability cost of 33.

7.4.2 Fixed resource allocation

Figure 7.10: Resource flow network for example project

The next reactive scheduling procedure studied applies an early start
policy at the schedule breakage point, while maintaining the resource alloca-
tion decisions made in the baseline schedule, as reflected in its resource flow
network of Figure 7.10 (see also Figure 2.4). As activity duration disrup-
tions do not change the resource requirements of any activity, maintaining
the resource flow network that was constructed for the baseline schedule and
applying an earliest start policy (Radermacher 1985) upon schedule disrup-
tion will yield a precedence and resource feasible projected schedule (see
Leus & Herroelen (2004)). This schedule allows every activity to start as
early as possible as soon as all its precedence and resource-based predeces-
sors in the resource flow network have finished. Applying an earliest start
policy after fixing the resource flows can thus be seen as simple right shifting
the remainder of the baseline schedule.

For the disruption scenario of Table 7.1 for our problem example, the
reactive policy must be applied for a first time at time instant 4 when activity
1 is planned to finish. Because activity 1 suffers from a duration increase
of three time periods, activity 2 is the first activity to finish at time 5. The
actual activity duration of activity 1 is unknown at time 4, so that activity
1 is scheduled with a remaining duration of one time unit. Maintaining the
resource flow of two resource units from activity 1 to 3 (see Figure 7.10)
results in the fact that the start time of activity 3 is delayed up to time
instant 5. Planning the remaining activities as early as possible for the
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given resource flows yields the projected schedule of Figure 7.11.

Figure 7.11: Projected schedule generated by the fix flow reactive procedure at
time instant 4

Taking into account all the disruptions of the disruption scenario shown
in Table 7.1, the final 19-period realized schedule generated by the fix flow
reactive procedure is shown in Figure 7.12. Given the activity weights wi of
Table 7.1 the stability cost can be computed as

∑
wj |sj − sj | = 66.

Figure 7.12: Realized schedule obtained by fixing the resource flows

This reactive procedure can be made solution robust by adding rail-
way scheduling. Activities will only become eligible for scheduling at their
baseline starting time. For our example scenario of Table 7.1, this solution
robust fixed resource allocation would again result in the realized schedule
of Figure 7.12 because ∀i ∈ N : st

i ≥ s0
i .

7.4.3 Priority lists scheduling

The schedule generation schemes described in Section 7.2 were based on
a precedence feasible2 priority list to decide which activities to schedule at

2A priority list λ is precedence feasible if ∀(i, j) ∈ A: i precedes j in λ.

111



7.4. Reactive scheduling procedures

each decision time. Literature on priority lists for the static RCPSP is very
extensive. We refer to Kolisch (1996a) and Kolisch & Hartmann (2006) for
excellent overviews. We will concentrate on priority lists that are generated
in hope of good performance on solution robustness measures. The following
static priority rules for composing the priority list are proposed:

• EBST = earliest baseline activity starting time

• LST = latest starting time

• LW = largest activity weight

• LAN = lowest activity number

• RND = random

The EBST rule orders the activities in non-decreasing order of their
starting times in the predictive schedule S0. The LST priority rule (Alvarez-
Valdes & Tamarit 1989), that orders the activities in non-decreasing order
of their latest starting time, is included because it ranks among the best
priority rules for the deterministic RCPSP. Ties can be broken by order-
ing the activities in decreasing order of their weights wj (EBST1 and LST)
or increasing order of their activity numbers (EBST2). The LW rule gives
priority to activities with a large disruption cost wj (smallest activity num-
ber as tie-breaker). The LAN rule orders the activities in increasing order
of their activity number. The RND rule generates the priority list fully
randomly.

Dynamic priority lists depend on the current projected schedule and
should thus be updated at each decision time t. The information about the
past is known and might influence decisions about the future. We consider
two dynamic priority lists:

• EPST = earliest projected starting times

• MC = minimal cost

The EPST rule orders activities at time t by increasing starting times
st−1
i of the projected schedule St−1 generated at the previous decision time.
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The MC rule orders the activities by increasing wi(s0
i −t). This value will be

negative when s0
i < t and positive when s0

i ≥ t. For activities with s0
i < t,

priority is given to activities that induce a high stability cost wi|s0
i − t| if

started at time t, because delaying their start to a later starting time would
even be worse. On the other hand, among the activities with s0

i ≥ t, we
prefer to schedule activities with low stability cost first.

We will illustrate the working principles of the serial SGS on the EBST1
priority list for the disruption scenario of Table 7.1. λ = (0, 1, 2, 3, 4, 5, 7, 6, 8, 9)
The obtained realized schedule is shown in Figure 7.13. It has a makespan

Figure 7.13: Realized schedule obtained by applying the serial robust SGS to
λEBST

of 18 time periods and a stability cost of 31. It differs from the schedule
generated by the RCPSP procedure in that activity 6 which precedes activ-
ity 8 in the activity list, is scheduled as soon as possible at time instant 12
upon completion of activity 4. This prohibits activity 8 from starting before
activity 6, although starting activity 8 before activity 6 results in a better
makespan (see Figure 7.9) and lower stability cost (see Figure 7.14). The
robust serial SGS would result in the same realized schedule.

7.4.4 Sampling approach

It will typically be observed that no single priority list can be advised
for all decision times. A good priority rule for an activity duration decrease
will probably differ from a good rule for a duration increase, etc. However,
mostly when a priority rule results in a bad decision, the projected schedule
constructed at the decision time itself will already indicate the low quality
of the decision taken by a high value for ∆(St, S0).

This section describes two reactive scheduling sampling schemes that
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rely on several priority lists in combination with several schedule generation
schemes: basic sampling and time-window sampling. Sampling in this con-
text means that at any decision time several feasible solutions are generated
and evaluated and that the best candidate solution is selected.

7.4.4.1 Basic sampling

The basic sampling approach shown in Algorithm 7.1 tries to make a
suitable scheduling decision at any decision time t as follows:

Algorithm 7.1 Basic sampling

for t = 0, . . . , T do
Step 1: Check for new scheduling information.
Step 2: If no new information then St = St−1 and goto period t + 1

else goto step 3
Step 3: For list l = 1, . . . , L do

Construct St
λl,RP and calculate ∆(S0, St

λl,RP )
Construct St

λl,RS and calculate ∆(S0, St
λl,RS)

Construct St
λl,P

and calculate ∆(S0, St
λl,P

)
Construct St

λl,S
and calculate ∆(S0, St

λl,S
)

Store the projected schedule St that minimizes ∆(S0, St)
Step 4: Start all activities i with st

i = t.

Step 1 checks for new information becoming available at time t. If at
time t, no activity finishes and no activity was projected to finish, then no
new information is available compared to the previous decision point t− 1.
The previous projected schedule St−1 remains valid (Step 2).

Instead of using one priority list in combination with one SGS, Step
3 uses multiple lists λl ∈ {λ1, ..., λL} at time t in combination with several
SGSs. For each of these lists λl, a complete projected schedule is constructed
using the robust parallel SGS (St

λl,RP ), the robust serial SGS (St
λl,RS), the

parallel SGS (St
λl,P

) and the serial SGS (St
λl,S

). Doing so, a total of 4 × L

candidate projected schedules are generated, with L identifying the number
of lists. The projected schedule St that accounts for the smallest deviation
∆(S0, St) among them is stored. The procedure continues in Step 4 by
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starting the activities i that have projected starting times st
i = t in St. Re-

mark that in order to compare the stability costs of all candidate solutions,
a complete projected schedule must always be made at any decision time
by using the statistical knowledge of future activities. This means that the
dispatching advantage of the parallel SGSs cannot be exploited.

7.4.4.2 Time-window sampling

The main problem that may occur in the standard sampling approach
is that the decision whether a candidate projected schedule is selected or
not may depend on activities that are projected much later in the project
at time t′. However, these projected activities are still subject to major
uncertainties (non-anticipativity constraint) and should not predominate the
current decision process. There is no reason to assume that the current
reactive policy will also be applied at time t′.

Time-window sampling (TW sampling) tries to cope with this problem
by making use of a time window (TW). The difference with the basic sam-
pling approach lies in the generation of the candidate projected schedules
St

λ,. at time t (Step 3). Instead of generating a complete projected schedule
by applying the current SGS to the current list λ, TW sampling only applies
this policy to decide which activities to project within a certain time window
[t, t + Θ]. Activities that are not planned to start within this time window,
are projected by following the priority list λ1 = EBST1. The generation
scheme to transform this priority list into a projected schedule is the robust
variant of the SGS applied within the time window. Note that deciding
which activities to project within [t, t+Θ] already requires a complete sche-
dule if we apply a non-dispatching SGS such as the serial SGS. For on-line
scheduling procedures, such as the parallel SGS, a complete projected sche-
dule is only required once. The dispatching advantage of the parallel SGSs
that was absent in the basic sampling procedure can be exploited in TW
sampling.

The results of basic and TW sampling depend on the number of priority
lists L used and the actually selected priority lists λl. For TW sampling the
time window size Θ will be an important parameter. Parameter settings
will be discussed in Section 7.5.2.
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7.4.5 Solving the weighted earliness-tardiness problem

The reactive scheduling problem at each decision point can be viewed as
a Resource-Constrained Project Scheduling Problem with Weighted Earliness-
Tardiness Costs (problem m,1|cpm|early/tardy in the notation of Herroelen
et al. (2000)). Due dates are set equal to the activity completion times
s0
j + E(dj) in the predictive schedule. The earliness and tardiness costs will

be symmetrical and used as the weights wj in the stability objective func-
tion, except for the earliness cost of the dummy end activity which will be
set equal to zero.

Some efficient exact procedures for solving problem m,1|cpm|early/tardy
have been proposed in the scheduling literature (Schwindt 2000, Vanhoucke
et al. 2001, Kéri & Kis 2005). The application of such an exact procedure
at any decision time for the example problem and the disruption scenario
of Table 7.1 yields the 19-period realized schedule of Figure 7.14 with a
stability cost equal to 23. The resource flow at time instant 5 is changed.
Since activity 1 suffers from a three-period duration increase, activity 3 will
no longer wait for activity 1 to finish, but will instead receive its resources
from activity 2. In doing so, activity 3 only starts one time period later
than originally planned. Also, the heavily weighted activity 8 (w8 = 6) now
jumps in front of activity 6 (w6 = 1), so that activity 8 can start as originally
planned. Observe that all resource units are kept idle between time 12 and
time 13.

Figure 7.14: Realized schedule generated by the WET procedure

However, Van de Vonder et al. (2005b) showed that calling an ex-
act weighted earliness-tardiness procedure at any schedule breakage point
is already computationally infeasible for small network sizes. Recently,
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Ballest́ın & Trautmann (2006) developed a population-based iterated local
search (ILS) metaheuristic (Lourenço et al. 2002) for the weighted earliness-
tardiness resource-constrained project scheduling problem with minimum
and maximum time lags (problem m,1|gpr|early/tardy. Although faster than
exact procedures, this procedure still remains computationally demanding
for our problem. Our adapted version of the algorithm described in Ballest́ın
& Trautmann (2006) is customized to the special characteristics of the prob-
lem by ommitting some of the original features of the algorithm to reduce the
computational requirements . We refer to Ballest́ın & Trautmann (2006) for
a computational evaluation of the iterated local seach algorithm compared
to truncated versions of the branch-and-bound codes of Schwindt (2000) and
Vanhoucke et al. (2001).

The algorithm runs as follows:

Algorithm 7.2 WET Procedure

1. Initialize Elite Set.
2. While without imp < max without imp do

a. Select a schedule S from Elite Set.
b. S ’ = Perturbation2(S ).
c. S” = Local Searches(S ’).
d. If ∆(S′′, S0) < ∆(S+, S0) then {without imp = 0, S+ = S′′}.
e. Else without imp = without imp+1.
f. If ∆(S′′, S0) < ∆(S−, S0) then S” replaces S− in Elite Set.

3. Return the best solution obtained: St = S+.

S+ and S− are the best and worst solution of Elite Set respectively.

Step 2 is repeated iteratively until the number of iterations without im-
provement (without imp) equals a predefined number (max without imp).
Define card as the cardinality of the Elite Set. At any time, the card best
solutions are stored. We initialize the Elite Set in Step 1 as described in
Algorithm 7.3.

In Perturbation1, nunsche/10 activities are subsequently chosen and
reintroduced in the activity list elsewhere, where nunsche is the number of
unscheduled activities. The swaps are made so that the outcome is a feasible
priority list. Perturbation2 delays the position of some advanced activities
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Algorithm 7.3 Initialize Elite Set(card, nitial, nitial2 )

1. S = St
λEBST1,RS . S2 = St

λEPST,RS .
2. S ’ = Local Searches(S ). S2’ = Local Searches(S2).
3. Temporary Set = {S ’,S2’}. Elite Set ={ }.
4. For i = 0, i < nitial2− 2 do

a. If i is even then λ = Perturbation1(λEBST1).
b. Else λ = Perturbation1(λEPST).
c. Construct Si = St

λ,RS and calculate ∆(S0, Si).
5. Temporary Set = Best nitial solutions from the nitial2 initial solutions.
For i = 0, i < nitial do

a. Restore Si from Temporary Set
b. S ’ = Local Searches(Si).
c. Elite Set = Elite Set ∪ {S ’}.

6. Elite Set = Best card solutions from the nitial initially generated solu-
tions.

and advances the position of some delayed activities in the activity list. It
is described in more detail under the name of Perturbation4 in Ballest́ın
& Trautmann (2006). Local Searches includes three of the Local Searches
used in that paper. The second one sorts the early activities in decreasing
order of their finish times in the solution S and schedules each activity as
closely as possible to its due date. Then it proceeds analogously with the
delayed activities, sorting them in increasing order of their starting times in
S. Before applying this local search, we employ LocalSearch 1, which allows
more freedom in the movement of activities. Each early (delayed) activity
is scheduled as late (early) as possible, but the movement is stopped right
before the objective function deteriorates. For each delayed activity that
can be left shifted due to precedence relationships, the last local search
calculates the set of activities B that restrain this movement and that can
be moved. The function considers each activity j ∈ B and unschedules it.
Then it calculates whether it is better to schedule first i and then j, each
of them as close as possible to its real due date. After working with all
the activities of B, the method performs the best of these movements if it
produces an improvement in the objective function.
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7.5 Experimental results

We refer to the paper by Van de Vonder et al. (2006a) for an extensive
discussion of computational results. All solution robust reactive procedures
have been coded in Microsoft Visual C++ 6.0 and have been tested on the
600 120-activity instances of the well-known PSPLIB 120 data set (Kolisch &
Sprecher 1997). Computational results are highly dependent on parameter
settings. Rather than repeating them, we will dwell on the major conclu-
sions drawn in that paper. Some of the best performing procedures will be
included in the experimental design of Chapter 8. The fixed resource allo-
cation procedure of Section 7.4.2 will then serve as benchmark procedure.

7.5.1 Results obtained by the priority policies

The performance of applying the robust SGSs of Section 7.2 to a prior-
ity list λ depends on the used priority list. We remark that the priority list
should be ordered by increasing starting times (EBST1, EBST2 or EPST) to
obtain good results. Despite the extra computational time spent by dynamic
lists to constantly update the priority list based on the new information ac-
quired in the current projected schedule, they do not obtain better results.
After all, we try to minimize the expected deviation between ST and the
predictive schedule S0, not the deviation between ST and St. Applying the
robust parallel SGS on the list λEBST1 obtains the best overall results. The
robust serial SGS obtains very similar results on λEBST1, but the results of
this SGS are more sensitive to the priority list that is applied. Static pri-
ority lists combined with a (robust) parallel SGS are also computationally
the most efficient procedures among the priority policies and will thus be
included in the computational experiment of Chapter 8. The conclusions of
this section hold when both a quality robust or a solution robust schedule
(STC schedule of Section 5.1.3) are used.

7.5.2 Results of sampling and ILS

Next we will investigate the results obtained by the more advanced
heuristics described in this chapter, being basic sampling, TW sampling
and ILS.
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The performance of the sampling procedure highly depends on the lists
λl that we include. We experimentally decided to include the six static pri-
ority lists of Section 7.4.3 and their precedence feasible backward lists (BW).
A backward list is a precedence feasible priority list with reverse priorities
for the activities. The backward list of the EBST rule is thus the Latest
Baseline Starting Time rule, etc. These backward lists might seem illogical
as robust reactive procedures but will prove their use in the sampling pro-
cedure. The logic behind their inclusion is that when a priority list does not
result in a schedule with low deviation from S0, its inverse list might do so.
The backward list of λEBST2 has been removed from consideration because
it hardly improved any results due to its resemblance with EBST1 BW. The
number of included lists L thus equals 11, resulting in 4 × L = 44 candi-
date projected schedules at any decision time. When the baseline schedule
is a solution robust buffered schedule, the candidate schedules obtained by
applying non-robust SGSs are excluded from consideration.

Table 7.2: Selection frequency of all policies by sampling

λ RP RS P S Total
1. EBST1 37.05% 23.16% 1.11% 2.72% 64.03%
2. EBST2 4.94% 5.81% 0.40% 1.33% 12.48%
3. LAN 4.99% 1.02% 0.21% 0.06% 6.28%
4. LST 2.06% 0.45% 0.09% 0.01% 2.61%
5. LW 2.79% 0.54% 0.13% 0.03% 3.49%
6. RND 1.99% 0.32% 0.09% 0.01% 2.42%
7. EBST1 BW 1.56% 0.33% 0.09% 0.02% 1.99%
8. LAN BW 1.35% 0.23% 0.08% 0.02% 1.68%
9. LW BW 1.35% 0.25% 0.07% 0.01% 1.67%
10. RND BW 2.05% 0.37% 0.09% 0.02% 2.52%
11. LST BW 0.65% 0.12% 0.04% 0.01% 0.82%
Total 60.78% 32.61% 2.39% 4.23%

Basic sampling obtains a substantial stability improvement compared
to the best single priority list policies (see also Chapter 8). In most cases
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several policies will result in projected schedules that are either identical or
have equal stability cost. The ordering of the policies is important because a
policy will only be selected if its projected schedule has a lower stability cost
than all previously considered schedules. We start by considering all pro-
jected schedules generated by the robust parallel SGS, ordered by increasing
numbers as indicated in Table 7.2. Afterwards the robust serial, parallel and
serial SGS will be considered respectively. Table 7.2 shows the frequencies
that each policy is actually selected as best by the sampling procedure for
repairing the schedules obtained by the procedure of Debels & Vanhoucke
(2006) on the PSPLIB J120 data set. At most decision points (64%), any
of the schedules that uses EBST1 as priority list is selected. More impor-
tantly, however, is that also the overall less performing policies, such as the
non-robust ones (aggregated selection frequency of almost 7%) and the ones
that follow backward priority lists (aggregated selection frequency of almost
9%) were selected quite often. Excluding them would deteriorate results
substantially.

TW sampling (Section 7.4.4.2) yields better results than basic sam-
pling, but requires an extra parameter setting. There is no single time win-
dow Θ size that performs well for all project instances. Taking Θ too small
would imply too few differences between the candidate projected schedules
and taking Θ too large would result in the disadvantages of basic sampling.
Because the serial SGSs require the construction of two complete schedules
at any decision time, i.e. one to decide which activities to start in [t, t + Θ]
and one to complete the projected schedule, TW sampling requires more
computational time than basic sampling.

The trade-off between performance and computational requirement of
the Iterated Local Search (ILS) procedure also depends highly on the pa-
rameter settings. In Van de Vonder et al. (2006a), we experimentally set
card = 3, nitial = 10 and nitial2 = 50. For these parameters, ILS obtained
slightly better results than sampling, but required more than three times the
computational time. For project managers that rely on simulation methods
to evaluate the predictive schedule (see Chapter 9) of their project, more
computationally demanding metaheuristics or exact WET procedures are
obviously not suitable as reactive scheduling policies.
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ILS generally needs some time to substantially improve results com-
pared to the priority list policies. At first, all priority lists in the Elite Set
will be situated in the neighborhoods of EBST1 and EPST1. Sampling di-
rectly compares totally different solutions and will improve stability even if
the number of lists L is very small. On the other hand, the performance of
local search algorithms improves when more time is allocated, while improv-
ing the sampling results by adding more lists to the current set of L lists is
challenging.

7.6 Conclusions of this chapter

In this chapter we examined several reactive procedures to repair a
project schedule whenever activities are disrupted during execution. We
observe that after initial schedule selection (Chapter 6), resource allocation
(Chapter 4) and buffer insertion (Chapter 5), clever reactive scheduling is a
fourth technique to effectively increase the stability of a project. All major
parts of Figure 2.6 have now be discussed. The findings of this and previous
chapters will be examined in the large computational experiment of the next
chapter. Afterwards, a last chapter will translate this work into a real-life
environment.

We assumed that protecting a schedule against future disruptions is the
sole responsibility of the proactive scheduling routine. In the planning phase,
we construct a proactive predictive schedule that will anticipate most future
disruptions. When this plan becomes infeasible during project execution, we
try to repair this predictive schedule in the best possible way. None of these
procedures has a proactive nature. Opportunities to include extra safety
are not exploited. Developing reactive procedures that anticipate future
disruptions is a promising future research direction.

A second future research topic might be to apply a sampling approach
to stochastic scheduling, i.e. to minimize the expected makespan. This would
require to select at every decision time the candidate projected schedule with
minimum makespan, rather than the one with minimum deviation from the
predictive schedule. Different priority lists should be incorporated to do so.
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Chapter 8

An experimental analysis of

proactive-reactive project

scheduling

As we stated in Chapter 1, mainly two approaches exist to induce ro-
bustness into a project, i.e. proactive and reactive scheduling. Chapters 4, 5
and 6 introduced several proactive procedures to create robust baseline sche-
dules. Afterwards, Chapter 7 was dedicated to the investigation of several
reactive procedures that dictated how to revise or repair a schedule when
an unexpected event occurs.

The current chapter combines both approaches in a large-scale experi-
mental analysis. We tackle the problem in a roundabout way. Solutions to
the problem will be obtained through the application of different predictive-
reactive scheduling procedures from the previous chapters. Solutions will be
evaluated by their value on the objective function of Eq. 2.3, which minimizes
the expected deviation between the activity starting times in the baseline
schedule and the realized schedule. The analytic evaluation of this solution
robustness objective function is very cumbersome (the PERT problem is ]P

complete (Hagstrom 1988)). Therefore the objective function values will be
evaluated through simulation.

The simulation runs will allow us to identify under which conditions
proactive scheduling pays off. They will also enable an analysis of the impact
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of (a) the level of variability in the activity durations, (b) the relative weights
of the project activities and (c) the tightness of the project due date.

The remainder of this chapter is organized as follows. The next section
represents an overview of the proactive and reactive scheduling procedures
included in the experiment. Section 8.2 is devoted to a description of the
experimental set-up used in the computational experiment. The compu-
tational results are described in Section 8.3. A last section provides some
overall conclusions.

8.1 Proactive-reactive scheduling procedures

Initial schedule selection (Chapter 6), solution robust resource allo-
cation (Chapter 4), buffer insertion (Chapter 5) and reactive scheduling
(Chapter 7) have all been shown to be able to improve the stability of a
project. Rather than giving a complete recapitulation of all procedures in-
troduced in previous chapters, we aim to compare and combine some of the
most promising among them. The magnitude of the improvements obtained
by the approaches of the different chapters will be compared. We introduce
a classification scheme to describe the different proactive-reactive scheduling
combinations by using four fields, i.e. τ , υ, φ and χ such that any predictive-
reactive scheduling strategy x can be classified as |τx|υx|φx|χx| where τx,
υx, φx and χx are values for the corresponding classification fields. Sections
8.1.1, 8.1.2, 8.1.3 and 8.1.4 are assigned to descriptions of these four param-
eter fields and reveal which procedures will be used in the experiments of
this chapter.

8.1.1 Initial schedule selection (τ)

Buffer insertion techniques add safety to an initial unbuffered schedule
SU . The importance of the initial schedule choice has been demonstrated
in Chapter 6. The first field τ of our four-field classification scheme indi-
cates the initial schedule procedure. τ = DV denotes that we generate a
single initial schedule by applying the combined crossover algorithm deve-
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loped by Debels & Vanhoucke (2006)1 to solve the deterministic RCPSP
with dj = E(dj). A total of 50,000 schedule generations is applied as stop
condition. This algorithm has been shown to be among the best performing
metaheuristic RCPSP procedures for both small and larger networks.

τ = BEST signifies that we search for a solution robust initial sche-
dule, rather than a random one. The algorithm applied when τ = BEST
depends on the data set used. For the PSPLIB J30 data set we use the
branch-and-bound code of Section 6.1 with ∆ = 0 to enumerate all possible
minimum duration schedules. We truncate the procedure whenever either
10,000 candidate schedules have been found or whenever a new solution has
been found and the procedure runs for over 10 minutes. All candidate sche-
dules are then evaluated by simulation and the best one is selected as SU . It
should already be remarked that such candidate evaluation depends on the
buffer insertion method and on the reactive procedure. These interrelations
will be dealt with later in this chapter.

For the PSPLIB J120 data set, τ = BEST denotes that the initial sche-
dule has been generated by applying metaheuristic 2, which was described
in Algorithm 6.4. Note that the resulting initial schedule is already buffered
in this case.

8.1.2 Resource allocation (υ)

The MABO heuristic (υ = MABO) of Section 4.2.2 will be used as
a solution robust resource allocation procedure. This decision has been
authorized by the conclusions made in Deblaere et al. (2006) and in Chapter
4 of this dissertation. The simple procedure of Artigues et al. (2003) will be
used as a benchmark procedure (υ = ART).

8.1.3 Buffer insertion (φ)

Two buffer insertion methods will be included in the factorial designs
later in this chapter and they will be indicated by the classification field
φ. First, when no buffers (φ = NONE) are added to SU , a quality robust

1An executable program can be downloaded at the following website:

www.projectmanagement.ugent.be/downloads/RCPSP
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baseline schedule is obtained. Second, the time-consuming improvement
heuristic STC D (φ = STC D) (see Section 5.1.4) is used to generate a
baseline schedule with excellent solution robustness. Although the STC
heuristic (φ = STC) of Section 5.1.3 is not included in the factorial designs
of this chapter, we will occasionally refer to the results obtained by this
heuristic, which has been shown to be the best among the simple heuristics
to generate solution robust baseline schedules.

As we already stated in Section 8.1.1, the evaluation of candidate ini-
tial schedules relies on the buffer insertion method that has been applied.
When the baseline schedule is buffered (φ 6= NONE), we concluded in Sec-
tion 6.1 that it was highly suggested to evaluate the initial schedules after
buffer insertion. However, evaluating the candidate solutions by applying
a computationally heavy procedure such as STC D to all of them is too
demanding. Hence, when φ = STC D the candidate solutions will be evalu-
ated by simple STC and the improvement phase will only be executed once
to transform the selected initial schedule SU into the baseline schedule S0.

8.1.4 Reactive procedures (χ)

The last field indicates the reactive procedure applied whenever dis-
ruptions occur during (simulated) project execution. Keeping the resource
flow allocations decided by one of the algorithms of Section 8.1.2 fixed, will
serve as our benchmark reactive procedure (χ = FF R). The R denotes
that railway scheduling is applied in this approach. Reactive procedures
without any form of railway scheduling will not be considered because their
principles are contradictory to the safety added in buffered schedules.

The basic sampling approach (χ = SAMP) of Section 7.4.4 is included
as a reactive procedure that obtains excellent results on stability. The pa-
rameter settings for the sampling approach are as discussed in Section 7.5.2.
Applying the robust parallel SGS on the priority list λEBST1 scored best
on solution robustness among several priority rule policies in the previous
chapter and will thus be used under the classification χ = EBST. However,
like φ = STC, EBST is not included in the factorial designs that will appear
later in this chapter.

The branch-and-bound procedure for initial schedule selection and the
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STC D buffer insertion algorithm both rely on reactive procedures to eval-
uate several candidate solutions by simulation. It is computationally too
demanding to apply the sampling approach of Section 7.4.4 to each candi-
date solution. The most often selected priority rule policy during sampling,
i.e. applying the robust parallel SGS to λEBST1, will be applied instead.

The MABO procedure also selects the best among multiple alternatives
by evaluating them through simulation. However, deciding on the best re-
source allocation is always done by assuming that these resource allocation
decisions would be kept fixed during project execution, whatever the actual
reactive procedure (see χ) during project execution is.

8.2 Experimental set-up

The predictive and reactive scheduling procedures were coded in Mi-
crosoft Visual C++ and tested on the well-known J30 and J120 PSPLIB
data sets (Kolisch & Sprecher 1997). For details on these instances we refer
to the parameter settings section of the PSPLIB website2. In this computa-
tional experiment we will study the impact of three parameters: the level of
uncertainty in activity durations, the weighting parameter and the project
due date.

In order to investigate the impact of activity duration variability, we
assume that an activity duration can have low, medium and high duration
variability. High duration variability means that the real activity durations
are all discretized values drawn from a right-skewed beta-distribution with
parameters 2 and 5, that is transformed in such a way that the minimum
duration equals 0.25×E(dj), the mean duration equals E(dj) and the max-
imum duration equals 2.875 × E(dj). Low duration variability means that
the realized activity durations are also discretizations of values drawn from
a beta-distribution with parameters 2 and 5, but with the mean equal to
E(dj) and with minimum and maximum values equal to 0.75 times and 1.625
times E(dj), respectively. Medium duration variability is an intermediate
case where the realized activity durations are drawn from a beta-distribution
with parameters 2 and 5, but with minimum and maximum values equal to

2http://129.187.106.231/psplib/
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0.5 times and 2.25 times E(dj), respectively. Figure 8.1 shows the distribu-
tion functions from which the realized durations are drawn for an activity
with an expected 3-period duration.

Figure 8.1: Distribution functions for low (a), medium (b) and high (c) duration
variability if E(di) = 3

We assume that the variabilities are activity dependent and distinguish
between two overall uncertainty levels for projects. In a highly uncertain
environment, we randomly select for every activity whether the activity
has high, low or medium duration variability. If the overall uncertainty
level is low, we randomly select for each activity whether it has low or
medium duration variability. Highly uncertain activities do not occur in
such environments.

The weighting parameter (wp) was defined in Section 2.3 as the ratio
between the weight of the dummy end activity and the average of the distri-
bution of the weights of the other activities (wp = wn/wavg). The activity
weights wj of the non-dummy activities j ∈ {1, 2....n− 1} are drawn from a
discrete triangular distribution with

P (wj = q) = (21− 2q)% ∀q ∈ {1, 2....10} (8.1)

This distribution results in a higher probability for low weights and in an
average weight wavg = 3.85 that is used to calculate wn = wp×wavg. In this
experiment, two values for wp (wp = 5 and wp = 10) are examined.

We distinguish between two possible settings for the project due date:
a 10% and a 30% increase above the makespan of the initial schedule that
solves the deterministic RCPSP with mean activity durations as described
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in Section 8.1.1. Following the experimental output of Chapter 3, these two
project buffer sizes can be regarded as rather tight and loose.

8.3 Computational results

All computational results have been obtained on a Pentium IV 2.4
GHz personal computer. For each of the 480 PSPLIB J30 and 600 PSPLIB
J120 project network instances two data sets (referred to further on as the
training set and the test set) of both 100 project executions are simulated
by drawing beta-distributed activity durations as discussed above. The test
set of executions is run to detect overfitting as will be explained below. It
should be recognized that for smaller networks, more simulation runs should
be executed to obtain completely converging results, i.e. Leus (2003) shows
that solutions on 30-activity networks only converge after 350 iterations.
However, all procedures in the experimental analysis are tested on the same
sets of 100 simulated scenarios for each network, such that their comparison
on an independent test set does not require individual convergence to allow
for the observance of significant differences between the results of several
proactive-reactive procedures on the training and the test set.

The rows of Tables 8.1 and 8.2 show the average results obtained by
a particular predictive-reactive procedure |τx|φx|υx|χx| on PSPLIB J30 and
PSPLIB J120 respectively. For the results of Tables 8.1 and 8.2, the due
date has been set at a 30 % increase compared to the minimum makespan,
we assume a highly variable project environment as described above and
wp = 10. The impact of these parameter settings will be discussed later.

The column with heading Training shows the stability cost
∑

wjE |sj − sj |
averaged over all network executions in the training set. The column with
heading Test shows the average stability cost for the disruptions of the test
set. A last column denotes the average computational time in seconds re-
quired per network (for 100 simulated executions).

Row 1 indicates the stability results when no effort is done to obtain
good solution robustness. The CPU time is almost completely consumed by
solving the RCPSP. The resource allocation procedure υ = ART and the
reactive procedure χ = FF R run in virtually no time.
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Table 8.1: Performance values on PSPLIB J30

Row Nr. τ υ φ χ Training Test Time
1 DV ART NONE FF R 340.78 341.53 0.39
2 DV ART NONE SAMP 250.76 251.64 2.19
3 DV ART STC D FF R 43.64 47.42 0.61
4 DV ART STC D SAMP 29.90 33.12 3.91
5 DV MABO NONE FF R 299.33 300.69 0.40
6 DV MABO NONE SAMP 250.76 251.64 2.20
7 DV MABO STC D FF R 35.73 39.27 0.62
8 DV MABO STC D SAMP 29.26 32.36 4.11
9 BEST ART NONE FF R 311.10 314.12 58.98
10 BEST ART NONE SAMP 233.51 235.21 68.96
11 BEST ART STC D FF R 37.7 42.26 70.22
12 BEST ART STC D SAMP 27.37 30.88 78.08
13 BEST MABO NONE FF R 273.00 276.43 73.52
14 BEST MABO NONE SAMP 233.66 235.38 83.72
15 BEST MABO STC D FF R 31.58 35.42 86.94
16 BEST MABO STC D SAMP 26.80 30.04 94.95

Row 16 denotes the performance of the procedure that could be re-
garded as the most solution robust among all examined procedures. On
PSPLIB J30, the average stability cost on the test set has been reduced
from 341.53 to 30.04 compared to the initial situation of row 1. The differ-
ence between those two extreme cases will be called the stability gap GP. For
PSPLIB 120, the stability gap equals 4901.77. The time required to obtain
this stability improvement is 94.95 seconds for the J30 data set and 172.04
seconds for the J120 data set. For J30 most of it (i.e. 91.25 s) is consumed
by the branch-and-bound code to obtain several candidate initial schedules.
As already mentioned in Chapter 5, the computational time required by
the branch-and-bound code for initial schedule selection is highly variable.
253 out of 480 network instances need less than 1 second to enumerate all
minimum duration schedules, while for 19 instances the procedure has been
truncated after searching for more than 10 minutes. For the larger networks
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Table 8.2: Performance values on PSPLIB J120

Row Nr. τ υ φ χ Training Test Time
1 DV ART NONE FF R 4998.83 5012.37 1.98
2 DV ART NONE SAMP 2217.82 2229.99 24.97
3 DV ART STC D FF R 356.10 391.33 12.90
4 DV ART STC D SAMP 101.48 112.89 105.33
5 DV MABO NONE FF R 4185.09 4218.05 2.85
6 DV MABO NONE SAMP 2217.82 2229.99 25.84
7 DV MABO STC D FF R 236.66 266.30 13.53
8 DV MABO STC D SAMP 98.02 109.78 113.12
9 BEST ART NONE FF R 4866.14 4884.45 62.31
10 BEST ART NONE SAMP 2109.85 2122.08 84.68
11 BEST ART STC D FF R 813.74 859.50 72.93
12 BEST ART STC D SAMP 101.16 113.23 153.47
13 BEST MABO NONE FF R 4025.39 4057.09 63.80
14 BEST MABO NONE SAMP 2109.85 2122.08 86.18
15 BEST MABO STC D FF R 227.22 262.83 72.80
16 BEST MABO STC D SAMP 97.31 110.60 172.04

of PSPLIB J120, the improvement heuristic for buffer insertion (97.18 s), the
reactive sampling procedure (11.06 s) and the metaheuristic of Algorithm
6.4 (62.30 s), which is used to generate a solution robust initial schedule
for the improvement heuristic, all require substantial computational time.
Solution robust scheduling is obviously no easy task for large networks.

Figure 8.2 illustrates the trade-off between solution robustness and re-
quired CPU time for the J120 data set. The X-axis denotes the percentage
of the stability gap that has been achieved by the different methods. This
can be calculated for the proactive-reactive procedure of row x as:

Stability1 − Stabilityx

GP
(8.2)

in which Stabilityx is the objective function value obtained after simulation
on the test set for procedure x. The results of the 16 combinations are shown
on the scatter diagram with the row number in Table 8.2 as label. The results
of metaheuristics 1 and 2 that were found in Table 6.1 are also included with

131



8.3. Computational results

Figure 8.2: Trade-off between solution robustness and required CPU time

labels MH1 and MH2 respectively. Furthermore, the labels STC and EBST
refer to the procedures that can be classified under |DV|ART|STC|FF R|
and |DV|ART|NONE|EBST| respectively.

To effectively analyze the results of Tables 8.1 and 8.2, we perform a
full factorial design with four factors that represent the different robustness
techniques included in our classification scheme. Each factor has a low and
a high level, which correspond to a quality robust and a solution robust pro-
cedure respectively. This results in a 24 factorial design with 16 predictive-
reactive scheduling combinations. The regression model statement of our
factorial design looks as follows:

Y = b0

+ bτXτ + bυXυ + bφXφ + bχXχ

+ bτυXτXυ + bτφXτXφ + bτχXτXχ + bυφXυXφ + bυχXυXχ + bφχXφXχ

+ bτυφXτXυXφ + bτυχXτXυXχ + bτφχXτXφXχ + bυφχXυXφXχ

+ bτυφχXτXυXφXχ, (8.3)

in which each factor i is represented by a dummy variable Xi, with values -1
and +1 representing the low and high level respectively. The parameters bi

denote the main effects of these dummy variables, while the remaining pa-
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Technique Field Coefficient T-statistic Significant?
Intercept b0 = +156.09 t0 = +185.38 YES
Initial schedule τ bτ = −6.12 tτ = −7.27 YES
Resource allocation υ bυ = −5.93 tυ = −7.04 YES
Buffer insertion φ bφ = −119.74 tφ = −142.21 YES
Reactive policy χ bχ = −18.55 tχ = −22.03 YES

Table 8.3: The main effects for the PSPLIB J30 data set

Technique Field Coefficient T-statistic Significant?
Intercept b0 = +1819.00 t0 = +173.24 YES
Initial schedule τ bτ = −2.34 tτ = −0.22 NO
Resource allocation υ bυ = −146.82 tυ = −13.98 YES
Buffer insertion φ bφ = −1540.69 tφ = −146.73 YES
Reactive policy χ bχ = −674.99 tχ = −64.28 YES

Table 8.4: The main effects for the PSPLIB J120 data set

rameters (e. g. bτυ) represent the interaction effects when several robustness
techniques are used simultaneously. b0 is the coefficient for the intercept
and matches with the average stability cost obtained over the 16 predictive-
reactive project scheduling combinations. Y denotes the outcome score of
the regression model in terms of average stability cost on the test set.

The remainder of our experimental analysis is organized as follows.
First, we will calculate the main effects of the four robustness techniques,
which correspond to the fields of our classification scheme, followed by a brief
discussion of overfitting. Subsequently, the interaction effects are discussed.
Finally, the impact of the amount of variability, the wp and the due date
setting are analyzed.

8.3.1 The main effects

Tables 8.3 and 8.4 show the parameter estimates for the main effects of
the solution robustness techniques on the test set results. All four robustness
techniques have a negative parameter value, which denotes that they all
improve stability.
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Whether these improvements are statistically significant can be inves-
tigated by testing the hypothesis H0 : bi = 0. This is done as follows. We
start by calculating the sample variances s2

x over all network instances for
all 24 predictive-reactive scheduling combinations. By assuming that the
variance on response values is equal for all 16 combinations, these s2

x are
all estimates for the variance of the error term of our regression. A better
estimate is obtained by pooling the variances into a pooled variance s2

p:

s2
p =

x=16∑
x=1

s2
x

16
. (8.4)

On the test set, this results in s2
p = 5450.17 for PSPLIB J30 and s2

p =
1057820.46 for PSPLIB J120. Subsequently, in Eq. 8.5 (for J30) and in Eq.
8.6 (for J120) we estimate the variance on any main effect (or interaction
effect) as its sample variance:

s2
effect =

s2
p

16× 480
= 0.71, (8.5)

s2
effect =

s2
p

16× 600
= 110.19. (8.6)

Following the central limit theorem, we may assume that the bi esti-
mates are normally distributed with a variance σ2

effect. The t-statistics (see
Tables 8.3 and 8.4) can be calculated as

ti =
bi

seffect
(8.7)

and follow a Student’s with 480 × 16 and 600 × 16 degrees of freedom for
J30 and J120 respectively. This means that the null hypothesis can be
rejected with a 99% probability whenever the t-statistic lies outside the
interval [−2.58, 2.58]. Consequently, all four robustness techniques have a
significant impact on the PSPLIB J30 data set and only initial schedule
selection has no significant main effect on the PSPLIB J120 data set.

8.3.1.1 bτ : initial schedule selection

The main effect of initial schedule selection on robustness is significant
on the J30 data set and insignificant on the J120 data set. Because the
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experimental analysis on both data sets employs a different algorithm for
initial schedule selection, this difference is not completely unexpected. While
an exact procedure is used on the J30 data set, we have seen in Chapter
6 that we were restricted to the use of heuristic initial schedule selection
procedures for larger networks. Moreover, it will be pointed out later in this
chapter that interaction effects cause initial schedule selection to be more
important on the J120 data set than its main effect indicates. However,
its computational requirement is unarguably heavy. It takes on average
just under 1 minute to apply this predictive-reactive scheduling approach
to the J30 network instances and just over 1 minute for J120. Remark that
applying the metaheuristic of Algorithm 6.4 for initial schedule selection
normally generates a buffered schedule SB. To extract the sole impact of
initial schedule selection whenever φ = NONE, this schedule had to be
unbuffered first. This was done by applying a serial SGS to the priority list
that orders activities in non-decreasing order of their starting times in SB.

8.3.1.2 bυ: robust resource allocation

Robust resource allocation has a significant impact on robustness on
both data sets, but more importantly, its computational requirement is much
smaller than the computational requirement of the initial schedule selection
procedures. The computational time required for a simple application of the
MABO procedure is on average 0.01 s for the PSPLIB J30 network instances
and 0.85 s for the PSPLIB J120 network instances. The MABO procedure
has an increased computational requirement (1.50 s) for the procedures of
rows 13-16 on PSPLIB J120. This is due to an increased complexity of
Step 2.2 in the MABO algorithm (see Algorithm 4.1), because resource
allocation is applied to the buffered schedule obtained by the metaheuristic
of Algorithm 6.4 instead of an unbuffered initial schedule.

8.3.1.3 bφ: robust buffer insertion

Buffer insertion is shown in Tables 8.3 and 8.4 to have the largest im-
pact of the four factors included in our factorial design. Row 3 in Tables 8.1
and 8.2 shows the results when only STC D is applied to improve robustness.
The distinct impact of including buffers covers 94% of the stability gap. Also
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less extensive buffer insertion procedures can obtain substantial stability im-
provements. Proactive-reactive scheduling procedure |DV|ART|STC|FF R|
only relies on STC to improve solution robustness and obtains average sta-
bility costs of 51.20 and 452.32 on the test set for J30 and J120 respectively.
These improvements correspond to 93% of the stability gap for both data
sets. The computational requirement of STC is on average 0.02 s for J30
network instances and 1.81 s for J120 network instances.

Remark in rows 3 and 4 (or 7 and 8) of Tables 8.1 and 8.2 that the
computational time required for buffer insertion with φ = STC D highly
depends on the reactive procedure (χ). STC D generates several candidate
solutions at each iteration step and evaluates all of them by simulation.
In this simulation, the reactive procedure specified by χ has to be applied
to every candidate solution. Remember that candidate solutions will be
evaluated by EBST rather than SAMP when χ = SAMP.

Row 14 in Tables 8.1 and 8.2 shows the best results obtained among the
procedures that do not insert buffers. Extensive initial schedule selection,
stable resource allocation and a solution robust reactive procedure together
only account for 34% of the stability gap for the J30 data set and 59%
for the J120 data set for the current parameter settings. Remark that the
results displayed in row 10 are equal to the results of row 14 because the
resource flows generated by the resource allocation procedure are not used
by the reactive sampling procedure. Figure 8.2 also already established the
indispensability of extensive buffer insertion to obtain good results for the
parameter settings of this section.

8.3.1.4 bχ: reactive policy

The reactive policy has the second largest impact on robustness. The
difference in the values of tχ in Tables 8.3 and 8.4 indicates that the use of
a more robust reactive policy especially pays off for large-size projects. The
sampling procedure obtains 28.9% of the stability gap GP in on average
2.19 s (see row 2) for J30 and 56.8% in 24.97 s for J120. Once again, a far
less computationally demanding procedure such as |DV|ART|NONE|EBST|
already results in average stability costs of 267.88 (= 23.6% of GP) and
2471.34 (= 51.8% of GP) on the test set for PSPLIB J30 and J120 respec-
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tively. This reactive procedure runs on average in 0.01 s on the J30 set and
in 0.03 s on the J120 set.

8.3.2 Interaction effects

A similar analysis can be performed for the interaction effects between
two or more factors. The parameter estimates and t-statistics of all inter-
action effects between pairs of factors can be found in Tables 8.5 and 8.6.
Higher order interaction effects are shown in Tables 8.7 and 8.8.

Table 8.5: Second order interaction effects for the PSPLIB J30 data set

Interaction Coefficient T-statistic Significant?
τ and υ bτυ = +0.28 tτυ = +0.33 NO
τ and φ bτφ = +4.42 tτφ = +5.25 YES
τ and χ bτχ = +1.46 tτχ = +1.73 NO
υ and φ bυφ = +3.86 tυφ = +4.58 YES
υ and χ bυχ = +5.75 tυχ = +6.83 YES
φ and χ bφχ = +13.81 tφχ = +16.40 YES

Table 8.6: Second order interaction effects for the PSPLIB J120 data set

Interaction Coefficient T-statistic Significant?
τ and υ bτυ = −31.51 tτυ = −3.00 YES
τ and φ bτφ = +60.57 tτφ = +5.77 YES
τ and χ bτχ = −24.32 tτχ = −2.32 NO
υ and φ bυφ = +55.89 tυφ = +5.32 YES
υ and χ bυχ = +146.10 tυχ = +13.91 YES
φ and χ bφχ = +508.31 tφχ = +48.41 YES

On the PSPLIB J120 data set, all but one interaction effects of the sec-
ond order are statistically significant with a 99% probability. Among them,
only the interaction between initial schedule selection and robust resource
allocation (bτυ) is negatively correlated and has thus a positive impact on
the minimization of our stability cost function. In absolute value, bτυ is the
smallest coefficient among the significant interaction effects. On PSPLIB
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J30 (see Table 8.5), it is even not statistically significant with a 99% prob-
ability.

The most significant second order interaction effect arises between buffer
insertion (φ) and reactive scheduling (χ). This interaction effect implies that
a robust reactive policy will be less performing whenever buffers have already
been inserted. This can be simply verified in rows 1-4 of Tables 8.1 and 8.2
by comparing the improvements made by applying a robust reactive policy
when buffers have been inserted with the improvements made by applying a
robust reactive policy when no buffers have been inserted. Buffer insertion
by itself already performs as well that only few improvements can be added
by additional robustness techniques. However, because bχ + bφχ < 0, the
overall impact of reactive scheduling on our stability cost function remains
negative. Reactive scheduling still pays off after buffer insertion.

Table 8.7: Higher order interaction effects for the PSPLIB J30 data set

Interaction Coefficient T-statistic Significant?
τ , υ and φ bτυφ = −0.13 tτυ = NO
τ , υ and χ bτυχ = −0.27 tτφ = NO
τ , φ and χ bτφχ = −0.91 tτφχ = NO
υ, φ and χ bυφχ = −4.08 tυφχ = YES
τ , υ, φ and χ bτυφχ = +0.10 tτυφχ = NO

Table 8.8: Higher order interaction effects for the PSPLIB J120 data set

Interaction Coefficient T-statistic Significant?
τ , υ and φ bτυφ = −27.38 tτυ = −2.61 NO
τ , υ and χ bτυχ = +31.57 tτφ = +3.00 YES
τ , φ and χ bτφχ = −33.63 tτφχ = −3.20 YES
υ, φ and χ bυφχ = −56.61 tυφχ = −5.39 YES
τ , υ, φ and χ bτυφχ = +27.44 tτυφχ = +2.61 NO

Tables 8.5 and 8.6 also show that there is a very significant interaction
between robust resource allocation and reactive scheduling (tυχ). We even
remark that bυ + bυχ ≈ 0, which denotes that the robustness introduced by

138



CHAPTER 8. PROACTIVE VERSUS REACTIVE SCHEDULING

a more robust resource allocation is completely neutralized when a robust
schedule repair mechanism is used upon schedule breakage. This might not
be a surprise, because the main interest of robust resource allocation is to
construct a resource flow network that can be preserved as a reactive policy
(υ = FF R). When a priority rule (υ = EBST) or the sampling procedure
(υ = SAMP) are used for rescheduling, the impact of a more robust resource
allocation is limited to its use in buffer insertion algorithms.

A related third order effect comes here into prominence. The significant
YES-indication for bυφχ in Tables 8.7 and 8.8 states that only when buffers
are inserted in the baseline schedule, robust resource allocation improves the
stability cost that will be obtained when applying the sampling procedure for
rescheduling. If no buffers are inserted, generating a resource flow network
becomes completely redundant.

On the J120 data set, we remark a second significant third order effect
(bτυχ) that includes resource allocation and reactive scheduling. This inter-
action becomes perceptible by pointing out the large difference on obtained
stability cost between rows 11 and 15 in Table 8.2. Because the metaheuris-
tic that is used for initial schedule selection (τ = BEST) on the J120 data set
delivers a buffered input schedule for the resource allocation procedure, the
resource allocation problem becomes more complex and the potential gains
of a robust resource allocation procedure more pronounced. Of course, this
requires special attention for solving the resource allocation problem when
χ = FF R.

We illustrate the significance of bτυχ on a small example. Consider
the partial schedule of Figure 8.3 with a buffer inserted between activities
2 and 3, which may be due to a high w3. A non-robust resource allocation
procedure may decide to add a resource flow between activities 1 and 3,
instead of between activities 2 and 3. Keeping this resource flow between
activities 1 and 3 fixed, may substantially harm the solution robustness of
the schedule. On the J30 data set, the initial schedule is unbuffered and this
type of interaction cannot arise.

There also exists a significant interaction effect between initial schedule
selection (τ) and buffer insertion (φ). The improvement heuristic for buffer
insertion is able to transform initial solutions with inferior robustness into

139



8.3. Computational results

Figure 8.3: Potential interaction effect between τ , υ and χ

stable buffered baseline schedules. While it still holds on PSPLIB J30 that
bτ + bτφ < 0, this inequality becomes bτ + bτφ � 0 for the J120 data set.
The larger value of tτφ on PSPLIB J120 can be explained by a basic under-
standing of the internal logic of the applied metaheuristic for initial schedule
selection. The initial schedule found is guaranteed to be active, but might
have a larger makespan than the initial schedule selected by τ = DV. As has
been shown in Figures 6.1 and 6.2, buffer insertion may invert the impact of
such near-optimal initial schedules on solution robustness. We may conclude
that the relatively small impact of the computationally demanding initial
schedule selection procedures only may assist in a valuable contribution for
solution robustness when no buffers are inserted in this schedule.

Roughly the same reasoning can be given to interpret the significant
value of bυφ. Resource allocation has unarguably its merits for solution
robust scheduling (tυ), but the significant interaction effect between υ and φ

reveals that extensive buffer insertion procedures such as STC D, which start
from a given resource allocation, are able to compensate for the weaknesses
in the resource flow network. However, as already stated above, applying
robust resource allocation with the MABO heuristic has the undeniable
advantage that it is computationally far less heavy than our initial schedule
selection procedures.

8.3.3 Overfitting

All tables in this chapter show results on both a training set and a test
set of simulated disruptions scenarios. Some of the procedures applied in
this experiment rely on simulation to evaluate multiple candidate solutions
and select the best one among them. Using the same set of disruptions to
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evaluate candidates and to evaluate the objective function of the predictive-
reactive scheduling approach, could lead to overfitting. This means that
the procedure at hand fits its selection procedure too much to the genera-
ted disruptions. The best schedule for the simulated disruptions will not
necessarily be the best schedule for the actual disruptions during project
execution, even if we assume that they are drawn from the same density
functions.

Overfitting is detected by examining the results on both the training
and test set of execution scenarios. The training set is used to evaluate sev-
eral candidate solutions. In particular the buffer insertion algorithm STC
D is subject to overfitting, but also the initial schedule selection procedure
BEST and the MABO algorithm for solution robust resource allocation may
suffer from overfitting. The reactive sampling approach also compares mul-
tiple candidates, but this is done for one scenario rather than for averages
over a set of scenarios. Sampling does not suffer from overfitting.

Table 8.9: Overfitting on PSPLIB J120

τ υ φ χ Training Test Time
DV ART STC FF R 450.85 452.35 3.79
DV ART STC D FF R 356.10 391.33 12.90

Overfitting can be easily illustrated when comparing the results in both
rows of Table 8.9. The difference on stability cost between STC and STC
D has partially vanished on the test set results, because the improvement
phase is subject to overfitting. The above factorial designs are all applied
to the test results to limit the impact of overfitting on our conclusions.

8.3.4 The impact of activity duration variability

The results in Tables 8.1 and 8.2 and the conclusions made so far only
hold for the given parameter settings. In this section, we will examine the
impact of reduced variability in the activity durations on solution robustness.
We will concentrate our efforts on the PSPLIB J120 data set. Results are
shown in Table 8.10.

Reduced activity duration variability obviously decreases the stability
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Table 8.10: Performance values on PSPLIB J120 when variability is low

Row Nr. τ υ φ χ Training Test Time
1 DV ART NONE FF R 3513.95 3522.70 1.98
2 DV ART NONE SAMP 1689.52 1692.69 20.07
3 DV ART STC D FF R 81.11 93.71 11.31
4 DV ART STC D SAMP 40.81 43.03 95.40
5 DV MABO NONE FF R 2929.66 2952.82 2.82
6 DV MABO NONE SAMP 1689.52 1692.69 20.91
7 DV MABO STC D FF R 56.10 65.36 12.11
8 DV MABO STC D SAMP 27.32 32.59 100.60
9 BEST ART NONE FF R 3420.72 3425.45 64.53
10 BEST ART NONE SAMP 1607.60 1610.32 82.09
11 BEST ART STC D FF R 264.22 290.36 73.42
12 BEST ART STC D SAMP 29.48 34.84 146.16
13 BEST MABO NONE FF R 2810.95 2826.57 65.86
14 BEST MABO NONE SAMP 1607.60 1610.32 83.43
15 BEST MABO STC D FF R 55.16 66.76 73.23
16 BEST MABO STC D SAMP 27.97 33.72 162.81

cost because activities are more likely to start on their planned starting
time. We see for example that the stability cost in row 1 is reduced with
almost 30% compared to Table 8.2. However, when buffers are included (e.g.
rows 3, 8, 12 and 16), the obtained reduction in stability cost is even far
more pronounced. By only including buffers (φ = STC D) in the baseline
schedule, we observe that we have a reduction of 76% compared to the same
strategy in the high variable environment and that 98% of the stability gap
can already be obtained. Moreover, it has been shown in the paper by Van
de Vonder et al. (2005b) that especially in environments with low variabi-
lity, quality robustness suffers little from including buffers in the baseline
schedule. Contrary to common beliefs, this results in the fact that solu-
tion robust scheduling (by inserting buffers) can be regarded as even more
beneficial in environments with low variability.

Initial schedule selection is again only beneficial if no advanced buffer
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insertion procedure is used. In Table 8.10 we even obtain slightly better
results in row 8 than in row 16. Solution robust resource allocation (υ =
MABO) has a similar impact for low and high variability parameter settings.

8.3.5 The impact of the project due date

Table 8.11: Performance values on PSPLIB J120 when the due date is tight

Row Nr. τ υ φ χ Training Test Time
1 DV ART NONE FF R 5452.25 5465.33 1.98
2 DV ART NONE SAMP 2400.82 2414.13 24.17
3 DV ART STC D FF R 2397.83 2454.63 9.32
4 DV ART STC D SAMP 849.81 871.40 61.68
5 DV MABO NONE FF R 4535.37 4571.91 2.85
6 DV MABO NONE SAMP 2400.82 2414.13 25.04
7 DV MABO STC D FF R 1796.95 1863.52 10.27
8 DV MABO STC D SAMP 833.15 857.16 69.05
9 BEST ART NONE FF R 5299.23 5321.34 39.92
10 BEST ART NONE SAMP 2108.34 2123.74 62.18
11 BEST ART STC D FF R 3067.96 3118.31 44.97
12 BEST ART STC D SAMP 810.12 836.55 93.21
13 BEST MABO NONE FF R 4341.1 4383.58 41.18
14 BEST MABO NONE SAMP 2108.34 2123.74 63.45
15 BEST MABO STC D FF R 1763.40 1842.83 47.20
16 BEST MABO STC D SAMP 793.32 823.05 106.47

Most project managers assume that buffer management would not be
an appropriate approach for their project because their due date is tight. In
Chapter 3 we already countered this statement by emphasizing the impor-
tance of the weight of the dummy end activity to protect the project due
date in solution robust procedures. In this section, we will reinvestigate the
impact of solution robust project scheduling when the project has a tight
project due date. Results are shown in Table 8.11.

The first observation that we can make is that the best obtainable sta-
bility cost of row 16 is much higher than before. Solution robust scheduling
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now becomes challenging and including buffers is no longer a guarantee for
satisfying results. We see in row 7 of Table 8.11 that buffer insertion only
accounts for 64% of the stability gap. The tight due date makes the last
activity very critical and including buffers can for this reason only be done
to a certain extent. Also, proactive scheduling by initial schedule selection
becomes challenging because of the tight due date. Remember that initial
scheduling obtained a part of its improvement by opting for a near-optimal
initial schedule with more inherent slack. Such schedules will typically in-
duce a high stability cost of the last activity when the project due date is
tight.

The effectiveness of solution robust resource allocation increases slightly,
but especially reactive scheduling becomes critical in this setting. Applying
a factorial design on the results of Table 8.11 even reveals that bχ slightly
surpasses bφ to give the reactive scheduling policy the most significant main
effect. A due date that can be considered as tight for the uncertainty in-
cluded in a certain project impels advanced solution robust reactive proce-
dures.

8.3.6 The impact of the weighting parameter

The weighting parameter wp was uncovered as the driving force behind
the trade-off between makespan and stability in Chapter 3. In this section,
we will investigate the impact of wp on the magnitude of the impact of the
different predictive-reactive project scheduling procedures.

The wp has an almost negligible impact on the results obtained by
the predictive-reactive procedures that have no buffers included (rows 1-2,
5-6, 9-10 and 13-14). These procedures aim at quality robustness and will
typically obtain a high timely project completion probability (TPCP). The
weight wn that is accorded for each time unit of exceeding the project due
date is thus less important for these procedures.

Buffer insertion procedures, however, highly rely on the weighting pa-
rameter to decide how to divide safety time between intermediate buffers
and project buffers. A smaller wp will allow to increase the buffer sizes of
intermediate activities, resulting in lower intermediate stability losses. We
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Table 8.12: Performance values on PSPLIB J120 when wp = 5

Row Nr. τ υ φ χ Training Test Time
1 DV ART NONE FF R 4989.85 5003.25 1.98
2 DV ART NONE SAMP 2216.92 2229.10 24.58
3 DV ART STC D FF R 304.78 334.65 13.45
4 DV ART STC D SAMP 91.33 101.33 106.32
5 DV MABO NONE FF R 4182.07 4214.76 2.84
6 DV MABO NONE SAMP 2216.92 2229.10 25.44
7 DV MABO STC D FF R 206.99 231.9 13.84
8 DV MABO STC D SAMP 88.75 98.78 114.91
9 BEST ART NONE FF R 4869.62 4888.50 57.52
10 BEST ART NONE SAMP 1756.34 1765.83 79.11
11 BEST ART STC D FF R 697.99 740.49 68.15
12 BEST ART STC D SAMP 91.43 102.24 150.75
13 BEST MABO NONE FF R 4021.63 4057.39 58.99
14 BEST MABO NONE SAMP 1756.34 1765.83 80.58
15 BEST MABO STC D FF R 198.56 228.91 68.13
16 BEST MABO STC D SAMP 88.20 99.72 169.88

see in Table 8.12 that all procedures with φ 6= NONE obtain a stability
improvement of close to 10% compared to their results in Table 8.2. The
proactive-reactive procedure of row 16 could for example achieve a 9.83%
stability improvement: from 110.60 in Table 8.2 to 99.72 in Table 8.12.
This improvement has been obtained by increasing the intermediate safety
and allowing a slightly higher number of project executions that exceed the
project due date. If we would have used the same schedules generated by the
improvement heuristic for the results of Table 8.2 as baseline schedules, only
wn|sT

n −δn| would change in the objective function of Eq. 2.3. The objective
function value would drop to 100.19 on the test set. Hence, a lower wp does
not only result in a lower stability cost because exceeding the project due
date is punished less, but also because more safety can be included in the
baseline schedule.

145



8.4. Conclusions

8.4 Conclusions

The overall objective of this chapter was to evaluate the performance
of various predictive-reactive project scheduling classes under the stability
objective function.

The factorial designs in this chapter showed that buffer insertion is the
most effective technique to improve the solution robustness of a project.
However, when exploiting a composite quality robustness / solution robust-
ness objective function such as the objective function introduced in Eq. 2.12,
buffer insertion procedures may be subject to low quality robustness when-
ever the variability is high and the due date is tight. Although we will argue
that such a lack of quality robustness stems from an underestimation of wp,
we will discuss in the next chapter that buffer insertion might suffer from
acceptance issues in many real-life environments because of this seeming
lack of quality robustness.

For such projects, techniques such as initial schedule selection and so-
lution robust resource allocation are valuable alternatives to improve the
solution robustness of the baseline schedule, especially when computation-
ally efficient procedures such as MABO can be applied. There are few prac-
tical objections against the use of such solution robust resource allocation
procedures.

For initial schedule selection, the main issue is that multiple candi-
date solutions need to be evaluated and that this should preferably be done
after buffer insertion. The initial schedule selection procedures proposed
in Chapter 6 are all rather time consuming for realistic project networks.
Hence, their small positive impact on stability is harder to justify than the
impact of resource allocation. The two-staged approach, which has been ad-
vocated to be interesting for practical reasons in Section 2.1.2.2, also shows
to be defendable based on performance. The integrated proactive scheduling
problem that includes scheduling, resource allocation and buffer insertion is
very complex and still needs further research.

The reactive scheduling procedures of Chapter 7 show to have a sub-
stantial impact on solution robustness. When the due date can be considered
as tight, given the amount of variability in the activity durations, it was even
shown that a robust reactive policy was equally effective as buffer insertion.
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Even computationally light procedures such as the robust SGSs of Chap-
ter 7 allow to considerably improve stability and can be used in simulation
approaches where multiple candidate schedules require evaluation. For the
unique actual project execution, more advanced reactive procedures can be
applied to further improve the schedule stability.

Solution robust predictive-reactive procedures have also shown to posses
a large capability to adapt to the given parameter settings. Even when
variability is rather low or the project due date is very tight and critical,
considerable improvements are possible.
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Chapter 9

A real-life application

The wide gap between theory and practice is a huge problem in project
scheduling. Researchers develop procedures that are often too restricted for
real-life projects. On the other hand, most project managers are simply not
aware of the existing procedures that could really help them improving the
quality of their project. In this chapter, we would like to address issues
concerning the uncertain environment in which real-life projects take place.
We had the opportunity to participate in the project Risk Management in
the Construction Industry, a large scaled collaboration between the Belgian
Building Research Institute (BBRI) and our university that was supported
by several important Belgian construction firms1.

We aim to apply some of the algorithms proposed in the previous chap-
ters of this thesis to a real-life project. We hope that the conclusions will
help project managers to understand the need for extensive project sche-
duling and help researchers to concentrate their future research on real-life
based problems.

The outline of this chapter is as follows. We start by defining risk
management, which is inevitably related to robust project scheduling. Af-
terwards, in Section 9.2 a framework is provided that gives an in-depth
analysis of the risk management approach that we propose based on real-life
experience and theoretical insights gained in the previous chapters of this
work. This framework will then be applied to an example project in Section

1Project QP6-353901-IWT-Risicomanagement in de bouw
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9.3. Afterwards, Section 9.4 offers a discourse concerning communication
and acceptance of robust project planning. The chapter will be concluded
by summarizing the main conclusions and the main fallacies of our approach.

9.1 Risk management

Robust scheduling is a crucial part of risk management for project
planning, but the subject of risk management implies much more than only
scheduling. Figure 9.1 represents risk management as an iterative process.
In the remainder of this section, the phases of this process (see also Chapter
11 in PMBOK R© Guide, 19962) will be described in some detail.

Figure 9.1: Risk management as an iterative process

9.1.1 Risk detection

What are the risks that the current project is subject to? This seem-
ingly easy question is shown to be difficult to answer appropriately by most
practitioners. Existing checklists (e.g. van Well-Stam et al. (2003)) of possi-
ble risks for several tasks might substantially help in this matter. One of the
main aims in the Risk Management in the Construction Industry project is
to compose such lists (see Section 9.1.4). Risk identification is beyond the
scope of this thesis.

2The Guide to the Project Management Body of Knowledge is published by the Project

Management Institute (PMI) and proposes a standard for project managent
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9.1.2 Risk analysis

While gathering information about risks is already regarded as a dif-
ficult task, analyzing these risks causes even far more problems for most
real-life projects. The basic requirement for risk analysis to be accepted
by project management is that it has to be straightforward and fast. We
cannot expect project practitioners to have either advanced mathematical
knowledge or redundant time. On the other hand, the output of risk manage-
ment is completely relying on the quality of this risk analysis. This results
in the necessity of an understandable and user-friendly graphical user inter-
face (GUI) to collect the required information within an acceptable period of
time. We feel that a quantitative approach to risk analysis strongly improves
the effectiveness of risk management. Fuzzy concepts as ”rather often” or
”almost certainly” are too vague to effectively model uncertainty and will
result in misunderstandings between managers, planners, consultants and
workforce.

9.1.3 Risk response

Once the risks have been detected and analyzed, the organization has to
decide how to address these risks. Based on Section 11.3 of the PMBOK R©
(1996), we distinguish several ways of tackling risks:

• Risk reduction
Risk detection and prioritization often uncover hidden information
such that project managers can reduce risks by changing techniques
or execution modes (f.i. by crashing activity durations) during project
execution.

• Risk transfer
Here, it is made sure that the possible negative consequences of the risk
lie outside the organization, f.i. by subcontracting or risk insurance.

• Risk treatment
The organization is aware of the risk and knows exactly how to react
when the risk event occurs. This is the most reactive technique and
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might be the preferable technique for risk events that have a very small
probability to occur, but a high impact.

• Risk acceptance
Some (mostly unsignificant) risks should just be accepted because any
other risk response measure would be more costly to implement than
the possible negative outcome of the risk itself.

• Risk anticipation
Recognize the risks as an integral part of the project and anticipate
its consequences by planning them as events that will happen with a
certain probability. This is where robust project scheduling comes into
play.

A detailed examination of risk reduction, transfer and treatment lies
outside the scope of this chapter. We assume that the organization has
already allotted sufficient attention to these techniques and that only the
residual risks have to be taken into account in the project scheduling phase,
which remains the central point of focus in this chapter. Risk acceptance can
be considered as an extreme case of risk anticipation in which the preferable
reaction to anticipate the risk is doing nothing.

9.1.4 The risk management database

The risk management database is in theory the heart of risk manage-
ment. Any project is by definition unique, but mostly neither its activities
nor the related risks are. A risk management database should contain histor-
ical data about all risks that might affect the activities in a project and the
potential measures (risk responses) to combat these risks. The actual dis-
ruptions that occur during project execution and their consequences should
also be stored. Risk management done for one project (or activity) can fa-
cilitate the work for upcoming similar projects (or activities). In practice,
however, not many real-life projects can rely on a reliable database with
relevant risks.
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9.2 A framework for risk management

In this section, a formal framework for risk management will be intro-
duced. Risk management is present in every single phase of the project life
cycle of Figure 2.6. Our proposed framework will also fit into the subsequent
phases of the life cycle. Rather than giving an overview of all decisions that
have to be made during this process, we focus on some recommendations
that are important for risk management.

9.2.1 Project initiation phase and project definition phase

Before the start of the project planning phase, the organization must
be clear about the whereabouts of the project. The preferable planning and
scheduling techniques are dependent on which objectives have been set. It
is pointless to use commercial project scheduling software packages without
being aware of what this software is trying to optimize.

In this thesis, we focused on projects that appreciate a stable execu-
tion with reduced nervousness. We must note that also for organizations
that focus on time-criticality, schedule robustness might be an important
secondary objective function.

In this phase, strategic and tactical project constraints such as the due
date and the budget should also be identified.

9.2.2 Project planning phase

Once the project has been properly defined and the importance of risk
management for the current project has been uncovered, the project plan-
ning phase can be started. Gathering and processing information is crucial
to this phase. In this section we will describe what information is required
and how we propose to gather it. Although this section is based on inter-
views between a consultant and a single project manager, we would strongly
advise to collect multiple opinions for large-scaled projects, if possible. His-
torical data can also help to improve estimations. Aggregated estimates will
be less biased and better accepted by the workforce.
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9.2.2.1 Identifying the activities

The focus during the activity identification will shift compared to stan-
dard project scheduling. In a first interview between the planner (consul-
tant) and the project manager the required data are collected.

Estimating activity durations is a compulsory first task for project
managers that apply our risk management framework. However, the in-
terviewer should stress that aggressive duration estimates d∗j are required,
in which no safety should be included whatsoever3. The resulting aggressive
duration might very well be utopian. The idea behind these aggressive esti-
mates mirrors the basic idea of risk management, being that we aim to make
project managers conscious about uncertainty. To some extent, uncertainty
is always included in a project schedule, but this inclusion rarely happens
consciously. Managing such instinctive uncertainty is impractical.

Because most projects contain too many activities to be analyzed ef-
fectively, activities will be grouped into a limited amount of activity groups,
containing activities with similar risk structure. Remark that activity group-
ing should not be confused with hierarchical aggregating activities in more
generalized work packages (cf. work breakdown structure). In a work break-
down structure we could for example aggregate the activities “painting the
bedroom ceiling” and “tiling the bedroom” into the aggregated activity
“bedroom finalization”, while we are interested in grouping all painting ac-
tivities in a single activity group, regardless of where and when the indi-
vidual group activities are executed. The idea is that the grouped painting
activities will suffer from similar potential risks because similar techniques,
subcontractors, etc. are applied.

Grouping the activities that share common risks into activity groups,
simplifies the subsequent risk process, which can now be performed at the
activity group level rather than at the individual activity level.

For each activity group, the project manager must also specify the

3It should be remarked that this definition of the term aggressive activity duration does

not correspond with its use in the CC/BM methodology of Chapter 3, where aggressive

activity durations denote average or median activity durations. The aggressive estimates

in this chapter correspond to the (unrealistic) best case duration rather than the 50%

confidence duration.
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activity weight wj to be assigned to each activity in the group. This weight
represents a marginal disruption cost of starting the activity during project
execution earlier or later than planned in the baseline schedule. The weights
reflect the scheduling flexibility of the activities in the groups and will be
used by the robust project scheduling procedures described in Section 2.2.
A small activity weight reflects high scheduling flexibility or low instability
cost: it does not ’cost’ that much if the actually realized activity starting
time during schedule execution differs from the planned starting time in
the baseline schedule. A heavy weight reflects low scheduling flexibility:
deviations between actual and planned starting times are deemed very costly
for the organization (e.g. high penalties that are incurred when individual
milestones or the project due date are not met).

Information about resource requirements, precedence constraints, sche-
duling constraints, etc. should also be gathered in this phase.

9.2.2.2 Constructing the project network

Many project scheduling procedures in literature start from a graphical
activity-on-node network representation (G(N,A)) of the project in which
N defines the set of activities in the project and A specifies the existing
precedence relationships between the activities. Such a valid project net-
work may not contain activities without successors, except the dummy end
activity. Circular references are only allowed when generalized precedence
relations (Elmaghraby & Kamburowski 1992) occur.

Our experience indicates that project managers tend to generate prece-
dence relations that already reflect implicit scheduling decisions, rather than
pure technologically based precedence constraints. For example, two activ-
ities a and b may be assigned a finish-start, zero-lag precedence relation by
project management, not because technological conditions impose such a
relationship, but because both activities require the same resource that is
available in a single unit, or because company tradition calls for executing
activity a first. The result is that a precedence and resource feasible sche-
dule is generated for a project that will suffer from unnecessary precedence
constraints, with an unjustified reduction in scheduling flexibility, and an
unnecessary propagation of scheduling conflicts caused by scheduling dis-
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ruptions that may occur during project execution.

9.2.2.3 Detection of risks and opportunities

For each identified activity group, project management has to deter-
mine the relevant risk factors. A limited list of potential risk factors can be
extracted from the risk management database or new risk factors may de
determined for the project under consideration.

The potential impact of the risk on the project depends on the risk-
specific characteristics. Some of the possible risk impacts may be:

• Activity duration increase (in time units)

• Productivity decrease (in percentage)

• Delay of activity start time

• Increase of costs

• Increase of resource requirements

The difference between activity duration increase and productivity de-
crease lies in the fact that in the latter case, the impact depends on the
activity duration itself. For example, the impact of bad weather conditions
can be expressed as an extra percentage of required time.

Also the rate of occurrence can be either dependent or independent
of the activity duration. Risks that affect the activity start time mostly
have both a probability and an impact that are unrelated to dj . In Section
9.2.2.5, it will be described how these differently characterized risks will be
coped with.

9.2.2.4 A scenario-based technique for risk analysis

Simple quantification of risks is a huge challenge. Our approach is
somewhat similar to the simple scenario approach of Chapman & Ward
(2003). Similar to theirs, our approach expects project management to
provide the probability of occurrence and the impact of the risk factors on
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the activities of an activity group under a best case scenario and a worst
case scenario.

The graphical user interface (GUI) prompts the project manager to
answer a list of scenario based questions. The questions need to be clear,
non-misleading and intuitive. Questions such as “what are the probability
and impact of this event?” do not reflect the mangers’ reasoning. An ex-
ample risk quantification session between the expert (E) and the project
manager (M) could look as follows.

E (1): Imagine a worst case scenario. How long will the affected activity
duration be extended by this risk in the worst case scenario?
M (2): b days
E (3): Based on your past experiences, what is the frequency that such
a worst case scenario has appeared in a similar project?
M (4): ζ(b)
E (5): Assume now that the risk occurs, but the prolongation of the
affected activity duration can be limited as much as possible. What will
this best case prolongation be?
M (6): a days
E (7): Based on your past experiences, what is the frequency that such
a best case scenario has appeared in a similar project?
M (8): ζ(a)
E (9): Finally, what is the overall frequency that such a risk has appeared
in a similar project?
M (10): q

The frequencies ζ(a), ζ(b) and q can be larger than one if the project
manager expects several occurrences of the risk during the project. The
data are entered in the GUI after validation. A simple validation test states
that q ≥ ζ(a)+ζ(b). Otherwise, revision by the project manager is required.

From the two extreme case point estimates, (a and b) a triangular
probability density function f(x) and its cumulative distribution function
F (x) for the impact x are generated. A triangular distribution is completely
defined by three parameters, being the lower limit, the mode and the upper
limit.

The first step to generate f(x) is the determination of c, the most likely
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estimate for the impact. Our experience shows that project managers often
struggle to estimate c because of the fuzziness inherent to the ”most likely”
concept. We propose to calculate c instead. For the time being, we assume
that the best case scenario a and the worst case scenario b are the lower and
upper limit of f(x) respectively. We find that

c =
aζ(a) + bζ(b)
ζ(a) + ζ(b)

(9.1)

The reasoning behind this formula starts from the idea that project
managers never think in terms of point estimates f(x) for a continuous
distribution. We do, however, assume that the fraction ζ(a)/ζ(b) is a correct
estimate of P (a)/P (b) in which P (a) and P (b) (see Eq. 9.2 and 9.3) must
be interpreted by the expert as being the discrete probabilities that if the
risk occurs, its impact lies within a certain scenario interval with width ε.
ε reflects to what extent the project manager reasons in terms of scenarios
and is highly dependent on the individual. ζ(a)/ζ(b) is thus regarded as the
ratio that the best case scenario is thought to be more likely to occur than
the worst case scenario.

P (a) =
∫ x=a+ε

x=a
f(x)dx = F (a + ε) (9.2)

P (b) =
∫ x=b

x=b−ε
f(x)dx = 1− F (b− ε) (9.3)

From 9.2 and 9.3 we may conclude that

ζ(a)
ζ(b)

=
P (a)
P (b)

=
F (a + ε)

1− F (b− ε)
(9.4)

Next, the distribution function F (x) of a triangular distribution is
known and defined by:

F (x) =

{
(x−a)2

(b−a)(c−a) for a ≤ x ≤ c

1− (b−x)2

(b−a)(b−c) for c < x ≤ b
(9.5)

Substituting 9.5 in 9.4 gives

ζ(a)
ζ(b)

=
ε2

(b−a)(c−a)

ε2

(b−a)(b−c)

=
b− c

c− a
(9.6)
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Because b− c = (b− a)− (c− a) we now find that

c = a +
b− a

1 + ζ(a)
ζ(b)

(9.7)

Reformulating equation 9.7 results in equation 9.1. This formula is
independent of the actual values of ε, ζ(a) and ζ(b). Figure 9.2 shows a tri-
angular density function f(x) constructed based on the parameters a, b and
c. Note that ζ(a)/ζ(b) equals 3 in this figure. The cumulative distribution
function F (x) of f(x) is shown in Figure 9.3.

Figure 9.2: A triangular probability density function f(x)

Figure 9.3: A cumulative distribution function F (x)

9.2.2.5 Deriving individual activity risk profiles

The probability density functions f(x) of the impacts of all detected
risks, derived in the previous section at the level of the activity groups, have
to be projected on the individual project activities. This projection is the
key to the reusability of the risk assessments at the level of the activity
groups. Distributions for project activities can be calculated by using the
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characteristics of the risk impact densities and probability, risk assessments
and/or risk data coming from project records.

In the previous section we described how the GUI was used to prompt
the project manager to specify the average occurrence rate q of any risk in
activity group AG. To obtain the probability density function f(dj), we
rather need the occurrence rate of the risk at the level of a single activity j.

We assume that the number (k) of risk occurrences is Poisson dis-
tributed (see Eq. 9.8) and that the rate λj at which the risk occurs for
activity j can be calculated by Eq. 9.9.

f(k;λj) =
e−λjλk

j

k!
(9.8)

λj =
vj∑

∀i∈AG

vi

q (9.9)

The weights vi depend on the characteristics of the risk. If the risk
occurrence rate is independent of di (e. g. license delay), we set vi = ui

where ui is a binary variable that equals 1 if the risk affects activity i and
equals 0 otherwise. When the occurrence depends on di, we set vi = d∗i ×ui

where d∗i is the aggressive duration estimate of activity i.
Simulation can then be used to obtain a probability density function

f(dj) for the activity duration dj . We start by simulating the number
of occurrences k which follows the distribution of Eq. 9.8. Then, for each
occurrence l (l = 1, . . . , k), the inverse distribution function x = F−1(y) can
be used to generate random values xl for the impact with y being drawn
from a uniform distribution between 0 and 1.

Subsequently, the simulated duration dj is calculated as a function of
the aggressive activity duration d∗j and the simulated impacts xl for each l.
How this is done depends on the characteristics of the impact of the risk.
For example, for risk factors that may lead to an activity duration increase -
our major concern in this chapter - we obtain the expected activity duration
as:

dj = d∗j +
k∑

l=1

xl. (9.10)

A sufficient number of simulation runs allows for the generation of
the distribution functions f(dj). These simulated distribution functions are
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then fit into known distribution functions f∗. A triangular distribution, for
example, is completely characterized by its lower limit aj , its upper limit bj

and its mode cj . aj en bj are directly distilled from the simulated f and cj

is calculated as:

cj = 3× E(dj)− aj − bj . (9.11)

Visibility for project managers is the main advantage of this approach.
aj , bj and cj refer to an optimistic, a pessimistic and a most likely estimate
of dj .

9.2.2.6 Validating the estimates

The estimates aj , bj and cj are the result of subjective parameter esti-
mates and need to be handled with care. The project manager who detected
and analyzed the risks should validate the resulting parameters by consult-
ing the historical data in the risk management database and/or gathering
expert opinion.

It should be clear that, when the risk analysis procedure described
above is deemed too extensive, the three point estimates of dj may be di-
rectly determined on the basis of past experience or historical data.

Applying a sensitivity analysis of the risk parameter estimates might
provide additional insight in the robustness of the estimates. A project man-
ager could overestimate the worst case impact of a risk to make a statement.
Showing him the impact of this overestimation, could change his mind.

9.2.2.7 Risk responses

As we stated above, the project manager has to ponder on how to
respond to risks. The possible risk reducing measures should all be added
to the risk management database. Some examples are outsourcing a certain
activity or activity group, getting an insurance for a financially huge risk,
performing an alternative technique which does not contain the risk, adding
more workforce, etc. Thanks to the extensive risk analysis in the previous
section, risk prioritization helps to decide which risks are the most important
to address.
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Robust project scheduling can be regarded as a risk response measure,
but deserves special attention in the next section.

9.2.3 Project scheduling phase

Most decision making in project scheduling is situated in this phase of
the project life cycle. The aim of the scheduling phase is to obtain a workable
baseline schedule for the project and to investigate how risk management
can influence our decisions.

Risk management makes project planning and scheduling an iterative
process (see Figure 9.1). Many of the above risk responding measures have
an impact on the project planning phase. Applying a different technique to
perform an activity might for example reduce or eliminate a certain risk. A
robust project plan (risk anticipation) may change the impact of an activity
duration increase. The residual risks need to be re-detected and a new cycle
of risk management starts.

Once residual risks have been obtained and the iterative process has
been stabilized, a workable project schedule will be generated. Generating
a robust project plan aims to reduce the schedule nervousness. Typically,
unrealistic project plans are built that are closely followed in the early phase
of project execution without looking at uncertainty and are then inevitably
abandoned in later phases, resulting in project anarchy. Dealing with risks
in a well-organized way is crucial in an uncertain project environment. The
later in the project life cycle of Figure 2.6, the more accurate the infor-
mation that can be used by the project planner. However, awaiting project
execution and applying a purely reactive approach would result in unrealistic
planning and ultimately in chaos, as described above. For risk management
to make a real impact, it has to be present from the project initiation phase
on. The project plan should be realistic. Proactivity is an absolute necessity.

In the iterative process of the project planning phase, we gathered
all required information to be able to construct a proactive baseline sche-
dule. In accordance with the CC/BM methodology, this schedule will be
generated by using the expected activity durations dj , but now these 50%
confidence durations are the product of extensive risk management rather
than subjective estimates. The proactive scheduling procedures introduced
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in Chapters 4, 5 and 6 can all be used, together with many project schedu-
ling methods proposed in the project scheduling literature or by commercial
software packages. Evaluation of a candidate baseline schedule is possible
by Monte-Carlo simulation. Instances of dj are drawn from the triangular
distribution defined by lower limit aj , mode cj and upper limit bj . A simple
reactive procedure decides how to repair the baseline schedule on schedule
breakage during simulation. Simulative evaluation of several candidate base-
line plans will result in the detection of the strengths and weaknesses of the
candidates and might help the project manager to select a suitable project
baseline schedule.

The proposed baseline plan should still be approved by project man-
agers. A feasibility check is crucial. Additional organizational constraints
may still be required at this point. It should also be verified whether the
project objectives are obtained. Chapters 3 and 8 showed the importance
of the project due date and the cost of exceeding the project due date (wn)
on the trade-off between stability and makespan. Although the due date is
mostly established contractually, the above-described simulation approach
might uncover that the predefined due date is unrealistic. Mostly the prob-
ability that the project finishes in time will be extremely small. To obtain
credibility, a project due date prolongation should be considered.

The output of this phase is a well-thought-out baseline schedule that
will hopefully decrease the schedule nervousness.

9.2.4 Project control phase

Risk management does not end with the actual start of the project. The
project in progress should be monitored closely and disruptions should be
detected, analyzed and stored in the risk management database (for future
projects).

The actual progress of the project should be compared with the planned
progress and if this reveals that the project is on its way to anarchy, cor-
rective actions need to be taken. These actions might have already been
recorded as risk treatments in the project planning phase or might be newly
proposed disruption responses. An update of the baseline schedule into a
workable projected schedule for the remainder of the project (see Chapter
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7) might also be required.
What we often encounter in real-life projects is not a lack of inventive-

ness of project managers to find corrective actions, but rather an unorga-
nized way of dealing with disruptions. We strongly advise project managers
to plan their project until project completion. Reactiveness is an integral
part of project scheduling.

9.2.5 Project termination phase

When objectives are not reached, budgets are exceeded or the due date
is exceeded, upper management will certainly reprimand the responsible
employees. But such an evaluation of tactical nature does not suffice.

Project managers are mostly relieved that a project is finished and
forget to extract the valuable operational lessons that they can learn for
future projects.

The strategic decisions made should be re-evaluated compared to their
alternatives. The uniqueness property of a project makes this very hard.
Estimated distribution functions of activity durations can for example not
be proven to be wrong or right by one realized occurrence of the activity.
The losses by including safety are also often more straightforward than the
gains.

The risk management database should also be completed after the
project, such that additional accurate historical data becomes available for
future projects. Reusability of information is an absolute requirement to
make risk management feasible.

9.3 Applying the framework to a real-life project

In this section, we document the application of our framework to a
real-life project in the Belgian construction industry. The project at hand
consists of the construction of an office building in Brussels. The building
has multiple floors that are very similar, resulting in a repetitive project
structure. We will illustrate our framework on one such floor, which is
shown in Figure 9.4. This floor is constructed in two phases and four slots
(A, B, C and D), which are bounded by four girders (O, R, T and U), can
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be distinguished. We refer to Schatteman et al. (2006) for an illustration of
the application of our risk management framework to a different large-scale
project with well over 200 activities.

Figure 9.4: Layout of one floor in office building
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9.3.1 The project network

In a first meeting with the project manager, the required data are
collected and a project network is generated to avoid the problems discussed
in Section 9.2.2.2. The resulting partial project network is shown in Figure
9.5.

Figure 9.5: The project network

While common practice might be to work from left to right on such
workplaces, activities from different slots in the layout are not precedence
related in the network. The constructed network comprises flexibility for
robust project scheduling procedures.

9.3.2 Risk detection & risk analysis

We illustrate our risk management approach on activity 61 in the
project network. This activity is part of the activity group that is labeled
as wide slab floor plates, which are pre-cast concrete slabs that are usually
placed on girders. All four activities in this activity group have been colored
black in the network of Figure 9.5. Activity 61 represents the placement of
pre-cast floor plates in the slot of the building that has been indicated with
label 2D in the layout of the office building (Figure 9.4).
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Figure 9.6: Interface to specify the flexibility of an activity

After detecting the activities and activity groups, the project manager
is asked for the flexibility of (re)scheduling the activities in a given activity
group by prompting a slider bar interface as shown in Figure 9.6. The slider
bar indicates that the wide slab floor plates activity group is considered
as rather inflexible. Wide slab floor plates are massive plates that need to
be delivered by specialized transportation and need to be placed directly
after arrival because storage is almost impossible. This requires the imme-
diate availability of transport facilities and a hoisting crane. Renegotiating
agreements for these resources with subcontractors in case of a delay are
difficult.

Detecting the risks on the wide slab floor plate activity group is the
next task for the project manager. An extensive checklist of possible risks
is extracted from the risk management database and illustrated in Figure
9.7. Risks are divided in six main categories, i.e. environment, organization,
materials, people, machines and subcontractors.

For the examined activity group in the current project, the project
manager considered four risks to be important, i.e. bad weather conditions
(environment), late delivery of acceptable plans (organization), absenteeism
(workforce) and machine breakdowns (machines).
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Figure 9.7: Risk checklist for wide slab floor plates
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Figure 9.8: A graphical user interface for risk quantification

For each of these four risks, a scenario-based approach for risk analysis
as proposed in Section 9.2.2.4 has to be applied. Estimates of the proba-
bility and the impact of both best and worst case scenario and the overall
frequency of risk occurrence are asked during an interview and entered in
a GUI4 such as monitored in Figure 9.8. These estimates are transformed
into a distribution function for the expected impact. Figure 9.9 shows the
distribution function f(x) of the expected delay on the wide slab floor plates
activity group due to bad weather condition. A similar approach will supply
distribution functions of the impact of the other risks on the wide slab floor
plates activity group.

Subsequently, these impacts are mapped onto the activities within the
activity group given the characteristics of the risks. By simulating a large
number of project executions, a range of estimates for the realized activity
duration d61 is obtained. The dashed line in Figure 9.10 shows the simulated
distribution function of these estimates. The full line represents the fitted

4Remark that this graphical user interface provides functionalities such as cost analysis

tools that are not discussed in this dissertation.
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Figure 9.9: The impact of bad weather as a triangular distribution

Figure 9.10: Triangular distribution function for d61

triangular distribution f(d61). From this triangular distribution, three es-
timates of d61 are distilled, respectively an optimistic estimate a61 = 1, a
pessimistic b61 = 6 and a most likely estimate c61 = 1.

9.3.3 Project schedule

Multiple candidate schedules can now be generated for this project
by applying either procedures embedded in commercial software packages,
RCPSP procedures or any of the procedures introduced in previous chapters
of this dissertation. We schedule activities by employing their expected
durations E(dj) that can be calculated as:

E(dj) =
aj + bj + cj

3
. (9.12)
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Based on the risks detected and analyzed previously, these schedules
can be evaluated through simulation by drawing a number of activity dura-
tion scenarios from the triangular distributions defined by the parameters
aj , bj and cj . We decide on the resource allocation by running the proce-
dure of Artigues et al. (2003) and react during simulation by applying a
robust parallel schedule generation scheme to an activity list that orders the
activities by increasing starting times in the baseline schedule. The values
of the project due date δn and the weight of the last activity wn are crucial
for schedule evaluation. Simulation results and schedule acceptance highly
depend on these parameter settings.

When the project is scheduled as a deterministic project with average
activity durations by the standard RCPSP scheduling mechanism embedded
in MS Project, we obtain the schedule of Figure 9.12 with a makespan of
36 working days. Because all activities are scheduled with 50% confidence
durations, this makespan can by no means serve as a realistic due date for
the project, independently of which scheduling procedure is used.

Figure 9.11: TPCP versus project due date

Figure 9.11 illustrates the simulated time project completion proba-
bility (TPCP) when working with the baseline schedule of Figure 9.12 as
a function of the due date. We see that P (sT

n ≤ 36) = 0. Based on the
project managers statement that he wishes to obtain a 90% service level,
it can be seen that the project due date should be set to at least 48 days
later than the project start date. Hence, a 12-day project buffer is included
to anticipate the variability of the complete project. The project is sched-
uled from August 1st 2006 until October 6th. Weekends are excluded from
consideration.
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Figure 9.12: Project schedule obtained by MS Project
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Simulation reveals that given the risks analyzed previously, the average
due date excess E|sT

n − δn| above the 48 days due date is 0.2 days. This
results in an average stability cost for the last dummy activity that equals
wn × 0.2. Simulated intermediate stability losses are 804 for this schedule,
independently of the values of wn and δn.

The average value for wi selected by the project manager on the slider
bars of Figure 9.6 for the activity groups in this project was approximately
3. Because the project completion was deemed important, we first set wn =
100. This results in a stability cost of 824 for the quality robust schedule.

For a due date of 48 days, we are able to substantially reduce this
stability cost by applying the predictive-reactive procedures introduced in
this dissertation. We apply the STC heuristic of Section 5.1.3 on an initial
schedule that has been generated by the ant optimization metaheuristic of
Herbots et al. (2004) and obtain the schedule of Figure 9.13. Evaluating this
schedule by simulation gives a stability cost of only 182. It is clear that this
schedule is far more robust than the one depicted in Figure 9.12. However,
the TPCP also decreased to 82% with an average due date excess of 0.38. If
this service level is considered insufficient, robust project scheduling should
not be rejected. Robust scheduling procedures are designed to attribute as
much attention to project completion as they have been told to. A service
level that is deemed inadequate, often indicates that the weight wn has
been underestimated. Setting wn = 500 results in the schedule of Figure
9.14. The stability cost is 347, which is obviously still much better than
the stability cost of the schedule of Figure 9.12, and the TPCP again equals
90%.

This schedule reincarnates the theory of the trade-off between makespan
and stability in a real-life environment. A substantial improvement in solu-
tion robustness has been achieved without a concession on quality robust-
ness. Working with this baseline schedule greatly improves the stability
during project execution.
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Figure 9.13: Baseline schedule obtained by STC when wn = 100
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Figure 9.14: Baseline schedule obtained by STC when wn = 500
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We observe that our example activity number 61 is scheduled to start
on Friday 15 September 2006 and has an expected duration of three days.
Following the resource flow network, activity 61 can only start whenever
activity 59 ends, because the same resources are required. Activity 59 is
scheduled to be executed from Monday 11 September until Wednesday 13
September. Thursday September 14th is used as buffer for possible disrup-
tions. Because activity 59 is also a member of the wide slab floor plates
activity group, it is subject to the same risks as activity 61. Rain for a
complete day between Monday 11 and Wednesday 13 will not affect the
project execution. When working with the schedule of Figure 9.12, such a
disruptive event would directly require to repair the project schedule and to
renegotiate the agreements with some subcontractors.

9.4 Communication and acceptance

The need for a robust project baseline schedule as a basis for internal
planning is a valuable tool for project management and top management
within the organization. However, communicating such a robust project
plan to external parties can cause some problems. In this section we will
address some communication and acceptance issues that we have crossed
during our experiences in the construction industry.

9.4.1 Internal acceptance

This dissertation has proposed many reasons why risk management
and solution robust project planning could help the manager to improve
the quality of the project. Still, many project managers are reluctant to
plan their projects in such a way, because they claim that including safety
is simply impossible for their project. We have to contest this claim by
stating that every realistic project schedule has inherent safety, but that this
safety is mostly handled unconsciously. Activity durations that are used to
schedule the project are in practice commonly time windows that correspond
to 80%-90% confidence intervals of the stochastic activity durations. The
excess time above the 50% confidence level can thus be seen as an activity
buffer. The buffer sizing happens rather subjectively and unconsciously. Our
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framework helps at making uncertainty anticipation a conscious process.
Such an approach reduces the nervousness during project execution and
leads to a much more stable and realistic project schedule.

9.4.2 Internal communication

The communication between the project management and the project
workforce might be an issue in many real-life projects. The CC/BM method-
ology unveils the prerequisite to avoid project delays caused by Parkinson’s
Law (Parkinson 1957). This law is also often referred to as the student’s
syndrome and denotes that, much as students do, the workforce responsi-
ble for executing a project activity tends to use the complete time window
allowed. It can thus be seen as an absolute requirement that the buffers
included in a robust project schedule to anticipate possible risks, are not
communicated to the workforce. Otherwise, the work would expand to fill
the time window plus buffers and a disruption near the end of the activity
would cause a project delay because no more safety is available

9.4.3 External acceptance and communication

In the Belgian construction industry, most projects are granted by auc-
tions. As long as the auctioneer is not convinced of the advantages of robust
project planning strategies, communicating these strategies to them could
damage the organization’s chances to secure the project. This leads to a
situation were an unrealistic project plan with tight budget and due date
has to be communicated in order to acquire projects. At the end, the orga-
nization that is willing to take the largest risks is going to be the threshold.
Obviously, such a situation is completely opposite to what we try to obtain.

In the light of the risk management project, improving awareness of
the need for risk management is one of our main future challenges. Our risk
management work group will be enlarged by including project auctioneers
and government representatives. The ultimate aim is to obtain a standard
for risk management such that the quality of project management would
improve and that an organization that is convinced of the benefits of risk
management could fully exploit them.
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9.5 Conclusions and future research

In this chapter we attempted to narrow the gap between theory and
practice in project scheduling. We introduced a framework that can help
project managers to plan their project in a more robust way. Risk man-
agement is emphasized as a critical component of project management. We
propose an approach to detect and analyze risks with a focus on ease of use,
acceptability and clarity.

In a second part of this chapter, a real-life project served as an illus-
tration for our methodological framework. Risk management and robust
scheduling have recently been applied to several projects in the Belgian con-
struction industry and many more are on-going. Very promising results have
been achieved. We do still have a long way to walk before robust project
scheduling will become common practice. Awareness and acceptance by all
project stakeholders are the largest obstacles to overcome.

Some limitations of our procedures are being subject to future re-
search to make them applicable to a wider range of projects. Future re-
search directions include the extension to generalized precedence relation-
ships (Elmaghraby & Kamburowski 1992); inclusion of specific techniques
to model weather, machine breakdowns (Lambrechts et al. 2006a), spatial
resources (de Boer 1998), weekend buffers5 and activity delays (rather than
activity duration prolongations). Narrowing the gap between practice and
theory is a continuous process of mutual learning between both worlds. The
work presented in this chapter has initiated this process.

5It is common practice in building industry to treat weekends as buffers for uncertainty.
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Chapter 10

Conclusions

This final chapter will summarize the main conclusions drawn from the
research efforts made in this thesis. We aim to give recommendations to both
project managers and researchers interested in robust project scheduling.

Uncertainty lies at the heart of real-life project scheduling. We attempt
to establish recognition of the impact of uncertainty on project planning.
As for most problems that a manager will ever encounter, project schedu-
ling under uncertainty can be tackled by either a proactive, a reactive or
a proactive-reactive approach. We elaborated on the trade-off between the
different options.

Chapter 3 revealed the importance of cleverly dealing with uncertainty
for a project. The study of the trade-off between makespan and stability
has demonstrated that for most projects a substantial gain in stability can
be obtained while keeping the project service level to an acceptable level. A
first paradoxical conclusion revealed that solution robust scheduling becomes
particularly interesting for projects for which on time project completion is
assumed to be essential.

In Chapters 4, 5 and 6 numerous proactive procedures have been pro-
posed to improve the robustness of a baseline schedule. The followed
approach is two-staged such that it starts by solving the basic resource-
constrained project scheduling problem and adds safety to this initial sche-
dule in a subsequent stage. This allows that the current project schedule
within the organization can be transformed in a more robust version with-
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out disregarding the efforts made to generate the original schedule. Im-
provements in stability can be obtained by either smart resource allocation
(Chapter 4), buffer insertion (Chapter 5) or initial schedule selection (Chap-
ter 6).

Several solution robust resource allocation procedures have been pro-
posed in the project scheduling literature. Most of them obtain either unsat-
isfying results because of the use of an inferior surrogate objective function
or are computationally demanding for large networks because they rely on
solving large mixed integer programming formulations. We have introduced
the MABO heuristic in Chapter 4, which requires little computational time
to obtain satisfying results. Although we observed in Chapters 5 and 8 that
the improvements of MABO are largely neutralized after buffer insertion;
its computational efficiency leaves few practical objections against the use
of such solution robust resource allocation procedures

The improvements on stability obtained in Chapter 4 are relatively
small compared to the possible improvements by inserting time buffers in
the initial schedule. An examination of several buffer insertion heuristics
in Chapter 5 reveals that the activity dependent weights and the amount
of variability present in the activity durations of the predecessors both in-
fluence the recommendable time window provided to complete an activity.
STC was shown to be a relatively fast heuristic that performs well on small
and large projects. Improvement algorithms and exact algorithms require
simulation to evaluate several candidate solutions and become computation-
ally infeasible for large scale projects.

The first stage of the two-stage approach, i.e. initial schedule selection,
is commonly overlooked in robust project scheduling. We show in Chapter
6 that initial schedule selection has a substantial impact on solution ro-
bustness. However, selecting a solution robust initial schedule from several
candidate schedules is a difficult task. The solution robustness of a candi-
date initial schedule can only be correctly evaluated after buffer insertion.
In the second part of Chapter 6, a metaheuristic is proposed that abandons
the two-stage approach and builds a stable buffered project schedule from
scratch in one integrated stage. Despite the promising results obtained by
this approach, it might suffer from acceptability issues in a real-life environ-
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CHAPTER 10. CONCLUSIONS

ment and will typically require much computational time before satisfying
results are obtained.

The reactive procedures of Chapter 7 define how to react when disrup-
tions occur such that the robustness introduced by the proactive procedure
seems to be inadequate. The point of developing solution robust reactive
procedures is two-fold. First, during actual project execution a project man-
ager has to react to occurring disruptions. Repairing the original baseline
schedule as good as possible often is a major aim during execution because
this baseline schedule has been used as the basis for internal and external
planning and communication. Second, most procedures proposed in Chap-
ters 4, 5 and 6 heavily rely on simulation to compare the performance of mul-
tiple candidate baseline schedules. Reactive procedures are required to react
to the simulated disruptions. The main difference between actual project
execution and simulated project execution is that the former implies one
unique execution of the unique baseline schedule, while the latter requires
many simulated repetitions of several candidate schedules. Evaluation by
simulation thus entails the need for fast reactive procedures.

Chapters 3-7 reveal that robust scheduling certainly pays-off. In Chap-
ter 8 a large-scale computational experiment is set-up to compare the mag-
nitude of the improvements obtained by the approaches developed in the
different chapters. Buffer insertion (Chapter 5) obviously has the largest
positive impact on stability. Besides, buffer insertion procedures start from
a given initial schedule and a fixed resource flow network and largely man-
age to neutralize the stability improvements obtained by initial schedule
selection or clever resource allocation.

However, the negative impact of buffer insertion on makespan perfor-
mance might still make it hard to convince project managers to apply such
an approach. Certainly for projects in a highly variable environment and
with a rather tight due date, it becomes challenging to improve solution
robustness by idle time insertion without compromising on quality robust-
ness. For such projects, solution robust resource allocation techniques or
clever schedule repair procedures might substantially improve the project’s
stability. This induces a second paradoxical conclusion, namely the more un-
certainty inherent to a project, the less powerful procedures can be applied
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to combat stability costs.
Chapter 9 applies the procedures of the previous chapters to a real-life

project. We introduce a framework for risk management that is able to de-
tect, analyze and quantify the uncertainty in a project. Improved awareness
of the risks and opportunities leads to the possibility to deal with them. The
field of operations management can greatly assist project managers in this
matter. Unique characteristics of every project make universal rules impos-
sible, but a better awareness of the trade-offs present in every scheduling
decision can undoubtedly improve the quality of a project.

Although we attempted to narrow the gap between operations research
models and their real-life application, this gap will always persist. Despite
the fact that most operations research tools will most probably experience re-
sistance to be implemented in business environments, operations researchers
can already make a valid contribution by allowing practitioners to reflect on
their traditional decision processes. Even if practitioners are reluctant to
use the newly developed operations research tools, they will undoubtedly
influence their ways of thinking and acting.
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