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Abstract

Semi-Bayesian D-optimal designs for fitting mean and variance functions are derived
for some prior distributions on the variance function parameters. The impact of the
mean of the prior and of the uncertainty about this mean is analyzed. Simulation
studies are performed to investigate whether the choice of design has a substantial
impact on the efficiency of the mean and variance function parameter estimation
and whether the D-optimality criterion is appropriate irrespective of the method

applied to estimate the variance function parameters.
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1 Introduction

The topic of this paper is an offshoot of two developments in statistical quality con-
trol. Firstly, experimental design or design of experiments set itself up as a powerful and
complementary quality improvement technique for statistical process control. Although
indispensable, statistical process control only allows limited gains when compared to ex-
perimental design. The larger flexibility characterizing the design phase allows quality
to be built in products and processes from the start, thereby creating opportunities for
considerable quality improvements. These insights incited to a substantial literature on
optimum experimental designs. Secondly, Taguchi highlighted the necessity to develop
experimental strategies to achieve some target values for the expected value of certain
characteristics while at the same time minimizing their variance. From these develop-
ments emerged the need for designs that are suited for estimating the mean and variance
structure simultaneously. Usually, however, the major part of the optimum experimental
design theory is concerned with designs optimal for response function estimation under
the assumption of homoscedasticity. This can be justified by argueing that one can not
use information that is unavailable but nevertheless it remains a rather weird strategy.

Recently Mays & Easter (1997) derived D- and I- optimal designs for various hypothetical
variance functions. Atkinson & Cook (1995) and Vining & Schaub (1996) described a
semi-Bayesian approach in that they use prior information on the variance function in
order to determine the optimal design. Atkinson and Cook (1995) derive necessary and

sufficient conditions for continuous designs to be semi-Bayesian D-optimal for estimating



mean and variance functions simultaneously, while Vining and Schaub (1996) give the
optimality criterion for discrete Bayesian designs.

Although the the optimization issues for experimental design are rarely addressed, much
work has been done on describing and analyzing models in which both means and variances
are functions of the experimental variables. A careful review of the major statistical tech-
niques used to analyze data with nonconstant variability is given by Carroll and Ruppert
(1988). Their work includes an extensive treatment of the different estimation procedures
for fitting variance functions. Specific problems with variance function estimation are also
addressed by Raab (1981), Davidian and Carroll (1987), and by Davidian (1990).

The purpose of this paper is to give a more thorough analysis of the impact of the prior
information on the optimal design and of the impact of the design and the estimation
procedure on the efficiency of the mean and variance function estimation. In the next
section, we start by deriving the optimality criterion for semi-Bayesian designs. Compu-
tational results are given in section 3. Section 4 provides the reader with a brief overview
of the estimation techniques for the parameters of both the mean and variance function.
Finally, section 5 analyzes whether the designs, computed in section 3, have a substantial
impact on the estimation efficiency and whether this influence is similar for all estimation

procedures.



2 Semi-Bayesian D-optimal designs

Let Y be the response of interest and let x and z denote the (p x 1) and (g x 1) vectors of
control variables presumed to influence the response and variance function respectively.
Denote by f(x) the (p, x 1) vector representing the polynomial expansion of x for the
response model and by g(z) the (g, X 1) vector representing the polynomial expansion of

z for the variance model, with g(z) containing an intercept. With B and « the (p, x 1)

and (g, x 1) the vectors of unknown parameters, we assume the following heteroscedastic

model

Y =f7(x)8 + /v[gT(2)7] ¢ (1)

The disturbance term is standardized such that E(e) = 0 and VAR(e) = 1 which yields

the following mean and variance functions

E(Y) = f'(x)8 (2)

VAR(YY) = o[g'(2)7] (3)

Optimum design theory, dating back to Kiefer and Wolfowitz (1959), suggests that the
choice of design should maximize the information on the parameters B and ~. This cor-
responds to maximizing a function of the information matrix on the unknown parameters
(B,7). The most widely used criterion is D-optimality, which maximizes the determinant

of the information matrix. For our model, the per observation information matrix on



(B,7) is given by
32‘ logL, 52 logL
I(z,z) = —E op ooy
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where L is the likelihood function. Under the assumption of independent standard normal

random error terms €, L becomes
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The information matrix on (3,7) in the point X,z is then given by
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where v’ stands for the first derivative of v.

The total information in the design {x,z}}, is found by summating the per observation

matrices over all design points:
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A particular design is D-optimal if it maximizes the following determinant over all possible

designs
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This expression simplifies a lot if we use the following model for the variance:

v[g”(z)7] = explg” (z)7] (4)



This is called multiplicative heteroscedasticity and the log-linear form ensures that esti-
mated variances are positive. In this notation, 4; or equivalently 0? = exp~;, can be

seen as a scale parameter. Substituting the exponential function in the total information

matrix yields:

S =FOx)fT (i) 0
Z Iz, 2) = ¢ explgT(zi)7Y]
TN 0 > 18(z)g” (2)

In the homoscedastic case, the information matrix only depends on the scale parameter
and consequently the D-optimal design does not depend on the unknown parameters.
However, in case of heteroscedasticity, it is clear from the information matrix that the
D-optimal design depends on the value of «y. In order to overcome this dependence, we
will adopt a semi-Bayesian approach and take into account any available prior information
on the variance function to determine the optimal design.

Following Atkinson & Cook (1995) and Vining & Schaub (1996) we will assume a prior
distribution for 4 and maximize the determinant of the expected information matrix.
Atkinson and Cook (1995) computed optimal designs assuming a discrete prior distri-
bution for 7, whereas Vining and Schaub (1996) use a multivariate normal distribution
N(70,pI) as a prior for . Adopting the more realistic assumption of the latter, the

determinant of the expected information matrix becomes

580k [expl—0"g(z) + 50" (z)g(z)]] 7<)

<5 sl (a)

This expression differs from the result in Vining and Schaub (1996) in that they have
omitted the parameter p for no obvious reason. This parameter plays a rather important
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role in the remainder of this paper because it expresses the degree of uncertainty attached

to the prior. The results of Vining and Schaub (1996) can be derived as special cases

setting p = 1.

3 Computational results w.r.t. D-optimal designs

In this section, we derive semi-Bayesian D-optimal designs on the design region xy =
[—1,1]%. To simplify the representation of our results we will assume @ = z which means
that the factors influencing the mean and variance functions are the same.

We will compute and compare optimal designs for a number of different settings. Firstly,
we distinguish between a discrete and an approzimately continuous design region. In the
former case, we use the results of section 2 to find optimum designs for the response
and variance function parameters over a 3 x 3 grid on x whereas for the latter case, we
choose the design points from the 21 x 21 grid on x. Secondly, we calculate both ezact and
approximately continuous designs consisting of 12 and 54 observations or runs respectively.
Finally, four different values for =, the expected value of the variance function parameters
in the prior, and three different values for p are used.

This extends the results of Vining and Schaub (1996), who dealt with exact designs over
a discrete (3 x 3 x 3) design region for p = 1 and four different different values for v,
and Mays and Easter (1997) who computed exact designs over a discrete design region for
p = 0 and several variance structures. Atkinson and Cook (1995) computed continuous

designs over a continuous design region.



In order to compute the Bayesian D-optimal designs, we adapted the BLKL exchange
algorithm described by Atkinson and Donev (1992). This algorithm randomly chooses a
few design points, then adds the missing number of points using a greedy heuristic. In
each step, the point that leads to the greatest improvement of the optimality criterion is
added to the design. Finally, the algorithm tries to improve the design by exchanging one
of the K design points, at which the prediction variance is lowest, with one of the L grid
points, at which the prediction variance is highest. The parameters K and L are defined

by the user.

Figure 1: Variance function

The response function we adopted is the full-second order polynomial

fT(X)—_—(l 1 T2 JI% JI% $1$2)T

and the variance function we used to simulate responses is

1
v[gT(x)76‘] =exp(l + 21 + 53:2)



This function is depicted in figure 1. This choice implies
T T * Lir
g (x)=(1 21 z2)° and ~3=(11 -2—)

For each combination of design region (discrete or continuous) and number of observations,

the resulting designs are presented in the following scheme:

p=0|p=1]p=10

Yo = (1,0,0)7, constant prior

Yo =" = (1,1, %)T, true value

Yo = (1,1, %)T, slightly wrong

Yo = (1,—1, —%)T, completely wrong

In this table, each combination of < and p represents a different prior distribution for
the variance function parameters. In the ideal situation, we know with certainty (p = 0)
the true value of the variance function parameters, that is v = ~0*. Since the design
resulting from this prior distribution is the ideal design for a given estimation problem,
every design should be compared to this one in order to evaluate its performance. Moving
to the right in the table means we are increasingly uncertain about the prior distribution
on o and we attach more weight to variance function estimation. Special attention will
be given to the top left cell in which we assume a constant variance and do not take into
account a possible misspecification (p = 0). This assumption will lead to the classical

designs.

As mentioned in the previous paragraph, to evaluate the performance of a given design,
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we compare it to the ideal design:

1
prt+pu

‘Zconsidered destgn f(Xl) [6_70*T3(2£)] fT(Xi)’ X % ’Ez g(zi)gT(Zi)
‘Eoptimal design f(X’l) [e-—’)’o*Tg(z,-)] fT(Xi) X % IZz g(zi)gT(Zi)l

The denominator of this measure computes the determinant of the information matrix
corresponding to the ideal design. The numerator computes how the design considered
will perform in reality, in casu with 49 = 70* and p = 0. Tables Al and A2 in the
appendix divide this total efficiency into the efficiency for mean function estimation and
the efficiency for variance function estimation.

The resulting designs for the four combinations of design region and number of observa-
tions are shown in figures 2, 3, 4 and 5. From these figures, it is clear that the impact
of the prior in case of a discrete design region and few observations is rather small. The
reason is that there is little flexibility in the choice of design points. For this situation,
having precise knowledge on the variance function is no better than having only a fairly
good idea. Moreover, there is no need to assess the uncertainty about this prior informa-
tion since the optimal design remains the same for each value of p. It is also clear that
using a classical design with constant prior is better than using a completely wrong prior
distribution (95.15% vs. 67.78%).

In case of many runs on a discrete design region, the results are similar although there
is somewhat more flexibility in choosing the number of replications of each design point.
The optimal design will therefore depend to a small extent on the degree of certainty

attached to the prior.

The real impact of the prior distribution can be derived from the 12- and 54-point designs

11



generated on a continuous design region. For each prior ~o the design points selected
shift towards the corner points as p increases. This is because increasing p attaches more
importance to the variance function estimation and since g(z) is linear in the independent
variables, choosing the points near the corners yield maximum information for variance
estimation. However, as the response function is quadratic, one needs observations for at
least three different levels of the control variables. These design points tend to lie where
the variance is expected to be small. As before, for small p and under the assumption of

variance homogeneity, classical designs are obtained.
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Figure 2: Optimal designs (54 observations; 21 x 21 grid)
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4 Estimation of mean and variance functions

Under the assumption of normally distributed and homogeneous error terms, using max-
imum likelihood estimators, or equivalently ordinary least squares estimators, for mean
function estimation is generally agreed upon. Since the variance-covariance matrix of the
estimators depends on the inverse of the information matrix, the D-optimality criterion is
intuitively appealing. No doubt therefore exists as to the relationship between resulting
designs and efficiency of mean function estimation.

When it comes to estimating the mean and variance function simultaneously, there is
far less agreement on which estimation method to use and therefore on which design
to choose. As the maximum-likelihood estimator for the variance does not behave well,
one has developed several other estimation techniques of which we will describe some in
the sequel. The purpose of the second part of this paper is to measure to what extent
the semi-Bayesian D-optimal designs developed in the previous section are fit to allow
for efficient mean and variance function estimation in combination with these estimation
methods.

This rest of this section will provide the reader with a brief overview of the estimation

methods we used. In the next section, we describe the results of our simulation study.

4.1 Variance function estimation based on squared residuals

These methods are basically iterative procedures where one starts with an initial estimate

for @ which is used to compute the residuals (y; — £7(x)3)?. These residuals are then
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used to estimate «y with one of the methods described in this section. The estimates for
7 are used in a weighted least squares algorithm to improve the estimates for 3. This
process can be iterated using the new estimate for 3. Typically, only a small number of
iterations is needed for convergence. These methods are often more efficient than those
using squared variances (see section 4.2), especially when the number of replications at
the design points is small. Their major disadvantage is that they are unreliable if the
response model is possibly misspecified which explains why they are less often used in

practice than could be expected from their statistical properties.

4.1.1 Generalized Least Squares estimation

Given a preliminary estimator 3,, the generalized least squares estimator 4 4r,¢ maximizes

in v the normal log-likelihood function / (B*, ~) where

b - - b=

Since we assume multiplicative heteroscedasicity, we have

R R U N o e S €. <1
V=5 8 Y L g ]

Taking derivatives with respect to the different components of v, 4415 is the solution,

assuming it exists, to the equations

i (1 Clyi— fT(Xi)B]2> g(z:) = 0 5)

= exp(g?(z:)v]

These equations have the form of a set of p, normal equations. The dependence on the
design is contained within the vector g(z;). From this set of equations, we learn that the
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scale parameter can be expressed in function of all other parameters

X 1 N i_fTXiAZ X 1 N i_fTXiAZ
’71210g—z[y - ( )IB] or JZZ_Z[y - ( )IB] (6)
N = L2z N 5%

Substituting this expression in (5) yields a set of p, — 1 normal equations, providing
estimates %; (¢ = 2,..,p,). The estimate for the scale parameter can then be calculated
from (6). Our results will be based on the solutions of the sets of p, — 1 equations, since

the results obtained in this way are more stable than through solving the equivalent set

of p, equations.

4.1.2 Adapted GLS

One objection to generalized least squares is that it does not take into account the loss
of degrees of freedom resulting from the preliminary estimation of 3. Therefore applying
generalized least squares yields biased estimates, the magnitude of the bias depending on
the ratio p,/N which is relatively large in most designed experiments.

A simple way to take into account the loss of degrees of freedom consists of adapting the

formula for the scale parameter as follows

. 1 [y — £7(x:)B])?
1 = log > ( _ )..
N —p, =1 Zj=2 Yi%ji

and proceeding as in (4.1.1).

4.1.3 Restricted maximum likelihood estimation

Another method to account for the loss of degrees of freedom relies on Bayesian ideas. This
method, called restricted maximum likelihood (REML), is elaborated by Patterson and

19



Thompson (1971) and by Harville (1977). The restricted maximum likelihood estimator
turns out to be equivalent with a generalized least squares estimator corrected for the

effect of leverage and this is the approach we adopt here.
Jobson and Fuller (1980) showed that the expected value of the squared residuals obtained

by a weighted least squares procedure is approximately given by
B [y — £ (x)B" & [L — ha(7)] explg” (2:)7]
The leverage values h;;(7y) are the diagonal elements of the N x N hat matrix H
H(y) = X.(XIX.)7X]

with X .(+) the N x p, matrix with ¢th row the vector

\/€XP X5Ls i%ii
To account for the loss in degrees of freedom from estimating 3, the suggestion was to

equate

Z[ fT (x:)B ]2

o explg’(zi)7]

g(z:)

to its expectation, leading to

N N
3 W= COI o) = S stanl — ha(x) ©)
Note that H is an idempotent matrix. Therefore the sum of the leverage values h;;(y)
equals the rank of H, here p,. Making use of this property enables us to derive from (8)
the same expression for the scale parameter as with the adapted generalized least squares

method.
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4.2 Variance function estimation based on sample standard de-

viations

Frequently, experimenters replicate the response at certain design points, allowing them to
calculate sample standard deviations at each replicated setting of the predictor variables.
As was mentioned earlier, the main advantage of this approach is that sample standard
deviations contain valuable information about the variance function even if the model for
the means is incorrectly specified.

Assume each design point i (7 = 1,..M) is replicated r; times, such that Y™ r; = N. The

sample variance at the sth replicated design point is computed as

1 i
s = (yij — Ui)?
) r, — 1 ot J

where y; is the average response at the ¢th design point.

In order to estimate the variance function parameters, transformations of the sample
standard deviations are used. Davidian (1990) gives an excellent overview of the transfor-
mations used in practice. Davidian and Carroll (1987) define a general class of estimators

for o based on transformations of the sample standard deviations s; as follows:

M OM;(v, g A
5 Mi(y, i) | T(s:) — Mi(,9:)

:0 fO“:l...U 9
a’)’j Vi(v, 9:) H ! )

1=1
with 7'(s;) the transformation function, M;(~y, y;) the variance function model and V;(~, 9;)
the weights corresponding to the design points. We will consider two special cases of this
general class of estimators that arise naturally from the assumption of multiplicative

heteroscedasticity.
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4.2.1 Regressing log s? on gl (z)y

From the variance function VAR(Y') = exp|g?(z)~] we obtain the linear regression model

in the sample variances
2 _ T
logsi =g (zi)y + v

which can be fitted by standard regression software. Unfortunately this regression model
has several deficiencies. It can be shown (see Davidian (1990)) that the expected values
of v; differ from zero and that their variances depend on the number of replications at

each design point. More specifically

B() = Wisri—3)~log(yri—5) (10)
VAR(y;) = \I"(%Ti—%) (11)

with ¥ and ¥’ the digamma and trigamma functions. To get an idea of the magnitude of
the problem, table 1 gives the values of equations (10) and (11) for some small values of
r;. From these results it is apparent that —if no precautions are taken— the estimate of
the intercept will be biased and for unequal replications, weighted instead of unweighted

least squares should be used to get efficient estimators.

4.2.2 Regressing s? on explg’(z)7]

If one is not confined to fitting linear models for the variance, one can fit the non-linear

model

st = explg’ (2)7]
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75 E(l/i) VAR(I/Z')

2 1-0.635 | 1.234

(W]
1
]
[\%]
(0.0}
co
<
Hs
—
b

4 1-0.182 | 0.234

Table 1: mean and variances of v;

which corresponds to solving the system of equations in (9) with

T(s:) = s2, Mi(7,5:) = explg?(2)7], Vi(7, %) = QeXI;[?io’_Tl(Z)‘Y]

Since
E(s?) = explg’ (2)7]
regardless of the distribution of the error term e, the resulting equations are unbiased

estimating equations for the variance function parameters v if N — oo and o — 0.

4.3 Asymptotic efficiencies of variance function estimation

Davidian and Carroll (1987) and Davidian (1990) provide asymptotic relative efficiencies
for variance function estimation by means of transformations of residuals and by means
of transformations of sample standard deviations.

From Davidian (1990), it is obvious that, under the assumption of normal error distribu-
tions, using the transformation 7'(s;) = log s? is worse than choosing T'(s;) = s? in case
the number of replications is small. However, the more the error distribution deviates

from the normal, the better perform the former transformations.
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Davidian and Carroll (1987) point out that for the small amount of replication found
in practice, using sample variances may entail a loss in efficiency compared to using
squared residuals. The asymptotic variance ratios when squared residuals are used instead

r—1

of sample variances is ERvE

12)2 for equal replications. For instance, with design points
replicated twice, using squared residuals is double as efficient as using sample variances !
Davidian and Carroll (1987) and Carroll and Ruppert (1988) note that using squared
residuals might cause outliers, leading to considerably degraded performance. On the

other hand, for logarithm methods based on sample variances, it is of crucial importance

to omit the smallest few variances for the same reason.

5 Evaluation of estimation methods and optimal
designs

For each design derived on the 21 x 21 grid, we performed 1000 simulations using the

following mean and variance functions:
E(Y) = 100 + 10z; — 1025 — 523 + 525 + 2.5z, 7, (12)

1
VAR(Y) = exp(l + 2, + 5.%2) (13)

Recall that (13) is the variance structure we defined as the right prior in section 3. In or-
der to avoid computational difficulties in the estimation of variance function parameters,
we generated responses with squared residuals larger than 0.001. From these simulations,

the variance function parameters were estimated using each of the five methods described
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in the previous section. Starting from these estimates, we estimated the mean function
parameters using weighted least squares. Detailed simulation results can be found in ta-
bles A3, A4, A5 and A6 in the appendix. We will comment on the most important results
here. Firstly, we will compare the estimates based on the designs resulting from the as-
sumption of a constant variance. Next, we analyze whether knowledge of the true variance

parameters when determining the optimal design yields significant better estimates.

5.1 Using designs based on a constant prior

The most important outcomes are those related to the designs derived under the constant
variance assumption. We will concentrate on 54-trial designs. Table A3 of the appendix
contains the average estimates, their variances and the average squared deviations from
the true parameters for each of the three variance function parameters separately. Figure 6
plots the average squared deviations over the three variance function parameters for the
five estimation procedures and the three designs. Remember that for p = 0, we found
the classical designs. For p = 1 and p = 10 , some uncertainty is attached to the
assumption of homoscedasticity, and more weight is given to variance estimation. In
figure 7 the corresponding average squared deviations from the true parameters over the

six parameters of the mean function are shown.

In figure 6 we can see that for the methods based on residuals the variance function
estimation improves considerably as p increases. The pattern is very similar for all three

methods, but the GLS results are worse than those of the adapted GLS and the REML.
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From table A3 we learn that this difference is almost completely due to a bad estimation
of the intercept. If we do not take into account the intercept — which is acceptable if
the goal i1s to minimize the variance — GLS and adapted GLS perform equally well and
slightly worse than REML.

As predicted by Davidian (1990), the methods based on sample variances are not as
good as the methods based on residuals. Moreover, variance function estimation does not
even improve with increasing p, indicating that the D-optimality criterion might not be
appropriate when using sample variances.

From figure 7 we learn that the mean function estimation deteriorates with increasing p,
independently from the method used to fit the variance function.

These outcomes suggest it might be useful to generate semi-Bayesian designs for strictly
positive p if the variance function is of interest, even if one has no idea whatsoever about
the variance function parameters. Undoubtedly, it is of crucial importance to choose an

appropriate estimation technique.

5.2 The benefit of knowing the variance function

In order to assess the benefit of knowing the true variance function parameters, as in
equation (13), we will compare the simulation results from the design based on the right
prior and on the assumption of constant variance. Figure 8 is similar to figure 6 in that it
compares the average squared deviations of variance function parameters, but now based

on the constant prior and the right prior designs. For estimation based on residuals,
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we see immediately that the results for the designs based on the right prior are far less
sensitive to the value of p than the results for the designs derived under the assumption
of homoscedasticity. The design derived under the assumption of constant variance with
p = 10 even outperforms its right prior counterparts. Attaching more weight to variance
function estimation is thus of no great use if one already has a fairly good idea about
the variance structure. As to the methods using sample variances, it is less clear how the
variance function estimation can be improved. Neither increasing p nor choosing a better
prior seems to yield outcomes comparable to those based on residuals.

From figure 9 it is clear that the impact on mean function estimation is nearly the same

for designs derived under the right prior and under constant variance.

5.3 Final remarks

In tables A2 to A6 in the appendix, the reader can find the results for the slightly wrong
and the completely wrong priors. As could be expected from the similarity between the
designs, using a prior that is slightly wrong is nearly as good as using the right prior. For
the designs derived starting from a completely wrong prior, the results for the variance
function are not dramatically worse than the results for the three other priors used.
However, in this case the response function estimation deteriorates dramatically since
most observations are taken at points with high variance.

The mean function was also fitted using ordinary least squares method. The results are
very similar to those of the weighted least squares method for small p but the OLS-

estimators are only half as efficient as the WLS-estimations for p = 10. The better fit of
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the variance function can not compensate for the bad choice of design points.

We performed a similar comparison based on 12 observations (see the designs on pages 13,
14,15 and 16) but as the designs based on a constant prior have some non-replicated design
points, only the methods based on residuals could be used here. It turns out that the
results exhibit the same patterns as those for 54 observations. Of course, the estimates

are much worse than those based on 54 observations. These findings can be verified in

tables A4 and AS6.

6 Conclusions

We derived semi-Bayesian D-optimal designs for several multivariate normal prior distri-
butions on the parameters of the variance function. For discrete experimental regions,
the designs resulting from different priors are almost equivalent except when the prior is
really misspecified. For continuous experimental regions, the D-optimal design depends to
a much larger extent on the importance that is attached to variance function estimation.
With respect to estimation efficiency, the designs based on a constant prior perform very
well compared to the designs based on the right prior. Moreover, if variance estimation is
important and will be based on residuals, these designs allow one to balance out effectively
the efficiency of mean and function estimation by increasing p.

It turns out that the D-optimality criterion is not really suited to fix the design if variance
function estimation will be based on the sample variances in replicated design points.

A possible explanation is that the optimality criterion does not take into account that
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replicated design points yield only one sample variance each and as such have the same
weight in the variance function estimation. When residuals are used, replicated design
points contribute as much residuals as their number of replications, which makes the
D-optimality criterion more suited for residual based estimation.

Weighted least squares yield satisfactory estimates for the mean function parameters and

the efliciency does not depend much on the choice of the design.
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Appendix

Table A1l: Efficiency of 54-run designs for mean and variance function estimation

54 observations
21x21 grid 3x3 grid

p=0 p=1 p=10 p=0 p=1 p=10

cv mean 92.22 92.26 51.75 92.22 92.26 90.19
var 97.67 100.70 109.11 97.67 100.70 102.21

rp mean 100.00 98.23 59.42 97.10 96.17 96.17
var 100.00 101.21 104.59 100.62 101.19 101.19

sW mean 96.68 95.54 59.42 95.16 96.17 96.17
var 100.35 101.49 104.59 100.24 101.19 101.19

cw mean 63.32 52.15 24.16 67.10 58.33 58.33
var 100.00 101.21 104.59 100.62 101.19 101.19

Table A2: Efficiency of 12-run designs for mean and variance function estimation

12 observations
21x21 grid 3x3 grid

p=0 p=1 p=10 p=0 p=1 p=10

cv mean 91.59 91.59 50.01 91.59 91.59 91.59
var 102.71 102.71 111.30 102.71 102.71 102.71

rp mean 100.00 99.88 60.31 97.56 97.56 97.56
var 100.00 99.97 102.55 100.37 100.37 100.37

sw mean 96.88 96.95 60.31 97.56 97.56 97.56
var 97.77 100.01 102.55 100.37 100.37 100.37

cw mean 55.80 53.46 24.52 59.17 59.17 59.17
var 100.00 99.97 102.55 100.37 100.37 100.37
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Table A4: Simulation results for variance function estimation from 12-run designs?

GENERALIZED LEAST SQUARES

p=0 =1 s =10 ]
v 12 Re) i v2 3 v 7 s |
$Q DEY NG VAR i1Q DEV Ava VAR 5Q DEV AVG VAR 5Q DEV Ava VAR 5Q DEV W van 5q DEV AVG VAR 3Q DEV ave van 1Q DEV AVG VAR sq oLy AVG VAR '
132 1.308  0.19%5  0.624 0.651 1.046  0.821 0.695  0.747  0.890 1.308  0.195  0.624 0.651 1.046  0.821 0.695  0.747  0.890 1.180  0.266  0.634 0.579  0.888  0.720 | 0.514  0.641  0.781
rp 1.733  0.088  0.718 0.614 1.089  0.809 0.614  0.652  0.824 1,747 0.088  0.721 0.618  1.094  0.813 | 0.616  0.656  0.826 1.872  0.075  0.763 | 0.586  1.072  0.786 | 0.576  0.634  0.793
™ 1.605  0.132  0.6%9 0.584 1.080  0.790 0.603  0.676  0.821 1.741  0.096  0.728 0.625  1.103  0.820 0.608  0.63%8  0.821 1.872  0.07s  0.783 0.386  1.072  0.786 | 0.576  0.634  0.798
cw 1.580  0.117  0.674 0.477 1171  0.724 0.531  0.818  0.771 1.564  0.123  0.673 | 0.473  1.168  0.720 | 0.50%  0.800  0.749 1.486  0.149  0.66% 0.409  1.031  0.652 | 0.441  0.766  0.607
ADAPTED GENERALIZED LEAST SQUARES
p=0 p =1 p =10
T Y2 RE] n 2 Y3 mn T2 RE)
)6 vey AVG Vax $Q DEV AVa VAR 3Q NEV avu VAR 1Q LEV AVG VAR S hEV AVG VAR RUNITAY ava VAn q hEV ava VAR 1Q KV AVG Var AQ DV VG Nan
I 0.443  0.883  0.62% 0.654 1.032  0.819 0.691  0.738  0.885 0.443  0.883  0.625 | 0.654 1.032  0.819 0.691  0.738  0.88% 0.414  0.959  0.632 0.566  0.828  0.685 | 0.527  0.638  0.760
I u.A2a 100 0727 0.629 1.469 018 0,646 0994 0,829 0832 1017 0.735 | 0,635 1,483 0.4 0649 05993 0.831 0.524 1137 0.788 0.638  1.471 0.818 | 0.714  1.031  o0.817
‘- 0.524 1118 0.782 0.656  1.462  0.840 0.778  1.1v4  U.88 0519 1,084 0.73¢ | 0.G44 160 vas3n | os0 1B 0.834 0.524 1,137 0765 | 0.656 1471 0.818 | 0.714  1.031  0.817
cw 0.489  1.026 0,707 0.729  0.837  0.788 0.724  0.547  0.867 | 0.484  1.042  0.708 0,734  0.840  0.791 0.728  0.858  0.872 | 0.420  0.990  0.648 0.718  0.741  0.729 | 0.8614 0460  0.770
RESTRICTED MAXIMUM LIKELIHOOD
p=0 p= 1 . p =10
) ¥2 Y3 hd Y2 Y3 Y1 Y2 3
1Q PEV ava VAR 1q DRV AVa VAR 1Q DRV avy VAR 1Q DRV Ava VAR 3q DEV Ava VAR 1Q DLV ava VAR 1Q DEV Ava VAR 1q DLV AVO VAR 1q oLV iy VAR
o 0.381  0.955  0.604 0.489  0.768  0.602 | 0.431  0.881  0.669 | 0.381  0.9585  0.604 | 0.489 0.768 0.602 | 0.431 0.851  0.669 | 0,402 1.017  0.639 | 0.441  0.717  0.833 | 0.331  0.491  0.872
tp 0.624  0.769  0.691 0.572  1.013  0.759 | 0.531  0.607  0.755 | 0.640  0.769  0.691 0.536  1.013  0.789 | 0.831 0.607 0.788 | 0.896 0.616  0.670 | 0.886  0.834 0,694 | 0.802 0420  0.704
- 0.027  0.897  0.682 | 0.569  0.791  0.728 0.504  0.435  o0.708 0.869  0.637  0.662 | 0.548  0.851  0.726 | 0.419 0.4%4  0.648 | 0.596 0.616  0.670 | 0.809  0.834  0.604 | 0.802  0.420  0.704
cw | 0.684 2939 2.442 | 0.544  1.248  0.704 0.527 0.848  0.767 | 0.577 0.785 0.668 | 0.535 1.232 0.777 | 0.540 0.854  0.777 1,237 10.268  9.604 0.610  1.166  0.818 | 0.887  0.883  0.714
Loa s?
pmO0 p=1 » m 10
haY Y2 Y3 b4 bt} 3 1 3 T3
1Q nEv AVG VAR 3Q DEV Ava VAR 1q DEV Ava VAR 3Q DRV Avao VAR 3q DEV Ava VAR 3qQ DEV AvVo VAR 1Q DLV Ava VAR 3q DLV Ava VAR 19 oLV ave VAR
v
rp 0.957  0.643  0.408 0.727 1.184  0.901 0.786  0.759  0.9%8 0.970  0.643  0.814 0.734 1194 0.905 | 0.734 0773 0.966 1.061  0.640  0.857 | 0.769  1.224  0.936 | 0.844  0.784  0.999
. 0.994  0.641  0.82% | 0.732  1.199  0.908 | 0.799  0.74%  0.963 1.061  0.640  0.887 0.769  1.324  0.936 | 0.844  0.784  0.999
e 0.937  0.634  0.803 0.714 1.488  0.922 | 0.767 1.024  0.953 | 0.049 0.653 0.802 | 0.720 1.490 0.928 0.774  1.034  0.861 1.014 0.643 0836 | 0.778  1.490 0.969 | 0.476 1420  1.042
g2
pP=0 p=1 p =10
vy 2 3 v Y2 3 1 Y2 Y3
1Q DLV ava VAR 3$Q DEV ava VAR 1Q bEv ava VAR AQ DRV Ava VAR 50Q DRV ava VAR 5q LRV ava VAR 1Q DRV AvVO VAR 1qQ DLV Ave VAR 1q oLV ave VAR
cv
rp 0.957  0.643  0.808 0.727  1.184  0.901 0.786  0.759  0.958 0.970  0.643  0.814 0.734  1.194  0.909 | 0.794  0.773  0.966 1.061  0.640 0.857 | 0.769 1,224  0.936 | 0.844  0.784  0.999
i~ 0.994  0.641  0.825 | 0.732  1.199  0.808 | 0.789  0.749  0.963 1,081 0.640 0.887 | 0769 1224  0.936 | 0.844 0784  0.999
cw | 0.937  0.634  0.803 0.714  1.488 0922 | 0.767  1.024  0.953 0.949 0.653 0.809 | 0720 1.490 0.926 | 0774  1.034  0.961 1.014  0.643  0.838 0.778  1.490  0.969 | 0.876  1.120  1.042

2 Average squared deviations of estimates from true parameter values (SQ DEV), averages estimates (AVG) and their variances (vAR) are shown. Computations were

made for designs derived under constant prior (cv), under the right prior (rp), under a slightly wrong (sw) and under a completely wrong (cw) prior.
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Simulation results for mean function estimation from 54-run designs®

Table A5

GENERALIZED LEAST SQUARES

p=0 p=1 p =10
A1 B2 B3 By Bs Be B1 B2 B3 By By Be B1 Ba B3 B4 Bs Bs
v 0.3701 0.0986  0.0979  0.3522  0.2391  0.1134 | 0.5847  0.0935 - 0.0950  0.4244  0.2873  0.1100 4.0806  0.0893  0.0872 2.1935 1.7167  0.0935
rp 0.3658  0.1164  0.1135  0.2885  0.1841  0.1152 | 0.4980  0.1208  0.1199  0.2884  0.1981  0.1241 3.2439  0.1209  0.1199 1.2191 1.2214  0.1241
sw 0.4177  0.1205  0.1300  0.2773  0.1989  0.1339 | 0.5584  0.1208  0.1199  0.2884  0.2383  0.1241 3.2439  0.1209  0.1199 1.2191 1.2214  0.1241
cw 1.2874  0.1152  0.1070  0.8197 1.0420  0.1094 | 4.2179  0.1404  0.1406  1.9280  1.8756  0.1368 | 50.0972  0.1274  0.1306  19.7868  17.0493  0.1282
ADAPTED GENERALIZED LEAST SQUARES

p=0 p=1 p =10
A1 B2 B3 B4 8s Be A1 B2 B3 B4 Bs Bs A1 B2 B3 B4 Bs Be
cv 0.3702  0.0986  0.0979  0.3522  0.2391  0.1134 | 0.5850  0.0935  0.0950  0.4246  0.2874  0.1100 4.0802  0.0893  0.0872 2.1943 1.7160  0.0935
rp 0.3655  0.1164  0.1137  0.2888  0.1840  0.1153 | 0.4982  0.1208  0.1199  0.2884  0.1981 0.1241 3.2438  0.1208  0.1199 1.2192 1.2212  0.1241
sw 0.4177  ©0.1205  0.1300  0.2773  0.1989  0.1338 | 0.5582  0.1208  0.1199  0.2884  0.2383  0.1240 3.2438  0.1208  0.1199 1.2192 1.2212  0.1241
cw 1.2870  0.1151  0.1070  0.8186 1.0425  0.1094 | 4.2155  0.1403  0.1405  1.9275  1.8747  0.1367 | 49.7459  0.1274  0.1306 19.6584 16.9993  0.1283

RESTRICTED MAXIMUM LIKELIHOOD

p=0 p=1 p =10
81 B2 B3 B4 Bs Bs 81 B2 B3 B4 Bs Bs A1 B2 B3 B4 Bs Bs
cv 0.3706  0.0986  0.0982  0.3517  0.2401  0.1133 | 0.5870  0.0937  0.0949  0.4253  0.2887  0.1098 4.0697  0.0895  0.0872 2.1868 1.7183  0.0935
p 0.3665  0.1163  0.1136  0.2889  0.1848  0.1150 | 0.4980  0.1210  0.1200  0.2889  0.1982  0.1241 3.1828  0.1209  0.1207 1.2071 1.1618  0.1235
sw 0.4128  0.1143  0.1207  0.2629  0.2065  0.1204 | 0.5084  0.1100  0.1103  0.2887  0.2104  0.1132 3.1828  0.1209  0.1207 1.2071 1.1618  0.1235
cw 1.3262  0.1097  0.0965  0.8150  1.0096  0.1076 | 4.2222  0.1406  0.1409  1.9340  1.8826  0.1371 | 50.0569  0.1266  0.1306  19.8281 17.1213  0.1277

LOG s?

p=0 p=1 p =10
B1 B2 83 Ba Bs Be 81 B2 B3 B4 Bs Be A1 B2 B3 Bq B Be
cv 0.3726  0.0987  0.0979  0.3536  0.2401  0.1128 | 0.5867  0.0938  0.0951  0.4240  0.2884  0.1102 4.2105  0.0893  0.0871 2.2482 1.7341  0.0935
rp 0.3655  0.1166  0.1138  0.2902  0.1841  0.1152 | 0.4980  0.1208  0.1199  0.2884  0.1981  0.1241 3.2448  0.1208  0.1199 1.2194 1.2215  0.1240
sw 0.4183  0.1205  0,1300  0.2766  0.1993  0.1341 | 0.5582  0.1208  0.1199  0.2884  0.2383  0.1241 3.2448  0.1208  0.1199 1.2194 1.2215  0.1240
cw | 1.2929  0.1153  0.1072  0.8252 1.0410  0.1096 | 4.2166  0.1404  0.1405  1.9278 1.8756  0.1368 | 48.8438  0.1233  0.1266  19.3137  16.5177  0.1241

52

p=0 p=1 p =10
A1 B2 B3 B4 Bs Be B1 B2 B3 B4 Bs Bs 81 B2 B3 B4 Bs Bs
ev 0.3721 0.0988  0.0981  0.3518  0.2412  0.1130 | 0.5885  0.0937  0.0950  0.4253  0.2896  0.1100 4.1380  0.0895  0.0870 2.2171 1.7254  0.0934
p 0.3663  0.1164  0.1137  0.2896  0.1847  0.1152 | 0.4981  0.1210  0.1200  0.2889  0.1981 0.1241 3.2449  0.1210  0.1199 1.2205 1.2213  0.1240
sw 0.4183  0.1206  0.1301 0.2774  0.2005  0.1341 0.5583  0.1210  0.1199  0.2888  0.2383  0.1240 3.2448  0.1210  0.1199 1.2205 1.2213  0.1240
cw 1.2950  0.1153  0.1071  0.8185 1.0501  0.1095 | 4.2187  0.1404  0.1405  1.9300  1.8799  0.1368 | 50.0354  0.1276  0.1307  19.8403  17.0830  0.1280

3 Average squared deviations of estimates from true parameter values are shown. Computations were made for designs derived under constant prior (cv), under the

right prior (rp), under a slightly wrong (sw) and under a completely wrong (cw) prior.
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Table AG:

Simulation results for mean function estimation from 12-run designs*

GENERALIZED LEAST SQUARES

p=0 p=1 p =10
B1 B2 B3 B4 Bs Be B1 B2 B3 B4 Bs Be A1 B2 A3 B4 Bs Be
cv 3.6144  0.4595  0.4645  2.2744  1.9862  0.6138 3.6144  0.4595  0.4645  2.2744  1.9862  0.6138 34.5865  0.4437  0.4031 2.3737  12.8807  0.5812
rp 1.9198  0.5969  0.6007  1.2452  0.7236  0.6030 1.9650  0.5990  0.5973  1.2079  0.7182  0.6017 11.6705  0.5830  0.5857 4.3372 4.5310  0.6190
sw 2.2422  0.6166  0.7210  1.1840  0.9453  0.7297 2.2153  0.6110  0.5980  1.2043  0.8775  0.6068 11.6705  0.5830  0.5857 4.3372 4.5310  0.6190
cw | 12.5709  0.6281  0.6010  5.5177  6.3776  0.6090 | 15.1928  0.6247  0.5993  6.9969  6.8364  0.6106 | 111.8051  0.4795  0.5147  62.3049 27,3827  0.4973
ADAPTED GENERALIZED LEAST SQUARES
p=0 p=1 p =10
B1 B2 B3 B4 Bs Bs A1 B2 B3 2 Bs Be A1 B2 B3 B4 Bs Be
cv 3.7052  0.4625  0.4608  2.3236  2.0332  0.6053 3.7052  0.4625  0.4608  2.3236  2.0332  0.6053 35.0041  0.4453  0.3955  22.1375  13.1093  0.5720
rp 1.9202  0.5966  0.5991  1.2426  0.7207  0.6046 1.9752  0.6055  0.5980  1.2106  0.7169  0.6056 12.7084  0.6135  0.5927 5.0144 4.4533  0.6149
sw 2.1139  0.6146  0.6810  1.2264  0.8885  0.6860 2.2098  0.6095  0.5964  1.2045  0.8733  0.6092 12.7084  0.6135  0.5927 5.0144 4.4533  0.6149
cw | 12.4741  0.6232  0.5695  5.4462  6.3896  0.5820 | 14.7438  0.6232  0.5707  6.7240  6.7814  0.5841 | 119.7037  0.4782  0.4919  68.6952  28.8027  0.4943
RESTRICTED MAXIMUM LIKELIHOOD
p=20 p=1 p =10
B1 B2 B3 B4 Bs Bs B1 B2 B3 B4 Bs Bs A1 B2 B3 Bg Bs Bs
cv 3.7949  0.4501  0.4331  2.3871  1.9361  0.5825 3.7949  0.4501  0.4331  2.3871  1.9361  0.5825 31.6244  0.4036  0.4043  19.7007  13.2561  0.5209
rp 1.7836  0.6025  0.5487  1.2030  0.7897  0.5795 2.0269  0.6075  0.5899  1.2287  0.7202  0.5791 13.4757  0.6247  0.5629 5.0459 4.9826  0.6162
sw 2.0201  0.5679  0.6486  1.2126  0.8826  0.6489 2.1812  0.5631  0.6026  1.0955  0.9859  0.6123 13.4757  0.6247  0.5629 5.0459 4.9826  0.6162
cw | 11.9520  0.6145  0.5850  5.4433  6.0919  0.5704 | 14.4362  0.6135  0.5740  6.9257  6.5178  0.5677 | 114.5017  0.6259  0.5267  67.6699  28.7860  0.4976
LOG s?
p=0 p=1 p =10
81 B2 B3 B4 Bs Be 81 B2 B3 B4 Bs Bs B1 B2 B3 B4 Bs Be
v
rp 1.8261  0.5675  0.5335  1.2208  0.7286  0.5974 1.9608  0.5741  0.5431  1.2072  0.7226  0.6063 11.7216  0.5910  0.6376 4.9042 4.2115  0.6005
5w 2.0719  0.5652  0.5346  1.2078  0.8544  0.5939 11.7267  0.6145  0.6187 4.9122 4.2345  0.5983
cw | 12.1473  0.6028  0.6465  5.5729  5.8896  0.6509 | 14.3190  0.5770  0.6132  7.0297  6.1786  0.6615 | 123.2922  0.5338  0.9803  67.6566  28.9695  0.5780
52
p=0 p=1 p =10
B1 B2 B3 B4 Bs Be 81 B2 B3 B4 Bs Be A1 B2 B3 B4 Bs Be
cv
rp 1.8261  0.5675  0.5335  1.2208  0.7286  0.5974 1.9608  0.5741  0.5431  1.2072  0.7226  0.6063 11.7216  0.5910  0.6376 4.9042 4.2115  0.6005
sw 2.0719  0.5652  0.5346  1.2078  0.8544  0.5939 11.7267  0.6145  0.6187 4.9122 4.2345  0.5983
cw | 12.1473  0.6028  0.6465  5.5729  5.8896  0.6509 | 14.3190  0.5770  0.6132  7.0297  6.1786  0.6615 | 123.2922  0.5338  0.9803  67.6566  28.9695  0.5780

4 Average squared deviations of estimates from true parameter values are shown. Computations were made for designs derived under constant prior (cv), under the

right prior (rp), under a slightly wrong (sw) and under a completely wrong (cw) prior.
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