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Abstract 

Semi-Bayesian D-optimal designs for fitting mean and variance functions are derived 

for some prior distributions on the variance function parameters. The impact of the 

mean of the prior and of the uncertainty about this mean is analyzed. Simulation 

studies are performed to investigate whether the choice of design has a substantial 

impact on the efficiency of the mean and variance function parameter estimation 

and whether the D-optimality criterion is appropriate irrespective of the method 

applied to estimate the variance function parameters. 

KEY WORDS: experimental design, D-optimality, heteroscedasticity, variance estimation 
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1 Introduction 

The topic of this paper is an offshoot of two developments in statistical quality con-

trol. Firstly, experimental design or design of experiments set itself up as a powerful and 

complementary quality improvement technique for statistical process control. Although 

indispensable, statistical process control only allows limited gains when compared to ex­

perimental design. The larger flexibility characterizing the design phase allows quality 

to be built in products and processes from the start, thereby creating opportunities for 

considerable quality improvements. These insights incited to a substantial literature on 

optimum experimental designs. Secondly, Taguchi highlighted the necessity to develop 

experimental strategies to achieve some target values for the expected value of certain 

characteristics while at the same time minimizing their variance. From these develop­

ments emerged the need for designs that are suited for estimating the mean and variance 

structure simultaneously. Usually, however, the major part of the optimum experimental 

design theory is concerned with designs optimal for response function estimation under 

the assumption of homoscedasticity. This can be justified by argueing that one can not 

use information that is unavailable but nevertheless it remains a rather weird strategy. 

Recently Mays & Easter (1997) derived D- and 1- optimal designs for various hypothetical 

variance functions. Atkinson & Cook (1995) and Vining & Schaub (1996) described a 

semi-Bayesian approach in that they use prior information on the variance function in 

order to determine the optimal design. Atkinson and Cook (1995) derive necessary and 

sufficient conditions for continuous designs to be semi-Bayesian D-optimal for estimating 
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mean and variance functions simultaneously, while Vining and Schaub (1996) give the 

optimality criterion for discrete Bayesian designs. 

Although the the optimization issues for experimental design are rarely addressed, much 

work has been done on describing and analyzing models in which both means and variances 

are functions of the experimental variables. A careful review of the major statistical tech­

niques used to analyze data with nonconstant variability is given by Carroll and Ruppert 

(1988). Their work includes an extensive treatment of the different estimation procedures 

for fitting variance functions. Specific problems with variance function estimation are also 

addressed by Raab (1981), Davidian and Carroll (1987), and by Davidian (1990). 

The purpose of this paper is to give a more thorough analysis of the impact of the prior 

information on the optimal design and of the impact of the design and the estimation 

procedure on the efficiency of the mean and variance function estimation. In the next 

section, we start by deriving the optimality criterion for semi-Bayesian designs. Compu­

tational results are given in section 3. Section 4 provides the reader with a brief overview 

of the estimation techniques for the parameters of both the mean and variance function. 

Finally, section 5 analyzes whether the designs, computed in section 3, have a substantial 

impact on the estimation efficiency and whether this influence is similar for all estimation 

procedures. 
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2 Semi-Bayesian D-optimal designs 

Let Y be the response of interest and let x and z denote the (p xl) and (q xl) vectors of 

control variables presumed to influence the response and variance function respectively. 

Denote by f(x) the (Pr x 1) vector representing the polynomial expansion of x for the 

response model and by g(z) the (qv x 1) vector representing the polynomial expansion of 

z for the variance model, with g( z) containing an intercept. With (3 and, the (Pr x 1) 

and (qv x 1) the vectors of unknown parameters, we assume the following heteroscedastic 

model 

(1) 

The disturbance term is standardized such that E( t) = 0 and VAR( t) = 1 which yields 

the following mean and variance functions 

E(Y) 

VAR(Y) 

fT(X)(3 

v[gT(z),] 

(2) 

(3) 

Optimum design theory, dating back to Kiefer and Wolfowitz (1959), suggests that the 

choice of design should maximize the information on the parameters (3 and ,. This cor­

responds to maximizing a function of the information matrix on the unknown parameters 

((3, ,). The most widely used criterion is D-optimality, which maximizes the determinant 

of the information matrix. For our model, the per observation information matrix on 
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((3,,) is given by 

I(x, z) = -E (a:~~L ~~Oag~) 
a2 10:;3 a2 lo§ L 
a,a a, 

where L is the likelihood function. Under the assumption of independent standard normal 

random error terms E, L becomes 

The information matrix on (13,,) in the point x, z is then given by 

1 ["'[gT(,)~ °]2 ( ) T( ) ) 
2 v[gT(z),l g z g z 

where Vi stands for the first derivative of v. 

The total information in the design {x, z H~:l is found by summating the per observation 

matrices over all design points: 

A particular design is D-optimal if it maximizes the following determinant over all possible 

designs 

This expression simplifies a lot if we use the following model for the variance: 

(4) 
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This is called multiplicative heteroscedasticity and the log-linear form ensures that esti-

mated variances are positive. In this notation, /1 or equivalently (T2 = exp /1, can be 

seen as a scale parameter. Substituting the exponential function in the total information 

matrix yields: 

( 

-f(xdfT(x;) 
'" I::i exp[gT(Z;),] 
~ I(xi,zi) = 

i=l...N 0 

In the homoscedastic case, the information matrix only depends on the scale parameter 

and consequently the D-optimal design does not depend on the unknown parameters. 

However, in case of heteroscedasticity, it is clear from the information matrix that the 

D-optimal design depends on the value of ,. In order to overcome this dependence, we 

will adopt a semi-Bayesian approach and take into account any available prior information 

on the variance function to determine the optimal design. 

Following Atkinson & Cook (1995) and Vining & Schaub (1996) we will assume a prior 

distribution for, and maximize the determinant of the expected information matrix. 

Atkinson and Cook (1995) computed optimal designs assuming a discrete prior distri-

bution for" whereas Vining and Schaub (1996) use a multivariate normal distribution 

N(To, pI) as a prior for ,. Adopting the more realistic assumption of the latter, the 

determinant of the expected information matrix becomes 

This expression differs from the result in Vining and Schaub (1996) in that they have 

omitted the parameter p for no obvious reason. This parameter plays a rather important 
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role in the remainder of this paper because it expresses the degree of uncertainty attached 

to the prior. The results of Vining and Schaub (1996) can be derived as special cases 

setting p = 1. 

3 Computational results w.r. t. D-optimal designs 

In this section, we derive semi-Bayesian D-optimal designs on the design region X = 

[-1,1j2. To simplify the representation of our results we will assume x = z which means 

that the factors influencing the mean and variance functions are the same. 

We will compute and compare optimal designs for a number of different settings. Firstly, 

\ye distinguish between a discrete and an approximately continuous design region. In the 

former case, we use the results of section 2 to find optimum designs for the response 

and variance function parameters over a 3 x 3 grid on X whereas for the latter case, we 

choose the design points from the 21 X 21 grid on X. Secondly, we calculate both exact and 

approximately continuous designs consisting of 12 and 54 observations or runs respectively. 

Finally, four different values for 10, the expected value of the variance function parameters 

in the prior, and three different values for p are used. 

This extends the results of Vining and Schaub (1996), who dealt with exact designs over 

a discrete (3 X 3 X 3) design region for p = 1 and four different different values for 10 

and Mays and Easter (1997) who computed exact designs over a discrete design region for 

p = 0 and several variance structures. Atkinson and Cook (1995) computed continuous 

designs over a continuous design region. 
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In order to compute the Bayesian D-optimal designs, we adapted the BLKL exchange 

algorithm described by Atkinson and Donev (1992). This algorithm randomly chooses a 

few design points, then adds the missing number of points using a greedy heuristic. In 

each step, the point that leads to the greatest improvement of the optimality criterion is 

added to the design. Finally, the algorithm tries to improve the design by exchanging one 

of the K design points, at which the prediction variance is lowest, with one of the L grid 

points, at which the prediction variance is highest. The parameters f{ and L are defined 

by the user. 
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VAR(y) 

Figure 1: Variance function 

The response function we adopted is the full-second order polynomial 

and the variance function we used to simulate responses is 
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This function is depicted in figure 1. This choice implies 

For each combination of design region (discrete or continuous) and number of observations, 

the resulting designs are presented in the following scheme: 

II II p = ° I p = 1 I p = 10 II 

/0 = (l,O,Of, constant prior 

/0 = /0* = (1,1, !f, true value 

/0 = (1, 1, ~)T, slightly wrong 

/0 = (1, -1, -!f, completely wrong 

In this table, each combination of /0 and p represents a different prior distribution for 

the variance function parameters. In the ideal situation, we know with certainty (p = 0) 

the true value of the variance function parameters, that is /0 = /0*. Since the design 

resulting from this prior distribution is the ideal design for a given estimation problem, 

every design should be compared to this one in order to evaluate its performance. Moving 

to the right in the table means we are increasingly uncertain about the prior distribution 

on /0 and we attach more weight to variance function estimation. Special attention will 

be given to the top left cell in which we assume a constant variance and do not take into 

account a possible misspecification (p = 0). This assumption will lead to the classical 

designs . 

. -\s mentioned in the previous paragraph, to evaluate the performance of a given design, 
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we compare it to the ideal design: 

The denominator of this measure computes the determinant of the information matrix 

corresponding to the ideal design. The numerator computes how the design considered 

will perform in reality, in casu with ,0 = '0* and p = O. Tables Al and A2 in the 

appendix divide this total efficiency into the efficiency for mean function estimation and 

the efficiency for variance function estimation. 

The resulting designs for the four combinations of design region and number of observa-

tions are shown in figures 2, 3, 4 and 5. From these figures, it is clear that the impact 

of the prior in case of a discrete design region and few observations is rather small. The 

reason is that there is little flexibility in the choice of design points. For this situation, 

having precise knowledge on the variance function is no better than having only a fairly 

good idea. Moreover, there is no need to assess the uncertainty about this prior informa-

tion since the optimal design remains the same for each value of p. It is also clear that 

using a classical design with constant prior is better than using a completely wrong prior 

distribution (95.15% vs. 67.78%). 

In case of many runs on a discrete design region, the results are similar although there 

is somewhat more flexibility in choosing the number of replications of each design point. 

The optimal design will therefore depend to a small extent on the degree of certainty 

attached to the prior. 

The real impact of the prior distribution can be derived from the 12- and 54-point designs 
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generated on a continuous design regIOn. For each prior 10 the design points selected 

shift towards the corner points as p increases. This is because increasing p attaches more 

importance to the variance function estimation and since g(z) is linear in the independent 

variables, choosing the points near the corners yield maximum information for variance 

estimation. However, as the response function is quadratic, one needs observations for at 

least three different levels of the control variables. These design points tend to lie where 

the variance is expected to be small. As before, for small p and under the assumption of 

variance homogeneity, classical designs are obtained. 
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p=o p = 1 p = 10 
8 4 9 9 4 9 

:r""""""',: T"""'·'''''''T T""'''·'''''''1 
CONSTANT 4 3 4 5 4 • 94.99% 66.35% PRIOR 

94.00 2 
9 4 9 9 5 9 8 3 3 3 

8 
-1 0 +1 -1 0 +1 -1 0 +1 

9 10 10 10 10 10 

TRUE 
7 

2 8 99.22% 71.74% VALUE @ 

100% 8 
9 6 10 8 8 10 8 8 10 

-1 0 +1 -1 0 +1 -1 0 +1 

10 9 10 10 10 10 

SLIGTHLY 2 

WRONG 7 1 8 
97.48% 71.74% 

• 97.88 8 
8 7 10 8 8 10 8 8 10 

-1 0 +1 -1 0 +1 -1 0 +1 

10 6 9 10 8 8 10 8 8 
8 

2 7 8 
COMPLETELY @ 

66.05% 39.37% WRONG 

73.74 
10 9 10 10 10 10 

-1 0 +1 -1 0 +1 -1 0 +1 

• = 1 observation 

@ = 2 observations 

• > 2 observations 

Figure 2: Optimal designs (54 observations; 21 x 21 grid) 
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8 
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---1 0 
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11 
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4 

9 9 
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11 9 

8 

9 9 

+1 -1 

11 9 

8 4_ 

9 9 

+1 -1 

9 9 
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9 11 
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Figure 3: Optimal designs (54 observations; 3 x 3 grid) 
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p=o p=1 p = 10 

-- "'" ,-~ .- .- ,-

CONSTANT 
4. 95.15% !~ 4' 95.15% 4~ 65.29% PRIOR 

,,10\ U 
~ - - --1 0 +1 -1 0 +1 -1 0 +1 

TRUE 

VALUE 
100% 99.91% 71.98% 

-1 o -1 -1 o 

SLIGHTLY 

WRONG 
97.18% 97.96% 71.98% 

-1 o +1 -1 o -1 o +1 

COMPLETELY 

WRONG 
67.78% 65.86% 39.50% 

-1 o -1 o -1 o +1 

• = 1 observation 

@ = 2 observations 

Figure 4: Optimal designs (12 observations; 21 x 21 grid) 
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Figure 5: Optimal designs (12 observations; 3 x 3 grid) 
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4 Estimation of mean and variance functions 

Under the assumption of normally distributed and homogeneous error terms, using max-

inmm likelihood estinlators, or equivalently ordinary least squares estimators, for mean 

function estimation is generally agreed upon. Since the variance-covariance matrix of the 

estimators depends on the inverse of the information matrix, the D-optimality criterion is 

intuitively appealing. No doubt therefore exists as to the relationship between resulting 

designs and efficiency of mean function estimation. 

When it comes to estimating the mean and variance function simultaneously, there is 

far less agreement on which estimation method to use and therefore on which design 

to choose. As the maximum-likelihood estimator for the variance does not behave well, 

one has developed several other estimation techniques of which we will describe some in 

the sequel. The purpose of the second part of this paper is to measure to what extent 

the semi-Bayesian D-optimal designs developed in the previous section are fit to allow 

for efficient mean and variance function estimation in combination with these estimation 

methods. 

This rest of this section will provide the reader with a brief overview of the estimation 

methods we used. In the next section, we describe the results of our simulation study. 

4.1 Variance function estimation based on squared residuals 

These methods are basically iterative procedures where one starts with an initial estimate 

for f3 which is used to compute the residuals (Yi - fT (X),8)2. These residuals are then 
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used to estimate, with one of the methods described in this section. The estimates for 

, are used in a weighted least squares algorithm to improve the estimates for {3. This 

process can be iterated using the new estimate for {3. Typically, only a small number of 

iterations is needed for convergence. These methods are often more efficient than those 

using squared variances (see section 4.2), especially when the number of replications at 

the design points is small. Their major disadvantage is that they are unreliable if the 

response model is possibly misspecified which explains why they are less often used in 

practice than could be expected from their statistical properties. 

4.1.1 Generalized Least Squares estimation 

Given a preliminary estimator 13*, the generalized least squares estimator '1GLS maximizes 

in , the normal log-likelihood function 1(13*,,) where 

Since we assume multiplicative heteroscedasicity, we have 

Taking derivatives with respect to the different components of ,",/, '1GLS is the solution, 

assuming it exists, to the equations 

N T A 2) L (1 - [Yi - f (Xi)f3l g(Zi) = 0 
i=l exp[gT(Zi),l 

(5) 

These equations have the form of a set of pv normal equations. The dependence on the 

design is contained within the vector g(Zi). From this set of equations, we learn that the 
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scale parameter can be expressed in function of all other parameters 

or (6) 

Substituting this expreSSIOn In (5) yields a set of Pv - 1 normal equations, providing 

estimates 1i (i = 2, .. , Pv). The estimate for the scale parameter can then be calculated 

from (6). Our results will be based on the solutions of the sets of Pv - 1 equations, since 

the results obtained in this way are more stable than through solving the equivalent set 

of Pv equations. 

4.1.2 Adapted GLS 

One objection to generalized least squares is that it does not take into account the loss 

of degrees of freedom resulting from the preliminary estimation of (3. Therefore applying 

generalized least squares yields biased estimates, the magnitude of the bias depending on 

the ratio pr / N which is relatively large in most designed experiments. 

A simple way to take into account the loss of degrees of freedom consists of adapting the 

formula for the scale parameter as follows 

(7) 

and proceeding as in (4.1.1). 

4.1.3 Restricted maximum likelihood estimation 

Another method to account for the loss of degrees of freedom relies on Bayesian ideas. This 

method, called restricted maximum likelihood (REML), is elaborated by Patterson and 
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Thompson (1971) and by Harville (1977). The restricted maximum likelihood estimator 

turns out to be equivalent with a generalized least squares estimator corrected for the 

effect of leverage and this is the approach we adopt here. 

Jobson and Fuller (1980) showed that the expected value of the squared residuals obtained 

by a weighted least squares procedure is approximately given by 

The leverage values hii ( 1) are the diagonal elements of the N x N hat matrix H 

vvith X *(1) the N x pr matrix with ith row the vector 

To account for the loss in degrees of freedom from estimating f3, the suggestion was to 

equate 

to its expectation, leading to 

(8) 

Note that H is an idempotent matrix. Therefore the sum of the leverage values hii ( 1) 

equals the rank of H, here pro lVlaking use of this property enables us to derive from (8) 

the same expression for the scale parameter as with the adapted generalized least squares 

method. 
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4.2 Variance function estimation based on sample standard de-

viations 

Frequently, experimenters replicate the response at certain design points, allowing them to 

calculate sample standard deviations at each replicated setting of the predictor variables. 

As was mentioned earlier, the main advantage of this approach is that sample standard 

deviations contain valuable information about the variance function even if the model for 

the means is incorrectly specified. 

Assume each design point i (i = 1, .. M) is replicated ri times, such that l:f'I ri = N. The 

sample variance at the ith replicated design point is computed as 

where Yi is the average response at the ith design point. 

In order to estimate the variance function parameters, transformations of the sample 

standard deviations are used. Davidian (1990) gives an excellent overview of the transfor-

mations used in practice. Davidian and Carroll (1987) define a general class of estimators 

for I based on transformations of the sample standard deviations Si as follows: 

(9) 

\yith T( sd the transformation function, Mi( I, Yi) the variance function model and l;i( I, yd 

the weights corresponding to the design points. We will consider two special cases of this 

2:eneral class of estimators that arise naturally from the assumption of multiplicative 

heterosceclasticity. 
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4.2.1 Regressing log s; on gT(z), 

From the variance function VAR(Y) = exp[gT(z),l we obtain the linear regression model 

in the sample variances 

which can be fitted by standard regression software. Unfortunately this regression model 

has several deficiencies. It can be shown (see Davidian (1990)) that the expected values 

of Vi differ from zero and that their variances depend on the number of replications at 

each design point. More specifically 

E(Vi) (10) 

VAR(Vi) (11) 

with \[! and \[I' the digamma and trigamma functions. To get an idea of the magnitude of 

the problem, table 1 gives the values of equations (10) and (11) for some small values of 

'i. From these results it is apparent that -if no precautions are taken- the estimate of 

the intercept will be biased and for unequal replications, weighted instead of unweighted 

least squares should be used to get efficient estimators. 

4.2.2 Regressing s; on exp[gT(z),l 

If one is not confined to fitting linear models for the variance, one can fit the non-linear 

model 
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Ti E(Vi) VAR(Vi) 

2 -0.635 1.234 

<:l n 0QQ n A 11 
v -V • .LJUU V.'1:Ll 

4 -0.182 0.234 

Table 1: mean and variances of Vi 

which corresponds to solving the system of equations in (9) with 

Since 

regardless of the distribution of the error term t:, the resulting equations are unbiased 

estimating equations for the variance function parameters T if N ~ ()() and a ~ O. 

4.3 Asymptotic efficiencies of variance function estimation 

Davidian and Carroll (1987) and Davidian (1990) provide asymptotic relative efficiencies 

for variance function estimation by means of transformations of residuals and by means 

of transformations of sample standard deviations. 

From Davidian (1990), it is obvious that, under the assumption of normal error distribu-

tions, using the transformation T(Si) = log sf is worse than choosing T(Si) = sf in case 

the number of replications is small. However, the more the error distribution deviates 

from the normal, the better perform the former transformations. 
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Davidian and Carroll (1987) point out that for the small amount of replication found 

in practice, using sample variances may entail a loss in efficiency compared to using 

squared residuals. The asymptotic variance ratios when squared residuals are used instead 

of sample variances is 2t(~~)1~2 for equal replications. For instance, with design points 

replicated twice, using squared residuals is double as efficient as using sample variances! 

Davidian and Carroll (1987) and Carroll and Ruppert (1988) note that using squared 

residuals might cause outliers, leading to considerably degraded performance. On the 

other hand, for logarithm methods based on sample variances, it is of crucial importance 

to omit the smallest few variances for the same reason. 

5 Evaluation of estimation methods and optimal 

designs 

For each design derived on the 21 x 21 grid, we performed 1000 simulations using the 

following mean and variance functions: 

E(Y) = 100 + 10Xl - 10x2 - 5xi + 5x~ + 2.5xIX2 (12) 

(13) 

Recall that (13) is the variance structure we defined as the right prior in section 3. In or-

del' to avoid computational difficulties in the estimation of variance function parameters, 

we generated responses with squared residuals larger than 0.001. From these simulations, 

the variance function parameters were estimated using each of the five methods described 
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in the previous section. Starting from these estimates, we estimated the mean function 

parameters using weighted least squares. Detailed simulation results can be found in ta­

bles A3, A4, A5 and A6 in the appendix. We will comment on the most important results 

here. Firstly, we will compare the estimates based on the designs resulting from the as­

sUlT1Ption of a constant variance. Next, we analyze whether knowledge of the true variance 

parameters when determining the optimal design yields significant better estimates. 

5 .1 Using designs based on a constant prior 

The most important outcomes are those related to the designs derived under the constant 

variance assumption. We will concentrate on 54-trial designs. Table A3 of the appendix 

contains the average estimates, their variances and the average squared deviations from 

the true parameters for each of the three variance function parameters separately. Figure 6 

plots the average squared deviations over the three variance function parameters for the 

five estimation procedures and the three designs. Remember that for p = 0, we found 

the classical designs. For p = 1 and p = 10 , some uncertainty is attached to the 

assumption of homoscedasticity, and more weight is given to variance estimation. In 

figure 7 the corresponding average squared deviations from the true parameters over the 

six parameters of the mean function are shown. 

In figure 6 we can see that for the methods based on residuals the variance function 

estirnation improves considerably as p increases. The pattern is very similar for all three 

methods, but the GLS results are worse than those of the adapted GLS and the REML. 
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From. table A3 we learn that this difference is almost completely due to a bad estimation 

of the intercept. If we do not take into account the intercept - which is acceptable if 

the goal is to minimize the variance - GLS and adapted GLS perform equally well and 

slightly worse than REML. 

As predicted by Davidian (1990), the methods based on sample varIances are not as 

good as the methods based on residuals. Moreover, variance function estimation does not 

even improve with increasing p, indicating that the D-optimality criterion might not be 

appropriate when using sample variances. 

From figure 7 we learn that the mean function estimation deteriorates with increasing p, 

independently from the method used to fit the variance function. 

These outcomes suggest it might be useful to generate semi-Bayesian designs for strictly 

positive p if the variance function is of interest, even if one has no idea whatsoever about 

the variance function parameters. Undoubtedly, it is of crucial importance to choose an 

appropriate estimation technique. 

5.2 The benefit of knowing the variance function 

In order to assess the benefit of knowing the true variance function parameters, as in 

equation (13), we will compare the simulation results from the design based on the right 

prior and on the assumption of constant variance. Figure 8 is similar to figure 6 in that it 

compares the average squared deviations of variance function parameters, but now based 

on the constant prior and the right prior designs. For estimation based on residuals, 
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we see immediately that the results for the designs based on the right prior are far less 

sensitive to the value of p than the results for the designs derived under the assumption 

of homoscedasticity. The design derived under the assumption of constant variance with 

p = 10 even outperforms its right prior counterparts. Attaching more weight to variance 

function estimation is thus of no great use if one already has a fairly good idea about 

the variance structure. As to the methods using sample variances, it is less clear how the 

variance function estimation can be improved. Neither increasing p nor choosing a better 

prior seems to yield outcomes com.parable to those based on residuals. 

From figure 9 it is clear that the impact on mean function estimation is nearly the same 

for designs derived under the right prior and under constant variance. 

5.3 Final remarks 

In tables A2 to A6 in the appendix, the reader can find the results for the slightly wrong 

and the completely wrong priors. As could be expected from the similarity between the 

designs, using a prior that is slightly wrong is nearly as good as using the right prior. For 

the designs derived starting from a completely wrong prior, the results for the variance 

function are not dramatically worse than the results for the three other priors used. 

However, in this case the response function estimation deteriorates dramatically since 

most observations are taken at points with high variance. 

The mean function was also fitted using ordinary least squares method. The results are 

very similar to those of the weighted least squares method for small p but the 0 LS­

estimators are only half as efficient as the WLS-estimations for p = 10. The better fit of 
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the variance function can not compensate for the bad choice of design points. 

We performed a similar comparison based on 12 observations (see the designs on pages 13, 

14,15 and 16) but as the designs based on a constant prior have some non-replicated design 

points, only the methods based on residuals could be used here. It turns out that the 

results exhibit the same patterns as those for 54 observations. Of course, the estimates 

are much worse than those based on 54 observations. These findings can be verified in 

tables A4 and A6. 

6 Conci us ions 

We derived semi-Bayesian D-optimal designs for several multivariate normal prior distri­

butions on the parameters of the variance function. For discrete experimental regions, 

the designs resulting from different priors are almost equivalent except when the prior is 

really misspecified. For continuous experimental regions, the D-optimal design depends to 

a much larger extent on the importance that is attached to variance function estimation. 

\i\Tith respect to estimation efficiency, the designs based on a constant prior perform very 

well compared to the designs based on the right prior. Moreover, if variance estimation is 

important and will be based on residuals, these designs allow one to balance out effectively 

the efficiency of mean and function estimation by increasing p. 

It turns out that the D-optimality criterion is not really suited to fix the design if variance 

function estimation will be based on the sample variances in replicated design points. 

A possible explanation is that the optimality criterion does not take into account that 
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replicated design points yield only one sample variance each and as such have the same 

weight in the variance function estimation. When residuals are used, replicated design 

points contribute as much residuals as their number of replications, which makes the 

D-optimality criterion more suited for residual based estimation. 

Weighted least squares yield satisfactory estimates for the mean function parameters and 

the efficiency does not depend much on the choice of the design. 
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Appendix 

Table A1: Efficiency of 54-run designs for mean and variance function estimation 

54 observations 

21x21 grid 3x3 grid 

p=O p=l p = 10 p=O p=l p = 10 

cv mean 92.22 92.26 51.75 92.22 92.26 90.19 

var 97.67 100.70 109.11 97.67 100.70 102.21 

rp mean 100.00 98.23 59.42 97.10 96.17 96.17 

var 100.00 101.21 104.59 100.62 101.19 101.19 

sw mean 96.68 95.54 59.42 95.16 96.17 96.17 

var 100.35 101.49 104.59 100.24 101.19 101.19 

cw mean 63.32 52.15 24.16 67.10 58.33 58.33 

var 100.00 101.21 104.59 100.62 101.19 101.19 

Table A2: Efficiency of 12-run designs for mean and variance function estimation 

12 observations 

21 X 21 grid 3x3 grid 

p=O p=l p = 10 p=O p=l p = 10 

cv mean 91.59 91.59 50.01 91.59 91.59 91.59 

var 102.71 102.71 111.30 102.71 102.71 102.71 

l'p mean 100.00 99.88 60.31 97.56 97.56 97.56 

var 100.00 99.97 102.55 100.37 100.37 100.37 

sw mean 96.88 96.95 60.31 97.56 97.56 97.56 

var 97.77 100.01 102.55 100.37 100.37 100.37 

cw mean 55.80 53.46 24.52 59.17 59.17 59.17 

val' 100.00 99.97 102.55 100.37 100.37 100.37 
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Table A4: Simulation results for variance function estimation from 12-run designs2 

'P 

'J> 

'P 

'P 

'P 

jQnr.1 

I.loa 

1.733 

01 

0.195 

a.ou 

1.605 0.1 JZ 

I.HO 0.11; 

01 

sql.lt l ' 

0.H3 0.&a3 

u.~:u. 

0.:'2~ 

O.'U' 

IQ11[1' 

O.lIl 

0.6'24 

I.nno 

I.II~ 

1.026 

'I 

0.9.55 

O.TU 

0.624 

0.71 ~ 

O.6S19 

0.61-1 

O.6:l~ 

n.1~1 

0.7&:l 

0.101' 

0.604 

0.'11 

0.021 0.6S11 0.1512 

0.6&4 2.9H '2,442 

'I 

'<I JI1;" 

0.·H7 a.6U o.iaa 

o.gJi O.6!1~ O.aOl 

'I 

O.g!i' 0.64l 0.101 

0.9l1 0.4!.4 0.103 

5Q 0[1' 

0.6:101 

0.6H 

O.!o.H 

0.177 

sq Dt\· 

O.6~4 

O.G29 

0.6~6 

p == 0 

0, 

1.016 

1,089 

1.090 

L171 

p = 0 

0, 

1.032 

1.4G'J 

1.462 

0.129 0.'37 

, = 0 

" 
Jq 01\' ,-,\'0 

0.489 0.1U 

0.&12 1.01~ 

0.e89 0.7'91 

O.S44 1.241 

,.0 
~, 

JQ Dtl' A\'O 

0.121 1.164 

0.114 L.ua 

p=O 

" 
Iq Oll' 

0.127 1.114 

0.114 1.41& 

03 

I'A'" I JQ OF-I' 

0.821 

0.809 

0.790 

0.72 .. 

0.&19 

O.lIlh 

0.64G 

0.1aa 

0.602 

0.1&1 

0.12S 

0.1 .... 

0.695 

0.6104 

0.7-47 

0.652 

0.603 0.67& 

0.890 

0.82" 

0.821 

0.771 0.531 0.818 

sq IU:\' 

0.691 

n,r. .. r. 
0.1111 

0.124 

Iq or.\· 

0.431 

0.831 

OJ 

0.736 0./1.3.5. 

" , !I ~, .. n.II';;!!1 

1.1'.1.01 u.a!.1!1 

0.&41 O.UT 

03 

0.a151 0.669 

0.601 O.l6S 

O.IUH 0."1315 0.108 

0.S27 0.148 0.111 

03 

,'Alit I JQ DE\' .\\,0 

0.901 0.78" O. T!I!I o.!t!.", 

0.922 0.167 1,024 0,953 

'3 

Jq liE" 

0.901 0.7'86 0.1S9 0.9.5.& 

0.922 0.7'67 1.024 0.9S3 

OENERALIZED LEAST SQUARES 

p = 1 

01 02 n 
SQ D~:\' .H1IJl.:,' HI D~:\' 

1.308 0.195 0.695 0.1.0(1 

1.7H 0.088 

0.62-4 

0.721 

0.6.51 

0,618 

1.0,(6 

I.O!H 

1.103 

1.1G8 

0.8::11 

0.813 

0.820 

0.616 0.656 

1.7-41 

1,!lS4 

~f) Ilt\· 

0.096 0.126 a.S::!5 0.605 0.658 

O.l:JJ 0.673 0.-11:2 0.1:10 a.5C1!> 0.800 

ADAPTED GENERALIZED LEAST SQUAnE.S 

p = 1 

'I 0, 03 

"I Il~:\' MI1,.;\, 

0.4013 0.883 0.625 O.G~4 1.032 0.819 O.G~I 0.7.38 

n.!!I:\:I 

0.&1" 

0.484 

1.011 

I.utlol 

l.04' 

n.1:15 

O.TaG 

0.708 

0.'):1,'5, 

0.(.\",1 

0,734 

I.-Itl:\ 

1,'1(:" 

0.840 

n,lll>! ",r. .. !, n.~,~.3 

u.a~HI 11.(;/'\(1 I,U57 

0.7"1 D,7:U 0.815& 

nESTR.ICT~D MAXIMUM LIKELIHOOD 

p = 1 

'I 0, " 

01 

\',1/1 I 5Q Of:\' 

0.890 

0.82& 

0.821 

0.749 

1.190 0.266 

1.812 a.Cu. 

1 .812 O,01~ 

1.186 0.1049 

01 

~II II~: I' 

0.9.5.9 

0.63·[ 

O.7S:f 

0, 16 ~I 

0.&6~1 

0.632 O.86~ 

n.1\31 

a.lll" 
0.812 

o,~ 14 

0,624 

0 • .5.:1,1 

1.137 0,76.5. 

1.137 

0,420 0,890 

'I 

0.7to.5. 

0,60{1 

p = 10 

0, 
5Q DEI' 

O,~79 O.U~ 

0.!!6 

0.~!6 

0.«09 

'Q U~:I 

1.012 

1.072 

1.0~ 1 

p = 10 

" 
0 . .5.6& 0.a211 

0,63.5. 

0,656 

0.711 

1.0411 

1.0411 

0.141 

p. 10 

0, 

0.120 

0.1&6 

0.1&6 

0.S:'2 

O.6a~ 

D.! I.!I 

o,a IS 

0,129 

OJ 

JQOtl' 

O.~H 0.6 ~ 1 

O,~ 76 0.63 ~ 

O.1~ I 

o.a~ 

O .. H6 O.63~ a.7H 

a.HI 0.166 0.691 

'3 

IQI'I:I' 

O.~:H O,63a 0.160 

0,1H 

0, 11 ~ 

0,614 

1.031 

).031 

0."0 

'3 

o.~ I 7 

O.~ 11 

0,1'10 

.q DI\' sq Dol" .q 01;1' ,-,\'0 "All. I tq Ott· VAil. I Iq on I'A" t ICiOtl' A\'O I'A" 

0.381 0.908 0,604 

0.840 0.169 o.aOcl 
0.&69 0,831 0.662 

0.ST1 0.11S 0.8ea 

~I 

0.489 0.1CS1l 

0.1536 

0.1548 

0.535 

1.013 

0.181 

1,232 

LOO S2 

, = 1 

n 

0.602 

0.789 

0.126 

0.711 

0.5llt 0.6lBt 0.431 

0.S31 0.e01 O.1aa 

0."1~ 0.U4 

0.840 0.6504 

~3 

O,GH 

0.711 

0,402 

o.aot 
0.&9& 

1.231 

1.017 0,83'& 

0.'18 

O.aU 

10.2U 

~I 

0.611) 

0.811) 

9.60,1 

'11 Dr,\' Sf) Dt\' \'AIl I SQ DE" Iq DE" A\'O 

O.!lTO 0."43 

O.':I~04 a,G41 

O,~"D 0.653 

01 

Jlq Ill(\' 11.\'0 

0.814 

0.&25 

0.10' 

0.1.H 

0,13:1 

0.120 

,'AIl I !Hll:1"" 

0.9'10 0.e43 0.814 0.134 

0.'132 

0.720 

O.t'H),f 0.6.011 

0.949 0.6153 

0.&26 

0.609 

s' 

1.1!H 

1.1'19 

1,0490 

p = 1 

0, 

1.194 

0.909 

0,904 

0.928 

0,909 

1.1'9 o.an" 
1.490 0.926 

0.7~" 0.713 O.91O{j 

0.T:l0 0.14':1 O.9G3 

0.Sl61 0.770\ 1.034 

'> 

I.OGI 

I.OGI 

1.014 

0.640 0.&&7 

0,G40 0.U7 

0.843 0.136 

'I 
JU, lIK\' .wa "AIt I IQ tu:\' A\'O 

0.194 0.7'13 0.9$6 

0.'199 0.7049 0.963 

0.'7'701 1.03" 0.981 

LOS 1 

1,081 

0.840 0.U1 

0.840 

LOU 0.8043 

0.&&1 

0.&34 

0.441 0.111 0.633 

0.118 0.134 

0.1509 0.'34 

O.alO 1.145 

p. 10 

0, 

0.694 

0.694 

0.11& 

0.331 0,411 0.672 

0.602 0.420 0,704 

o,ao' 0.420 0.104 

o,aU 0.6U 0.1'14 

03 

Jq DE" "All t JQOtl' 

0.769 

0.169 

0.776 

IQ lUI' 

0.169 

0.'189 

0.'116 

1.114 

1,224 

0.936 

0.935 

l.~'O D.Ut 

p = 10 

" 

1,224 

1.22-4 

0.93a 

0,936 

1.0490 0.9&9 

Q,6H 0.184 

O,6H 0.164 

0.1'1'6 1 ,I ~D 

'3 
I<I0t\· A\'a 

0.144 0.184 

0.10404 0.104 

O.a16 t.i'O 

0.9\Ht 

0,999 

l.OU 

"All 

0.999 

0.999 

1.042 

2 Average squared deviations of estimates from true parameter values (SQ DEV), averages estimates (AVG) and their variances (\fAR) are shown. Computations were 

made for designs derived under constant prior (cv), under the right priOlo (rp), undel' a slightly wrong (sw) and under a completely wrong (cw) prior. 
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Table A5: Simulation results for mean function estimation from 54-run designs3 

GENERALIZED LEAST SQUARES 

p :::: 0 p:::: 1 p ::: 10 

/3, /32 /33 /34 /35 /36 /3, /32 /33 /34 /35 /36 /3, /32 /33 /34 /35 /36 

cv 0.3701 0.0986 0.0979 0.3522 0.2391 0.1134 0.5847 0.0935 0.0950 0.4244 0.2873 0.1100 4.0806 0.0893 0.0872 2.1935 1.716,7 0.0935 

rp 0.3658 0.1164 0.1135 0.2885 0.1841 0,1152 0.4980 0.1208 0.1199 0.2884 0.1981 0.1241 3.2439 0.1209 0.1199 1.2191 1.2214 0.1241 

'w 0,4177 0.1205 0.1300 0.2773 0.1989 0.1339 0.5584 0.1208 0.1199 0.2884 0.2383 0.1241 3.2439 0.1209 0.1199 1.2191 1.2214 0.1241 

cw 1.2874 0.1152 0.1070 0.8197 1.0420 0.1094 4.2179 0.1404 0,1406 1.9280 1.8756 0.1368 50.0972 0.1274 0.1306 19.7868 17.0493 0.1282 

ADAPTED GENERALIZED LEAST SQUARES 

p:::: 0 p = 1 p = 10 

/31 /32 /33 /34 /35 /36 /3, /32 /33 /3. /35 /36 /3, /32 /33 /34 /35 f36 

ev 0.3702 0.0986 0.0979 0.3522 0.2391 0.1134 0.5850 0.0935 0.0950 0.4246 0.2874 0.1100 4.0802 0.0893 0.0872 2.1943 1.7160 0.0935 

rp 0.3655 0.1164 0.1137 0.2888 0.1840 0.1153 0.4982 0.1208 0.1199 0.2884 0.1981 0.1241 3.2438 0.1208 0.1199 1.2192 1.2212 0.1241 

'w 0.4177 0.1205 0.1300 0.2773 0.1989 0.1338 0.5582 0.1208 0.1199 0.2884 0.2383 0.1240 3.2438 0.1208 0.1199 1.2192 1.2212 0.1241 

ew 1.2870 0.1151 0.1070 0.8186 1.0425 0.1094 4.2155 0.1403 0.1405 1.9275 1.8747 0.1367 49.7459 0.1274 0.1306 19.6584 16.9993 0.1283 
----

RESTRICTED MAXIMUM LIKELIHOOD 

p=O P = 1 P = 10 

f31 f32 f33 f34 f35 f36 (3, f32 f33 f34 f35 f36 f31 f32 f33 f34 f35 f36 

cv 0.3706 0.0986 0.0982 0.3517 0.2401 0.1133 0.5870 0.0937 0.0949 0.4253 0.2887 0.1098 4.0697 0.0895 0.0872 2.1868 1.7183 0.0935 

'p 0.3665 0.1163 0.1136 0.2889 0.1848 0.1150 0.4980 0.1210 0.1200 0.2889 0.1982 0.1241 3.1828 0.1209 0.1207 1.2071 1.1618 0.1235 

'w 0.4128 0.1143 0.1207 0.2629 0.2065 0.1204 0.5084 0.1100 0.1103 0.2887 0.2104 0.1132 3.1828 0.1209 0.1207 1.2071 1.1618 0.1235 

ew 1.3262 0.1097 0.0965 0.8150 1.0096 0.1076 4.2222 0.1406 0.1409 1.9340 1.8826 0.1371 50.0569 0.1266 0.1306 19.8281 17.11213 0.1277 

LOG 8 2 

p = 0 p = 1 P = 10 

f3, f32 f33 f34 f35 f36 f31 f32 f33 f34 f35 f36 f31 f32 f33 f34 f3" f36 

ev 0.3726 0.0987 0.0979 0.3536 0.2401 0.1128 0.5867 0.0938 0.0951 0.4240 0.2884 0.1102 4.2105 0.0893 0.0871 2.2482 1.734L 0.0935 

rp 0.3655 0.1166 0.1138 0.2902 0.1841 0.1152 0.4980 0.1208 0.1199 0.2884 0.1981 0.1241 3.2448 0.1208 0.1199 1.2194 1.22115 0.1240 

'w 0.4183 0.1205 0.1300 0.2766 0.1993 0.1341 0.5582 0.1208 0.1199 0.2884 0.2383 0.1241 3.2448 0.1208 0.1199 1.2194 1.22115 0.1240 

ew 1.2929 0.1153 0.1072 0.8252 1.0410 0.1096 4.2166 0.1404 0.1405 1.9278 1.8756 0.1368 48.8438 0.1233 0.1266 19.3137 16.517~r 0.1241 
- - ----

S2 

p=O P = 1 P = 10 

f31 f32 f33 f34 f35 f36 f31 f32 f33 f34 f35 f36 f3I f32 f33 f34 f3s f36 

ev 0.3721 0.0988 0.0981 0.3518 0.2412 0.1130 0.5885 0.0937 0.0950 0.4253 0.2896 0.1100 4.1380 0.0895 0.0870 2.2171 1. 7254 0.0934 

'P 0.3663 0.1164 0.1137 0.2896 0.1847 0.U52 0.4981 0.1210 0.1200 0.2889 0.1981 0.1241 3.2449 0.1210 0.1199 1.2205 1.221~1 0.1240 

'w 0.4183 0.1206 0.1301 0.2774 0.2005 0.1341 0.5583 0.1210 0.1199 0.2888 0.2383 0.1240 3.2449 0.1210 0.1199 1.2205 1.22UI 0.1240 I 
ew 1.2950 0.1153 0.1071 0.8185 1.0501 0.1095 4.2187 0.1404 0.1405 1.9300 1.8799 0.1368 50.0354 0.1276 0.1307 19.8403 17.0830 0.1280 

-

3 Average squared deviations of estimates from true parameter values are shown. Computations were made for designs derived under constant prior (cv), under the 

right prior (rp), under a slightly wrong (sw) and under a completely wrong (cw) prior. 
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Table A6: Simulation results for mean function estimation from 12-run designs4 

GENERALIZED LEAST SQUARES 

p = 0 p = 1 P = 10 

/3, /32 /33 /34 /35 /36 /31 /32 /33 /34 /35 /36 /31 /32 /33 /34 /35 /36 

cv 3.6144 0.4595 0.4645 2.2744 1.9862 0.6138 3.6144 0.4595 0.4645 2.2744 1.9862 0.6138 34.5865 0.4437 004031 2.3737 12.8807 0.5812 

'P 1.9198 0.5969 0.6007 1.2452 0.7236 0.6030 1.9650 0.5990 0.5973 1.2079 0.7182 0.6017 11.6705 0.5830 0.5857 4.3372 4,5310 0.6190 

,w 2.2422 0.6166 0.7210 1.1840 0.9453 0.7297 2.2153 0.6110 0.5980 1.2043 0.8775 0.6068 11.6705 0.5830 0.5857 4.3372 4.5310 0.6190 

ow 12.5709 0.6281 0.6010 5.5177 6.3776 0.6090 15.1928 0.6247 0.5993 6.9969 6.8364 0.6106 111.B051 0.4795 0,5147 62.3049 27,,3827 0.4973 

ADAPTED GENERALIZED LEAST SQUARES 

p = a p = 1 P = 10 

/3, /32 /33 /34 /35 /36 /31 /30 /33 /34 /35 /36 /31 /32 /33 /34 /35 /36 

cv 3.7052 0.4625 0,4608 2.3236 2.0332 0.6053 3.7052 0.4625 0,4608 2.3236 2.0332 0.6053 35.0041 0.4453 0.3955 22.1375 13.1093 0.5720 

'P 1.9202 0.5966 0.5991 1.2426 0.7207 0.6046 1.9752 0.6055 0.5980 1.2106 0.7169 0.6056 12.7084 0.6135 0.5927 5.0144 4.4533 0.6149 

,w 2.1139 0.6146 0.6810 1.2264 0.8885 0.6860 2.2098 0.6095 0.5964 1.2045 0.8733 0.6092 12.7084 0.6135 0.5927 5.0144 4.4533 0.6149 

cw 12.4741 0.6232 0.5695 5.4462 6.3896 0.5820 14.7438 0.6232 0.5707 6.7240 6.7814 0.5841 119.7037 0.4782 0.4919 68.6952 28.8027 0.4943 
-

RESTRICTED MAXIMUM LIKELIHOOD 

p = 0 p = 1 p == 10 

/31 /32 /33 /34 /35 /36 /3, /32 /33 /34 /35 /36 /31 /32 /33 /34 /35 /36 

cv 3.7949 0,4501 0.4331 2.3871 1.9361 0.5825 3.7949 0,4501 0.4331 2.3871 1.9361 0.5825 31.6244 0.4036 0.4043 19.7007 13.2561 0.5209 

'P 1.7836 0.6025 0.5487 1.2030 0.7897 0.5795 2.0269 0.6075 0.5899 1.2287 0.7202 0.5791 13,4757 0.6247 0.5629 5.0459 4.9826 0.6162 

,w 2.0201 0.5679 0.6486 1.2126 0.8826 0.6489 2.1812 0.5631 0.6026 1.0955 0.9859 0.6123 13.4757 0.6247 0.5629 5.0459 4.9826 0.6162 

cw 11.9520 0.6145 0.5850 5,4433 6.0919 0.5704 14.4362 0.6135 0.5740 6.9257 6.5178 0.5677 114.5017 0.6259 0.5267 67.6699 28.7860 0.4976 

LOG S2 

p = 0 p == 1 p == 10 

f31 /32 /33 /3, (35 (36 /31 /32 f33 /34 (35 (36 /31 /32 /33 /3. /35 /36 

cv 

'P 1.8261 0.5675 0.5335 1.2208 0.7286 0.5974 1.9608 0.5741 0.5431 1.2072 0.7226 0.6063 11.7216 0.5910 0.6376 4.9042 4.2115 0.6005 

.w 2.0719 0,5652 0.5346 1.2078 0.8544 0.5939 11.7267 0.6145 0.6187 4.9122 4.2345 0.5983 

cw 12.1473 0.6028 0.6465 5.5729 5.8896 0.6509 14.3190 0.5770 0.6132 7.0297 6,1786 0,6615 123.2922 0.5338 0.9803 67.6566 28 .. 9695 0.5780 

S2 

p=O P = 1 P == 10 

/31 /32 /33 /34 /35 /36 /3, /32 /33 f34 /35 /36 /31 /32 /33 /34 /35 /36 

cv 

'P 1.8261 0.5675 0.5335 1.2208 0.7286 0.5974 1.9608 0.5741 0.5431 1.2072 0.7226 0.6063 11.7216 0.5910 0.6376 4.9042 4,:2115 0.6005 

,w 2.0719 0.5652 0.5346 1.2078 0.8544 0.5939 11.7267 0.8145 0.6187 4.9122 4.2345 0.5983 

cw 12.1473 0.6028 0.6465 5.5729 5.8896 0.6509 14.3190 0.5770 0.6132 7.0297 6.1786 0.6615 123,2922 0.5338 0.9803 67.6566 28.9695 0.5780 
- ------------ ---- - ------------- --

4 Average squared deviations of estimates from true parameter values are shown. Computations were made for designs derived under constant prior (cv), under the 

right prior (rp), under a slightly wrong (sw) and under a completely wrong (cw) prior. 
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