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Efficient and robust willingness-to-pay designs for

choice experiments: some evidence from simulations

Abstract

We apply a design efficiency criterion to construct conjoint choice experiments specifically

focused on the accuracy of marginalWTP estimates. In a simulation study and a numerical

example, the resultingWTP -optimal designs are compared to alternative designs suggested in

the literature. It turns out thatWTP -optimal designs not only improve the estimation accuracy

of the marginalWTP , as expected on the basis of the nature of the efficiency criterion, but

they also considerably reduce the occurrence of extreme estimates, which also exhibit smaller

deviations from the real values. The proposed criterion is therefore valuable for non-market

valuation studies as it reduces the sample size required for a given degree of accuracy and it

produces estimates with fewer outliers.

Keywords: willingness-to-pay, optimal design, choice experiments, conditional logit model,

robust
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1 Introduction

Since the early nineties the number of studies using conjoint choice experiments as a tool to es-

timate the value of attributes of complex goods has vastly increased. Whereas previous studies

employing this stated preference method were mostly directed to predict choice behavior and mar-

ket shares, the increasing emphasis on estimation of implied values of product or service attributes

poses new challenges. One such challenge is the development and testing of specific design cri-

teria for experiments aimed at this specific purpose and their comparative evaluation with more

established criteria. This paper intends to contribute towards this effort.

The objective of conjoint choice experiments is to model respondents’ choices as a function of the

features of a good or a service. For that purpose, the respondents are presented with a series of

choice tasks, in each of which they are asked to indicate their favorite alternative. Alternatives are

described by means of attributes and their levels. Because the potential combinations of attributes,

levels and their allocations in choice tasks are typically many more than can be handled in the

course of the interview, experimental design techniques are used to select from the full factorial a

suitable arrangement of choice tasks.

The observed choices are then typically analyzed invoking random utility theory by means of dis-

crete choice models. In valuation studies the estimates of the utility coefficients are often used

to calculate marginal rates of substitution (MRS) with respect to the cost coefficient and inter-

preted as consumers’ marginal willingness-to-pay (WTP ) for this attribute. A substantial number

of stated preference studies have recently used choice experiments as a tool to derive value esti-
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mates. Examples of studies of this kind have been published not only in the conventional fields

of application of stated choice, such as in marketing [22], transportation choice [9], environmental

economics [3] and health care economics [21], but have also appeared in food [16], livestock [20]

and crop choice [15], as well as in cultural [17] and energy economics [2]. In this articulated re-

search programme the conditional logit model has been the dominant approach to data analysis.

In logit models of discrete choice the precision of estimates of utility coefficients, and conse-

quently of the marginalWTP , is to a large extent determined by the quality of the data. This

gives to the design of the conjoint choice experiment an extremely important role. An efficient

design maximizes the information in the experiment and in this way guarantees accurate utility

coefficient estimates at a manageable sample size. Creating an efficient conjoint choice design in-

volves selecting the most appropriate alternatives and grouping them into choice sets according to

an efficiency criterion. In this paper we propose and test the performance of an efficiency criterion

to create choice experiments specifically leading to accurate marginalWTP estimates. Based on a

simulation study and a numerical example, the resultingWTP -optimal designs are compared with

designs which focus on the precision of the estimated utility coefficients and with other commonly

used conjoint choice design strategies in terms of the accuracy of the marginalWTP estimates.

The plan of this paper is as follows. In the next section, we introduce the conditional logit model

that is typically used to analyze the choices of the respondents and to derive the marginalWTP

estimates. In Section 3, we start by giving a short overview of the existing literature on design of

conjoint choice experiments used for valuation issues. Next, in Section 3, we present an efficiency

criterion focusing on precise marginalWTP estimates and define the correspondingWTP -error.

4



In Section 4, we compareWTP -optimal designs with other commonly used designs in terms of the

WTP -error and discuss the results of a simulation study in which designs obtained with different

criteria are evaluated on the basis of their accuracy in terms of marginalWTP estimates. In

addition, we examine the designs with respect to the estimation accuracy of the utility coefficients,

which also remains an important criterion. Finally, in Section 5, we illustrate the performance

of the WTP -optimal designs in an application related to the marginal willingness to donate for

environmental projects.

2 The conditional logit model and the marginal WTP

In this section, we briefly review the conditional logit model which is commonly used to analyze

the data of a conjoint choice experiment and also provide a brief definition of the concept of

marginal ’willingness-to-pay’.

2.1 The conditional logit model

Data from a conjoint choice experiment are usually analyzed by the widely-known conditional

logit model. The utility of alternativej in choice setk for respondentn is expressed as

Unkj = β1x1kj + . . . + βMxMkj + εnkj. (1)

The utility Unkj consists of two components: a deterministic componentβ1x1kj + . . . + βMxMkj,

or in vector notationx
′
kjβ, and a stochastic componentεnkj. In the deterministic component, the

M -dimensional vectorβ, which is assumed common for all respondents, contains the utility co-
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efficients of the discrete choice model. These coefficients reflect the importance of the underlying

M attributes of the good or service. TheM -dimensional vectorxkj describes the bundle of these

M attributes of alternativej in choice setk. The stochastic error termεnkj captures the unobserved

factors influencing the utility experienced by the respondent. The error terms are assumed to be

independent and identically extreme value distributed. The probability that respondentn chooses

alternativej of choice setk is then

Pnkj =
exp(x

′
kjβ)

∑J
i=1 exp(x′kiβ)

. (2)

2.2 The marginal willingness-to-pay (WTP)

The marginal rate of substitution (MRS) is the rate which measures the willingness of individuals

to give up one attribute of a good or service in exchange for another such that the utility of the

good or service remains constant. So, it quantifies the trade-off between the two attributes and

thus their relative importance. When the trade-off is made with respect to the price of a good or

a service, theMRS is called the marginal willingness-to-pay (WTP ). In this way, the marginal

WTP for an attribute measures the change in price that compensates a change in the attributem,

while all other attributes are held constant. To estimate the marginalWTP , one of the attributesx

has to be the attribute pricep in the utility expression (1). Mathematically, the trade-off between

the attributexm and the pricep can be written as

dU = βmdxm + βpdp = 0 (3)
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or as

WTP ≡ dp

dxm

= −βm

βp

. (4)

Expression (4) shows that the marginalWTP is computed as minus the ratio of the coefficients

for attributem and the pricep (see e.g. [10]).

3 Constructing optimal designs to estimate the WTP

In this section, we provide an overview of the literature on design of experiments to estimate the

marginalWTP and present an efficiency criterion that focuses on the accurate estimation of this

substitution rate.

3.1 Designs for experiments to estimate the WTP

Despite an increasing number of applications of conjoint experiments for valuation issues, the lit-

erature on efficient designs for this purpose is scarce. In [11] optimal designs were developed for

the double-bounded dichotomous contingent valuation experiment and focused specifically on the

accuracy of estimation of marginalWTP . In a single-bounded dichotomous contingent valuation

experiment, the marginalWTP for a change in the attributes of a product or a service is estimated

by asking the respondent whether he/she is prepared to pay a certain amount of money for this

change. In the double-bounded experiment, this initial bid is followed by a second bid which is

higher if the answer to the first bid was affirmative and lower otherwise. In [11]D-optimal designs,

c-optimal and designs based on the so-called fiducial method were compared. WhileD-optimal
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designs minimize the determinant of the variance-covariance matrix of the estimated utility coef-

ficients in the double-bounded logit model,c-optimal designs minimize the variance of a function

of the estimated utility coefficients. The function under investigation was the marginalWTP , the

variance of which was approximated using the delta-method [7]. Thec-optimality criterion con-

sisted of the sum of the approximate variances of the marginalWTPs. The third design strategy

examined was based on minimizing the fiducial interval of the marginalWTP . The three design

strategies were examined in terms of the variance of the estimated marginalWTP and it turned

out that thec-optimal and fiducial designs performed better than theD-optimal designs. However,

the difference between the three design strategies was small for the double-bounded logit model.

There is almost no literature on the design of conjoint choice experiments to estimate the marginal

WTP precisely. In [5], results were reported on the accuracy of the marginalWTP estimates

obtained using a shifted, a locallyD-optimal and a BayesianD-optimal design. To obtain shifted

designs, a starting design which involves a number of alternatives equal to the number of choice

sets of the desired design is used as a base. By increasing all attribute levels of the first alternative

of the initial design by one, the second alternative of the first choice set of the shifted design is

found (if an attribute already is at its highest level, this level is changed to the lowest level ad-

missible for that attribute). Another increase of the attribute levels of the first alternative of the

initial design then leads to the third alternative of the first choice set of the shifted design. This

procedure continues till the desired number of alternatives in a choice set in the final design is

obtained. In a similar fashion, the other choice sets of the shifted design are found.D-optimal de-

signs minimize the generalized variance of the utility coefficients of the discrete choice model by

minimizing the determinant of their variance-covariance matrix. As this variance-covariance ma-
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trix is a function of the utility coefficients themselves, prior knowledge about these coefficients is

required to developD-optimal designs. LocallyD-optimal designs address this problem by using

a point estimate for the utility coefficients as input to the search procedure forD-optimal con-

joint choice designs, while BayesianD-optimal designs assume a prior distribution for the utility

coefficients to formally account for the uncertainty about their values at this stage of the investiga-

tion. In [5] it was concluded that substantial improvements in marginalWTP estimation accuracy

were achieved when a BayesianD-optimal design was used, provided an informative prior distri-

bution had been specified. The gain in precision increased with the utility coefficients’ absolute

magnitudes. Using a BayesianD-optimal design constructed with an uninformative prior distribu-

tion led to estimates for theWTP that were less precise than those obtained using a shifted design.

In [19], locally A-, D- andc-optimal conjoint choice designs as well as random and orthogonal

designs were compared based on their relative efficiency. Thec-optimality criterion was comprised

of the sum of the variances of the marginalWTP , which were approximated by the delta-method.

The authors concluded that theD-optimal design performed surprisingly well in terms of thec-

efficiency criterion, while other designs did substantially worse. Conversely, thec-optimal design

scored relatively high in terms of the other efficiency criteria.

Numerous applications of choice experiments developed with the main goal of estimating the

marginalWTP used other design strategies. Most of them were based on fractional factorial

(orthogonal) designs, [see e.g. 8, 18], and a few on full factorial designs [6]. Relatively few usedD-

efficiency criteria without or with sequential updating. For example, [15] generated a design of 40

profiles maximizing a localD-efficiency criterion. This design was then divided in 4 subdesigns of
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10 profiles which were randomly presented to the respondents. An example of sequential updating

based on BayesianD-efficiency is reported in [25], where desirable efficiency gains are associated

with this approach. To measure the marginalWTP for eco-labels, [22] applied designs developed

by Sawtooth Software providing minimal overlap, level balance and orthogonality. It should be

clear that, despite the increasing number of applications of valuing attributes of a product or a

service, the experimental design literature on conjoint choice experiments has not yet dedicated

sufficient attention to developing design optimality criteria for the specific purpose of accurately

estimating marginalWTP . Therefore, the goal of this paper is to provide a first contribution

to close this gap by focusing on optimal designs for conjoint choice experiments to estimate the

marginalWTP accurately.

3.2 Bayesian WTP-optimal conjoint choice designs

In this paper, it is assumed that the goal of a conjoint choice experiment is to provide an accurate

assessment of the marginalWTP for the attributes of a product or service. This means that a

WTP -optimal design minimizes the variance of minus the ratio of the coefficient for attributem

and the pricep, which makes that aWTP -optimal design can be classified in the broader class

of c-optimal designs. The asymptotic variance of the marginalWTP is approximated using the

delta-method

v̂ar
(
ŴTPm

)
= v̂ar

(
− β̂m

β̂p

)

≈ 1

β̂2
p


var(β̂m)− 2

(
β̂m

β̂p

)
cov(β̂m, β̂p) +

(
β̂m

β̂p

)2

var(β̂p)


 .

(5)
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Since there areM − 1 attributes of the product besides the price, we are interested in accurate

estimates of theM − 1 marginalWTP values. The proposed criterionCWTP is defined as the

sum of these approximate variances. The efficiency of a design in terms of the proposed criterion

is then expressed by

WTP -error=
M−1∑
m=1

v̂ar(ŴTPm). (6)

The choice design minimizing theWTP -error, is called theWTP -optimal design. Minimiz-

ing expression (6) implies a more accurate assessment of the marginalWTP and, consequently,

smaller confidence intervals for it.

As the conditional logit model is a non-linear model, theWTP -efficiency depends on the utility

coefficients which are unknown at the moment of planning the experiment. A Bayesian approach

([23, 24, 14]) assuming a prior distributionf(β) onβ is then appropriate. The Bayesian version of

theWTP -error is denoted by theWTPb-error and is defined as the expected value of theWTP -

error over the prior distribution

WTPb-error= Eβ

[
M−1∑
m=1

v̂ar (WTPm)

]
=

∫

<M−1

v̂ar (WTP ) f(β)dβ. (7)

We approximate the integral in (7) by means of 100 quasi-random Halton draws ([28, 1, 29]) from

the prior distribution and averaging theWTP -error over these draws. This systematic sample

replaces the commonly used 1,000 pseudo-random draws from the prior distribution but yields the

same designs in terms of efficiency. Evidently, the use of the systematic sample with good coverage
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properties saves a considerable amount of computation time and reduces simulation variance. The

alternating-sample algorithm, described in [14], was applied to search for the design satisfying

the BayesianWTP -optimality criterion discussed in this paper, i.e. the design minimizing the

WTPb-error.

4 Evaluation of the Bayesian WTP-optimal designs

In this section we report the results from a simulation study devised to evaluate the proposed

WTP -optimality criterion and we compare this criterion to several other popular design strategies

based on theWTPb-error. First, we briefly explain how we obtainWTP -optimal designs. Next,

we present the benchmark designs used as a comparison. Then, we describe our findings across

designs in terms of theWTPb-error. Finally, we introduce some additional criteria to evaluate the

different designs and report the results of a simulation study assuming in turn correct and incorrect

prior information.

4.1 Computational aspects

The experiment used in this section involves two three-level attributes and one two-level attribute

which are all effects-type coded. Besides these attributes, the price of a good is also included tak-

ing two levels that are linearly coded as 1 and 2. This implies that the number of parametersM ,

contained withinβ, equals 6.

In our simulation study we assumed that 75 respondents are participating in the experiment and

that each respondent indicates his favorite alternative out of the three available ones in each of 12
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choice sets, thereby collecting 900 discrete choices. Each respondent evaluates the same choice

sets.

As explained in Section 3.2, to create BayesianWTP -optimal designs one needs to make as-

sumptions about a prior distribution for the utility coefficients in the choice model. As a prior

distribution, we used a6-dimensional normal distribution with mean [-0.5 0 -0.5 0 -0.5

-0.7]. The first5 elements of the mean vector correspond to the utility coefficients associated with

the 3 attributes and the last element corresponds to the price coefficient. As can be noted in the

mean vector, we assume that price and utility are negatively related, which is common in economic

literature. The variance-covariance matrix of the prior distribution is taken equal to




0.5 IM−1 0(M−1)×1

01×(M−1) 0.05


 , (8)

whereIi is thei-dimensional identity matrix. This prior distribution follows the recommendations

formulated in [13]. The variance of the price coefficient is smaller than the variance of the other

utility coefficients, and sufficiently so to ensure that only negative price coefficients are drawn in

the Bayesian optimal design approach.

4.2 Benchmark designs

To evaluate the performance of the BayesianWTP -optimal design, we compare it with a Bayesian

D-optimal design and three standard designs generated by Sawtooth Software. The development

of BayesianD-optimal designs is extensively described in [23, 12, 5, 13].
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Sawtooth Software offers the user three design options. A first option, labeled ’complete enumer-

ation’, is a design which is constructed following three principles: level balance, minimal attribute

level overlap within one choice set and orthogonality. Henceforth, we refer to this design as a

(near-)orthogonal design. A second option, labeled ’random design’, consists of constructing a de-

sign by means of randomly choosing the levels of the attributes within its possible values. Despite

the randomness of this strategy, this option does not permit two identical alternatives in one choice

set. The last option, labeled ’balanced overlap method’, is the middle course between the random

design and the (near-)orthogonal design. This option allows for a moderate attribute level overlap

within one choice set.

4.3 Comparison in terms of the WTPb-error

Table 1 displays theWTPb-error approximated by the averageWTP -error over the 100 Halton

draws from the prior distribution for the BayesianWTP -optimal design and the four benchmark

designs. The table shows that the BayesianWTP -optimal design is the most appropriate design

to estimate the marginalWTP accurately as it has the smallestWTPb-error. It is followed by

the BayesianD-optimal design for which the error is almost 20 % higher. The errors of the other

benchmark designs are at least twice as high as the BayesianWTP -optimal design suggesting that

these standard designs perform poorly when it comes to estimating the marginalWTP . The poor

performance of the standard designs is in line with the results reported in [19].
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4.4 Simulation study

After introducing the evaluation criteria, we elaborate on the findings of a simulation study. First,

we focus on the case where the prior distribution used to generate the design is correct. Then, we

turn our attention towards a situation where the prior distribution contains wrong information.

4.4.1 Criteria for evaluation

Based on simulated observations for all choice sets of the different designs discussed above, we

estimated the utility coefficientsβ of the conditional logit model and used these coefficient esti-

mates to calculate the marginalWTP estimates. Comparing these estimates with their true values

allowed us to calculate the expected mean squared error

EMSEWTP (β̂) =

∫

<M−1

(Ŵ (β̂)−W (β))
′
(Ŵ (β̂)−W (β))f(β̂)dβ̂, (9)

wheref(β̂) represents the distribution of the estimated utility coefficients andŴ (β̂) andW (β)

are vectors containing theM − 1 marginalWTP estimates and the real marginalWTP values,

respectively. Note that theEMSEWTP captures the bias and the variability in the marginalWTP

estimates. Evidently, a smallEMSEWTP is preferred over a large one. In our simulation study,

we approximated (9) for a given value ofβ by generating 1,000 data sets for 75 respondents.

We computedEMSEWTP values for 75 parameterβ values drawn from a6-dimensional normal

distribution. Since the estimated price coefficient enters the marginalWTP computation non-

linearly, a poorly estimated price coefficient can result in unrealistic marginalWTP estimates and

consequently in unreasonably high values ofEMSEWTP . Therefore, to get a clear view on the

results, we report the natural logarithm of theEMSEWTP values. The problem of unrealistic
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marginalWTP estimates has already been described by several authors, (among others [27, 26]

who also propose alternative solutions).

Additionally, we examine the accuracy of the estimates of the utility coefficients obtained by the

different designs. In the same way asEMSEWTP we compute the expected mean squared error

of the utility coefficients as

EMSEβ(β̂) =

∫

<M

(β̂ − β)
′
(β̂ − β)f(β̂)dβ̂. (10)

A small rather than a large value ofEMSEβ indicates more accurate estimates of the utility

coefficients.

4.4.2 Design performance under correct priors

First we computed theEMSEWTP value for each of 75 utilityβ coefficients drawn from the prior

distribution used to develop the design which implies that the prior distribution contains correct

information. Figure 1 visualizes the 75log(EMSEWTP ) values for each design in box-plots. It

is clear that the BayesianWTP -optimal design results in the most accurate marginalWTP es-

timates. Because of the logarithmic scale used for theEMSEWTP values in Figure 1, the two

box-plots of the BayesianWTP - andD-optimal design seem not to differ considerably. How-

ever, the BayesianWTP -optimal design leads to marginalWTP estimates that are substantially

more accurate than the BayesianD-optimal design. The difference in accuracy is even larger be-

tween the BayesianWTP -optimal design and the standard designs. Furthermore, the Bayesian

D-optimal design and the standard designs produce larger and moreEMSEWTP outlier values
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than the BayesianWTP -optimal design.

Outliers were defined as values larger thanQ3 + 6 · IQR with IQR the interquartile range and

Q3 the third quartile. Table 2 shows the average number of outliers among the marginalWTP

estimates per utility coefficients vector and three summary statistics related toEMSEWTP with

(displayed in parentheses) and without marginalWTP outliers. Even if we exclude the outliers

for each design option, the BayesianWTP -optimal design still results in more accurate marginal

WTP estimates. In this case, the averageEMSEWTP value when using aD-optimal design is

about 10% higher than the averageEMSEWTP value when using aWTP -optimal design. The

random design exhibits the worst performance yielding an averageEMSEWTP , which is three

times larger than that produced by theWTP -optimal design.

Finally, Figure 2 visualizes the 75EMSEβ values resulting from estimating the 75 utility coeffi-

cientsβ. The box-plots clearly indicate that the BayesianD- andWTP -optimal designs produce

substantially more accurate estimates for the utility coefficients than what is achieved by means

of standard designs. We notice that the difference in estimation accuracy of the utility coefficients

between the former two designs is only minor. This means that the BayesianWTP -optimal de-

sign leads to estimated utility coefficients almost as precise as the BayesianD-optimal design.

This suggests the conclusion that the BayesianWTP -optimal designs lead to the most accurate

marginalWTP estimates and are not much inferior to BayesianD-optimal designs in terms of

estimation accuracy for the utility coefficients.
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4.4.3 Design performance under incorrect priors

In the previous section, we studied the performance of a BayesianWTP -optimal design assum-

ing that the prior distribution onβ used to create the design contains correct information on the

utility coefficients. In this section, however, we relax this assumption and examine the scenario of

incorrectly specified prior parameters. Sensitivity to the use of correct prior assumption was found

in previous studies based on BayesianD-optimal designs [5] and it is an issue which warrants

further investigation. In a first scenario, the real parametersβ generating the responses of the 75

respondents come from a 6-dimensional normal distribution with mean [0 0 0 0 0 -0.7]

and variance-covariance matrix




Im−1 0(M−1)×1

01×(M−1) 0.05


 . (11)

The responses are generated using the same designs as in the previous section. The distribution

from which the real parameters are drawn covers–instead–a broad range of preference structures

related to the attributes. This implies that the researcher posed incorrect assumptions on the pref-

erences for the attributes, except for the price, at the moment of designing the experiment.

Figure 3 depicts 75log(EMSEWTP ) values for this scenario and shows that, even if we use in-

correct prior information at the design stage, the BayesianWTP -optimal design measures the

marginalWTP in a more accurate way than the competing designs. We notice that the standard

designs have substantially larger extreme values for the marginalWTP than the optimal designs.
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Figure 4 visualizes theEMSEβ values for the different designs. As previously noted for the case

under correct prior information, this figure shows that the BayesianWTP -optimal design esti-

mates the model parameters more precisely than the standard designs and almost as precisely as

the BayesianD-optimal design.

A second scenario with incorrect prior was also explored. In this case the real utility coefficients

came from a 6-dimensional normal distribution with mean[−1 0 − 1 0 − 1 − 1] and variance




0.25 IM−1 0(M−1)×1

01×(M−1) 0.05


 . (12)

This scenario represents the case where the respondents have a stronger preference for the highest

attribute level than was assumed in the prior distribution utilized to construct the optimal designs.

The results for this scenario are not displayed here because they are very similar to those for the

previous scenario.

In summary, the results obtained from this simulation study clearly suggest that the Bayesian

WTP -optimal design produces more accurate marginalWTP estimates than any of the other

designs, including the BayesianD-optimal one. This increased accuracy is to a large extent robust

to the specification of the prior information used to construct the design. Moreover, and this is a

novel result, the BayesianWTP -optimal design yields considerably smaller and fewer extreme

values for the marginalWTP estimates than those produced by the benchmark designs. This is an

important contribution in solving the problem of unrealistically large marginalWTP estimates.

The BayesianWTP -optimal design offers the additional advantage that it results in parameter
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estimates almost as precise as the BayesianD-optimal design, suggesting thatWTP -efficiency

does not come at a large loss in efficiency of utility coefficient estimates.

5 The willingness to donate for environmental projects

We illustrate the practical advantages of usingWTP -optimal designs in an example described in

[4] by comparingWTP -optimal designs with the design strategy used by the authors in terms of

the marginalWTP estimation accuracy.

In [4] a choice experiment was performed to value the willingness to donate for environmental

projects. Three attributes were included in the study: the amount of money the respondents re-

ceived, the donation they gave to an environmental project and the type of environmental project.

In the choice experiment the respondents had to make a trade-off between the money they received

and the donation they gave to an environmental project. The amount of money the respondent

received took three levels: 35 kr, 50 kr and 65 kr (’kr’ refers to Swedish Krona, the currency of

Sweden where the experiment was performed). There were three values for the donation: 100 kr,

150 kr and 200 kr. The donations were given to one of the following three environmental projects:

the rainforest, the Mediterranean Sea or the Baltic Sea which were dummy coded taking the Baltic

Sea as a reference.

The experiment consisted of 14 choice sets of size two. There were 35 respondents who partic-

ipated in the experiment which generated 490 observations in total. In [4] a locallyD-optimal

design was used, based on the information of a pilot study which estimated the marginal will-
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ingness to donate for environmental projects equal to five. As the pilot study did not allow the

estimation of the utility coefficients of the environmental projects, these were set to zero to gener-

ate the design.

As an alternative, we propose a locallyWTP -optimal design around the point estimate [0.2 1

0 0], which is in accordance with the information coming from the pilot study as reported by the

authors. The elements of the vector correspond to the utility coefficients of the money the respon-

dents received, the donation and the environmental projects, respectively. The results for this prior

point estimate are representative for other prior point estimates which are omitted for brevity of

the paper. Additionally, we developed a BayesianWTP -optimal design. As a prior, we choose a

normal distribution with mean [0.2 1 0 0], which reflects the information of the pilot study,

and variance-covariance matrix0.5 · I4, whereI4 is the four dimensional identity matrix to reflect

the uncertainty about the utility coefficients. Other prior distributions taking into account the in-

formation of the pilot study lead to similar results. The alternating-sample algorithm, described in

[14], was used as the search procedure to find the BayesianWTP -optimal design.

Based on simulated choices generated by the utility coefficients of the original study, shown in

Table 3, and the three designs under study, the marginal willingness to donate was computed from

the estimated utility coefficients of the conditional logit model. We estimated the marginalWTP

for 1,500 data sets. To evaluate the designs we display the 1,500 estimated marginalWTP values

resulting from the use of the different designs in Figure 5. Moreover, we compute three evaluation

criteria which are the mean squared error (MSE), the bias and the relative absolute error (RAE),

all defined in Table 4. TheMSE offers the advantage of capturing the bias and the variability of
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the estimated marginalWTP values.

The box-plots in Figure 5 clearly show that the use of locally and BayesianWTP -optimal designs

results in fewer and smaller outlying estimates for the marginalWTP . Table 4 shows that there

were even no outliers for the locallyWTP -optimal design. The BayesianWTP -optimal design

reduced the number of outliers to one. This outlier is considerably smaller in size than the ones

obtained with the locallyD-optimal design. In Table 4, we notice that theMSE for theWTP -

optimal design is substantially smaller than theMSE for the locallyD-optimal design. We note

that the bias of the marginalWTP using theD-optimal design is slightly smaller than that for the

WTP -optimal design. This suggests that the variance of the marginalWTP is smaller for the

latter than for the former design type.

There is a substantial difference between the marginal willingness to donate resulting from the

pilot study and the final experiment. This implies that the prior information was not correct. We

hence examine the scenario in which no information about the unknown utility coefficients is avail-

able. In this case, we compare a BayesianWTP -optimal to a Bayesian and a locallyD-optimal

design. To develop the Bayesian designs, we specify the normal distribution with mean[0 0 0 0]

and varianceI4 as prior, which reflects lack of information about the sign and size of the unknown

utility coefficients. The locallyD-optimal design was developed with point estimate[0 0 0 0] as

this could have been a possible design strategy in an original study without any prior information.

We display the distribution of the marginalWTP values in Figure 6 and show the values for the

three evaluation criteria in Table 5.
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The box-plots in Figure 6 show that we avoid more and larger outlier values by using the Bayesian

WTP -optimal design. However, we notice that the locallyD-optimal design reduces the number

of outliers as well. The reason for this is that the parameter vector[0 0 0 0] used to construct

the design coincidentally approximates the real parameter vector. This also explains why the local

design performs better than the Bayesian design. However, if we look at Table 5, theMSE values

for both D-optimal designs are larger than for theWTP -optimal design. Since the bias does

not differ considerably between the three designs, this suggests that the variance of the estimated

marginalWTP values is larger for bothD-optimal designs than for theWTP -optimal one. For

the locallyD-optimal design this can also be seen in Figure 6 by observing that the size of the box

is slightly larger and the whiskers of the box-plot are slightly longer.

6 Conclusion

Despite the expanding use of conjoint choice experiments to estimate the value of attributes of

complex goods, the literature on the design of these experiments has not paid sufficient attention

to developing design criteria addressing this specialized use of conjoint choice experiments. In

this paper, following [11], we apply thec-optimality criterion to create optimal designs for con-

joint choice experiments to estimate the marginalWTP accurately and subject these designs to a

series of comparisons with other more conventional designs. We use simulation and alternatively

assume correct and incorrect prior information about the utility coefficients generating the true re-

sponses. The results show that the BayesianWTP -optimal designs consistently produce marginal

WTP estimates that are substantially more accurate than those produced by other designs, in-

cluding the BayesianD-optimal designs, which under correct information were found to dominate
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more conventional designs in similar comparisons reported in [5]. Our results remain valid even if

the prior information is not entirely correct. Importantly, for non-market valuation, the Bayesian

WTP -optimal designs lead to smaller and fewer extreme values for the marginalWTP estimates.

Finally, we note that the advantages afforded by the BayesianWTP -optimal design come at a

negligible cost in terms of a loss of efficiency in the utility coefficient estimates when compared

to results obtained from a BayesianD-optimal design. Thec-efficiency criterion would therefore

appear to be a potentially valuable criterion in experimental design for conjoint choice experiments

undertaken for the purpose of attribute valuation.
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Tables and Figures

Design type WTPb-error

WTP -optimal 8.136

D-optimal 9.534

Bal. overlap 16.173

(Near-)Orthogonal 18.403

Randomized 27.261

Table 1: WTPb-errors for theWTP -optimal design and the four benchmark designs

Simulation statistics WTP -opt. D-opt. Bal.Overl. (Near-)Orth. Random
Average n. of outliers

9.4 14.4 18.3 24.1 38.3per parameter setβ

Average ofEMSEWTP
0.112 0.125 0.198 0.223 0.321

(0.139) (0.262) (0.579) (18.268) (46.583)

Minimum of EMSEWTP
0.002 0.002 0.003 0.003 0.004

(0.002) (0.002) (0.003) (0.003) (0.004)

Maximum ofEMSEWTP
0.745 0.895 1.440 1.736 2.576

(4.347) (90.786) (111.700) (12893.140) (39747.270)

Table 2: The average number of outliers per parameter setβ and summary statistics ofEMSEWTP values
with and without outliers over 75 parameter setsβ. Values obtained with outliers are given in
parentheses.

Variable Coefficient St. error

Money 0.033 (0.010)

Donation 0.021 (0.003)

Mediterranean –0.885 (0.148)

Rainforest –0.088 (0.145)

MarginalWTP Donation 0.636

Table 3: Estimated utility coefficients and standard error (in parentheses) of the attributes in the original
study
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Simulation statistics
Locally Locally Bayesian

D-optimal WTP -optimal WTP -optimal

MSE: 1
R

∑R
r=1(Ŵr −W )2 0.044 0.033 0.029

Bias: 1
R

∑R
r=1 | Ŵr −W | 0.114 0.127 0.120

RAE: 1
R

∑R
r=1

|cWr−W |
W

20.009 17.945 18.805

Number of outliers 8 0 1

Table 4: Evaluation criteria for a locallyD-optimal design and locally and BayesianWTP -optimal designs
using the information of a pilot study based onR=1500 data sets

Simulation statistics
Bayesian Locally Bayesian
D-optimal D-optimal WTP -optimal

MSE: 1
R

∑R
r=1(Ŵr −W )2 0.019 0.024 0.017

Bias: 1
R

∑R
r=1 | Ŵr −W | 0.093 0.116 0.095

RAE: 1
R

∑R
r=1

|cWr−W |
W

14.668 18.161 14.940

Number of outliers 2 0 0

Table 5: Evaluation criteria for a BayesianWTP -optimal and Bayesian and locallyD-optimal designs in
the absence of prior information from a pilot study

Figure 1: Log(EMSEWTP ) values for the different designs assuming a correct prior distribution
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Figure 2: EMSEβ values for the different designs assuming correct prior parameters

Figure 3: Log(EMSEWTP ) values for the different designs posing incorrect assumptions on the prefer-
ence for the attributes, except for the price
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Figure 4: EMSEβ values for the different designs assuming indifference of individuals for the attributes

Figure 5: Marginal WTP estimates from a locallyD-optimal, locally WTP -optimal and a Bayesian
WTP -optimal design using the prior information of the pilot study for 1500 simulated data sets
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Figure 6: MarginalWTP estimates from a BayesianWTP -optimal, a BayesianD-optimal and a locally
D-optimal design in the absence of prior information from a pilot study for 1500 simulated data
sets
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