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1. Introduction

First of all I would like to congratulate the authors with their paper, which presents a very
nice analysis of a functional data set from ophthalmology using robust principal components.
In this comment, I will focus on the newly proposed method for robust PCA.

Several robustifications for PCA have been proposed in the past. The most simple idea is
to compute eigenvalues and eigenvectors of a robust estimator of the covariance or correlation
matrix of the data. Many simulation studies, starting with (Devlin et al. 1981), have been
carried out to find out which robust estimator should be used, and recently some more
theoretical results were obtained by Croux and Haesbroeck (1999). As was pointed out by
the authors, these methods require that the number of variables d is higher than the number
of observations n, making them less useful for functional data analysis.

Another approach to robustify PCA, based on projection pursuit (PP), has been consid-
ered by Li and Chen (1985). As one knows, a classical principal component is determined by
the direction for which the projections of the data onto that direction have maximal standard
deviation, under the constraint of orthogonality with all previously determined components.
Instead of maximizing the standard deviation, one uses now a robust dispersion measure
as “PP-index”, resulting in a robust PCA. Since the principal components are computed

sequentially, this approach can be used even in the high dimensional case n < d.
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The method proposed in this paper has both a projection aspect and an eigenanalysis
aspect. A important virtue of this method is it simplicity and ease of implementation.
In contrast with many other highly robust multivariate statistical procedures, the required

computation time is extremely limited.

2. Some Statistical Properties

For asample X = {X;,...,X,} C IR?, the proposed robust PCA is carried out by computing

the eigenvectors vy (X), ... , vp(X) of the matrix

n
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with k& =rank(3,(X)) and 0, the L, location estimator. The “robust eigenvectors” vy (X), ... , vg(X)

are the vectors of interest since the data will be projected on them.

Equivariance Properties: Although ¥, is no affine equivariant covariance matrix estimator,
it is orthogonal equivariant which suffices in the context of PCA. Indeed, denote al’X +b =
{al'w; +b,... ,al'r, +b} where I is an orthogonal matrix, b a vector in IR? and « a scalar,

then the usual equivariance property holds
vj(al'X + b) = Duy(X), (2)

fory=1,... k.

By first prescaling the data, for example by dividing them by the coordinatewise MAD,
an equivalent of a correlation based PCA is obtained. This procedure is called elliptical PCA
by the authors, and one has the additional equivariance property v;(DX) = v;(X) for any

diagonal matrix D.

Influence Function: The authors claim that outliers have bounded influence on their proce-
dure. This can be made formal. To keep things simple, suppose that we are in the bivariate

normal case, and due to (2) suppose w.l.o.g.
iid 1o
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The functional corresponding to the f]n(X ) is given by
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for an arbitrary distribution G. Denote then v, (G), ... ,va(G) the eigenvectors of £(G). It is
not difficult to show that X(F) = N (O, diag(1/(y/7 + 1), /(v ' + )> , implying Fisher
consistency for the eigenvectors at bivariate normal distributions. Like in Critchley (1985),

one can prove quite easily that the influence function for v; is given by

1 - 1T
(VIR )

and analogously for the second eigenvector. ;From (3) boundedness of the influence function

IF((.’El,CCQ),Ul,F) =

follows immediately.

Efficiency: Since emphasis in the paper was on the use of the proposed method as a tool
for exploratory data analysis, efficiency considerations are less important but nevertheless
interesting. Take once again the simple case where the data come from the bivariate nor-
mal distribution F. Assuming that the functional ¥ is sufficiently regular, the asymptotic

variance of v; equals ASV (v, F) = ( F)ue(F), which needs to be compared with

the asymptotic variance of the classical estimator of the first eigenvector ﬁvg(}? Yoo (F')E.
In Figure 1 the associated efficiency (defined as the ratio of the traces of the asymptotic
variance matrices) is pictured as a function of ~.

The efficiency of the method depends thus on v and never exceeds 50%: the more spherical
the distribution, the higher the efficiency of the method. This is in contracts with most other

methods for robust PCA, where the efficiencies are independent of . The same problem

will arise for the elliptical version of the method.

3. Some suggestions

(i) It is not so obvious to interpret the eigenvalues of 3,.. As a measure of dispersion of the

data in the direction of v;(X), one could compute
A = S0 (X) X1, ..., 0(X)'X0),

for j =1,...,k, with S, a robust univariate scale estimator like the MAD. Moreover, unlike
the eigenvalues of ¥,,, the 5\]- will be consistent estimators for the eigenvalues of covariance

matrices of normal distributions.

(ii) A generalization of (1) is given by

N
||X 6, || ||X — 6a
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Figure 1: Efficiency of the proposed estimator for the first eigenvector of a bivariate normal
distribution as a function of v, where v equals the second divided by the first population

ergenvalue.

where the assigned weights w; depends only on the rank of || X; — 6,,|| and Sr  w; = 1. The
location counterpart of the above estimator has been studied by Héssjer and Croux (1995).
By choosing the weights properly, higher efficiencies can be obtained while not loosing too

much robustness.

(iii) The choice of the starting value for the algorithm computing the L; estimator is not
crucial, but the coordinatewise median might yield faster convergence in noisy data sets
than the sample mean. Using the Newton steps of Bedall and Zimmerman (1979), the

computation time of the L; estimator could be even further reduced.
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