
KATHOLIEKE
UNlVERSITEIT

LEUVEN

DEPARTEMENT TOEGEPASTE
ECONOMISCHE WETENSCHAPPEN

RESEARCH REPORT 9907

AN EXACT PROCEDURE FOR THE
UNCONSTRAINED WEIGHTED EARLINESS

TARDINESS PROJECT SCHEDULING PROBLEM
by

M. VANHOUCKE
E. DEMEULEMEESTER

W. HERROELEN

0/1999/2376/07

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6468856?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

AN EXACT PROCEDURE FOR THE UNCONSTRAINED

WEIGHTED EARLINESS-TARDINESS PROJECT

SCHEDULING PROBLEM

Mario V ANHOUCKE • Erik DEMEULEMEESTER. Willy HERROELEN

January 1999

Operations Management Group
Department of Applied Economics

Katholieke Universiteit Leuven
Naamsestraat 69, B-3000 Leuven (Belgium)

Phones: 32-16-32 69 65,32-16-326972,32-16-326970, Fax 32-16-32 6732
E-mail: <firstname>.<name>@econ.kuleuven.ac.be

AN EXACT PROCEDURE FOR THE UNCONSTRAINED WEIGHTED
EARLINESS-TARDINESS PROJECT SCHEDULING PROBLEM

Mario V ANHOUCKE • Erik DEMEULEMEESTER. Willy HERROELEN

ABSTRACT

In this paper we study the unconstrained project scheduling problem with weighted
earliness-tardiness penalty costs subject to zero-lag finish-start precedence constraints.
Each activity of this unconstrained project scheduling problem has a known deterministic
due date, a unit earliness penalty cost and a unit tardiness penalty cost. The objective is to
schedule the activities in order to minimize the weighted earliness-tardiness penalty cost of
the project, in the absence of constraints on the use of resources. With these features the
problem setting becomes highly attractive in just-in-time environments.

We introduce a two-step recursive algorithm. The first step consists of a forward
pass procedure which schedules the activities such that they finish at their due date or later.
The second step applies a recursive search in which the activities are eventually shifted
backwards (towards time zero) in order to minimize the weighted earliness-tardiness cost
of the project. The procedure has been coded in Visual C++, version 4.0 under Windows
NT 4.0 and has been validated on a randomly generated data set.

Keywords: Project Scheduling; Weighted earliness-tardiness costs; Optimal search

2

1. Introduction

Most of the work in project scheduling has focused on regular measures of
performance. A regular measure of performance is a nondecreasing function of the activity
completion times (in the case of a minimization problem), with the minimization of the
project duration as the most popular one. Other examples are the minimization of the mean
flowtime, the mean lateness, the mean tardiness and the percentage of jobs tardy.

In recent years scheduling problems with nonregular measures of performance have
gained increasing attention. A nonregular measure of performance is a measure for which
the above definition does not hold. A popular nonregular measure of performance in the
literature is the maximization of the net present value (npv) of the project. In this case, a
positive or negative cash flow is assigned to each activity and the objective is to schedule
the activities in order to maximize the total net present value of the project. We can
distinguish between procedures for the unconstrained max-npv project scheduling problem
and those for the resource-constrained max-npv project scheduling problem. For an
overview of the literature, we refer to Herroelen et al. (1997) and De Reyck and Herroelen
(1998).

Another nonregular measure of performance, which is gaining attention in JIT
environments, is the minimization of the weighted earliness-tardiness penalty costs of the
activities in a project. In this problem, a due date, a unit earliness penalty cost and a unit
tardiness penalty cost are assigned to the activities and the objective is to schedule the
activities to minimize the weighted penalty cost of the project. This problem often occurs
in practice since many project schedulers have to deal with due dates and penalty costs.
Costs of earliness include extra storage requirements and idle times and implicitly incur
opportunity costs. Tardiness leads to customer complaints, loss of reputation and profits,
monetary .penalties or goodwill damages. The problem is faced by many firms hiring
subcontractors, maintenance crews as well as research teams. Again, a distinction can be
made between the unconstrained weighted earliness-tardiness project scheduling problem
(denoted as cpm \ early/tardy, according to the classification scheme of Herroelen et al.
(1998», where activities are only subject to precedence constraints and no constraints are
imposed on the use of resources, and the constrained weighted earliness-tardiness project
scheduling problem where the activities are also subject to renewable resource constraints
(m, 1\ cpm \ early/tardy).

In this paper we present an exact algorithm for solving problem cpm \ early/tardy
(further denoted as WETPSP, i.e. the ~eighted ~arliness-!ardiness]!roject §cheduling
]!roblem). To the best of our knowledge, no exact algorithm has yet been suggested for the
WETPSP. The proposed methodology exploits the basic idea that the earliness-tardiness
costs of a project can be minimized by first scheduling activities at their due date or at a
later time instant if forced so by binding precedence constraints, followed by a recursive
search which computes the optimal displacement for those activities for which a shift
towards time zero proves to be beneficial. The organisation of the paper is as follows. In
section 2 we give a problem formulation. Section 3 describes an exact solution procedure
while section 4 is reserved for an illustration by means of a numerical example. In section
5 we report extensive computational results on a benchmark problem set. Section 6
contains overall conclusions and suggestions for future research.

2. The deterministic unconstrained weighted earliness-tardiness project scheduling
problem (WETPSP)

3

The WETPSP involves the scheduling of project activities in order to minimize the
weighted earliness-tardiness penalty costs in the absence of resource constraints. The
project is represented by an activity-on-the-node (AON) network G=(N,A) where the set of
nodes, N, represents activities and the set of arcs, A, represents finish-start precedence
constraints with a time-lag of zero. The activities are numbered from the dummy start
activity 1 to the dummy end activity n, such that j>i for each arc (iJ). The duration of an
activity is denoted by di (1 :::; i :::; n) and its known deterministic due date by hi. The
completion time of activity i is denoted by the nonnegative integer variable fi (I :::; i:::; n).

The earliness of activity i can be computed as Ei = max(O, hi - fi) and its tardiness as Ti =
max(O, fi - hi). If ei and ti respectively denote the per unit earliness and tardiness penalty
cost of activity i, its total earliness-tardiness cost is eiEi + tiTi. In the sequel we assume,
without loss of generality, that hi = 0 and hn = 00 while el = tl = 00 and en = tn = O. The
WETPSP can be formulated as follows:

II-I

Minimize L(eiEi +tiT;) [1]
i=2

Subject to

Ii:::;!; -d; V(i,j)EE [2]

Ei :2: hi -Ii ViE N [3]

Ti :2: Ii -hi ViE N [4]

II =0 [5]

The objective in Eq. 1 mmlmlzes the weighted earliness-tardiness cost of the
project. The constraint set given in Eq. 2 maintains the finish-start precedence relations
among the activities. Eq. 3 and Eq. 4 compute the earliness and tardiness of each activity
and Eq. 5 forces the dummy start activity to end at time zero.

In the next section we describe an exact recursive search procedure for the
WETPSP as formulated above.

3. The exact solution procedure

3.1 Description

The proposed recursive algorithm consists of two steps. Step 1 determines the so
called due date tree, DT, using a forward pass procedure. The forward procedure forces the
finishing time Ii of each activity j to be greater than or equal to its due date hj. Upon
terminating step 1 each node in the due date tree, except the dummy end activity n, has at
most one incoming arc.

In step 2 the due date tree is the subject of a recursive search (starting from the
dummy end activity n) in order to identify sets of activities (SA) that might be shifted
backwards in time (towards time zero) in order to decrease the weighted earliness
tardiness cost of the project. Due to the structure of the recursive search it can never
happen that a forward shift of a set of activities (away from time zero) can lead to a
decrease of the weighted earliness-tardiness cost. In fact, all the activities are scheduled in

4

step 1 at their due date or later, therefore it can never be advantageous to increase the
completion times of these activities.

When a set of activities SA is found for which a backward shift leads to a reduction
in the earliness-tardiness cost, the algorithm computes its minimal displacement interval
and updates the due date tree DT as follows. The arc (i,j) which connects a node i E SA to
a node j ~ SA in the due date tree DT is removed from it. The minimal displacement
interval of the set of activities SA under consideration is computed as follows. Compute
Vk*l* = min VI - d l - IJ and w = minV, - hJ. If Vk*l* < W, arc (k* ,1*) is added to the

(k,/)eA),ESA '
keSA f\.>h\,
IE SA

due date tree DT. If the node k* does not belong to an arc of the due date tree DT then arc
(k* ,n) is added to the due date tree DT. If Vk*l* ~ wand the set of activities SA consists of
more than one activity, then arc (i,n) is added to the due date tree DT. In doing so, we
make sure that the due date tree DT is never disconnected into two subtrees during the
performance of the recursive search.

The completion times of the activities in the set of activities SA for which the
displacement has been computed are decreased by the minimal displacement min{vk*I*,W}

and the algorithm repeats the recursive search. If no further shift can be accomplished, the
algorithm stops and the completion times of the activities of the project with its
corresponding weighted earliness-tardiness cost are reported.

3.2 The algorithm

When fJ denotes the finishing time of activity j, when Pj denotes the set of its
immediate predecessors, when DT denotes the due date tree, when SA denotes a set of
activities for which the per unit earliness-tardiness cost will be denoted by ET and CA
denotes the set of already considered activities, the two steps and the recursive algorithm
can be written as follows:

STEP 1. COMPUTE DUE DATE TREE

DT=0;
11 =hl =0;
Do for j = 2 to n

j;,zax = -1;
Do ViEPj

Iff; > Imax thenJ,nax = f; and i* = i;
J"zax = J,nax + dj ;

If j < n thenjj = max {hj;fmax} else jj = J,ruLX;
If J,,,lIX > hj then DT = DTu(i * J);

Do for j = 1 to n-1
IC3(iJ)EDTand 3(j,k)E DT then DT= DTu(j,n);

STEP 2.
CA=0;
Do RECuRsJON(n) -tSA " ET' (parameters returned by the recursive function);
Report the optimal completion times of the activities and the weighted earliness-

tardiness cost of the project.

RECURSION(NEWNODE)

SA = {newnode} and CA = CA U {newnode};

Iffnewnode> hnewllode then ET = -tllewllode else ET = enewllode ;
Do \fili~ CA and i precedes newnode in the due date tree DT:

RECURSJON(i) ~SA', ET'

If ET'?O then
Set SA = SA u SA' and ET = ET + ET';

Else
DT = D1\(i,newnode);
Compute vp1' = min {f1 -d1 - fk} and w=minV, -h};

(k,I)EA),ESA')')'

;:1:: Iv >11\,

If Vk*l* < w then
If ~::3(r,k*)E DT and ~::3(k*,S)E DT then DT = DTu(k*,n);

DT = DTu(k*,I*);
else

If ISA 'I> 1 then DT = DTu(i,n);
Do \fjE SA': setjj = jj - mint Vk*I*,W};

Go to STEP 2;
Do \fili~ CA and i succeeds newnode in the due date tree DT:

RECURSJON(i) ~SA', ET'
If ET' < 0 then

Set SA = SA u SA' and ET = ET + ET';
Else

DT = D1\(newnode, i);
If ISA 'I> 1 then DT = DTu(i,n);

Return;

5

Notice that the due date tree DT contains several subtrees, each connected with the
dummy end activity n. When a particular subtree is subject to a recursive search and no
displacement can be found, we make the link between that subtree and the dummy end
activity n inactive. In doing so, the recursive search procedure will dominate this link and
will not search for a set of activities of that particular dominated subtree. When later
during the performance of the recursive search procedure, due to the displacement of a set
of activities, an arc is added between an activity of the inactive subtree and another
activity, the inactive subtree will be activated again by making its link with the dummy end
activity n active again. The subtree can now again be subject to a recursive search and
eventually a set of activities that will be shifted towards time zero can be found.

4. Numerical example

Consider the AON project network given in Figure 1. The number above each node
denotes the activity duration, while the numbers below each node denote the due date and
the unit penalty cost respectively. Notice that, for ease of representation, we assume the
unit earliness costs to equal the unit tardiness costs. Notice also that the recursive
algorithm is able to handle problems for which not all the activities have a due date. In the
example, activity 5 has no due date constraint. The recursive algorithm runs as follows.

6

4

(8,7)

Figure 1. A project network with due dates and unit penalty costs

STEP 1. COMPUTE DUE DATE TREE

The forward pass algorithm computes the finish times of the activities as II =0,12=7,13=6,
14=5, 15=7, 16=13, !?=9, 18=10, 19=11, 110=12, 111=11, 112=16, 113=21 and 114=21. The
algorithm constructs the due date tree DT = ((3,5),(3,14),(6,12),(6,14),(7,8),(7,11),
(7,14),(12,13)}. The due date tree consists of three subtrees which are represented in
Figure 2 in bold. The links with the dummy end activity n are created during the execution
of the last do-loop of step 1.

(8,7)

Figure 2. Due date tree generated in step 1

7

STEP 2. Set CA=0. The algorithm will now perform a recursive search starting with node
14.

RECURSION(14)
SA = {14}, CA = {l4}. AS!l4 < h l4 , ET= O.

RECURSION(7) : predecessor node 7
SA = {7}, CA = {7,14}. AS!7 = h7, ET= 7.

RECURSION(8) : successor node 8
SA = {8}, CA = {7,8,14}. As!s > h8, ET= -7.

ET' = -7 < 0: SA = {7,8}, ET= -7 + 7 = o.
RECURSION(ll) : successor node 11
SA = {l1}, CA = {7,8,11,14}. AS!ll > h ll , ET=-4.

ET' = -4 < 0: SA = {7,8,11}, ET= -4 + 0 = -4.
ET' = -4 < 0: The set of activities {7,8,1l} must be shifted backwards towards time
zero. Delete the arc (7,14) from the due date tree. Compute V37= min{(j7-d7-j3),(j8-d8-
!4)}=1 and w=min{f8-h8!U-hll}=2. Since V37<W and k*=3 belongs to arc (3,5) of the
due date tree, we only add the arc (3,7) to the due date tree. Decrease the completion
times of the activities in SA' with min{v37,w} = 1 : h = 8,18 = 9 and!ll = 10. Repeat
STEP 2 with the updated due date tree DT = {(3,5),(3,7),(3,14),(6,12),(6,14),(7,8),
(7,11),(12, 13)} shown in bold in Figure 3.

(13,\) (20,6) (~,O)

(8,7)

Figure 3. DT = {(3,5),(3,7),(3, 14),(6, 12),(6, 14),(7,8),(7, 11),(12, 13)}

STEP 2. Set CA=0. The algorithm again starts a recursive search starting with node 14.
RECURSION(14)
SA = {14}, CA = {14}. AS!14 < h l4 , ET= o.

RECURSION(6) : predecessor node 6
SA = {6}, CA = {6, 14 }. AS!6 = h6 , ET = 7.

RECURSION(12) : successor node 12
SA = {12}, CA = {6, 12,14}. AS!l2 > h12 , ET= -l.

RECURSION(13) : successor node 13
SA = {13}, CA = {6,12, 13,14}. AS!13 > h13 , ET= -6.

8

ET' = -6 < 0: SA= {12,13}, ET= -6 + (-1) = -7.
ET' = -7 < 0: SA = {6, 12, 13 }, ET = -7 + 7 = O.

ET' = 0;::: 0: SA = {6,12,13,14}, ET= 0 + 0 = O.
No displacement has been found for the subtree: make the arc (6,14) inactive.

RECURSION(3) : predecessor node 3
SA = {3}, CA = {3,6,12,13,14}. Asj, = h3, ET= 3.

RECURSION(5) : successor node 5
SA = {5}, CA = {3,5,6,12,13,14}. Asfs > hs, ET= O.

ET' = 0: delete arc (3,5) from DT as shown in Figure 4.
Since ISA'I = 1, no connection is made between node 5 and node 14.

RECURSION(7) : successor node 7
SA = {7}, CA = {3,5,6,7,12,13,14}. Ash < h7 , ET= 7.

RECURSION(8) : successor node 8
SA= {8}, CA= {3,5,6,7,8,12,13,14}. Asjs>hs,ET=-7.

ET' = -7 < 0: SA = {7,8}, ET= 7 + (-7) = o.
RECURSION(ll) : successor node 11
SA = {11}, CA = {3,5,6,7,8,11,12,13,14}. ASjll > hll , ET= -4.

ET' = -4 < 0: SA = {7,8,11}, ET= 0 + (-4) = -4.
ET' = -4 < 0: SA = {3,7,8,11}, ET= -4 + 3 =-1.

ET' = -1 < 0: The set of activities {3,7,8,11} must be shifted backwards towards time
zero. Delete the arc (3,14) from the due date tree. Compute V13= min {(f3-d3-jl),(fs-ds-i4)}= 1
and w=min{fs-hsfwhld=1. Since V13=W and ISA'I = 4 > 1, we add the arc (3,14) to the due
date tree. Decrease the completion times of the activities in SA' with min {V13,w} = 1 : j3 =
5, h = 7, js = 8 and jll = 9. Repeat STEP 2 with the updated due date tree DT =
{(3,7),(3, 14),(6,12),(6,14),(7,8),(7, 11),(12,13)} shown in bold in Figure 4.

(13,1) (20,6) (=,0)

(8,7)

Figure 4. DT = {(3,7),(3, 14),(6,12),(6,14),(7,8),(7, 11),(12, 13)}

STEP 2. Set CA=0. The algorithm again starts a recursive search starting with node 14.
RECURSION(14)

SA = {14}, CA = {14}. Asfl4 < h14 , ET= O.
Arc (6,14) is inactive.

RECURSION(3) : predecessor node 3
SA = {3}, CA = {3,14}. Ash < h3, ET= 3.

RECURSION(7) : successor node 7
SA = {7}, CA = {3,7,14}. Ash < h7, ET= 7.

RECURSION(8) : successor node 8
SA = {8}, CA = {3,7,8,14}. Asf8 = h8, ET= 7.

ET' = 7 > 0: delete arc (7,8) from DT.
Since ISA'I = 1, no connection is made between node 8 and node 14.

RECURSION(ll) : successor node 11
SA = {II}, CA = {3,7,8,11,14}. Asfll = h ll , ET= 4.

ET' = 4 > 0: delete arc (7,11) from DT.
Since ISA'I = 1, no connection is made between node 11 and node 14.

ET' = 7> 0: delete arc (3,7) from DT.
Since ISA 'I = 1, no connection is made between node 7 and node 14.

ET' = 3 ~ 0: SA = {3,14}, ET= 3 + 0 = 3.
RETURN;

9

No set of activities can be shifted towards time zero to decrease the weighted earliness
tardiness cost of the due date tree and there are no active links to the dummy end activity 11

left, so the algorithm stops. The due date tree DT= {(3,14),(6,12),(6,14),(12,13)} is given
in bold in Figure 5. The completion times of the activities are fl=O, 12=7 ,f,=5,f4=5,fs=7,
f6=13,h=7,f8=8,f9=11,f1O=12,f11=9,f12=16,f13=21, andfI4=21. The weighted earliness
tardiness cost amounts to 26.

Figure 5. DT = {(3,14),(6, 12),(12, 13),(12,14)}

10

Although not the case in the example, it should be noted that a subtree of the due
date tree which has an arc connected to the dummy start activity I can also be the subject
of a recursive search. Although such subtrees have an arc connected to the dummy start
activity which itself finishes at time zero, the recursive algorithm can indeed detect sets of
activities SA which can be shifted further towards time zero.

Consider the AON project network given in Figure 6. There are 5 activities and
two dummy activities, each with an activity duration denoted above the node and a due
date and penalty cost denoted below the node.

~ffi
~3

I----~

(1,1) (2,1)

Figure 6. An example project network

Figure 7 displays the due date tree DT = {(l,3),(l,7),(2,4),(3,5),(4,6),(5,6)} after
two shifts. The completion times of the activities areJl=0,h=3,f3=3,f4=4,fs=4,f6=5 and
h=5.

(1,1) (2,1)

Figure 7. DT = {(l,3),(l ,7),(2,4),(3,5),(4,6),(5,6)}

Activity 2 and activity 4 belong to a subtree which has an arc connected to the
dummy start activity 1. However, the recursive search procedure is able to shift the set of
activities SA = {2,4} towards time zero. The completion times of the activities are Jl=O,
h=2,J-.,=3,f4=3,fs=4,f6=5 andh=5 and no further shift is possible. The weighted-earliness
tardiness cost amounts to 80.

11

2

CD -0 1
(3,1) (2,25)0

A A ~3,25)
~.

(1,1) (2,1)

Figure 8. DT = {(l ,3),(1,2),(1,7),(2,4),(3,5),(5,6)}

5. Computational experience

The recursive algorithm has been coded in Visual C++ Version 4.0 under Windows
NT 4.0 on a Dell personal computer (Pentium 200 MHz processor). For the validation of
the WETPSP we generated instances with ProGenlMax (Schwindt, 1995). These instances
in activity-on-the-node format use four settings for the number of activities and three
settings for the order strength OS as described in Table I. We then provided the problems
with due dates and unit penalty costs. The due dates were generated as follows. First, we
obtained a maximum due date of each project by multiplying the critical path length with a
factor as given in Table I. We then randomly generated numbers between 1 and the
maximum due date. Finally, we sorted these numbers and assigned them to the activities in
increasing order, i.e. activity 1 is assigned the smallest due date, activity 2 the second
smallest, etc .. Using seven settings for the due date generation and two settings for the unit
penalty costs of the activities (both earliness and tardiness penalty cost), we obtained a
dataset consisting of 1,680 instances.

Table I. Parameter settings used to generate the test instances

Number of activities
Order strength (OS)

(Mastor, 1970)
Due dates of the activities

Unit penalty cost

30,60,90 or 120
0.25,0.50 or 0.75

randomly selected with factor 1.00, 1.25, 1.50, 1.75,
2.00, 2.25 or 2.50
randomly selected from the interval [1,10] or [1,50]

Table 11 represents the average CPU-time and its standard deviation in milliseconds
(actually, we have solved 1,000 replications for each problem and reported the time in
seconds). Even instances with 120 activities can be solved within a very small amount of
computation time. We should keep in mind that the unconstrained weighted earliness
tardiness project scheduling problem is probably not a goal by itself. Its solution may be
used by a branch-and-bound procedure to compute bounds on the weighted earliness
tardiness cost of a resource-constrained weighted earliness-tardiness problem where the
activities are also subject to renewable resource constraints (problem m,llcpmlearlyltardy).
In that case the unconstrained problem should be solved efficiently in every (undominated)
node of the branch-and-bound tree, which may run in the thousands (even millions). The
reported CPU-times indicate that the recursive search procedure may well be used for that

12

end. Notice also the relatively small standard deviations, reflecting the rather robust
behaviour of the procedure over the different problem instances.

Table II. Impact of the number of activities

activities # problems Average CPU-time Standard deviation

30 420 0.075 0.042
60 420 0.289 0.162
90 420 0.585 0.296
120 420 1.043 0.628

Table ill shows a positive correlation between the OS of a project and the required
CPU-time, i.e. the more dense the network, the more difficult the problem.

Table III. Impact of the order strength

as #
0.25
0.50
0.75 560

CPU-time

0.403
0.478
0.613

Standard deviation

0.378
0.440
0.647

Figure 9 illustrates the effect of the due date on the average required CPU-time.
When the factor used for the due date generation is small, the problems contain many
binding precedence relations and their solution will require an extensive search to shift
many sets of activities SA to solve the problem. Problems with a large factor for the due
date generation contain only few binding precedence relations in the due date tree. In that
case, many activities will be scheduled on their due date and only a small number of shifts
will be needed to solve the problem.

2.5

.Q 2

" 0
u

.~

~ 1.5

" S
.~

~ p...
U

" bJJ

'" 0.5 " ,.
'"

0
1.00 1.25 1.50 1.75 2.00 2.25

factor for generating due dates

Figure 9. Effect of the due date

--+-30 activities

__ 60 activities

-tr- 90 activities

--*-120 acitiviti es

2.50

As expected, the earliness and tardiness penalty costs of the activities have no
significant impact on the required CPU-time, as shown in Table IV.

Unit penalty cost

[0,10]
[0,50]

6. Conclusions

Table IV. Impact of the unit penalty cost

problems
840

840

Average CPU-time

0.495
0.501

Standard deviation

0.508
0.510

13

In this paper an exact recursive search procedure was described for the
unconstrained project scheduling problem with weighted earliness-tardiness penalty costs
subject to zero-lag finish-start precedence constraints and in the absence of resource
constraints (cpm I early/tardy). Each activity of this unconstrained project scheduling
problem has a known deterministic due date, a unit earliness penalty cost as well as a unit
tardiness penalty cost and the objective is to schedule the activities in order to minimize
the weighted earliness-tardiness penalty cost of the project. With these features the
problem becomes highly attractive in just-in-time environments. The exact procedure
performs a forward pass calculation in order to schedule the activities such that they finish
at their due date or later. Subsequently, a recursive search repetitively identifies those sets
of activities for which a backward shift (towards time zero) decreases the weighted
earliness-tardiness penalty cost of the project.

The procedure has been coded in Visual C++, version 4.0 under Windows NT 4.0
and has been tested on a randomly generated data set generated by ProGen/Max
(Schwindt, 1995). The results of extensive computational tests obtained on a Dell personal
computer (Pentium 200 MHz processor) reveal that the recursive algorithm is very
efficient. This holds the promise that the procedure may be effectively used in branch-and
bound schemes for solving the WETPSP subject to resource constraints
(m, 11 cpm I early/tardy), which constitutes a promising area for future research.

References

De Reyck, B. and Herroelen, W., 1998, "An optimal procedure for the resource
constrained project scheduling problem with discounted cash flows and generalized
precedence relations", Computers and Operations Research, 25,1-17.

Herroelen, W., Van Dommelen, P. and Demeulemeester, E., 1997, "Project network
models with discounted cash flows: A guided tour through recent developments",
European Journal o/Operational Research, 100,97-121.

Herroelen, W., Demeulemeester, E. and De Reyck, B., 1998, "A classification scheme for
project scheduling problems", in: Weglarz 1. (Ed.), Handbook on Recent advances in
Project Scheduling, Kluwer Academic Publishers, to appear.

Mastor, A.A., 1970, "An experimental and comparative evaluation of production line
balancing techniques", Management Science, 16,728-746.

Schwindt, C., 1995, "A new problem generator for different resource-constrained project
scheduling problems with minimal and maximal time lags", WIOR-Report-449, Institut
flir Wirtschaftstheorie und Operations Research, University of Karlsruhe.

