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AN EXACT PROCEDURE FOR THE UNCONSTRAINED WEIGHTED 
EARLINESS-TARDINESS PROJECT SCHEDULING PROBLEM 

Mario V ANHOUCKE • Erik DEMEULEMEESTER. Willy HERROELEN 

ABSTRACT 

In this paper we study the unconstrained project scheduling problem with weighted 
earliness-tardiness penalty costs subject to zero-lag finish-start precedence constraints. 
Each activity of this unconstrained project scheduling problem has a known deterministic 
due date, a unit earliness penalty cost and a unit tardiness penalty cost. The objective is to 
schedule the activities in order to minimize the weighted earliness-tardiness penalty cost of 
the project, in the absence of constraints on the use of resources. With these features the 
problem setting becomes highly attractive in just-in-time environments. 

We introduce a two-step recursive algorithm. The first step consists of a forward 
pass procedure which schedules the activities such that they finish at their due date or later. 
The second step applies a recursive search in which the activities are eventually shifted 
backwards (towards time zero) in order to minimize the weighted earliness-tardiness cost 
of the project. The procedure has been coded in Visual C++, version 4.0 under Windows 
NT 4.0 and has been validated on a randomly generated data set. 

Keywords: Project Scheduling; Weighted earliness-tardiness costs; Optimal search 
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1. Introduction 

Most of the work in project scheduling has focused on regular measures of 
performance. A regular measure of performance is a nondecreasing function of the activity 
completion times (in the case of a minimization problem), with the minimization of the 
project duration as the most popular one. Other examples are the minimization of the mean 
flowtime, the mean lateness, the mean tardiness and the percentage of jobs tardy. 

In recent years scheduling problems with nonregular measures of performance have 
gained increasing attention. A nonregular measure of performance is a measure for which 
the above definition does not hold. A popular nonregular measure of performance in the 
literature is the maximization of the net present value (npv) of the project. In this case, a 
positive or negative cash flow is assigned to each activity and the objective is to schedule 
the activities in order to maximize the total net present value of the project. We can 
distinguish between procedures for the unconstrained max-npv project scheduling problem 
and those for the resource-constrained max-npv project scheduling problem. For an 
overview of the literature, we refer to Herroelen et al. (1997) and De Reyck and Herroelen 
(1998). 

Another nonregular measure of performance, which is gaining attention in JIT 
environments, is the minimization of the weighted earliness-tardiness penalty costs of the 
activities in a project. In this problem, a due date, a unit earliness penalty cost and a unit 
tardiness penalty cost are assigned to the activities and the objective is to schedule the 
activities to minimize the weighted penalty cost of the project. This problem often occurs 
in practice since many project schedulers have to deal with due dates and penalty costs. 
Costs of earliness include extra storage requirements and idle times and implicitly incur 
opportunity costs. Tardiness leads to customer complaints, loss of reputation and profits, 
monetary .penalties or goodwill damages. The problem is faced by many firms hiring 
subcontractors, maintenance crews as well as research teams. Again, a distinction can be 
made between the unconstrained weighted earliness-tardiness project scheduling problem 
(denoted as cpm \ early/tardy, according to the classification scheme of Herroelen et al. 
(1998», where activities are only subject to precedence constraints and no constraints are 
imposed on the use of resources, and the constrained weighted earliness-tardiness project 
scheduling problem where the activities are also subject to renewable resource constraints 
(m, 1\ cpm \ early/tardy). 

In this paper we present an exact algorithm for solving problem cpm \ early/tardy 
(further denoted as WETPSP, i.e. the ~eighted ~arliness-!ardiness ]!roject §cheduling 
]!roblem). To the best of our knowledge, no exact algorithm has yet been suggested for the 
WETPSP. The proposed methodology exploits the basic idea that the earliness-tardiness 
costs of a project can be minimized by first scheduling activities at their due date or at a 
later time instant if forced so by binding precedence constraints, followed by a recursive 
search which computes the optimal displacement for those activities for which a shift 
towards time zero proves to be beneficial. The organisation of the paper is as follows. In 
section 2 we give a problem formulation. Section 3 describes an exact solution procedure 
while section 4 is reserved for an illustration by means of a numerical example. In section 
5 we report extensive computational results on a benchmark problem set. Section 6 
contains overall conclusions and suggestions for future research. 



2. The deterministic unconstrained weighted earliness-tardiness project scheduling 
problem (WETPSP) 
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The WETPSP involves the scheduling of project activities in order to minimize the 
weighted earliness-tardiness penalty costs in the absence of resource constraints. The 
project is represented by an activity-on-the-node (AON) network G=(N,A) where the set of 
nodes, N, represents activities and the set of arcs, A, represents finish-start precedence 
constraints with a time-lag of zero. The activities are numbered from the dummy start 
activity 1 to the dummy end activity n, such that j>i for each arc (iJ). The duration of an 
activity is denoted by di (1 :::; i :::; n) and its known deterministic due date by hi. The 
completion time of activity i is denoted by the nonnegative integer variable fi (I :::; i:::; n). 

The earliness of activity i can be computed as Ei = max(O, hi - fi) and its tardiness as Ti = 
max(O, fi - hi). If ei and ti respectively denote the per unit earliness and tardiness penalty 
cost of activity i, its total earliness-tardiness cost is eiEi + tiTi. In the sequel we assume, 
without loss of generality, that hi = 0 and hn = 00 while el = tl = 00 and en = tn = O. The 
WETPSP can be formulated as follows: 

II-I 

Minimize L(eiEi +tiT;) [1] 
i=2 

Subject to 

Ii:::;!; -d; V(i,j)EE [2] 

Ei :2: hi -Ii ViE N [3] 

Ti :2: Ii -hi ViE N [4] 

II =0 [5] 

The objective in Eq. 1 mmlmlzes the weighted earliness-tardiness cost of the 
project. The constraint set given in Eq. 2 maintains the finish-start precedence relations 
among the activities. Eq. 3 and Eq. 4 compute the earliness and tardiness of each activity 
and Eq. 5 forces the dummy start activity to end at time zero. 

In the next section we describe an exact recursive search procedure for the 
WETPSP as formulated above. 

3. The exact solution procedure 

3.1 Description 

The proposed recursive algorithm consists of two steps. Step 1 determines the so
called due date tree, DT, using a forward pass procedure. The forward procedure forces the 
finishing time Ii of each activity j to be greater than or equal to its due date hj. Upon 
terminating step 1 each node in the due date tree, except the dummy end activity n, has at 
most one incoming arc. 

In step 2 the due date tree is the subject of a recursive search (starting from the 
dummy end activity n) in order to identify sets of activities (SA) that might be shifted 
backwards in time (towards time zero) in order to decrease the weighted earliness
tardiness cost of the project. Due to the structure of the recursive search it can never 
happen that a forward shift of a set of activities (away from time zero) can lead to a 
decrease of the weighted earliness-tardiness cost. In fact, all the activities are scheduled in 
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step 1 at their due date or later, therefore it can never be advantageous to increase the 
completion times of these activities. 

When a set of activities SA is found for which a backward shift leads to a reduction 
in the earliness-tardiness cost, the algorithm computes its minimal displacement interval 
and updates the due date tree DT as follows. The arc (i,j) which connects a node i E SA to 
a node j ~ SA in the due date tree DT is removed from it. The minimal displacement 
interval of the set of activities SA under consideration is computed as follows. Compute 
Vk*l* = min VI - d l - IJ and w = minV, - hJ. If Vk*l* < W, arc (k* ,1*) is added to the 

(k,/)eA ),ESA ' 
keSA f\.>h\, 
IE SA 

due date tree DT. If the node k* does not belong to an arc of the due date tree DT then arc 
(k* ,n) is added to the due date tree DT. If Vk*l* ~ wand the set of activities SA consists of 
more than one activity, then arc (i,n) is added to the due date tree DT. In doing so, we 
make sure that the due date tree DT is never disconnected into two subtrees during the 
performance of the recursive search. 

The completion times of the activities in the set of activities SA for which the 
displacement has been computed are decreased by the minimal displacement min{vk*I*,W} 

and the algorithm repeats the recursive search. If no further shift can be accomplished, the 
algorithm stops and the completion times of the activities of the project with its 
corresponding weighted earliness-tardiness cost are reported. 

3.2 The algorithm 

When fJ denotes the finishing time of activity j, when Pj denotes the set of its 
immediate predecessors, when DT denotes the due date tree, when SA denotes a set of 
activities for which the per unit earliness-tardiness cost will be denoted by ET and CA 
denotes the set of already considered activities, the two steps and the recursive algorithm 
can be written as follows: 

STEP 1. COMPUTE DUE DATE TREE 

DT=0; 
11 =hl =0; 
Do for j = 2 to n 

j;,zax = -1; 
Do ViEPj 

Iff; > Imax thenJ,nax = f; and i* = i; 
J"zax = J,nax + dj ; 

If j < n thenjj = max {hj;fmax} else jj = J,ruLX; 
If J,,,lIX > hj then DT = DTu( i * J); 

Do for j = 1 to n-1 
IC3(iJ)EDTand 3(j,k)E DT then DT= DTu(j,n); 

STEP 2. 
CA=0; 
Do RECuRsJON(n) -tSA " ET' (parameters returned by the recursive function); 
Report the optimal completion times of the activities and the weighted earliness-

tardiness cost of the project. 



RECURSION(NEWNODE) 

SA = {newnode} and CA = CA U {newnode}; 

Iffnewnode> hnewllode then ET = -tllewllode else ET = enewllode ; 
Do \fili~ CA and i precedes newnode in the due date tree DT: 

RECURSJON(i) ~SA', ET' 

If ET'?O then 
Set SA = SA u SA' and ET = ET + ET'; 

Else 
DT = D1\(i,newnode); 
Compute vp1' = min {f1 -d1 - fk} and w=minV, -h}; 

(k,I)EA ),ESA')' )' 

;:1:: Iv >11\, 

If Vk*l* < w then 
If ~::3(r,k*)E DT and ~::3(k*,S)E DT then DT = DTu(k*,n); 

DT = DTu(k*,I*); 
else 

If ISA 'I> 1 then DT = DTu(i,n); 
Do \fjE SA': setjj = jj - mint Vk*I*,W}; 

Go to STEP 2; 
Do \fili~ CA and i succeeds newnode in the due date tree DT: 

RECURSJON(i) ~SA', ET' 
If ET' < 0 then 

Set SA = SA u SA' and ET = ET + ET'; 
Else 

DT = D1\(newnode, i); 
If ISA 'I> 1 then DT = DTu(i,n); 

Return; 
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Notice that the due date tree DT contains several subtrees, each connected with the 
dummy end activity n. When a particular subtree is subject to a recursive search and no 
displacement can be found, we make the link between that subtree and the dummy end 
activity n inactive. In doing so, the recursive search procedure will dominate this link and 
will not search for a set of activities of that particular dominated subtree. When later 
during the performance of the recursive search procedure, due to the displacement of a set 
of activities, an arc is added between an activity of the inactive subtree and another 
activity, the inactive subtree will be activated again by making its link with the dummy end 
activity n active again. The subtree can now again be subject to a recursive search and 
eventually a set of activities that will be shifted towards time zero can be found. 

4. Numerical example 

Consider the AON project network given in Figure 1. The number above each node 
denotes the activity duration, while the numbers below each node denote the due date and 
the unit penalty cost respectively. Notice that, for ease of representation, we assume the 
unit earliness costs to equal the unit tardiness costs. Notice also that the recursive 
algorithm is able to handle problems for which not all the activities have a due date. In the 
example, activity 5 has no due date constraint. The recursive algorithm runs as follows. 
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4 

(8,7) 

Figure 1. A project network with due dates and unit penalty costs 

STEP 1. COMPUTE DUE DATE TREE 

The forward pass algorithm computes the finish times of the activities as II =0,12=7,13=6, 
14=5, 15=7, 16=13, !?=9, 18=10, 19=11, 110=12, 111=11, 112=16, 113=21 and 114=21. The 
algorithm constructs the due date tree DT = ((3,5),(3,14 ),(6,12),(6,14),(7,8),(7,11), 
(7,14),(12,13)}. The due date tree consists of three subtrees which are represented in 
Figure 2 in bold. The links with the dummy end activity n are created during the execution 
of the last do-loop of step 1. 

(8,7) 

Figure 2. Due date tree generated in step 1 
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STEP 2. Set CA=0. The algorithm will now perform a recursive search starting with node 
14. 

RECURSION(14) 
SA = {14}, CA = {l4}. AS!l4 < h l4 , ET= O. 

RECURSION(7) : predecessor node 7 
SA = {7}, CA = {7,14}. AS!7 = h7, ET= 7. 

RECURSION(8) : successor node 8 
SA = {8}, CA = {7,8,14}. As!s > h8, ET= -7. 

ET' = -7 < 0: SA = {7,8}, ET= -7 + 7 = o. 
RECURSION(ll) : successor node 11 
SA = {l1}, CA = {7,8,11,14}. AS!ll > h ll , ET=-4. 

ET' = -4 < 0: SA = {7,8,11}, ET= -4 + 0 = -4. 
ET' = -4 < 0: The set of activities {7,8,1l} must be shifted backwards towards time 
zero. Delete the arc (7,14) from the due date tree. Compute V37= min{(j7-d7-j3),(j8-d8-
!4)}=1 and w=min{f8-h8!U-hll}=2. Since V37<W and k*=3 belongs to arc (3,5) of the 
due date tree, we only add the arc (3,7) to the due date tree. Decrease the completion 
times of the activities in SA' with min{v37,w} = 1 : h = 8,18 = 9 and!ll = 10. Repeat 
STEP 2 with the updated due date tree DT = {(3,5),(3,7),(3,14),(6,12),(6,14),(7,8), 
(7,11 ),( 12, 13)} shown in bold in Figure 3. 

(13,\) (20,6) (~,O) 

(8,7) 

Figure 3. DT = {(3,5),(3,7),(3, 14),(6, 12),(6, 14),(7,8),(7, 11),(12, 13)} 

STEP 2. Set CA=0. The algorithm again starts a recursive search starting with node 14. 
RECURSION(14) 
SA = {14}, CA = {14}. AS!14 < h l4 , ET= o. 

RECURSION(6) : predecessor node 6 
SA = {6}, CA = {6, 14 }. AS!6 = h6 , ET = 7. 

RECURSION(12) : successor node 12 
SA = {12}, CA = {6, 12,14}. AS!l2 > h12 , ET= -l. 

RECURSION(13) : successor node 13 
SA = {13}, CA = {6,12, 13,14}. AS!13 > h13 , ET= -6. 
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ET' = -6 < 0: SA= {12,13}, ET= -6 + (-1) = -7. 
ET' = -7 < 0: SA = {6, 12, 13 }, ET = -7 + 7 = O. 

ET' = 0;::: 0: SA = {6,12,13,14}, ET= 0 + 0 = O. 
No displacement has been found for the subtree: make the arc (6,14) inactive. 

RECURSION(3) : predecessor node 3 
SA = {3}, CA = {3,6,12,13,14}. Asj, = h3, ET= 3. 

RECURSION(5) : successor node 5 
SA = {5}, CA = {3,5,6,12,13,14}. Asfs > hs, ET= O. 

ET' = 0: delete arc (3,5) from DT as shown in Figure 4. 
Since ISA'I = 1, no connection is made between node 5 and node 14. 

RECURSION(7) : successor node 7 
SA = {7}, CA = {3,5,6,7,12,13,14}. Ash < h7 , ET= 7. 

RECURSION(8) : successor node 8 
SA= {8}, CA= {3,5,6,7,8,12,13,14}. Asjs>hs,ET=-7. 

ET' = -7 < 0: SA = {7,8}, ET= 7 + (-7) = o. 
RECURSION(ll) : successor node 11 
SA = {11}, CA = {3,5,6,7,8,11,12,13,14}. ASjll > hll , ET= -4. 

ET' = -4 < 0: SA = {7,8,11}, ET= 0 + (-4) = -4. 
ET' = -4 < 0: SA = {3,7,8,11}, ET= -4 + 3 =-1. 

ET' = -1 < 0: The set of activities {3,7,8,11} must be shifted backwards towards time 
zero. Delete the arc (3,14) from the due date tree. Compute V13= min {(f3-d3-jl),(fs-ds-i4)}= 1 
and w=min{fs-hsfwhld=1. Since V13=W and ISA'I = 4 > 1, we add the arc (3,14) to the due 
date tree. Decrease the completion times of the activities in SA' with min {V13,w} = 1 : j3 = 
5, h = 7, js = 8 and jll = 9. Repeat STEP 2 with the updated due date tree DT = 
{(3,7),(3, 14),(6,12),(6,14),(7,8),(7, 11),(12,13)} shown in bold in Figure 4. 

(13,1) (20,6) (=,0) 

(8,7) 

Figure 4. DT = {(3,7),(3, 14),(6,12),(6,14),(7,8),(7, 11),(12, 13)} 



STEP 2. Set CA=0. The algorithm again starts a recursive search starting with node 14. 
RECURSION(14) 

SA = {14}, CA = {14}. Asfl4 < h14 , ET= O. 
Arc (6,14) is inactive. 

RECURSION(3) : predecessor node 3 
SA = {3}, CA = {3,14}. Ash < h3, ET= 3. 

RECURSION(7) : successor node 7 
SA = {7}, CA = {3,7,14}. Ash < h7, ET= 7. 

RECURSION(8) : successor node 8 
SA = {8}, CA = {3,7,8,14}. Asf8 = h8, ET= 7. 

ET' = 7 > 0: delete arc (7,8) from DT. 
Since ISA'I = 1, no connection is made between node 8 and node 14. 

RECURSION(ll) : successor node 11 
SA = {II}, CA = {3,7,8,11,14}. Asfll = h ll , ET= 4. 

ET' = 4 > 0: delete arc (7,11) from DT. 
Since ISA'I = 1, no connection is made between node 11 and node 14. 

ET' = 7> 0: delete arc (3,7) from DT. 
Since ISA 'I = 1, no connection is made between node 7 and node 14. 

ET' = 3 ~ 0: SA = {3,14}, ET= 3 + 0 = 3. 
RETURN; 
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No set of activities can be shifted towards time zero to decrease the weighted earliness
tardiness cost of the due date tree and there are no active links to the dummy end activity 11 

left, so the algorithm stops. The due date tree DT= {(3,14),(6,12),(6,14),(12,13)} is given 
in bold in Figure 5. The completion times of the activities are fl=O, 12=7 ,f,=5,f4=5,fs=7, 
f6=13,h=7,f8=8,f9=11,f1O=12,f11=9,f12=16,f13=21, andfI4=21. The weighted earliness
tardiness cost amounts to 26. 

Figure 5. DT = {(3,14),(6, 12),(12, 13),(12,14)} 
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Although not the case in the example, it should be noted that a subtree of the due 
date tree which has an arc connected to the dummy start activity I can also be the subject 
of a recursive search. Although such subtrees have an arc connected to the dummy start 
activity which itself finishes at time zero, the recursive algorithm can indeed detect sets of 
activities SA which can be shifted further towards time zero. 

Consider the AON project network given in Figure 6. There are 5 activities and 
two dummy activities, each with an activity duration denoted above the node and a due 
date and penalty cost denoted below the node. 

~ffi 
~3 

I----~ 

(1,1) (2,1) 

Figure 6. An example project network 

Figure 7 displays the due date tree DT = {(l,3),(l,7),(2,4),(3,5),(4,6),(5,6)} after 
two shifts. The completion times of the activities areJl=0,h=3,f3=3,f4=4,fs=4,f6=5 and 
h=5. 

(1,1) (2,1) 

Figure 7. DT = {(l,3),(l ,7),(2,4),(3,5),(4,6),(5,6)} 

Activity 2 and activity 4 belong to a subtree which has an arc connected to the 
dummy start activity 1. However, the recursive search procedure is able to shift the set of 
activities SA = {2,4} towards time zero. The completion times of the activities are Jl=O, 
h=2,J-.,=3,f4=3,fs=4,f6=5 andh=5 and no further shift is possible. The weighted-earliness 
tardiness cost amounts to 80. 
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2 

CD -0 ...... 1 
(3,1) (2,25)0 

A A ~3,25) 
~. 

(1,1) (2,1) 

Figure 8. DT = {(l ,3),(1,2),(1,7),(2,4),(3,5),(5,6)} 

5. Computational experience 

The recursive algorithm has been coded in Visual C++ Version 4.0 under Windows 
NT 4.0 on a Dell personal computer (Pentium 200 MHz processor). For the validation of 
the WETPSP we generated instances with ProGenlMax (Schwindt, 1995). These instances 
in activity-on-the-node format use four settings for the number of activities and three 
settings for the order strength OS as described in Table I. We then provided the problems 
with due dates and unit penalty costs. The due dates were generated as follows. First, we 
obtained a maximum due date of each project by multiplying the critical path length with a 
factor as given in Table I. We then randomly generated numbers between 1 and the 
maximum due date. Finally, we sorted these numbers and assigned them to the activities in 
increasing order, i.e. activity 1 is assigned the smallest due date, activity 2 the second 
smallest, etc .. Using seven settings for the due date generation and two settings for the unit 
penalty costs of the activities (both earliness and tardiness penalty cost), we obtained a 
dataset consisting of 1,680 instances. 

Table I. Parameter settings used to generate the test instances 

Number of activities 
Order strength (OS) 

(Mastor, 1970) 
Due dates of the activities 

Unit penalty cost 

30,60,90 or 120 
0.25,0.50 or 0.75 

randomly selected with factor 1.00, 1.25, 1.50, 1.75, 
2.00, 2.25 or 2.50 
randomly selected from the interval [1,10] or [1,50] 

Table 11 represents the average CPU-time and its standard deviation in milliseconds 
(actually, we have solved 1,000 replications for each problem and reported the time in 
seconds). Even instances with 120 activities can be solved within a very small amount of 
computation time. We should keep in mind that the unconstrained weighted earliness
tardiness project scheduling problem is probably not a goal by itself. Its solution may be 
used by a branch-and-bound procedure to compute bounds on the weighted earliness
tardiness cost of a resource-constrained weighted earliness-tardiness problem where the 
activities are also subject to renewable resource constraints (problem m,llcpmlearlyltardy). 
In that case the unconstrained problem should be solved efficiently in every (undominated) 
node of the branch-and-bound tree, which may run in the thousands (even millions). The 
reported CPU-times indicate that the recursive search procedure may well be used for that 
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end. Notice also the relatively small standard deviations, reflecting the rather robust 
behaviour of the procedure over the different problem instances. 

Table II. Impact of the number of activities 

# activities # problems Average CPU-time Standard deviation 

30 420 0.075 0.042 
60 420 0.289 0.162 
90 420 0.585 0.296 
120 420 1.043 0.628 

Table ill shows a positive correlation between the OS of a project and the required 
CPU-time, i.e. the more dense the network, the more difficult the problem. 

Table III. Impact of the order strength 

as # 
0.25 
0.50 
0.75 560 

CPU-time 

0.403 
0.478 
0.613 

Standard deviation 

0.378 
0.440 
0.647 

Figure 9 illustrates the effect of the due date on the average required CPU-time. 
When the factor used for the due date generation is small, the problems contain many 
binding precedence relations and their solution will require an extensive search to shift 
many sets of activities SA to solve the problem. Problems with a large factor for the due 
date generation contain only few binding precedence relations in the due date tree. In that 
case, many activities will be scheduled on their due date and only a small number of shifts 
will be needed to solve the problem. 

2.5 

.Q 2 

" 0 
u 

.~ 

~ 1.5 

" S 
.~ 

~ p... 
U 

" bJJ 

'" 0.5 " ,. 
'" 

0 
1.00 1.25 1.50 1.75 2.00 2.25 

factor for generating due dates 

Figure 9. Effect of the due date 

--+-30 activities 

__ 60 activities 

-tr- 90 activities 

--*-120 acitiviti es 

2.50 

As expected, the earliness and tardiness penalty costs of the activities have no 
significant impact on the required CPU-time, as shown in Table IV. 



Unit penalty cost 

[0,10] 
[0,50] 

6. Conclusions 

Table IV. Impact of the unit penalty cost 

# problems 
840 

840 

Average CPU-time 

0.495 
0.501 

Standard deviation 

0.508 
0.510 
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In this paper an exact recursive search procedure was described for the 
unconstrained project scheduling problem with weighted earliness-tardiness penalty costs 
subject to zero-lag finish-start precedence constraints and in the absence of resource 
constraints (cpm I early/tardy). Each activity of this unconstrained project scheduling 
problem has a known deterministic due date, a unit earliness penalty cost as well as a unit 
tardiness penalty cost and the objective is to schedule the activities in order to minimize 
the weighted earliness-tardiness penalty cost of the project. With these features the 
problem becomes highly attractive in just-in-time environments. The exact procedure 
performs a forward pass calculation in order to schedule the activities such that they finish 
at their due date or later. Subsequently, a recursive search repetitively identifies those sets 
of activities for which a backward shift (towards time zero) decreases the weighted 
earliness-tardiness penalty cost of the project. 

The procedure has been coded in Visual C++, version 4.0 under Windows NT 4.0 
and has been tested on a randomly generated data set generated by ProGen/Max 
(Schwindt, 1995). The results of extensive computational tests obtained on a Dell personal 
computer (Pentium 200 MHz processor) reveal that the recursive algorithm is very 
efficient. This holds the promise that the procedure may be effectively used in branch-and
bound schemes for solving the WETPSP subject to resource constraints 
(m, 11 cpm I early/tardy), which constitutes a promising area for future research. 
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