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A Comparison of Different Bayesian Design Criteria to
Compute Efficient Conjoint Choice Experiments

Abstract

Bayesian design theory applied to nonlinear models is a promising route to cope
with the problem of design dependence on the unknown parameters. The traditional
Bayesian design criterion which is often used in the literature is derived from the second
derivatives of the loglikelihood function. However, other design criteria are possible.
Examples are design criteria based on the second derivative of the log posterior density,
the expected posterior covariance matrix, or on the amount of information provided
by the experiment. Not much is known in general about how well these criteria per-
form in constructing efficient designs and which criterion yields robust designs that are
efficient for various parameter values. In this study, we apply these Bayesian design
criteria to conjoint choice experimental designs and investigate how robust the result-
ing Bayesian optimal designs are with respect to other design criteria for which they
were not optimized. We also examine the sensitivity of each design criterion to the
prior distribution. Finally, we try to find out which design criterion is most appealing
in a non-Bayesian framework where it is accepted that prior information must be used
for design but should not be used in the analysis, and which one is most appealing in a
Bayesian framework when the prior distribution is taken into account both for design
and for analysis.

Keywords: Bayesian design criterion, posterior density, expected posterior covari-
ance matrix, conjoint choice design, Laplace approximation, Fisher information
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1 Introduction

Consumer behavioral models provide a quantitative way to assess the relative importance

of one attribute against another. A very popular tool for modeling consumer behavior is

discrete choice analysis. Data are collected through choice experiments which aim at evalu-

ating consumers’ preferences on a certain product or service. The quality of the outcome of

such an experiment depends a lot on its design. The choice of the alternatives or profiles to

be compared and the way of grouping different alternatives into choice sets is a central issue

in the quality of the data collection. It has been shown that efficient choice designs indeed

play an important role in improving the statistical inference about the quantities of interest

(Huber and Zwerina 1996; Sándor and Wedel 2001, 2002). Optimal designs are commonly

constructed by optimizing a criterion with respect to the design variables of interest.

A serious difficulty in constructing an efficient choice design for the probabilistic choice

model is that it is nonlinear in the parameters and therefore requires knowledge of the values

of the parameters (Atkinson and Donev 1992; Atkinson and Haines 1996; Dror and Steinberg

2006; Sándor and Wedel 2001). This implies that researchers need to assume values for the

parameters before constructing the designs. In general, three approaches have been imple-

mented to tackle this problem. The simplest one is to assume that the respondents have

no preference for one alternative over another. This leads to zero prior parameter values

for constructing designs (Anderson and Wiley 1992; Lazari and Anderson 1994). Huber and

Zwerina (1996) introduced the nonzero prior strategy based on the belief that information is

usually available prior to conducting the experiments. In their approach, designs were con-

structed based on the experimenter’s best prior point estimate of the unknown parameters.

This approach leads to locally optimal designs that are more efficient than those obtained

by a zero prior if the assumed values are reasonably close to the unknown true values.

In recent years, the semi-Bayesian approach introduced in the marketing literature by

Sándor and Wedel (2001) has been widely used for choice experiments (Bliemer et al. 2008;

Kessels et al. 2006; Yu et al. 2008; Vermeulen et al. 2008). This approach takes into ac-

count all possible values of the parameters when constructing designs. A prior distribution

is assumed for the parameters in the design stage, which is then incorporated into an ap-

propriate design criterion. Sándor and Wedel (2001) showed the usefulness of this approach

over the locally optimal approach in constructing experimental designs and concluded that

taking into account the prior uncertainty in the design stage leads to designs that are robust

against a poor initial guess. In recent years, constructing designs for nonlinear models in a

Bayesian fashion has become the state of the art to cope with the problem of design depen-

dence on the unknown parameters of the fitted models.

Both the local approach and the semi-Bayesian approach described above use the asymp-

totic covariance matrix of the maximum likelihood estimates (the inverse of the Fisher in-
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formation matrix) as the design criterion to construct choice experiments. Therefore, prior

information on the parameters is only taken into account in the design stage. This is different

in a true Bayesian approach which use the design criterion developed in a Bayesian estimation

context and it takes into account prior knowledge both for estimation and design procedures.

A true Bayesian approach looks at the covariance matrix of the posterior distribution

in constructing choice designs. The corresponding design criteria can easily be formulated,

but exact solutions are often intractable. This is because, in general, for the non-linear

model, the posterior distribution of the parameters of interest cannot be found in closed

form. To obtain practical solutions in the construction of choice designs, one often resorts

to asymptotic Bayesian design criteria. Several asymptotic approximations to the posterior

covariance matrix are given in Berger (1985). We will limit attention to two approximations.

These include the second derivative of the loglikelihood function and the second derivative

of the logposterior density.

However, in the literature on choice experiments, the validity of these asymptotic ap-

proximations to the posterior covariance matrix and the performance of the optimal designs

constructed with the Bayesian criteria based on the expected posterior covariance matrix and

those based on its approximations have not been compared. Little guidance is available on

which type of Bayesian design criterion is best to use in practice when only a small number

of observations are allowed in the experiment.

The approximation based on the second derivative of the loglikelihood function or the

Fisher information matrix has been widely used as a design criterion by many authors for

constructing choice-based experimental designs because of its computational simplicity (Hu-

ber and Zwerina 1996; Zwerina et al. 1996; Sándor and Wedel 2001, 2005; Kessels et al.

2006). However, in situations where the elements of the Fisher information matrix are small

due to the sample size restriction, the asymptotic approximation based on the Fisher infor-

mation matrix can be a poor approximation to the true posterior covariance matrix. In this

situation, the optimal designs based on this asymptotic criterion might be very inefficient

compared to the designs constructed with the true one.

Tsutakawa (1972) used a better approximation to the expected posterior variance based

on the second derivative of the logposterior density for a design criterion in the computa-

tion of a Bayesian design for a one-parameter logistic regression model with known slope

coefficient and unknown median lethal dose, LD50. A normal prior was used in his paper.

Therefore, the approximation was simplified as the Fisher information plus the precision of

the prior. Tsutakawa (1980) extended this to designs for the estimation of other percentiles

than the median. The accuracy of the asymptotic approximation to the expected posterior

variance in Tsutakawa (1972) has been studied by Sun et al. (1996). They showed a remark-

able closeness of the asymptotic approximations to the exact ones in selecting dose levels.
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In this paper, we examine the performance of design criteria based on asymptotic theory

for constructing choice designs when multiple factors are allowed. In addition, we study

design criteria such as the expected posterior covariance matrix and the amount of informa-

tion provided by an experiment as given by the Shannon information. These approaches do

not rely on the asymptotic approximations. Designs constructed with the former criterion

aim at minimizing the expected posterior covariance matrix of the Bayesian estimator, while

the latter criterion is based on the information theoretic approach and aims at maximizing

the expected gain in Shannon information. Chaloner and Verdinelli (1995) have provided a

general view of Bayesian experimental design criteria. In particular, they give an overview

of a number of loss functions and the alphabetic Bayesian criteria that correspond to these

loss functions. Their focus was on presenting various Bayesian design criteria based on the

asymptotic theory rather than on evaluating how much is sacrificed when using asymptotic

Bayesian criteria instead of the corresponding exact criteria in the construction of efficient

designs.

Use of the exact expected posterior variance to select designs has been considered in the

field of clinical trials. Typical examples are Han and Chaloner (2004), who compare eight

candidate designs numerically by computing Monte Carlo estimates of the posterior vari-

ances, Stroud, Müller and Rosner (2001), who assume the same prior distribution for design

and analysis, and use the expected posterior variances of some population pharmacokinetic

quantities of interest as the design criterion, and Sun et al. (1996) and Sun and Tsutakawa

(1997), who considered Bayesian design problems in choosing a set of dose levels. Note

that all above authors considered the expected posterior variance instead of the covariance

matrix of the parameters as a design criterion. This reduces the design criterion to only one

parameter dimension. In our study, we use the posterior covariance matrix of the parameters

in the design criterion.

The exact expected posterior covariance matrix has been rarely used up to now for plan-

ning experiments in the area of conjoint choice study due to computational problems. these

prohibited to check how much worse the optimal designs constructed with the asymptotic

criteria are compared to those based on the exact criterion, to investigate the robustness of

different Bayesian criteria to the prior specification, and to examine how close the asymp-

totic approximation to the posterior covariance matrix is. In this paper, we provide answers

to those questions. Our focus is on choice situations where only small sample sizes are feasi-

ble. Note that in situations where large samples are allowed, there is little meaning to check

the performance of the asymptotic design criteria since they will all converge to the exact one.

So far, we have focused on the asymptotic approximation of the expected posterior co-

variance matrix. Another criterion that we consider is based on the information theoretic ap-

proach which is related to the concept of the Shannon information (Shannon 1948). Shannon
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introduced the notion of entropy to measure the uncertainty associated with a random vari-

able. Based on this concept, Lindley (1956) introduced a Bayesian information approach to

experimental designs which maximizes the gain in knowledge about the parameters. Knowl-

edge is then measured by the amount of information provided by the experiment. The

design which maximizes the expected Kullback-Leibler distance between the posterior and

the prior distributions or, equivalently, maximizes the information gain in moving from the

prior distribution to the posterior distribution was preferred. When the prior distribution

does not depend on the design, this criterion is equivalent to maximizing the expected Shan-

non information of the posterior distribution. Sebastiani and Wynn (1997) reviewed the

information theoretic approach to Bayesian experimental designs and examined computa-

tional issues related to constructing designs using the expected Shannon information of the

posterior distribution. An application of the approximation to the Shannon information to

experimental designs for non-linear models is given in Sebastiani and Settimi (1997, 1998).

Merlé and Mentré constructed designs with one or two measurements for a pharmacokinetic

and a pharmacodynamic model using the Shannon information and the expected posterior

covariance matrix. They showed that these two criteria generally lead to the same designs

except for the Emax model and a multiplicative measurement error.

In this paper, six Bayesian design criteria are introduced and used to optimize exper-

iments for estimating the parameters of the conditional logit model. These designs are

compared to investigate how robust they are with respect to other design criteria for which

they are not optimized and to examine the sensitivity of each Bayesian design with respect

to the prior distribution. We study the closeness of the asymptotic approximations to the

posterior covariance matrix and explore how good the asymptotic Bayesian design criteria

are for constructing efficient choice designs compared to the criteria which do not rely on

the asymptotic theory. We also find out which design criterion is most appealing in a non-

Bayesian framework where it is accepted that prior information must be used for design but

not for the analysis, and which one is most appealing in a Bayesian framework when the

prior distribution is taken into account for design and for analysis.

The results of this study are useful in the context of the sequential design construction,

in which, for a given respondent, the parameters are estimated each time a choice set is

rated. The design of the next choice set then depends on the parameter estimates based on

all previous answers. Obviously, the number of observations used to compute the design for

each individual respondent is small.

Another example where small samples are likely is in prototype experiments. Assume

that a manufacturer would like to innovate the design of shaving machines, and that proto-

type shaving machines are produced. Each respondent is given one set of shaving machines

to try for a certain period. The respondent is then asked to give his preference and to in-

dicate the smoothness of the skin after using each type of shaving machines. This type of
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experiment in which prototypes are used is also common in other fields.

In the next section, we sketch the conditional logit model and introduce different Bayesian

design criteria. In Section 3, we investigate the robustness of each Bayesian design with re-

spect to design criteria for which they were not optimized. In Section 4, we describe the

details of the simulation study and discuss the results, and Section 5 contains a summary of

the main findings.

2 Conditional Logit Model and Design Efficiency Cri-

teria

2.1 Conditional Logit model

The conditional logit probability that alternative k is chosen from choice set s is given by

pks(β) =
exp(x′

ksβ)∑K
i=1 exp(x′

isβ)
, k = 1, ..., K, (1)

with K the number of profiles in each choice set, xks a p-dimensional vector characterizing

the attributes of profile k in choice set s, and β a p-dimensional coefficient vector containing

the effects of the different attribute levels on the utility. For reasons of notational simplicity,

we will denote pks(β) by pks.

Suppose that there are S choice sets, then the likelihood function is given by

L(y|β) =
S∏

s=1

K∏

k=1

pyks

ks , (2)

where yks denotes the number of times that respondents choose alternative k in choice set

s. The maximum likelihood estimator β̂ for the parameter vector β is the vector of values

that maximizes the likelihood function. As any prior information is ignored in the analysis,

this approach is a non-Bayesian estimation approach.

In the Bayesian framework, an estimate for the parameter vector β is obtained from the

posterior density of β given the data y. Suppose that πI
0(β) is the prior distribution of the

parameters. The posterior density is then given by

q(β|y) =
L(y|β) πI

0(β)∫
L(y|β) πI

0(β) dβ
=

L(y|β) πI
0(β)

pY (y)
, (3)

where pY (y) is the marginal distribution of Y . The posterior mode, which is the parameter
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vector that maximizes the posterior density, is used as an estimation for β.

2.2 Design Efficiency Criteria

In the following section, we introduce six design criteria. The first four are based on an

asymptotic approximation to the expected posterior covariance matrix. The last two crite-

ria (which do not rely on asymptotic theory) are based on the expected posterior covariance

matrix and on the Shannon information.

2.2.1 Fisher Information Matrix (FIM)

So far, the most widely used design criterion for constructing choice-based conjoint experi-

ments is based on the asymptotic covariance matrix of the maximum likelihood estimator.

According to the Rao-Cramer inequlity, the inverse of the Fisher information matrix is the

asymptotic covariance matrix of the best asymptotically normal estimators. Thus designs

which yield maximal Fisher information are associated with minimal asymptotic covariance.

For the conditional logit model, the Fisher information matrix has the following expression:

IFIM(β,X) = −EY

[
∂2 log[L(y|β)]

∂β∂β′

]
,

= N

S∑
s=1

X′
s(Ps − psp

′
s)Xs,

(4)

where N is the number of respondents, Xs is the design matrix for choice set s, Ps =

diag [p1s, p2s, ......, pKs] and ps = [p1s, p2s, ......, pKs]
′.

To take into account the uncertainty of the parameter values, the Fisher information

matrix is used in a Bayesian framework. Let πD
0 (β) denote the prior distribution used for

design. Then, the D-optimal Bayesian designs are constructed by minimizing either

φA
FIM =

∫
det [IFIM(β|X)]−1/p πD

0 (β) dβ (5)

or

φB
FIM = det

[∫
IFIM(β|X) πD

0 (β) dβ

]−1/p

. (6)

We call φA
FIM the FIM type A criterion and φB

FIM the FIM type B criterion. Criterion

φA
FIM minimizes the expected determinant of the maximum likelihood covariance matrix

over the design prior, and has been considered by many authors in constructing choice ex-

periments (Bliemer et al. 2008; Sándor and Wedel 2001, 2005; Kessels et al. 2006; Yu
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et al. 2008; Vermeulen et al. 2008). Criterion φB
FIM which maximizes the determinant of

the expected Fisher information has not been used frequently. Atkinson and Donev (1992)

constructed one parameter designs for a truncated model using both φA
FIM and φB

FIM . They

found a striking difference between both designs. Note that φA
FIM and φB

FIM are essentially

semi-Bayesian design criteria as they are derived in a non-Bayesian maximum likelihood

estimation context and only the design prior πD
0 (β) was taken into account in these criteria.

2.2.2 Generalized Fisher Information Matrix (GFIM)

In Bayesian estimation, one uses prior information to compute the posterior distribution

of the model parameters. We call this prior distribution the inference prior, πI
0(β). In

most cases, the inference prior, πI
0(β), is identical to the design prior,πD

0 (β). The posterior

distribution can be approximated by a normal distribution with the posterior mode and

the inverse of the Generalized Fisher information matrix as the mean and the covariance

matrix. The Generalized Fisher information matrix (GFIM) is computed as minus the

Hessian matrix of the log posterior density and given by

IGFIM(β,X) = −EY

[
∂2 log

[
L(y|β) πI

0(β)
]

∂β∂β′

]
,

= EY

[
−∂2 log L(y|β)

∂β∂β′
− ∂2πI

0(β)

∂β∂β′

]
,

= IFIM(β,X)− EY

[
∂2πI

0(β)

∂β∂β′

]
,

(7)

where IFIM(β,X) is given in (4). When the inference prior follows a multivariate normal

distribution with covariance ΣI0, the second term in the last expression in (7) is simplified

to

EY

[
∂2πI

0(β)

∂β∂β′

]
= −Σ−1

I0 , (8)

and

IGFIM(β,X) = IFIM(β,X) + Σ−1
I0 . (9)

In this paper, we focus on a multivariate normal prior as it is the standard prior used

by many authors (Han and Chaloner 2004; Sándor and Wedel 2001, 2005; Tsutakawa 1972,

1980; Vermeulen et al. 2008; Yu et al. 2008;). The two asymptotic Bayesian design criteria

based on (9) are
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φA
GFIM =

∫
det

[IFIM(β|X) + Σ−1
I0

]−1/p
πD

0 (β) dβ (10)

and

φB
GFIM = det

[∫ (IFIM(β|X) + Σ−1
I0

)
πD

0 (β) dβ

]−1/p

. (11)

We call φA
GFIM the GFIM type A optimality criterion and φB

GFIM the GFIM type B

optimality criterion. The corresponding Bayesian D-optimal design is the one that minimizes

either (10) or (11). From the expression of the GFIM criteria, we notice that the FIM

criteria introduced in (5) and (6) are limiting cases of the GFIM design criteria when non

informative inference prior distribution is considered, or equivalently, when Σ−1
I0 in (10) and

(11) is close to the zero matrix.

2.2.3 Expected Posterior Covariance Matrix (EPCV )

The posterior covariance matrix which measures the accuracy of the Bayesian estimator after

the experiment has been conducted is given by

V ar(β|y) =

∫ [
β − β̄(y)

] [
β − β̄(y)

]′
q(β|y) dβ

=
1

pI
Y (y)

∫ [
β − β̄(y)

] [
β − β̄(y)

]′
L(y|β) πI

0(β) dβ,

where pI
Y (y) is the marginal distribution of Y:

pI
Y (y) =

∫
L(y|β) πI

0(β) dβ. (12)

The posterior mean β̄(y) is given by

β̄(y) =

∫
β q(β|y) dβ. (13)

Suppose that a possibly different prior distribution πD
0 (β) is used for constructing the de-

sign. The goal is to find a design that minimizes the determinant of the expected posterior

covariance matrix ED
Y [V ar(β|y)], where the expectation is with respect to the marginal dis-

tribution of y when the prior distribution is the design prior πD
0 (β). Note that the expected

posterior covariance matrix is the posterior covariance matrix one expects before observing
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the data. Let fI(y,β) = L(y|β)πI
0(β) and fD(y, β) = L(y|β)πD

0 (β). Then,

ED
Y [V ar(β|y)] =

∫
V ar(β|y) pD

Y (y) dy

=

∫ [
1

pI
Y (y)

∫ [
β − β̄(y)

] [
β − β̄(y)

]′
fI(y,β) dβ

]
×

[∫
fD(y,β) dβ

]
dy

=

∫ ∫ [
β − β̄(y)

] [
β − β̄(y)

]′
fI(y,β) dβ ×

∫
fD(y,β)dβ∫
fI(y,β)dβ

dy.

(14)

If the design prior is identical to the inference prior, then fI(y,β) = fD(y,β) and the

expected posterior covariance matrix can be simplified to:

ED
Y [V ar(β|y)] =

∫ ∫ [
β − β̄(y)

] [
β − β̄(y)

]′
fI(y,β) dβ dy. (15)

In this paper, we assume πI
0(β)=πD

0 (β) and denote this prior by π0(β). This assumption

is realistic because the design and analysis are often conducted by the same person. The

expected posterior covariance matrix given in expression (15) can then be written as

φEPCV = ED
Y [V ar(β|y)] =

∫ ∫ [
β − β̄(y)

] [
β − β̄(y)

]′
L(y|β) π0(β) dβ dy. (16)

To simplify the computation, we approximate the likelihood by a normal distribution. Rossi

et al. (2005) stated that for the conditional logit likelihood, the normal approximation is

excellent. The design which minimizes the determinant of the expected posterior covariance

matrix in (16) is desirable.

2.2.4 Shannon information

In a Bayesian information theoretic approach, the optimal design is chosen by maximizing

the expected gain in Shannon information or, equivalently, maximizing the amount of infor-

mation provided by the experiment. This gain can be assessed by comparing the information

in the prior and in the posterior distribution.

The amount of information associated with a prior distribution πD
0 (β) is defined as

g0 = Eβ

{
log[πD

0 (β)]
}

=

∫
log[πD

0 (β)] πD
0 (β) dβ. (17)

After the experiment has been performed, the prior distribution is updated to the posterior
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distribution, q(β|y), which has an information content equal to

g1(y) =

∫
log[q(β|y)] q(β|y) dβ

=
1

pI
Y(y)

∫
log[q(β|y)] L(y|β) πI

0(β) dβ,

=
1

pI
Y(y)

∫
log[q(β|y)] fI(y,β) dβ.

(18)

The amount of information provided by the experiment with design matrix X when the

design prior is πD
0 (β), the inference prior is πI

0(β) and the response is y, is

g(X, πD
0 (β), πI

0(β),y) = g1(y)− g0. (19)

Notice that g(X, πD
0 (β), πI

0(β),y) depends on the responses y. Since they are not yet

available when the experiment is set up, the design criterion is based on the expected

Shannon information provided by the experiment. It is computed by taking the expec-

tation over the marginal distribution of the data when the prior is πD
0 (β). Denoting

pD
Y (y) =

∫
L(y|β)πD

0 (β)dβ, the expected Shannon information provided by the experiment

is defined as

g(X, πD
0 (β), πI

0(β)) = ED
Y [g1(y)− g0] =

∫
g1(y) pD

Y (y) dy − g0. (20)

A design that maximizes the expected Shannon information provided by the experiment is

desirable. As g0 in (20) does not depend on the design, maximizing (20) is equivalent to

maximizing
∫

g1(y)pD
Y (y)dy, which is the expected Shannon information of the posterior

distribution. Similar to the expected posterior covariance matrix, the design criterion based

on the Shannon information is given by

∫
g1(y)pD

Y (y)dy =

∫ [
1

pI
Y(y)

∫
log[q(β|y)] fI(y, β) dβ

]
×

[∫
fD(y,β) dβ

]
dy

=

∫ ∫
log[q(β|y)] fI(y, β) dβ ×

∫
fD(y,β) dβ∫
fI(y, β) dβ

dy.

(21)

If πD
0 (β) = πI

0(β) = π0(β), then the above expression reduces to:

φShannon =

∫
g1(y) pD

Y (y) dy =

∫ ∫
log[q(β|y)] fI(y, β) dβ dy

=

∫ ∫
log

(
L(y|β)π0(β)∫
L(y|β)π0(β)dβ

)
L(y|β) π0(β) dβ dy.

(22)
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2.2.5 Computational Issues

To compute optimal designs using these criteria, several highly dimensional integrals have

to be computed precisely. For the integral
∫

L(y|β)π0(β)dβ in (22) and for the posterior

mean β̄ in (13), we used the Laplace approximation (Bradley and Thomas 1996). To make

the construction of the designs based on the expected posterior covariance matrix and the

Shannon information feasible, we used systematic draws instead of Monte Carlo draws to

approximate the integrals in expression (16) and (22). The outer integral in both expression

computed using the randomized spherical-radial theory was which has been used by Gotwalt

et al. (2007) and Monahan and Genz (1997). The inner integral in (16) and (22) was

computed using the extensible shifted lattice points transformed by Baker’s transformation

based on the work of Sándor and András (2004) and Hickernell et al. (2000). Furthermore, we

used the well-known coordinate-exchange algorithm to search for the best design (Meyer and

Nachtsheim 1995; Kessels et al. 2008; Yu et al. 2008a). The accuracy of the computations

was checked and is reported in detail in the technical report (Yu et al. 2008b)

3 Relative Design Efficiency

Let DC(X) denote the value of design criterion C for design X where C is one of the six

design criteria discussed in this paper. The relative design efficiency of any pair of designs X1

and X2 in terms of criterion C is computed as DC(X1)/DC(X2). It measures how efficient

design X2 is relative to design X1 when evaluated by criterion C. Values larger than one

are obtained if design X2 is more efficient than X1 according to criterion C.

In this section, we examine how well the different Bayesian designs perform with respect

to the design criteria for which they were not optimized. More specifically, suppose that de-

sign X∗ is the optimal design constructed with design criterion φA
FIM . The relative efficiency

of any other design X relative to design X∗, DA
FIM (X∗)

DA
FIM (X)

, enables us to explore how good design

X is compared to the optimal design X∗ when the goal of the experiment is to minimize the

φA
FIM criterion.

To investigate a wide variety of situations while keeping the computations manageable,

we consider a design problem with specification 32/2/6, that is, 6 choice sets with 2 alterna-

tives per choice set and 2 attributes, each at 3 levels. The prior is specified as β ∼ N(µ0, I4),

where µ0=(-1 0 -1 0) and I4 is the 4-dimensional identity matrix.

The criterion values were computed for the parameter values assumed when constructing

the designs. That is, the comparison was conducted under the assumption that the prior

was correctly specified. This allowed us to investigate which design is the least sensitive

to the design criterion. Table 1 shows that in general, the efficiencies of the design based

on the expected posterior covariance matrix (EPCV ) are quite high for all other criteria.
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This implies that the EPCV criterion enabled us to find a design which performs well for

different purposes of the choice experiments. For example, the EPCV design is efficient not

only for a Bayesian analysis, but also for a non-Bayesian analysis where the inference prior

is ignored in the analysis and the asymptotic covariance matrix of the maximum likelihood

estimates (the inverse of the Fisher information matrix) is minimized. This is also the case

for the design based on the Shannon information.

Comparing the φA
FIM and φB

FIM designs to the φA
GFIM and φB

GFIM designs learns that the

GFIM criteria in general, lead to better efficiencies than the corresponding FIM criteria.

Comparing the φA
FIM design with the φB

FIM design, we found that the FIM type A criterion

led to a design which is more robust to the other design criteria than the FIM type B.

Similarly, the GFIM type A criterion led to a design which is more robust than the GFIM

type B criterion. The Bayesian design generated by φB
FIM is the least robust to other design

criteria.

Table 1: Evaluation of the Bayesian optimal designs in terms of other design criteria
Evaluation based on

φA
FIM φB

FIM φA
GFIM φB

GFIM φEPCV φShannon

Designs based on

φA
FIM 100.00% 99.95% 99.95% 99.99% 87.3% 90.69%

φB
FIM 58.44% 100.00% 86.37% 99.97% 66.53% 74.25%

φA
GFIM 99.88% 96.91% 100.00% 97.55% 93.36% 93.58%

φB
GFIM 88.1% 99.96% 96.62% 100.00% 87.73% 94.2%

φEPCV 98.20% 99.56% 98.54% 96.08% 100.00% 97.92%

φShannon 95.68% 96.15% 99.41% 97.60% 96.07% 100.00%

4 Simulation Study

The simulation study consists of two parts. In the first part, we check whether the inverse

of the FIM and GFIM are good approximations of the true posterior covariance matrix.

In the second part, we investigate how much we sacrifice in terms of design efficiency by

applying the simpler asymptotic Bayesian design criteria instead of the computationally

more demanding φEPCV .

4.1 Validity of the Asymptotic Approximation

In this section, we examine the closeness of the inverse of the FIM and GFIM to the

posterior covariance matrix under various scenarios. Since we are working on the multi-

dimensional parameters, it is difficult to compare different matrices directly. Therefore, we

use a widely accepted scalar measure and compute the determinants of the inverse of the
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FIM , GFIM and the posterior covariance matrices, to investigate how close these matrices

are to each other.

We drew r = 1, ..., 512 true parameter vectors from N(µ0, I4), µ0=(-1 0 -1 0). For a given

design, a given true parameter vector βr and a given number of respondents, we simulated

1000 sets of responses. For each set, the posterior covariance matrix was computed using

the Markov Chain Monte Carlo (MCMC) approach. We then averaged their determinants

over the 1000 data sets in order to get a reliable result. This result was compared to the

determinants obtained from the asymptotic approximations. More specifically, for each true

parameter vector βr, we compute

∣∣[IFIM(β,X)]−1
∣∣ , (23)

and
∣∣∣∣∣
[
I(β,X) +

1

(σI4)

]−1
∣∣∣∣∣ . (24)

We then computed the percentage difference between the determinants from the posterior

covariance matrix and these approximations. Finally, we averaged all these percentage dif-

ferences over the 512 draws βr. Since the performance of the approximations to the posterior

covariance matrix depends on the sample size, we took 7 different numbers of respondents

between 10 and 70. In addition, as the quality of the GFIM approximation also depends

on σ, we took 15 values of σ between 1 and 20.

We summarize the results in Figure 1. The Y-axis represents the percentage difference

between the posterior covariance matrix and its approximations. The X-axis shows the

number of respondents. The results obtained from FIM and GFIM with σ = 1, 5, 10 are

shown. All curves decrease with the number of respondents, which was to be expected. In

addition, it is clear from the plot that the inverse of the FIM leads to very inefficient ap-

proximations to the posterior covariance matrix when the sample size is small. The GFIM

with relatively small σ provides a significantly better approximation compared to FIM .

The FIM curve lies higher than above all other curves as the asymptotic approximation

based on the FIM is the upper bound for all the approximations by GFIM when σ goes to

infinity. For any given number of respondents, the inverse of the GFIM approximation is

closer to the posterior covariance matrix than the inverse of the FIM approximation. How-

ever, the advantage of using the GFIM over the FIM decreases as the sample size increases.

In Figure 1, we present the results for only a few cases among the 7 × 15 = 85 different

combinations of σ and the number of respondents n. To get a more detailed picture, we plot

all the combinations of these two parameters in Figure 2. This plot enables us to visualize

the comparison between the GFIM and FIM approximations under all scenarios we have
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studied.

For each true parameter, we first compute the percentage difference between (23) and

(24) from the determinant of the true posterior covariance matrix, respectively. We then

took the ratio of the deviation obtained from the GFIM over that obtained from the FIM ,

and averaged this ratio over the 512 true parameters βr. The smaller the value on the

plot, or equivalently, the lighter the color is, the larger the advantage of using the GFIM

approach. A ratio with value close to 1 indicates that the inverses of the GFIM and the

FIM lead to almost the same error in approximating the posterior covariance matrix.

Figure 2 clearly demonstrates the domains where the inverse of the GFIM is most ap-

pealing and where it only has little advantage over the inverse of the FIM in approximating

the posterior covariance matrix. These domains correspond to the pink, blue and green area,

and to the deep orange area, respectively. In addition, the color of the plot changes from

the right to the left and from the front to the back which demonstrates how the relative

performance of the GFIM and FIM changes with the value of σ and the sample size. It is

clear that the relative performance of the two designs strongly depends on σ. For reasonably

small values of σ, the inverse of the GFIM is a much better approximation to the posterior

covariance matrix. That the GFIM converges to the FIM as the value of σ increases is

now clearly visualized in Figure 2.

Figure 1: Percentage difference between the posterior covariance matrix and its approxima-
tions

4.2 Comparing Design Sensitivity to Prior Specification

In this section, we compare the six optimal designs constructed with the design criteria in-

troduced in Section 2 under a wide variety of parameter spaces. We used 10 respondents in

the study. The goal is to examine how well these designs perform when the sample size is
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Figure 2: Ratio of the deviation of the GFIM from the posterior covariance matrix over the
deviation of the FIM

small, and to study the robustness of each design when prior information about the param-

eters is incorrect. The comparison is done in both a Bayesian and a non-Bayesian framework.

Since the prior specification does have an impact on the performance of the resulting

designs, it is interesting to investigate whether the relative performance of different designs

is sensitive to the choice of the prior mean as well as to the prior covariance matrix. We

evaluated the performance of the six designs in 465 different parameter spaces. For each

parameter space, the true parameters were drawn from a different multivariate normal dis-

tribution defined by a different combination of the mean µ and the covariance matrix Σ.

The mean µ was specified as µ = µ0 +λ[14], where λ reflects the deviation of the true mean

µ from the assumed mean µ0 and took values between [-1.5, 1.5]. The covariance matrix Σ

was specified as Σ = σ2I4, where σ took values between [0.2, 3].

These parameter spaces allow us to study the impact of well defined prior distributions

and poorly defined prior distributions when constructing the designs. Under well specified

prior distributions, the true parameters do not deviate much from the ones assumed in

the design construction. With poorly defined prior distributions, the true parameters can

lie in the tail of the design prior or they are not even covered by the design prior. The
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larger the value of σ or the larger the absolute value of the λ, the more likely the prior is

poorly defined. We hope to identify designs that are robust so that if the design prior is

misspecified to a reasonable extent, it is still possible to obtain efficient parameter estimates.

We first investigate how well each design performs in a Bayesian framework when the

prior distribution is taken into account for design and for analysis. To study this, we com-

pare the efficiencies of the six designs in each parameter space. We drew 90 true parameter

vectors βr from each parameter space. For each βr and for each Bayesian design X, we

simulated data 128 times and computed the corresponding posterior covariances. The ex-

pected posterior covariance matrix for each βr was computed by averaging 128 computed

posterior covariances. We then took the determinant of the expected posterior covariance

matrix for each βr. We consider the Bayesian design constructed with the φEPCV criterion

as the benchmark design. From the Bayesian perspective, the φEPCV design is a natural one

to serve as the benchmark. For each draw of the true parameter βr, the relative efficiency of

design X over the benchmark design was computed by taking the ratio of the determinant

obtained from the benchmark design over that from design X. For each parameter space, we

averaged the ratios over all parameter draws. The results for the different parameter spaces

and different designs are presented in the contour plot in Figure 3.

We also conducted the comparison in a non-Bayesian framework where it is accepted that

prior information is used for design but should not be used in the analysis. The benchmark

design for this comparison was constructed by the φA
FIM criterion as it is the most commonly

used Bayesian design criterion for the classic non-Bayesian analysis. Here each design is

evaluated by the φA
FIM criterion. The efficiency of each design relative to the benchmark

design was computed and is shown in Figure 4 for all parameter spaces.

4.2.1 Comparisons in a Bayesian Framework

In this section, we examine how good each design is for making efficient Bayesian analyses.

The five contour plots in Figure 3 enable us to explore the sensitivity of each design to the

specification of the prior distribution. Each plot presents the relative efficiency of the design

over the benchmark design under various parameter spaces. The value of λ, which reflects

how much the mean of the multivariate normal distribution from which the true parameters

are drawn deviates from the one assumed in generating the design, is displayed on the hori-

zontal axis. The vertical axis presents the values of σ defined in Section 4.2.

The relative efficiencies in each plot in Figure 3 are classified into six categories. Each

color on the plot represents a category with a specific range of efficiencies. For example, the

pink area shows the relative efficiencies with values below 0.8, while the orange area presents

those with values above 1. For a specific plot, the orange area thus shows those conditions
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(a) Fisher information type A (b) Fisher information type B

(c) Generalized Fisher information type
A

(d) Generalized Fisher information type
B

(e) Shannon Information

Figure 3: Efficiencies relative to the EPCV optimal design in a Bayesian framework

under which the alternative design is more efficient than the benchmark. The larger the

green, blue, purple and pink areas, the less efficient the associated design compared to the

benchmark design.

The large non-orange area in each plot indicates that the φEPCV -optimal design is gen-

erally more efficient than the alternatives under various scenarios. This implies that the

EPCV criterion leads to designs which are robust to the prior specification. Most of the

area in plot (c) is colored by yellow and green which indicates that the asymptotic GFIM

type A criterion does lead to a reasonably efficient Bayesian conjoint choice design. Plot (e)

tells us that the design criterion which aims at maximizing the expected gain in Shannon
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information also performs well for constructing designs for efficient Bayesian analysis. Com-

paring Plot (d) to Plot (c) learns us that the φB
GFIM criterion leads to a design which is less

stable than that constructed with the φA
GFIM criterion.

The lower parts of Plot (a) and (b) show us that the FIM criteria are rather inefficient

in constructing optimal Bayesian designs for efficient Bayesian inference compared to the

EPCV criterion. This area includes those parameter spaces where the true parameters are

not far from the one assumed in the design construction or equivalently, when the prior

information is correctly specified or misspecified to a reasonable extent. Under these situa-

tions, the loss in efficiency due to the use of the popular FIM criteria instead of the EPCV

criterion for constructing choice experiments is large. This implies that the popular asymp-

totic Bayesian design criteria based on the Fisher information matrix are not adequate for

generating choice experiments in a fully Bayesian setting. Note that the sacrifice is even

larger for φB
FIM than for φA

FIM .

4.2.2 Comparisons in a non-Bayesian framework

In the previous section, we showed the good performance of design criteria such as the ex-

pected posterior covariance matrix, the GFIM and the Shannon information in constructing

choice experiments for efficient Bayesian inference. In this section, we are interested in exam-

ining how these criteria perform in a non-Bayesian framework. Recall that the benchmark

design used here was constructed with the φA
FIM criterion because it is the most commonly

used criterion for constructing choice experiments in the non-Bayesian setting. As in Figure

3, the relative efficiencies in Figure 4 are classified into six categories. The colors on the

plot have the same interpretation as in Figure 3 but correspond to larger ranges of relative

efficiencies.

Plot (d) reveals that, in general, the design constructed with the EPCV criterion is also

efficient for non-Bayesian analysis. This particularly holds for those conditions the results

of which are displayed in the lower part of Plot (d). The upper part of Plot (d) contains

results for those parameter spaces with a lot of true parameters that are not covered by the

design prior. In those situations, the EPCV design becomes less efficient for non-Bayesian

estimation compared to the benchmark design.

The large orange and yellow areas in Plot (b) correspond to the relative efficiencies which

are higher than 90%. This implies that the φA
GFIM design performs well for the non-Bayesian

analysis in those scenarios. Compared to the φA
GFIM design, the φB

GFIM design is less efficient

in a non-Bayesian framework.

Compared to the design based on the expected posterior covariance matrix, the design
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(a) Fisher information type B

(b) Generalized Fisher information type
A

(c) Generalized Fisher information type
B

(d) Expected Posterior Covariance Ma-
trix

(e) Shannon information

Figure 4: Design criteria comparison in terms of Relative efficiency in a non-Bayesian frame-
work

based on the Shannon information in Plot (e) is less robust in a non-Bayesian context. How-

ever, it still provides good performance when the design prior is well specified or misspecified

to a certain extent. Plot (a) shows the inefficiency of φB
FIM compared to φA

FIM .

4.3 Computational Complexity

In the previous section, it was shown that the design criterion based on the expected pos-

terior covariance matrix is most appealing in most cases. However, computing the exact
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posterior distribution at each iteration of the design construction algorithm is not a trivial

task and requires substantial computations. In many cases, the small marginal gains using

the exact criterion were obtained at the expense of an excessive computational effort. In

this section, we compare each of the six Bayesian design criteria in terms of computational

convenience.

It turns out that the four asymptotic Bayesian criteria (φA
FIM , φB

FIM , φA
GFIM and φB

GFIM)

are remarkably fast. For the design problem that we considered in this paper, the compu-

tation times for one try of the coordinate exchange algorithm to search for the best design

based on each of these four asymptotic criteria were less than 0.5 seconds. In contrast, the

computation times for computing designs based on the expected posterior covariance matrix

and the Shannon information are much higher. For only one try of the algorithm, these two

criteria require at least 21600 times more time than required by the asymptotic Bayesian

criteria. This is because there might be millions of integrals related to the posterior distri-

bution that need to be evaluated when searching for a best design by means of the expected

posterior covariance matrix and the Shannon information.

The computation time also increases dramatically with the design size. For example, for

a design problem with specification 33/2/12, one needs more than 16 hours for a single try of

the coordinate exchange algorithm. Given the good performance of the φA
GFIM criterion and

its computational attractiveness, using the φA
GFIM criterion to construct Bayesian designs

when the sample size is small is a sensible thing to do in practice.

5 Summary

This paper reviews six Bayesian criteria ranging from those based on the Fisher informa-

tion matrix and the Generalized Fisher information matrix to those based on the expected

posterior covariance matrix and the Shannon information to compute designs for conjoint

choice experiments. First we investigated how robust the resulting Bayesian optimal designs

are with respect to criteria for which they are not optimized. Then, we examined how close

the inverse of the Fisher information matrix and the inverse of the Generalized Fisher infor-

mation matrix are to the true posterior covariance matrix. Finally, we studied the quality

of each Bayesian optimal choice designs. Especially, we investigated how much we sacrifice

when using the simpler asymptotic design criteria instead of the computationally more in-

volved expected posterior covariance matrix criterion, and we check the sensitivity of each

design to the misspecification of the prior distribution.

Our study reveals that the efficiency of the EPCV design is quite high when evaluated

by other design criteria for which it was not optimized. This is also the case for the de-

sign based on the Shannon information. In contrast, the GFIM designs are less robust with

22



respect to the other design criteria. However, they still perform better than the FIM designs.

The simulation study leads to the conclusion that the inverse of the FIM might be a

poor approximation to the posterior covariance matrix when the sample size is small. The

results also show that the approximation based on the inverse of the GFIM is superior to

that based on the inverse of the FIM .

In addition, we show that the EPCV design is quite robust to the misspecification of

the prior but hard to compute. It is efficient not only in a Bayesian framework but also

in a non-Bayesian framework under various degrees of misspecifying the prior distribution.

An interesting finding is that although the Bayesian information theoretic approach does

not explicitly aim at minimizing the posterior covariance of the parameter estimates when

constructing a design, it does lead to a good design which is efficient for Bayesian analysis

and non-Bayesian analysis under a number of scenarios, especially when the prior informa-

tion about the possible values of the true parameters is properly defined. In contrast, it was

shown that the widely used design criteria based on the inverse of the Fisher information

matrix lead to inefficient designs for Bayesian estimation when the sample size is small.

The GFIM type A design performs well in this study. It is shown that in a Bayesian

framework, using GFIM type A instead of the expected posterior covariance matrix for con-

structing choice experimental designs does not lead to a dramatic efficiency loss under most

conditions. In a non-Bayesian framework, using the GFIM type A criterion is also quite

efficient for a large number of parameter spaces. We conclude that the asymptotic Bayesian

design criterion GFIM type A is a reasonable alternative to the Bayesian design criterion

based on the expected posterior covariance matrix, and it is much cheaper to compute.
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