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Abstract

This paper deals with a case study which is a variant of the Periodic
Vehicle Routing Problem (PVRP). As in the traditional Vehicle Routing
Problem (VRP), customer locations each with a certain daily demand are
given, as well as a set of capacitated vehicles. In addition, the PVRP
has a horizon, say T days, and there is a frequency for each customer
stating how often within this T -day period this customer must be visited.
A solution to the PVRP consists of T sets of routes that jointly satisfy
the demand constraints and the frequency constraints. The objective is
to minimize the sum of the costs of all routes over the planning horizon.
We develop different algorithms solving the instances of the case studied.
Using these algorithms we are able to realize considerable cost reductions
compared to the current situation.

Key words: Periodic Vehicle Routing, case study

1 Introduction

In this paper we study a routing problem of a Belgian company collecting waste
at slaughterhouses, butchers, and supermarkets. Planning of the routes occurs
over a time period of several days (time horizon) in which customers are visited
with different frequencies. For instance, supermarkets might request service
every day, while for a small butcher one collection a week suffices. The resulting
problem is a variant of the Periodic Vehicle Routing Problem (PVRP). As in
the traditional Vehicle Routing Problem (VRP), customer locations each with
a certain demand function are given, as well as a set of capacitated vehicles.
In addition, the PVRP has a horizon, say T days, and there is a frequency for
each customer stating how often within this T -day period this customer must
be visited. A solution to the PVRP consists of T sets of routes that jointly
satisfy the demand constraints and the frequency constraints. The objective
is to minimize the sum of the costs of all routes over the planning horizon.
Obviously, this problem is at least as hard as the VRP.

PVRP and variants
∗This work grew out of the Master Thesis of Arnout [4].
†Katholieke Universiteit Leuven, Operations Research Group, Naamsestraat 69, B-3000

Leuven, Belgium.
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Several variants of the PVRP are described in literature. A classification
of the different variants of the PVRP can be found in a survey by Mourgaya
and Vanderbeck [18]. Different objective functions are distinguished, such as
minimizing the distance traveled, the driving time, or total transportation cost;
however also regionalization of routes, an even spread of workload over the vehi-
cles, the number of vehicles, and service quality can be part of an optimization
function. Differences also occur in the constraints which can be divided in three
categories: constraints concerning (i) the planning of visits (different frequen-
cies, restrictions on certain days, etc.), (ii) the type of demand (constant or
variable; we return to this issue later), and (iii) the vehicles. Where the PVRP
is mostly situated on tactical and operational level, Francis et al. [12] include
strategic decisions in their model: frequencies of service are variables within the
model, and not given parameters. Another variant is the PVRP with interme-
diate facilities which is described by Angelelli and Speranza [3], Kim et al. [17],
and Alonso et al. [2]. Intermediate facilities are locations where vehicles can
unload (or reload) and thus renew capacity during a route; this happens in our
case, see Section 2.

Case studies
The PVRP is a relevant problem; it occurs for companies that have to carry

out periodic repair and maintenance activities or that collect/deliver goords pe-
riodically. Blakely et al. [7] describe a case for periodic maintenance of elevators
at different customer locations. Further case studies concerning waste collection
and road sweeping can be found in Beltrami and Bodin [6] and Eglese and Mur-
doch [11]. Claassen and Hendriks [9] describe a milk collection problem where it
is important that the goods are collected when fresh. For the collection of raw
materials for a manufacturer of auto parts, on the contrary, a very long time
horizon is considered, see Alegre et al. [1]. Hemmelmayr et al. [15] investigate
the periodic delivery of blood products to hospitals by the Austrian Red Cross.
In this case, the regularity of deliveries is of uttermost importance. Many other
case studies are described in Francis et al. [13] and the references contained
therein.

Solution methods
The PVRP is situated on the border between tactical and operational plan-

ning, combining the classical VRP with planning over a time horizon. That
is why solution methods often consist of two phases. Beltrami and Bodin [6]
consider two approaches. In a first approach, routes are developed and then
assigned to days of the week; in a second approach customers are assigned
to days in a first phase and in a second phase the routing problem for every
single day is solved using classical techniques for solving VRPs. This second
approach is used in many papers, such as Baptiste et al. [5], Tan and Beasley
[19], and Christofides and Beasley [8]. Tan and Beasley [19] first solve an as-
signment problem to assign customers to days such that total demand in each
day does not exceed demand capacity while taking pairwise distances between
customers into account. After that stage they solve a VRP for each day in
the planning horizon. Thus, they approach this problem as an extension of the
assignment problem with a routing component. Christofides and Beasley [8] on
the other hand formulate the PVRP as a routing problem with a selection deci-
sion. Customers are ordered in descending order of “importance”, depending on
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the demands, and then selected for a route on a certain day depending on the
increase in total cost for the whole period. These approaches are the more clas-
sical solution strategies. Recent PVRP literature has focused on metaheuristic
methods and mathematical based approaches to solve the problem; we refer to
Francis et al for an overview. [13].

The rest of this paper is structured as follows. In section 2 we describe the
case under consideration in further detail, in section 3 we give a mathematical
formulation, in section 4 we propose a solution method and in the 5th and final
section we give some computational results and formulate a conclusion.

2 The case

2.1 A general description

As mentioned, we study a problem that is encountered by a Belgium transporta-
tion company, which is responsible for the collection of waste at slaughterhouses,
butchers, and supermarkets. This company, which we call company A for con-
fidentiality reasons, has clients all over Belgium and in some areas of northern
France.
Legislation that originated from the BSE-epidemic (Bovine Spongiform En-
cephalopathy, commonly known as mad-cow disease) in the nineties, stipulates
that (i) there are 3 categories of animal waste, depending on the risk of con-
taining BSE; (ii) waste from different categories has to be collected separately.
Company A only collects waste from two categories: category 1 (high-risk waste)
and category 3 (low-risk waste). All high-risk waste is collected in order to be
destroyed, while low-risk waste can be further processed into e.g. pet food.
Vehicles assigned to collect high-risk waste cannot be used to collect low-risk
waste and vice versa. In fact, this implies that company A has to solve two
different instances; one instance for the periodic collection of high-risk waste
and a second instance for the periodic collection of low-risk waste.
In the current planning process of company A, routes are constructed manually
on a regular basis, e.g. every month, and, during that period minor modifica-
tions to the routes can be made depending on changes in the set of customers.
Company A wishes to decrease the dependence upon human expertise and wants
to professionalize the planning procedure. Also, the management of company
A wishes to plan the routes more efficiently in order to reduce travel time and
travel distance. Several opportunities need to be explored: (i) can total driving
time be decreased? (ii) can the routing be done using smaller vehicles? and (iii)
is it possible to decrease the vehicle fleet? All of this could be possible through
more efficient planning, but obviously, the same level of service towards the
customers should be retained. All this also has environmental consequences
thanks to a reduction in petrol use and in vehicle use. It is clear that it would
not be possible to change the vehicle fleet whenever the routing plan changes.
Our routing plan, however, should allow the management to “assemble” a good
vehicle fleet in the long term. In the short term, the current vehicle fleet must
be respected when constructing a routing plan.
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2.2 The low-risk waste instance: details

Here we describe some properties of the instance corresponding to the low-risk
waste. There are 48 customers, spread out over Belgium and northern France
(see Figure 1). The planning period is one week (actually 6 days), and each
customer requests a certain frequency of visit over the planning period. Table
1 gives an overview of how often each frequency occurs. There are 5 different
frequencies and a frequency of 4 days does not occur. Company A has 3 trucks

Frequency (nr of days) 1 2 3 5 6
nr of customers 21 15 5 5 2

Table 1: Frequencies low-risk waste

available for collecting low risk waste; their capacities are 12, 22, and 26 tons
respectively. Some clients are located in the center of a city and cannot be
reached by a truck of 22 tons or bigger. There is a central depot where each
route starts in the morning and ends in the evening. When a truck is fully
loaded, the driver can unload at a disposal facility and next continues its route.
Notice that these disposal facilities can be seen as intermediate facilities, see
[3]. Trucks do not need to return empty in the evening, they can also dispose
of their load during the tour of the following day. Only when a truck does not
drive on the following day it has to be emptied before returning to the depot.
An affiliated company processes the waste and has one disposal facility where
the trucks can unload 24 hours a day. Loading and unloading times depend on
the volume. Legally, the maximum driving time for a driver is restricted to 90
hours within two weeks and the company restricts the daily driving hours to
10 hours. Notice that these are only driving hours, they do not include loading
and unloading times.

2.3 The high-risk waste instance: details

The instance corresponding the collection of high-risk waste contains 262 cus-
tomers, distributed all within Belgium (see Figure 2). The planning period is
2 weeks (10 days), and again customers have certain frequencies of visit within
that period. In Table 2 we give an overview of the different frequencies for
the high-risk waste instance. The capacities of the three trucks available are

Frequency (nr of days) 1 2 4
nr of customers 62 186 14

Table 2: Frequencies high-risk waste

9, 12, and 12 tons respectively. The collected waste must be delivered at two
disposal facilities of an external company. Note that time windows apply to
these facilities. Loading and unloading times are constant, 10 resp. 30 minutes.
Restrictions on driving hours and depot locations are the same as for low-risk
waste.

4



Figure 1: Clients of category 3: instance 1

Figure 2: Clients of category 1: instance 2
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3 Model

An important aspect of our model are the “visit-frequencies”. Based on histor-
ical data, it can be accurately predicted how much waste a customer produces
per day, and how much waste can be stored at a customer’s site. On the basis of
these data and in consultation with the customer, a visit-frequency is computed
for each customer: the number of times a collection is done during the plan-
ning period. We also compute a demand (qi) depending upon this frequency.
As an example, consider some customer i that generates 10 tons of waste per
day, and has a storage capacity of 30 tons, while the planning period is T = 5.
We compute the corresponding visit-frequency fi for this client i as follows:
fi = d 10T

30 e = 2. More in particular, the visits must be spread well-balanced
over the planning period. Hence, this customer can be visited on days 1 and 3,
but also on days 1 and 4, 2 and 4, 2 and 5, and 3 and 5; but not on any two
consecutive days. The demand of this customer equals qi = 10T

fi
= 25. Notice

that the actual amount of waste collected at customer i may differ from the
predicted amount qi.

For every frequency, we define all possible combinations of days in the plan-
ning period, and we call them scenarios. Then, for every customer we need a
constraint that selects exactly one scenario from the set of scenarios that corre-
spond to the frequency associated with the customer. How exactly the scenarios
are assigned to customers will become clear further in this section; we first give
some notation.

3.1 Notation

We define the network G = (V, A). The customers to be visited are represented
by nodes 1 to N , the depot is represented by node 0 and the disposal facilities by
nodes N +1 to N +M . Thus vertex set V = {0, 1, 2, . . . , N, N +1, . . . , N +M}
and A is the arc set with for each arc (i, j) a travel distance dij and a travel
time cij (i, j ∈ V ). The planning period has a length of T days and a customer
is visited within this period according to a certain scenario c ∈ C. Essentially,
a scenario is a set of days within T = {1, . . . , T}; choosing a scenario for a
customer means that the customer is visited during these days. We let f c equal
the number of visiting days in scenario c. We are given a number of vehicles
K, each with a certain capacity Qk. For each customer i ∈ N = {1, . . . , N},
a frequency fi, a quantity qi and a loading time li are given. Quantity qi is
the quantity to be collected at each visit; this number is based on the average
amount of waste that is collected at each visit (see our discussion earlier). We
can use this average amount to approximate reality because visits are spread
evenly over the planning period. Further, a driver may not drive longer than
Dd hours a day, and no longer than DT hours in the total planning period of T
days. Disposal facilities can only be visited within their time windows [ri, si],
i ∈ M = {N + 1, . . . , N + M}. Finally, act is equal to 1 if day t ∈ T is visited
within scenario c ∈ C and 0 otherwise. We then define the following 5 sets of
variables: xijkt is a binary variable which is equal to 1 if customer i ∈ V is
visited after customer j ∈ V by vehicle k ∈ K at day t ∈ T , 0 otherwise; yic is a
binary variable which is 1 if client i ∈ V is visited according to scenario c ∈ C
and 0 otherwise; let Likt and Tikt be the total load and the time, respectively,
of vehicle k ∈ K at day t ∈ T after having visited customer i ∈ V ; and finally,
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the load of a vehicle k ∈ K = {1, 2, . . . , K} at the beginning of day t ∈ T is
denoted by S1kt and the load at the end of the day by S2kt.

3.2 The model

(PVRP) Minimize
∑
i∈V

∑
j∈V

∑
k∈K

∑
t∈T

dijxijkt (1)

subject to
∑

c∈C:fc=fi

yic = 1 ∀i ∈ N , (2)

∑

j∈V

∑

k∈K
xijkt −

∑

c∈C

actyic = 0 ∀i ∈ N ; ∀t ∈ T , (3)

∑

i∈V

xihkt −
∑

j∈V

xhjkt = 0 ∀h ∈ V ; ∀k ∈ K;∀t ∈ T , (4)

∑

j∈N
x0jkt ≤ 1 ∀k ∈ K; ∀t ∈ T , (5)

∑

i∈V

∑

j∈V

∑

t∈T
dijxijkt ≤ DT ∀k ∈ K, (6)

∑

i∈V

∑

j∈V

dijxijkt ≤ Dd ∀k ∈ K; ∀t ∈ T , (7)

∑

i∈S

∑

j∈S

xijkt ≤ |S| − 1 ∀k ∈ K; ∀t ∈ T ;S ⊆ N ; |S| ≥ 2, (8)

(Likt + qj − Ljkt) ≤ (1− xijkt)M ∀k ∈ K; ∀t ∈ T ;∀i, j ∈ N , (9)
Likt ≤ Qk ∀i ∈ N ; ∀k ∈ K; ∀t ∈ T , (10)

Likt = 0 ∀i ∈M; ∀k ∈ K;∀t ∈ T , (11)
S2kt = S1k(t+1) ∀k ∈ K; ∀t ∈ {1, . . . , T − 1}, (12)

Likt − S2kt ≤ (1− xi0kt)M ∀i ∈ V ; ∀k ∈ K;∀t ∈ T , (13)
S1kt − Ljkt ≤ (1− x0jkt)M ∀j ∈ V ; ∀k ∈ K;∀t ∈ T , (14)

S2kt = 0 ∀t ∈ {fridays}; ∀k ∈ K, (15)
S2kt ≤ Mz ∀k ∈ K; ∀t ∈ {1, . . . , T − 1}, (16)

1−
∑

j∈V

x0jk(t+1) ≤ M(1− z) ∀k ∈ K; ∀t ∈ {1, . . . , T − 1}, (17)

Tikt + li + cij − Tjkt ≤ (1− xijkt)M ∀k ∈ K; ∀t ∈ T ;∀i, j ∈ V, (18)
rixijt ≤ Tikt ≤ sixijkt ∀k ∈ K; ∀t ∈ T ;∀i, j ∈ N , (19)

xijkt ∈ {0, 1} ∀i, j ∈ V ; ∀k ∈ K;∀t ∈ T , (20)
yic, z ∈ {0, 1} ∀i ∈ N ; ∀c ∈ C, (21)

Likt, Tikt, S1kt, S2kt ≥ 0 ∀i ∈ V ; ∀k ∈ K;∀t ∈ T . (22)

This model finds a scenario for every customer and a set of routes for each
day of the planning period such that total travel distance is minimized. The first
constraints (2) make sure that exactly one scenario is selected for every customer

7



and in such a way that within this scenario the customer is visited according
to its frequency. A customer then will be visited on the days of the selected
scenario; this is ensured by constraints (3). Constraints (4) make sure that when
a vehicle arrives at a customer, it also leaves from that customer. Constraints
(5) impose that each vehicle can be used at most once every day. Constraints (6)
and (7) keep the number of driving hours for every vehicle within the restrictions
for the whole planning period, and within the daily restrictions, respectively.
Constraints (8) are subtour elimination constraints. Correct counting of vehicle
loads is ensured by constraints (9), with M a big number, and constraints (10)
keep the amount of vehicle load within the capacity. Constraints (11) impose
that vehicles are empty when they have visited a disposal facility. A vehicle does
not need to dispose of all of its load at the end of the day. It follows that the
load of a vehicle at the end of a day needs to be equal to the load of that vehicle
at the start of the following day, this is insured by constraints (12) to (14). At
certain moments in the week though vehicles do need to unload at the end of
the day, e.g at the end of the week (15) and when a vehicle is not used on the
next day, see constraints (16) and (17). Equations (18) and (19) make sure that
time windows for the disposal facilities are not violated. Finally, constraints
(20) through (22) impose binary conditions and nonnegativity conditions on
the variable set. Solving this model in order to obtain an optimal solution for
a small data set of less than 10 customers already takes a very long time. That
is why in the following section we develop a heuristic solution approach.

4 Solution approach

We study methods that consist of two phases: in one phase customers are
assigned to days, and in another phase a VRP-instance is solved. In subsection
4.1 we investigate methods that first assign customers to days, and next solve
a VRP-instance. We consider two ways of assigning customers to days, namely
striving for an “even spread” of the number of visits on a day (subsection 4.1.1),
or use a geographically based clustering approach (subsection 4.1.2). Finally,
we describe how we use ILOG Dispatcher to solve a VRP-instance (subsection
4.1.3). In subsection 4.2 we describe a method that first solves a VRP-instance,
and then assigns customers to days.

4.1 First assign customers to days, then route

4.1.1 Assigning customers to days: algorithm ES

Here, we focus on the spread of visits over the planning horizon. We solve
the following problem (problem ES). We are given a set V of customers, and
each customer i has an associated frequency fi. Further we have a set C of
scenario’s, where a scenario consists of a set of f c days, meaning that in that
scenario c visits are performed on f c different days. These scenario’s need to
be assigned to customers such that the frequency of each customer equals the
frequency of the scenario assigned to the customer and the maximum number
of customers visited on each day of the planning horizon is minimized. We refer
to this problem as problem ES and we claim the following.

Fact 1 Problem ES is NP-hard.
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Proof. We prove NP-hardness of problem ES by a reduction from Exact Cover
by 3-sets (X3C). In X3C a finite set X containing 3n elements and a collection
C of 3-element subsets of X are given. The question is whether there exists
a subset C ′ of C such that every element of X occurs in exactly one triple of
C ′. This problem is proven to be NP-complete by Garey and Johnson [14].
For every instance of X3C we can create an instance of problem ES as follows.
There are n customers, each with frequency fi equal to 3. The planning period
lasts 3n days and each triple from C corresponds to a scenario consisting of
three days corresponding to the elements of the triple. Now, if an assignment of
scenario’s to customers can be found such that exactly 1 customer is visited on
each day (even spread), then also a solution for X3C exists, and vice versa.¤
Thus, this proves that in general problem ES is a hard problem to solve. How-
ever, for our purposes, due to the relatively small size of the problem (we have
T = 5 (10), |C| = 15 (20), N = 48 (262)) we can solve problem ES in reasonable
time using the following integer program (IP). We define parameter act, which
is equal to 1 if day t is visited in scenario c, and 0 otherwise. Variable yic is
equal to 1 if customer i is assigned scenario c and 0 otherwise. zt is an integer
variable representing the number of customers visited on day t. Notice that this
variable is not strictly needed; we add it to make the model more clear.

Minimize w (23)

subject to

w ≥ zt ∀t ∈ T , (24)∑

c∈C:fc=fi

yic = 1 ∀i ∈ N , (25)

∑

i∈V

∑

c∈C:fc=fi

actyic = zt ∀t ∈ T , (26)

yic ∈ {0, 1} ∀i ∈ N ; ∀c ∈ C, (27)
zt, w ∈ Z ∀t ∈ T . (28)

The goal of this IP is to assign a scenario to every customer such that visits
are spread evenly over the planning period. We enforce this by minimizing the
maximal number of customers visited on a day during the planning period (24).
In that way we will visit more or less the same amount of customers on each day.
Constraint (25) makes sure that every customer is visited according to exactly
one scenario that matches its frequency. We can solve this IP optimally using
ILOG Cplex 10.2.
Notice that the location of the customers is completely ignored in this approach.
Clearly, this implies that there is a risk that customers positioned close to each
other are scheduled on different days. In the next section, we assign scenario’s
to customers such that this potential disadvantage is taken into account.

4.1.2 Assigning customers to days: algorithm CL

In a second algorithm, algorithm CL (CLuster), we partition the customers using
the algorithm “k-medoids clustering” before assigning scenario’s to customers.
This clustering algorithm partitions the locations into k clusters and attempts
to minimize the squared error, i.e. the squared distances between points labeled
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to be in a cluster and a point designated as the center of that cluster. k-
medoids chooses data points as centers. We use this particular clustering method
because it is suited for cases where the distance matrix is given (instead of the
locations), as is the case here. We use the k-medoid method as it is defined in
the C Clustering Library by de Hoon et al. [10]. The algorithm starts with an
arbitrary selection of k data points that will act as centers (medoids) and then
tries to improve by swapping the medoids with other points.

We apply this method for several values of k, and then we solve (29)-(34)
(which is a modification of (23)-(28)), which takes clusters into account when
assigning customers to days. Define parameter oil, which is equal to 1 if cus-
tomer i ∈ N is in cluster l ∈ 1, . . . , k, with k the number of clusters, and 0
otherwise. z′tl is a variable which is equal to 1 if and only if a customer of
cluster l is visited on day t. Now, our goal is to minimize the total sum of the
number of clusters visited each day. A cluster is visited if a customer of that
cluster is visited. Customers that belong to the same cluster will thus be as
much as possible assigned to the same day.

Minimize w′ (29)

subject to
∑

t∈T

∑

l∈{1,...,k}
z′tl ≤ w′ (30)

∑

c∈C:fc=fi

yic = 1 ∀i ∈ N , (31)

∑

c∈C:fc=fi

∑

i∈V

actyicoil ≤ Mz′tl ∀t ∈ T ; ∀l ∈ {1, . . . , k}, (32)

yic, z
′
tl ∈ {0, 1} ∀i ∈ N , ∀c ∈ C, ∀t ∈ T , ∀l ∈ {1, . . . , k},(33)

w′ ∈ Z, (34)

with M a large number.
Notice that a potential risk associated to the outcome of model (29)-(34) is that
the driving time needed to visit all the customers assigned to a certain day can
exceed Dd. To prevent this, a constraint on the number of customers visited on
each day is added; we come back to this issue in section 5.2.

4.1.3 Routing using ILOG Dispatcher

Having assigned all customers to scenario’s, either using ES or CL, we know
which customers need to be visited every day. Thus, for each day in the plan-
ning horizon we now need to solve a, more or less standard, VRP. Some specific
constraints do need to be taken into account, such as vehicles that have dif-
ferent capacities, vehicles that can dispose of their load during the day and
then continue the route (they can collect more than their capacity on one day),
some customers can only be reached by small vehicles, vehicles do not need
to unload at the end of the day, and the number of driving hours per vehicle
per day is limited. A solution algorithm for this VRP is implemented using
ILOG Dispatcher 4.4, which is a C++ library based on ILOG Solver and that
offers features especially adapted to solving problems in vehicle routing. We
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implement all the standard VRP constraints, as well as the problem-specific
constraints mentioned above.

In the resulting routing algorithm, an initial solution to the VRP is con-
structed using a standard savings heuristic, which makes a trade off between
more vehicles with shorter routes and fewer vehicles with longer routes. Then,
ILOG’s dispatcher performs neighborhood search to improve this solution. Both
intra-route and inter-route neighborhoods are considered. As intra-route neigh-
borhoods, 2-Opt and Or-Opt are implemented.ILOG’s dispatcher also inter-
changes between routes: the “relocate” neighborhood (inserting a customer in
another route); the “exchange” neighborhood (swapping two customers from
different routes); and the “cross” neighborhood (exchanging the ends of two
routes). We refer to ILOG Dispatcher user’s manual [16] for a more elaborate
description. We have restricted ourselves here to these methods to improve the
routes.

4.2 First route, then assign customers to days: algorithm
MR

In this approach, called algorithm MR (Mega Route), we first construct large
routes visiting all the customers and the disposal facilities. To accomplish this,
we use the same VRP heuristic as described in the previous section. Then, on
the basis of these routes, customers are assigned to days using model (29)-(34).
Customers belonging to the same route are then visited as much as possible on
the same day. Then, we resolve a VRP for each day in the planning horizon in
order to obtain better routes. Algorithm MR is similar to algorithm CL, where
we first cluster the customers, since geographically close customers tend to end
up being visited on a same day. Routing can yield a very different grouping of
the customers though.

5 Computational results

The different algorithms were implemented in Microsoft Visual C++ 2005, in
combination with ILOG CPLEX 10.2 and ILOG Dispatcher 4.4. All algorithms
are run on a personal computer with a 2.80 GHz Intel Pentium IV processor and
504 MB of RAM. Notice that we have not been concerned with running times
of our approach. This is mostly because the application did not enforce strong
limitations on the amount of computing time used. In subsections 5.1 and 5.2
computational results for the low-risk waste instance and for the high-risk waste
instance, respectively, are given. In section 5.3 we discuss the performance of
the different methods for the two instances.

5.1 The low-risk waste instance: results

In Table 3 some computational results are shown. Applying algorithm ES, we
find a set of routes requiring 3 vehicles. On several days only 2 of them are
being used. Notice that visits are well spread over the week, as each day a com-
parable distance is traveled. Between vehicles though, there is a rather uneven
workload. Total traveling time is 5859 minutes in 6 days.
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As can be seen in Table 3, a solution by algorithm CL is obtained using all
three vehicles. Comparing this solution with the previous one we can see that
the variation in route length over the days is higher and that total traveling
time decreased to only 5551.
The last columns in Table 3 show the results of algorithm MR. Here also three
vehicles are used and total traveling distance is rather high (5934). Thus, routing
the customers before assigning them to the different days in the planning horizon
does not yield a good solution for this instance.
Concluding, this suggests that using the geographic structure yields a better
routing plan. Running times vary from about 1 hour for ES, to a few hours for
CL and up to 48 hours for MR. We experience a large variation in time needed
by the VRP solver. Finally notice that the current routes used in practice have
a total traveling time of 6565; using algorithm CL we could improve them with
15.5%.

5.2 The high-risk waste instance: results

Let us now apply the same algorithms to the instance for collection of high-risk
waste. The results are summarized in Table 4. Using algorithm ES, every day
the same amount of customers is visited, unloading only occurs once in two
days and on Fridays and only two vehicles are required. Total travel time is
then 10272 for two weeks.

Applying algorithm CL, two large clusters are obtained. Based on these
clusters we assign all the customers to the days of the planning horizon. This

Algorithm ES CL MR
Vehicle 12T 22T 26T TOT 12T 22T 26T TOT 12T 22T 26T TOT

Day
1 452 391 240 1083 495 413 476 1384 339 235 567 1141
2 509 551 1060 409 279 688 339 252 220 811
3 511 378 240 1129 416 439 237 1092 439 288 588 1315
4 427 280 482 1189 512 374 214 1100 354 364 276 994
5 561 482 1140 460 163 406 1029 584 510 321 1415
6 258 258 258 258 258 258

5859 5551 5934

Table 3: Results low-risk waste (traveling time in minutes)

Algorithm ES CL
Vehicle 9T 12T TOT 9T 9T 12T TOT

Day
1 558 350 908 311 385 696
2 662 495 1157 387 495 882
3 596 342 938 0 0
4 587 570 1157 579 583 398 1560
5 450 549 999 551 551
6 308 599 907 445 423 868
7 641 434 1075 494 619 115 1228
8 599 334 933 0 0
9 592 607 1199 585 577 356 1518
10 450 549 999 311 116 427

10727 7730

12



results in a very uneven spread of the customers; on some days 100 customers are
visited, and as a result 3 vehicles are required, and on other days no customers
are visited. Total traveling time is then 7730, which is clearly much better than
ES; however, this leads to the usage of 3 vehicles. In order to see whether the
instance could be solved using two vehicles only, we add a constraint to (29)-(34)
bounding the number of customers assigned to one day. Solving this model, we
obtain routes with a total travel time of 8013 and using only 2 vehicles on most
days.
Finally, we also apply algorithm MR to this instance. We create 2 giant routes,
visiting all the customers and the disposal facilities. Again, when dividing the
customers over the days, we obtain a highly uneven spread of customers. Visits
are only performed on 4 of the 10 days, with up to 171 customers on one day. In
fact, as mentioned as a potential risk in section 4.1.2, this is not feasible given
the available driving time; if we relax these constraints total distance traveled
is 6591. Again, we need to limit the number of customers visited per day, and
we set this limit equal to 75, which is more or less the amount of customers that
can be served on one day by 2 vehicles. This yields a total traveling time of
7655 and utilizes 2 vehicles. More details are shown in Table 4.
Concluding, for this instance it is important to take into account geography.
Running times are limited to seconds for all three algorithms. Compared to the
original routes which take 8434, algorithm ES performs badly; MR improves the
currently used routes with 9% and uses one vehicle less.

5.3 Discussion

Depending on the instance, the methods used above perform differently. Clus-
tering the customers yields a better result for both instances compared to algo-
rithm ES, but the effect is larger for the high-risk waste instance. Algorithm MR
performs comparably as CL for this instance but a lot worse than ES and CL
for the low-risk waste instance. Explanation of this phenomenon is that there
are customers in the low-risk instance with a very high frequency (see Table 1)
and these clients are rather spread over the country (see Figure 1). Ignoring
the geographic locations has then only a small impact on the solutions, as on
each day the vehicles have to travel in different directions anyway. There is a

Algorithm CL-limited clients per day MR-limited clients per day
Vehicle 9T 9T 12T TOT 9T 12T TOT

Day
1 540 279 819 527 527
2 510 655 1165 452 673 1125
3 506 225 731 504 504
4 0 0 538 675 1213
5 544 675 1219 0 0
6 541 289 830 577 577
7 551 203 519 1273 455 673 1128
8 542 228 770 546 546
9 0 0 514 686 1200
10 591 615 1206 257 578 835

8013 7655

Table 4: Results high-risk waste (traveling time in minutes)
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large difference in the frequencies of the high-risk waste instance compared to
the low-risk waste instance (see Tables 1 and 2). Many customers require the
same frequency, and no customer has a very high frequency (maximally 4 visits
in 10 days). Together with the fact that the instance is larger, this explains why
clustering has a vast effect on the solutions.
As mentioned before, we obtain routes that might yield a rather uneven work-
load for the different vehicles. Company A does not consider this as being a
problem. We propose routes using three vehicles for the small instance. Not
every day, though, all vehicles are needed, thus it might be interesting to con-
sider renting a vehicle and driver at an external company for the days necessary.
Changing the volume of the vehicles in order to diminish the number of vehi-
cles does not seem really useful. For the low-risk waste instance a vehicle with
capacity of 12 tons must be available for customers not reachable with a larger
vehicle. For the high-risk waste instance, the volumes to be picked up are rather
small and unloading is only necessary after two days. It is not the volume but
the time restrictions that have the highest impact on travel times. That is also
the reason why running times differ a lot between the low-risk waste instance
and high-risk waste instance. In the low-risk waste instance the volumes to be
picked up are higher such that vehicles unload several times during the day.
This complicates the VRP model and increases running times.

6 Conclusion

We consider a problem occurring in practice, and we modeled it as a PVRP. Us-
ing different approaches (including ILOG’s dispatcher), we were able to improve
the current routes of Company A, using 1 vehicle less for one of the instances.
This not only means a reduction in cost due to the gain in travel time, but also a
reduction in wage costs and material costs. We use rather simple algorithms to
assign the customers to the days and to solve the VRP’s. The use of clustering
customers depends highly on the dispersion of the customers and on their fre-
quencies. We deal with this instance of the PVRP by considering the problems
of assigning customers to days and routing the customers independently.
For those interested to further study the problem, the instances can be found
on the following website: http://www.econ.kuleuven.ac.be/public/N05012/.
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