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Abstract 

Conjecturing that, in testing UIP, transaction costs may have obscured the relation between 
expected exchange-rate changes and forward premia, Huisman et al. (1998) focus on days with 
unusually large cross-sectional variances in forward premia (reflecting, assumedly, episodes 
with pronounced expectations). They find encouragingly high regression coefficients for those 
special days-"extreme" support, in short. 

We show that, for extreme forward premia to be primarily due to a clear signal rather 
than loud noise, the signal needs to be thicker-tailed than the noise. Transaction-cost-induced 
noise seems to have promising properties: percentage deviations from the perfect-markets 
equilibrium should be (i) bounded (that is, they have no tails and, therefore, cannot dominate 
the extreme forward premia), (ii) wide (that is, they may generate betas below 1/2) and (iii) 
U-shaped in distribution, a feature that turns out to make an "extreme" sample quite effective. 
We derive theoretical and numerical results in the direction of what Huisman et al. observe. 

JEL F31, G14, GI5 



"Extreme Support For VIP" revisited: 
How comes the dogs don't bark? 

Introduction 

Since the work by Cumby and Obstfeld (1984) and Fama (1984) (henceforth COF), regressions 

of realized percentage exchange rate changes on beginning-of-the-period forward premia have 

become the workhorse for tests of Illlcovered interest parity (UIP). In this paper, we analyze 

recent results by Huisman et al. (1998). They apply panel estimation, singling out days 

where forward premia have an unusually large cross-sectional variance-hence the "extreme" 

in the title-and they impose a numeraire-invariance constraint across currencies. As a result, 

Huisman et al. report, the COF slope coefficients improve substantially, to the extent that they 

even exceed unity when the cross-sectional variance is extreme. Huisman et al.'s justification 

for focusing on large-variance days is that, on those days, exchange-rate changes should tend to 

have llllusuaIly heterogeneous conditional expectations, thus providing a sample with a better 

signal-to-noise ratio. In their paper, the noise is caused by transaction costs, but the authors 

do not offer any reason why their logic would not apply to any other factor that is missing 

from the unbiased-expectations equation, like a risk premium or a genuine market inefficiency. 

Articles that provide good news re COF regressions are still sufficiently thin on the grolllld 

to command attention. The main issues addressed in the present paper stem from the finding 

by Fama (1984) that most of the variability of the forward premium originates from the missing 

variable rather than from the conditional expectation. This immediately raises the question 

why, in the Huisman et al. extreme sample, the dogs did not bark: if one selects a subsample 

where the variance of the forward premia is large, how comes one is not implicitly picking 

up mostly loud-noise observations rather than clear-signal ones? Our first result is that the 

Huisman et al. attempt to reinforce the signal will work indeed if the signal (the conditional 

expected change in the exchange rate), despite being the lower-variance variable, is the thicker

tailed of the two. Our second issue then becomes whether the transaction-cost explanation 

advanced by Huisman et al. has the potential to generate a material improvement in the 

signal-to-noise ratio. The answer is a guarded yes. Interestingly, the mechanism that triggers 

the improvement turns out to be subtler than just boosting the signal variance. Extreme 

sampling can, in fact, also lead to a noise reduction in absolute terms rather than just relative 
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to the signal variance. In addition, extreme sampling induces a covariance between noise and 

signal that further helps eliminating the bias. Thus, extreme sampling is potentially quite 

effective in dealing with transaction-cost-induced noise in the forward rate---even though the 

actual extent of success still depends very much on the parameter constellation. In the process 

of establishing these analytical results, we derive and use new moment conditions to show 

that the missing variable has not only a high variance and relatively thin tails,' but also an 

uncannily high correlation with the expected exchange-rate change. Thus, unlike the textbook 

errors-in-variables case, our entire analysis is done in a setting where the error in the regressor 

is correlated with the true value. 

In the remainder of this introductory section we briefly review the literature on the COF 

regression tests of uncovered interest parity (VIP), and we make a link with the Huisman 

et. al. paper. The empirical failure of VIP in these tests has led to two lines of subsequent 

research. Some researchers have argued that OLS may be inappropriate or at least inefficient, 

and have used more advanced estimation techniques. Others have worked on the theoretical 

side, and have studied what properties the missing variables should have to explain the empir

ical findings, and what theoretically acceptable model(s) do have these features. Among the 

missing variables that have been advanced, the (non-constant) risk premium has received most 

attention, starting with Fama (1984). Others have claimed that the variable that is missing 

in the empirical tests is a (non-constant) Peso effect, that is, the low-probability jump that is 

at the back of the market's mind but is rarely, if ever, observed in the data. Still others make 

a link with transaction costs, which disturb the normal link between the forward premium 

and the true expectation of the spot-rate change (or, in the presence of a risk premium, its 

true certainty equivalent). Lastly, for completeness, the missing factor may be the difference 

between the market's expectation and the true expectation, resulting from an inefficiency. 

Huisman et al. (1998) contribute to the methodology side (by adopting panel estimation 

with random time effects and a cross-equation constraint, and by conditioning the COF coef

ficients on the cross-sectional va..riation of forward premia), but they also tap into the theory 

literature, by linking their approach to a particular missing variable. Their prime suspect is 

transaction costs. If real-world markets are subject to friction, they argue, uncovered interest 

arbitrage cannot perfectly align expected exchange rates and forward premia. Most of the 

time, expectations of exchange rate changes are, moreover, so small that this friction-induced 

noise between expectations and premia largely obscures the theoretical parity between the two. 

However, there may be occasions where the market does expect unusually large changes; and if 
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the impact of friction is essentially unaffected by the size of the expected change, then in these 

instances the signal-to-noise ratio must be relatively favorable .. Highly positive or negative 

forward premia should, therefore, be better predictors than small premia. Cast in familiar 

statistical terms: the COF regression suffers from an errors-in-the-regressor type bias towards 

zero, and for a given variance of the noise term this bias can be reduced by constructing a 

subs ample where the variance of the regressor is larger. Huisman et al. test this model us

ing panel techniques with a cross-currency constraint that ensures numeraire-invariance of the 

estimates. They report that large-variance observations generate COF regression coefficients 

close to unity, and even substantially above unity if the definition of "large variance" is very 

strict. 

In this paper, we first review the link between the COF beta and its three underlying 

moments-the variances of the expected change and of the bias, and the covariance between 

the two-and we derive additional bounds on these, tighter than the Fama (1984) moment 

condition. In Section 2, we study the effect of sampling from the tails, first analytically and 

then numerically. Section 3 concludes. 

1 Moment Conditions for Missing Variables 

Let fr denote the true expected value, at the beginning of period t and conditional on all 

then-available information, of the percentage change in the spot rate over that period; let 

j) d2 S - S' denote the unexpected spot rate change, and P the forward premium. Let 

the missing variable or bias (whether it be a risk premium, Peso effect, an inefficiency, or a 

transaction-cost effect) be denoted and defined by b ~ S' - P, so that its sign is that of a 

conventional risk premium. For simplicity, we omit time subscripts. It is understood that So, 
P, and b are conditionally non-stochastic; that is, the randomness indicated by their tildes 

holds unconditionally only. By definition, the prediction error j) is conditionally (and therefore 

unconditionally) independent of S' and ii, as the latter two are known at the beginning of the 

period. Then, in the regression of S d2 S' + j) on P d2 S' - b, the slope is determined by the 

three second moments of S* and b: 

cov(S',P) 
(3 = var(P) 

var(S') - cov(S', b) 
var(S') - 2cov(S', b) + var(b) 

1-w 
1-2w+z' 

(1.1) 
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h £ t th 1 li el t · del Var(b) d de! COV(S* ,b) were, or compac ness, e ast ne uses r a lve moments, Z = var(s*) an w = var(s*)· 

With respect to the relative variance, z, Fama(1984) presents a simple but insightful moment 

condition, 

~1 ~ 
/3>2<=>z<1. (1.2) 

As empirical betas tend to be below 1/2, Fama points out, the missing variable must have 

a large variance relative to the variability in the expectations-that is, we must have z > 1 

irrespective of sign or size of the relative covariance, w. It is simple to derive similar b01lllds 

on w irrespective of z, and one on w relative to z. It also turns out that a b01llld with respect 

to z can be obtained that is tighter than Fama's, simply from the fact that correlations are, 

at most, equal to unity: 

Proposition 1: Hvar(b) > 0, var(S*) > 0, and R2(S*,b) < 1, then 

< > 
/3 > o <=> w <: 1; (1.3) 

< < 
/3 > 1 <=> w;; Z; (1.4) 

1 1+v'z 
2 < 1 + 2v'z + z < /3 < 

1- v'z 
(1.5) 1 2v'z if z < 1, - z+z 

1- v'z 1+v'z 1. 
(1.6) </3 < 1+2v'z+z<2 ifz >1 1- 2v'z+ z 

Proof: provided in Appendix. 

Figure 1 shows the feasible values for (3, that is, the area bounded by (1.5)-(1.6), for 

0$ z $ 7. On the basis of the Froot and Thaler (1990) meta-average of /3, -0.88, one would 

conclude that the variance ratio z is, at most, 4.5. In addition, one can infer from (1.3) and 

(1.4) that the covariance-to-variance ratio, w, is somewhere between z and unity. Actually, 

one can infer even more about the correlation between b and S*, by generalizing (1.5)-(1.6) 

into 

1+~ < /3 < 1-~ ifz<1 
1+2~+z 1-2~+z -, 

(1.7) 

_ _ I_---,V"=z=.~;d,2~- /3 1 + ~ if 1 < < z> . 
1-2~+z 1+2Jz.~ax+z 

(1.8) 

where R;.ax is a tentative upper bound on the squared correlation between b and S*. Suppose, 

for instance, that one deems ~ to be at most 0.9. Then the range of z that produces betas 

of -0.88 is narrowed down to about [1.5 , 3.1], as can be seen from Figure 2. Interestingly, 

below ~ = 0.87 we cannot even produce any betas as low as -0.88. Thus, if we take the 
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Froot and Thaler average as our benchmark, then we need to consider a noise-to-signal ratio, 

Z, between 1 to 4.5, and a correlation between b and Er of at least y'Q.87 = 0.93,1. surely a 

disconcertingly high number. The economic issue (not addressed here) is to explain a missing 

variable that is almost perfectly correlated with the conditional expectation and has a larger 

variance, so that it essentially flips the sign of the signal. For the statistician, the implication 

is that the covariance between the regressand and the error in the regressor is large relative 

to the variances. This complicates the issue relative to the standard textbook version of the 

errors-in-variables problem, where the error is assumed to be pure noise. 

What are the statistical implications of that covariance? Holding constant the covariance, 

it is easy to show that, like in a classical textbook error-in-variables case, the variance of b still 

biases j3 towards zero, and that boosting the variance of the signal weakens that bias: 

8j3 

8var(b) 

8j3 

8var(S*) 

var(S*) - cov(S*, b) 
[var(S*) - 2cov(S*,b) +var(b)J2' 

j3 ~ ~ ~ _ _ _ _ < 0 if w < 1 <=> j3 > 0, 
var( S*) - 2cov( S' , b) + var(b) 

(1.9) 

- > < < 
var(b) - cov(S*, b) = 0 if = j3 = 1 - _ _ _ < w>z<=> > . 

[var(S*) - 2cov(S*, b) + var(b)J2 
(1.10) 

Boosting the variance of the signal is the stated intention of sampling extreme forward premia. 

What needs to be determined is (i) how comes that the Huisman et at. procedure of picking 

days with large-variance forward premia seems to be able to produce mainly large-variance 

signals S* rather than mainly large-variance bSj and (ii) what is the effect of that sampling 

procedure on the covariance between S* and b? The cet. par. effect of that covariance is to 

bias j3 towards 1/2: 

8j3 - - > > < var(b) - var(S*) =. = = 1 
_ _ - - <Olfz<l<=>j3>-. 

[var(S*) - 2cov(S*, b) + var(b)J2 2 
(1.11) 

8cov(S*, b) 

In the next sections, we therefore review the impact of a sampling-from-the-tails procedure on 

each of these three moments. 

lThis result can also be obtained directly from fixing beta at -0.88 and writing (1.1) as -0.88 = l-~~%2) 
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2 The effects of sampling from the tails on the (CO ) variances 
of band S* 

Huisman et ai., who use panel data, select days where the cross-sectional variation in P is 
large, and expect that in such a subsample the COF beta will be large. In the same spirit, 

Sercu and Vinaimont (1999) follow the original Bilson (1983) procedure and select, within each 

time series, the observations where 1 P 1 is large. In either sampling rule the issue is which 

items on the right-hand-side of 

var(P) = var(S*) - 2cov(S*,b) + var(b) (2.12) 

go up most when one exclusively samples from the tails of the distribution of P. In this section, 

we address the issue analytically. Section 3 then provides numerical results. 

2.1 Boosting var(S*) or var(b): a matter of relative tail-thickness rather 
than variance 

If one samples extreme value of 1 P I, why should this primarily be due to extreme values of 

S* (as Huisman et. al. postulate) rather than of b, especially since the latter seems to be the 

higher-variance summand? It turns out that the predominance of large S*s versus large bs in 

the tails of P depends not so much on the relative variance of the marginal distributions, but 

primarily on the type of distribution-specifically, the relative tail-thickness of b and S*. We 

provide an illustration of each of these claims. 

First consider two variables with similar distributions but different variances. Specifically, 

let b and S* be bivariate normal with constant moments. From the definition P d:J S* - b it 

follows that S* and P are also bivariate normal. Thus, for any given value of P, whether small 

or extreme, the best possible conditional forecast of the exchange rate is E(S* 1 P) = a + f3P. 

For this reason, in the bivariate-normal case extreme sampling cannot generate any betas that 

systematically differ from aselect sampling. This must mean that, in the large-I P 1 sample, 

all second moments of S* and b have gone up by the same factor: in the bivariate-normal 

case, sampling extreme Ps does not affect the signal-to-noise ratio. We obtain this result 

without making any assumption about the relative variance of b and S*. Thus, for a variable 

to dominate the tails of the sum, a larger variance is surely not sufficient. 

Nor is a high variance necessary for that, as the next example shows. Let b be uniform, 

and S* normal, both with mean zero and independent of each other. The further one goes 

into the tails of the sum, the larger its conditional variance. But while there is no bound on 
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the SO-component, in this case there is a limit to what b can add to the sum. That is, even 

though a sample of extreme I P Is also tends to pick up atypically large I ii Is, in the uniform 

case the conditional variance of ii cannot go on rising indefinitely when one goes deeper and 

deeper into the tail to I P I· 

In this second example, a crucial difference between the two distributions seems to be 

boundedness (for the uniform) versus unboundedness (for the normal). We can generalize, 

however: even if both S' and ii can assume any value on the real line, in the tails S' still 

dominates provided that it has thicker tails. The proposition also generalizes in the sense that 

it allows for linear dependence between the two summands: 

Proposition 2. Let S' and ii be related by S' = J.is + B.ii + e with E(e I b) = O. Then the 

tails of the sum, P d~ S' - ii, are dominated by large values S* rather than of ii if 

lim P(~' ~ x) --+ 0, 
",joo P(b ~ x) 

a sufficient condition for which is that S' has the lower tail exponent. 

Proof: provided in Appendix. 

2.2 The (±6) model for 'ii. 

(2.13) 

The same effects would be observed if ii were a bid-ask bounce generated by a Bernouilli 

process, 

_ _ _ {1 (i.e. ii = +6) with probability 0.5, 
b = -8 + 28.B, where B = 

o (i.e. ii = -8) with probability 0.5. 
(2.14) 

If S' and ii are both symmetric around zero, then also P is symmetric around zero. Thus, 

large I P Is would still have as many positive outcomes as negative ones; and the underlying iis, 
being equally likely to be positive or negative, would have the same variance as in an aselect 

sample. Thus, in this case any increase of var(p) generated by sampling from the tails is not 

at all due to bunching of noise; rather, it must be entirely due to large S's sampled from a 

thicker-tailed distribution, and reduces the bias-toward-zero in /3. 

Is (2.14) an economically attractive model? The pure bid-ask bounce model for ii would 

seem to make sense if the only friction in the market were a spread in the forward rate, as is 

the case with futures transaction prices. Assuming that the expectation is measured by the 

midpoint forward, the observed forward trade price would be the midpoint price plus or minus 

the half-spread, a perturbation which, at daily frequencies, has no traces of autocorrelation 
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(Lehman, 1990; Ball, Kothari and Wasley, 1995). However, if one's purpose is to explain the 

forward puzzle then bid-ask bounce is not a good candidate. In actual practice the forward 

premia as used in empirical work do not suffer from bid-ask bounce, because they are typically 

computed from midpoint swap rates or from domestic and foreign interest rates-both midpoint 

or both ask (like LIBOR). And more fundamentally, in the presence of friction it is no longer 

obvious that the midpoint forward premium equals the expectation even in the absence of a 

risk premium. 

There are, fortunately, good reasons to believe that the impact of friction is much richer 

than just a bid-ask-bounce effect. Models with trading costs predict a no-activity zone within 

which the bias P - 13* can wander without triggering transactions. Thus, b is bounded and 

therefore probably has a smaller tail exponent than has 13* -a feature that is necessary to 

explain the Huisman et al. effect. In addition, in these models the zone is much wider than 

just the transaction cost. Brennan and Schwarz (1988, 1990) and Baldwin (1990), for instance, 

point out that the holder of, say, GBP has an American-style perpetual option to switch to, 

say, USD. It is well known that an American option is rationally exercised not as soon as 

the exercise value becomes positive, but when the exercise value is sufficiently large. In the 

same vein, if trading is costly, risk-neutral holders of GBP will not switch to USD as soon 

as 13* - P exceeds the transaction cost by a minute amount; rather, since there is a cost of 

switching back if and when the gain disappears, it is optimal to wait until 13* - P has become 

sufficiently large. The fact that the inactivity zone is wide justifies large values for b, which is 

required if we want to explain betas below 0.5 (Fama, 1984). Transaction cost models of this 

type however also predict that, while the deviation from UIP stays at the inactivity bounds 

for relatively long times (see e.g. Constantinides, 1986; Dumas, 1992), the probability of being 

strictly within the band is of course not zero (as it would have been in the (±o) case). Thus, 

from the Brennan-Schwarz-Baldwin argument, the distribution of b would be bounded, but 

U-shaped rather than having just two separate probability spikes at ±o. 

As we do not know the specific functional form of the U-distribution for b, we initially work 

with the Bernouilli-based distribution, where analytical results are quite transparent; and we 

then verify numerically that our analytical results do generalize to a U-shaped distribution. 

In that analytical work we immediately add another feature to the model, namely correlation 

between band 13*. In the binary case, (2.14), the relationship E(S* I b) can always be written 
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as a linear equation. In short, for most of the remaining analytical work we assume that 

E(E I b) = 0, 

E is IID, finite-variance, symmetric and unimodal, 

S* = J.l.s + B.b + E, with _ {+15 with probability 0.5, 
b= 

-15 with probability 0.5. 

(2.15) 

0< B < 1, 

The constraint 0 < B d~ cov(S*, b)/var(b) = w/ z < 1 is motivated by (1.3)-(1.4) and the 

empirical observation that f3 < O. Graphically, this works as follows. If b = 0, the joint 

distribution of period-by-period expectations and forward premia P plots on the 45-degree 

ray: in the absence of a bias, both variables are of course identical. When b = ±15, the S' that 

is associated with a particular P is shifted rightward/downward or leftward/upward relative to 

the 45-degree ray. The parameter B tells us how much of the shift is vertical versus horizontal. 

In particular, when B = 0 the shift is all horizontal, which corresponds to the pure textbook 

errors-in-variables case. When B = 1, in contrast, the shift is all vertical, in which case b is 

similar, in effect, from a pure white-noise prediction error. The situation relevant to us is 

somewhere in between. 

As a matter of notation, we let "hi" and "lo" (as subscripts or as conditioning events in a 

conditional distribution) refer to the events" I P 12:: X" and "1 P 1< X", respectively, where X 

is the percentile value for I P I that produces a desired split of the sample, like the 5% most 

extreme forward premia. For example, E(b I hi) is shorthand for E(b I I PI:::: X), and f3hi 

refers to a beta from a sample consisting solely of extreme I Pis. 

In model (2.15), we can use the equalities S* = J.l.s + B.b + E and P = S· - b to specify f3hi 

and the regular (unconditional) beta as, respectively, 

f3hi = 

f3 = 

B.(B - l)var(b I hi) + (2B - l)cov(b, E I hi) + var(E I hi) 

(B - 1 )2var(b I hi) + 2( B-1 )cov(b, E I hi) + var( € I hi) 

1 _ (~ - B)var(b I hi) - co~(b, E I hi) and 
(B - 1 )2var(b I hi) + 2( B-1 )cov(b, E I hi) + var(E I hi) , 

1 _ (1 - B)~ar(b) 
(1 - B)2var(b) + var(E) 

(2.16) 

(2.17) 

Thus, again, the bias in the marginal beta falls if the noise variance is reduced relative to the 

variance of the premium. 

Let us recapitulate. We found that the signal/noise ratio improves if b has thinner tails (or 
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no tails), which is quite likely under the transaction-cost story. In fact, the apparent success 

of the procedure, in Huisman et al., suggests that we do have that ordering of tail-thicknesses. 

We have also proposed one simple model, (2.15), that has some of the crucial features one 

would expect from a transaction-cost model: boundedness and a large probability mass on or 

near the bounds. The model is able to generate a wide grid of w and z values. A weakness 

is that (2.15) assumes away any probability mass strictly within the bounds; but in Section 

2.5 we show numerically that such mass has only a small effect on the outcome. Thus, for 

the above model we now present our results on the items var(b I hi) and cov(b I hi) in (2.16), 

respectively. From the simplified model we show, first, that if the exchange rates have zero 

unconditional drift-or, more in general, if extreme samples are equally likely to come from 

either tail-then the variance of the noise is not affected by extreme sampling. Thus, the 

signal-to-noise ratio improves, which probably was the hunch underlying the Huisman et al. 

paper. This orthodox effect is reinforced by two less obvious ones. One effect is that, if the 

exchange rates have nonzero unconditional drift-or, more in general, if extreme samples are 

more likely to come from one particular tail-then the variance of the noise actually drops in 

absolute terms. The second reinforcing effect is that the covariance term in (2.16) is negative. 

2.3 The effect of extreme sampling on var(b I hi). 

Proposition 3. In model (2.15), 

• if J.Ls = 0 (or, more generally, if upper and lower tails of S' are equally present in the 

extreme sample), then var(b I hi) = var(b) = var(b 110) . 

• if J.LS of. 0 (or, more generally, if upper and lower tails of S' are not equally present in 

the extreme sample), then var(b I hi) < var(b) and var(b 110) < var(b). 

For var(b I hi), this effect increases the higher the cut-off value X. For var(b 110), the 

effect is U-shaped in X. 

Proof: provided in Appendix. 

Table 1 illustrates this effect for a simple distribution. In each panel of that table, S' 
and ii are independent and have the marginal distributions indicated in the top row and first 

column, respectively, of the panel. Panel A assumes a zero mean for S', while in Panels B 

and C the expectation of S' equals unity. In panels A and B, "high" outcomes are defined as 

I S' - b I~ 3, while in panel C the cut-off value is 4 rather than 3. The body of each panel 
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Table 1: Examples of a simple joint distribution of S' and b 

Panel A: /-Is = 0, cutoff at X = ±3 
S' =-2 S' =-1 S' = 0 S' = 1 S* = 2 
prob 0.1 prob 0.2 prob 004 prob 0.2 prob 0.1 

b = +2, prob 1/2 -4 (0.05) -3 (0.10) -2 (0.20) -1 (0.10) 0(0.05) 
b = -2, prob 1/2 0(0.05) 1 (0.10) 2 (0.20) 3 (0.10) 4 (0.05) 

Panel B: /-Is = 1, cutoff at X = ±3 
S' =-1 S* = 0 S' = 1 S' = 2 S' = 3 
prob 0.1 prob 0.2 probOA prob 0.2 prob 0.1 

b = +2, prob 1/2 -3 (0.05) -2 (0.10) -1 (0.20) o (0.10) 1 (0.05) 
b = -2, prob 1/2 1 (0.05) 2 (0.10) 3 (0.20) 4 (0.10) 5 (0.05) 

Panel C· /-IS = 1 cutoff at X = ±4 , 
S* =-1 S* =0 S' = 1 S' = 2 S' = 3 
prob 0.1 prob 0.2 prob 0.4 prob 0.2 prob 0.1 

b = +2, prob 1/2 -3 (0.05) -2 (0.10) -1 (0.20) o (0.10) 1 (0.05) 
b = -2, prob 1/2 1 (0.05) 2 (0.10) 3 (0.20) 4 (0.10) 5 (0.05) 

Key to Table 1. In each panel of that table, S' and b are mutually independent and have the marginal 
distributions indicated in the top row and first column, respectively, of the panel. Panel A assumes 
a zero mean for S', while in Panels B and C the expectation of S' equals unity. In panels A and B, 
"high" outcomes are defined as I S' - b I~ 3, while in panel C the cut-oH value is 4 rather than 3. The 
body of each panel shows the premia and the corresponding joint probabilities. If a cell falls in the hi 
subsample, the probability is printed in italics. 

shows the premia and the corresponding joint probabilities. If a cell falls in the hi subsample, 

the probability is printed in italics. We easily see that, in Panel A, the distribution of b given a 

hi event remains symmetric, thus preserving a variance of 4.22 .(1/2)(1-1/2) = 4. In Panel B, 

in contrast, the hi events consist predominantly of outcomes where b equals -15: given a high 

I P I, the probability of b = +15 now drops from 0.5 to 0.05/0040 = 0.125. Thus, var(b I hi) 

drops from 4 to 4.22 .(0.125 x 0.875) = 1.75.2 

More in general, if J.Ls > 0, the distribution of P has more mBES in the positive domain, so 
- - de! - -

that large Ps tend to be positive rather than negative. From the relation P = S· - b, this 

means a predominance of negative bs in the high-I P I sample, and vice versa. Likewise, if 

J.Ls < 0, i) tends to be negative and large I P Is tend to be associated with positive values for 

b. If sampling is thus predominantly from one side of the distribution of b, then 7r(b = -15 I hi) 

no longer equals the unconditional probability, 0.5. Any deviation from 7r = 0.5 lowers the 

2The table may raise the issue that asymmetric sampling not only lowers the variance of the noise, but also 
the variance of the entire sum and, at first hlush, potentially also the variance of the expectation. However, 
Proposition 2 would still mean that the thicker-tailed variable tends to dominate in the tails. Case C in the 
table, where the cut-off values are set at ±4 rather than ±3, illustrates this very clearly. 
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variance, as can be seen from var(b I hi) = 482.1T.(1-1T). Thus, if /J-S # 0, the error variance 

is reduced. If, in addition, 8 is large and the "hi" criterion is sufficiently strict, the sample of 

high I P Is comes almost entirely from events where b has the same sign. For example, in Panel 

C of Table 1, raising the hurdle I P I from 3 to 4 means that all hi events are now generated 

by b = -2. The closer one gets to such situations, the smaller var(b I hi), implying that f3hi 

approaches unity. 

2.4 The Effect of extreme sampling on cov(S*,b I hi) 

Unconditionally, e is independent of b. But as P depends on b and S', and S' depends on b 
and e, selecting a sample on the basis of I P I means that sampling is not random with respect 

to e and b. 

Proposition 4. in model (2.15), cov(e, b I hi) < O. 

Proof: provided in Appendix. 

The intuition follows immediately from the equations P d2 S' - b and S' = /J-S + b + e 

where 8 < 1. Then P = /J-S + e - (1 - 8)b with 1 - 8 > O. As b can assume only two values, 

namely ±8, a large value of I P I is not due to an unusually large I b I; rather, a large I P I tends 

to mean either a large value of I e I, or opposite signs for e and b, or both. Thus, conditional 

on I P I being large, we expect that e and (1 - 8)b to be of the opposite sign more often than 

what would expected on the basis of the zero unconditional covariance. 

This effect is immediately visible in the example of Table 1. In the zero-mean example of 

Panel A, cases where P falls below -3 occur when S' is negative and b positive; and cases 

where P exceeds 3 are found where S' is positive and b negative. With E(b I hi) and E(S' I hi) 

both being zero and every term in S·.b being negative, the covariance is obviously negative, 

and turns out to be -2.667. In Panel B, the unconditional mean is of S' is positive rather than 

zero, which, as we have seen, makes var(b I hi) drop (from 4 to 1.75). Not surprisingly, then 

also cov(b, S· I hi) then shrinks towards zero, but it remains negative (at -1.125). 

Thus, if the cut-off values are not set symmetrically around the unconditional mean, one 

might theoretically succeed in getting a sample that is entirely from one of the two 45-degree 

lines only. The Huisman et al. procedure may actually produce such asymmetric samples: 

since their definition of "hi" is not currency-specific, they may very well end up with lots of 

lower-tail observations from weak currencies, and lots of upper-tail observations from strong 

ones. As we saw, such asymmetric samples are predominantly drawn from just one 45-degree 
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Table 2: Parameter values used in the simulations 

z = 1.1 z=4 z=7 z=10 

(3 = 0.2, w = 0.967, w=O, w =-1, w=-2, 
va;r(p) = .167 var(P) = 5.000 var(P) = 6.000 va;r(p) = 7.000 

()= 0.88 ()= 0.00 0= -0.14 ()= -0.20 
(3 = -0.2 w - 1.014 w = 1.429 w - 1.857 w - 2.286 

va;r(p) = .072 va;r(P) = 2.142 var(P) = 4.286 var(p) = 7.286 
()= 0.92 ()= 0.36 ()= 0.28 (}=0.23 

(3 = -0.6 w = 1.027 w = 1.818 w = 2.636 
va;r(p) = .046 var(P) = 1.364 va;r(p) = 2.728 (no solution) 

()= 0.93 (}=0.46 ()= 0.38 
(3 = f3min(Z) ({3 = -1) /3m;,n = -0.997, {3min = -0.607, (3min = -0.462, 

w=1.033 w =1.999 w = 2.644 w = 3.161 
var(p) = 0.033 var(p) = 1.002 va;r(p) = 2.712 var(p) = 4.678 

()= 0.94 ()= 0.50 ()= 0.38 (}=0.32 

Key to Table 2: From the preset grid z = {1.1, 4. 7. 1O} and (3 = {0.2, -0.2, -0.6} we compute w using 
(2.18). To get the parameter values in the bottom line we set R2(S*,b) equal to 0.999 and compute 
the lowest value of (3 as well as the implied value for w. var(.P) is computed assuming var(S*) = 1, i.e. 
var(.P) = 1- 2w + z. e is implied as w/z. 

line, with upper-tail. observations from strong currencies being mostly on the rightmost/lower 

line, and lower-tail observations from weak currencies mostly on the leftmost/upper line.3 

2.5 Numerical Confirmation of the Results for a U-shaped distribution of b 

What remains to be done is to numerically verify whether the theoretical effects are sufficiently 

important to explain the effects actually observed, especially if the distribution of b is U-shaped 

rather than the discrete ±§ one. 

We proceed as follows. We select parameter values so as to the generate twelve cases on a 

pre-set grid of {3 = {0.2, -0.2, -0.6} and z = {1.1, 4, 7, 10}. We choose z = 1.1 instead of z = 1 

because, at z = 1, {3 equals 1/2 irrespectively of w and because, close to z = 1, the bounds 

on {3 are hypersensitive to minute changes in the parameters. For each ({3, z) combination, the 

corresponding values for the relative covariance, w, are then derived from the relation 

tJq cov(s*, b) _ (z + 1),13 - 1 
w - - - . 

var(S*) 2{3 - 1 
(2.18) 

One combination on this grid, case ({3 = -0.6, z = 10), is incompatible with the unit upper 

"Note also that the Huisman et ai. beta is common across currencies but the intercepts are not. This avoids 
the downward bias that would have arisen if samples from different 45-degree lines had been pooled together. 
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bound on R2. To get results near the bounds offeasibilityfor z = {1.1, 4,7, 10}, we set R2(S*,b) 

equal to 0.999 and take the lower of the two corresponding (3, from (1.8). All this produces 

the set of parameter values in Table 2. The distribution of €, the noise in fr = J.!S + O.b + €, 

is Gaussian, and that of b is a mixture of a uniform on [-0,0) and a Bernouilli. We chose how 

much of the probability distribution of b is strictly within the bounds, and how much at the 

ends. From this parameter and w we then compute 0 = w/z. In turn, this 0 (together with z) 

then implies a value for var(€). More details are provided in the Appendix. 

Table 3: Simulated betas (1): Bernouilli-distributed b; J.!S = 0 

z = 1.1, (3 = 0.2 z = 4, (3 = 0.2 z = 7, (3 = 0.2 z = 10, (J = 0.2 
split (3IG (3hi (Jlo (3hi (310 (Jhi (310 (Jhi 
60.0/40.0 0.12 0.21 -0.21 0.35 -0.03 0.33 0.06 0 .. 31 
80.0/20.0 0.14 0.22 -0.00 0.42 0.08 0.39 0.12 0.35 
90.0/10.0 0.15 0.25 0.09 0.47 0.13 0.43 0.16 0.39 
95.0/05.0 0.17 0.27 0.13 0.51 0.16 0.46 0.17 0.42 
97.5/02.5 0.17 0.30 0.16 0.54 0.18 0.49 0.18 0.44 

z = 1.1, (3 = -0.2 z = 4, (J = -0.2 z = 7, (J = -0.2 z = 10, (J = -0.2 
split (310 (Jhi (Jlo (3hi (Jlo (3hi (310 (Jhi 
60.0/40.0 -0.30 -0.18 -0.86 0.02 -0.63 0.01 -0.51 -0.00 
80.0/20.0 -0.27 -0.16 -0.52 0.14 -0.42 0.11 -0.37 0.08 
90.0/10.0 -0.25 -0.13 -0.38 0.22 -0.33 0.17 -0.29 0.14 
95.0/05.0 -0.24 -0.10 -0.30 0.28 -0.28 0.23 -0.25 0.19 
97.5/02.5 -0.23 -0.06 -0.26 0.33 -0.25 0.27 -0.23 0.23 

z = 1.1, (J = -0.6 z = 4, (3 = -0.6 z = 7, (3 = -0.6 -
split (Jlo (3hi (Jlo (Jhi (Jlo (Jhi - -
60.0/40.0 -0.75 -0.57 -1.20 -0.31 -0.53 -0.94 
80.0/20.0 -0.72 -0.53 -0.91 -0.18 -0.50 -0.16 
90.0/10.0 -0.69 -0.47 -0.77 -0.09 -0.47 -0.42 
95.0/05.0 -0.66 -0.42 -0.70 -0.01 -0.45 -0.42 
97.5/02.5 -0.64 -0.38 -0.66 0.04 -0.43 -0.37 

z = 1.1, (J = -1 z = 4, (3 = -.997 z = 7, (J = -.607 z = 10, (3 = -.462 
split (310 (3hi (310 (3hi (Jlo (Jhi (310 (Jhi 
60.0/40.0 -1.22 -0.98 -1.04 -0.94 -0.62 -0.58 -0.47 -0.44 
80.0/20.0 -1.17 -0.92 -1.02 -0.91 -0.61 -0.57 -0.47 -0.44 
90.0/10.0 -1.13 -0.84 -1.01 -0.89 -0.61 -0.57 -0.47 -0.44 
95.0/05.0 -1.10 -0.77 -1.00 -0.88 -0.61 -0.56 -0.46 -0.43 
97.5/02.5 -1.07 -0.70 -1.00 -0.86 -0.61 -0.55 -0.46 -0.42 

Table 3 displays the result of the computations for a case we studied analytically (that is, 

b = ±o, with no mass in the middle), for an unconditionally no-drift distribution. In every 

case, (3hi rises above the marginal beta listed in the heading of the cell, and a fortiori above 

(Jlo' Also, within every cell the (JhiS rise the higher one sets the cut-off values X. While, 
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Table 4: Simulated betas (2): H-distributed b; J.Ls = 0 

z = 1.1, f3 = 0.2 z = 1.1, f3 = 0.2 z = 7, f3 = 0.2 z = 10, f3 = 0.2 
split f3zo f3hi f3zo f3hi f3zo f3hi f3zo f3hi 
60.0/40.0 0.15 0.21 -0.09 0.27 0.02 0.27 0.09 0.25 
80.0/20.0 0.16 0.23 0.03 0.35 0.10 0.33 0.13 0.30 
90.0/10.0 0.18 0.25 0.10 0.40 0.14 0.37 0.16 0.33 
95.0/05.0 0.18 0.27 0.14 0.43 0.16 0.40 0.18 0.36 
97.5/02.5 0.19 0.30 0.16 0.47 0.18 0.43 0.19 0.39 

z = 1.1, f3 = 0.2 z = 4, f3 = -0.2 z = 7, f3 = -0.2 z = 10, f3 = -0.2 
split f3zo f3hi (3zo (3hi f3zo (3hi f3zo (3hi 
60.0/40.0 -0.29 -0.19 -0.68 -0.07 -0.53 -0.09 -0.43 -0.10 
80.0/20.0 -0.27 -0.16 -0.46 0.03 -0.37 0.01 -0.34 -0.01 
90.0/10.0 -0.25 -0.14 -0.35 0.12 -0.31 0.08 -0.28 0.05 
95.0/05.0 -0.23 -0.11 -0.30 0.17 -0.25 0.14 -0.24 0.10 
97.5/02.5 -0.23 -0.07 -0.25 0.23 -0.23 0.18 -0.22 0.14 

z = 1.1, (3 = -0.6 z = 4, (3 = -0.6 z = 7, (3 = -0.6 -

split (3zo (3hi (3zo (3hi (3zo f3hi - -

60.0/40.0 -0.74 -0.58 -1.05 -0.44 -0.64 -0.57 
80.0/20.0 -0.70 -0.55 -0.86 -0.31 -0.63 -0.54 
90.0/10.0 -0.67 -0.51 -0.75 -0.22 -0.62 -0.51 
95.0/05.0 -0.65 -0.47 -0.69 -0.14 -0.61 -0.49 
97.5/02.5 -0.64 -0.42 -0.65 -0.09 -0.60 -0.47 

z = 1.1, (3 = -1 z = 4, (3 = -.997 z = 7, (3 = -.607 z = 10, (3 = -.462 
split (3zo (3hi (3zo (3hi (3zo f3hi f3zo (3hi 
60.0/40.0 -1.18 -0.98 -1.02 -0.98 -0.62 -0.60 -0.47 -0.46 
80.0/20.0 -1.15 -0.92 -1.01 -0.95 -0.62 -0.59 -0.47 -0.45 
90.0/10.0 -1.10 -0.87 -1.01 -0.93 -0.61 -0.58 -0.47 -0.44 
95.0/05.0 -1.07 -0.81 -1.00 -0.91 -0.61 -0.57 -0.46 -0.44 
97.5/02.5 -1.05 -0.77 -1.00 -0.90 -0.61 -0.57 -0.46 -0.43 

qualitatively, all this is as expected, we also note that the differences between (3hi and f3zo 

are substantially smaller than what Huisman et al. obtain. Nor do we see the (3his come 

anywhere near (or above) unity. Especially the numbers in the lower half of the table, from 

parameter constellations that produce marginal betas in the Froot-Thaler ballpark, are quite 

disappointing: all f3his but one remain negative, and the lone exception (0.04, for z = 4 and (3 

= -0.6 , split 97.5%/02.5%) is quite unimpressive. 

Table 4 demonstrates that the results obtained thus far are not very sensitive to the absence 

of probability mass within [-0, +oj. On a priori grounds, a U-shaped distribution, with some 

mass in the middle, is more likely indeed. But when we mix the Bernouilli with a uniform on 

[-0, +0] and give the latter 25% probability weight, the results hardly change; if anything, the 

changes are for the worse. Results for 50% probability weight in the center are available on 
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Table 5: Simulated betas (3): H-distributed b; /1S = 0.25 

z = 1.1, f3 = 0.2 z = 1.1, f3 = 0.2 z = 7, f3 = 0.2 z = 10, f3 = 0.2 
split f310 f3hi f3lo f3hi f310 f3hi f310 f3hi 
60.0/40.0 0.18 0.23 -0.08 0.29 0.03 0.27 0.10 0.25 
80.0/20.0 0.17 0.26 0.04 0.36 0.10 0.33 0.14 0.30 
90.0/10.0 0.18 0.29 0.11 0.41 0.14 0.38 0.16 0.34 
95.0/05.0 0.18 0.32 0.15 0.45 0.17 0.41 0.18 0.37 
97.5/02.5 0.19 0.34 0.17 0.48 0.18 0.44 0.19 0.39 

z = 1.1, f3 = 0.2 z = 4, i3 = -0.2 z = 7, f3 = -0.2 z = 10, f3 = -0.2 
split f310 f3hi f310 f3hi f310 f3hi f310 f3hi 
60.0/40.0 -0.22 -0.13 -0.63 -0.06 -0.50 -0.08 -0.43 -0.10 
80.0/20.0 -0.22 -0.07 -0.44 0.05 -0.37 0.02 -0.33 -0.01 
90.0/10.0 -0.22 0.01 -0.34 0.13 -0.30 0.09 -0.28 0.06 
95.0/05.0 -0.22 0.13 -0.28 0.20 -0.26 0.15 -0.25 0.11 
97.5/02.5 -0.21 0.21 -0.25 0.25 -0.23 0.20 -0.23 0.15 

z = 1.1, f3 = -0.6 z = 4, f3 = -0.6 z = 7, f3 = -0.6 -

split f310 f3hi f310 f3hi f310 f3hi - -
60.0/40.0 -0.58 -0.46 -0.97 -0.42 -0.62 -0.57 
80.0/20.0 -0.62 -0.37 -0.81 -0.27 -0.62 0.95 
90.0/10.0 -0.62 -0.23 -0.72 -0.16 -0.61 0.98 
95.0/05.0 -0.62 -0.07 -0.67 -0.08 -0.61 0.99 
97.5/02.5 -0.62 0.16 -0.64 -0.02 -0.60 0.99 

z = 1.1, f3 = -1 z = 4, i3 = -.997 z = 7, f3 = -.607 z = 10, f3 = -.462 
split f310 f3hi f310 f3hi f310 f3hi i310 f3hi 
60.0/40.0 -0.96 -0.80 -1.01 -0.96 -0.61 -0.60 -0.47 -0.45 
80.0/20.0 -1.02 -0.59 -1.01 0.96 -0.61 0.98 -0.47 0.99 
90.0/10.0 -.105 -0.43 -1.01 0.99 -0.61 1.00 -0.46 1.00 
95.0/05.0 -1.04 -0.25 -1.00 0.99 -0.61 1.00 -0.46 1.00 
97.5/02.5 -1.03 -0.21 -1.00 1.00 -0.61 1.00 -0.46 1.00 

request; they confirm that the Bemouilli case tends to provide an overly optimistic picture, 

but only marginally so. The fact that the amount of mass put between -5 and +5 makes so 

little difference also suggests that our adoption of a H-shaped distribution for b (instead of the 

U-shape that we should have had) is not likely to be material. 

Our theoretical results showed that there should be a gain in effectiveness if sampling is 

asymmetric, so that the extreme observations tend to come predominantly from one particular 

tail and have similar values for b. The Huisman et al. procedure is likely to produce this 

feature: "weakness" and "strength"-i.e. high or low interest rates-are highly persistent 

features, so that that extreme-variance days are likely to have abnormally many date where 

strong currencies are at their strongest and weak currencies at their weakest. To produce such 

asymmetric sampling in our experiments, we set the mean of S' and p. equal to 0.25, keeping 
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the cut-offs symmetric around zero at ±X. To put this number in perspective: the standard 

deviation of the conditional expectations, a number that in reality is probably rather small, is 

standardized at unity in the simulations. That is, we can think of a mean of 0.25 as a small 

number. As predicted, both conditional variances (for hi and 10) are lower than the marginal 

variance; and var(b I hi) drops steadily as the cut-off value X is increased, while var(b 110) 

is U-shaped in X. The impact of all this on (3 can be quite strong for selected parameter 

configurations, notably in cells (z = 7, (3 = -0.6) and (z = 4, (3 = -1) where the extreme betas 

get quite close to unity. When the unconditional mean is set equal to twice the variance of 

S' (results not shown), we get such betas also for an adjacent cell. Thus, the procedure does 

have the potential to generate quite high betas, and specifically for parameter constellations 

that are in the Froot-and-Thaler ballpark. 4 

3 Concluding remarks 

The empirical failure of the UIP model suggests that a variable (b) needs to be added to 

the forward premium P. Fama (1983) showed that a (3 below 1/2 means that the missing 

variable shows more variability than the signal S·. We provide some additional information. 

For instance, a negative (3 means that also the covariance between signal and noise is larger 

than the signal variability. And the Froot and Thaler meta-average (3 of -0.88 caps the noise

to-signal variance ratio at 4.5, and implies a whopping 0.9 lower bound on the correlation 

between signal and noise. 

One of the possible explanations behind the failure of the unbiased expectations hypothesis 

is that the relation between expected exchang&rate changes and forward premia is obscured 

by transaction costs effects. Huisman et al. (1998) treat this transaction-cost effect as an 

errors-in-th&regressor problem, and note that the resulting bias toward zero should be reduced 

in samples with a better signal-to-noise ratio. Occasionally, expected exchang&rate changes 

can be very pronounced, leading to unusually large forward premia. Accordingly, Huisman 

et al. focus on days where forward premia tend to be exceptionally large, and find that in 

these "extreme samples" the bias toward zero is reduced (and perhaps even reversed). But 

there is a possible flaw here: given unusually large expectations, one expects larger forward 

4True, the effects actually observed by Huisman et al. are much more extreme what is predicted here, but 
within our setting that must have been pure luck: there is no way a model with a true slope of unity can 
generate an expected coefficient way above unity. Huisman et al. do not provide t-tests on the deviation from 
unity. 
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premia indeed, but that does not necessarily mean that, given unusually large premia, also 

expectations tend to be outsized. For the second part of the statement to be true on average, 

the distribution of the conditional expectations must be thicker-tailed than the density of the 

missing variable. Interestingly, a transaction-cost model is likely to generate that property 

(Constantinides, 1986, and Dumas, 1992): transaction costs lead to a no-activity cone around 

the perfect-markets price, and the price tends to spend unusually long times at the border 

relative to, say, a uniform distribution. Also, the cone is far wider than the equilibrium price 

increased/decreased with the percentage transaction cost: if switching to and fro between 

currencies is costly, one wants currency B to move deep into the money before converting 

one's A-holdings into B in the first place. In short, in this type of model the percentage 

deviations from the perfect-markets equilibrium should be (i) bounded (that is, they cannot 

dominate the extreme forward premia), (ii) wide (that is, they can generate betas below .5) 

and (iii) U-shaped in density. We approximate the U-distribution by a H-distribution and 

derive theoretical results for a special case. From the numerical verifications we find that, 

for parameters in line with Froot and Thaler, extreme sampling can eliminate a lot of the 

transaction-cost-induced noise in forward premia. The mechanisms are more subtle than one 

would expect at first blush. For example, extreme sampling not only boosts the signal variance, 

but also induces a signal-noise covariance that improves beta, and may even lower the noise 

variance in absolute terms. Also, extreme sampling seems to be at its best when, for a given 

currency, large premia tend to come from from one end of the expectations distribution only. 

It is quite likely that this mechanism was active in the Huisman tests, too. 

Appendix 

Proof of Proposition 1 

To prove (1.5)-(1.6), set ~f;~) = w and v~r:::) = z so that 

l-w 
(3= 1-2w+z' (A.l) 

provided that 1 - 2w + z =F O. As the correlation between Er and b is below unity, and as 

R2(S*,b) = w2/z, we know that w is bounded by ";z.R2 with R2 < 1. For any given value 

of z, the value of w that maximizes or minimizes (3 s.t. w2 :::; z always is a corner solution, 

because 

8 l-w 
8wl-2w+z 

l+z 
(1- 2w + z)2 
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# 0 for - vz < w < VZ. (A.2) 

Thus, provided that 1- 2w + z # 0, the extrema for /3, given z and given R2 < 1, are obtained 

by setting w at the bounds, ±VZ. This leads to (1.5) and (1.6). QED 

Proof of Proposition 2. 

The relations P = [r - band S' = J.Ls + B.b + £ immediately imply that S' - J.Ls = (B - l)b + £ 

with b and £ independent. In a more standard notation, we are considering a two independent 

variables, X and Y, and we want to know to what extent the upper- tail probability of the sum, 

P(X + Y > x) with x a large positive number, is determined by the upper tail probabilities 

of X and Y, and similarly for the lower tail. Let X be the thicker-tailed variable. Obviously, 

a high (low) value for X + Y is not generated by extreme Ys when Y is negative (positive), 

so we are primarily interested in Y's contribution to the upper tail when Y is positive, and in 

Y's contribution to the lower tail when Y is negative. In the Lemma below, a to the best of 

our knowledge unpublished result kindly provided by Jef Teugels, it is shown that even when 

Y is positive it does not contribute to the upper-tail distribution of the sum and vice versa. 

Lemma (Thugels): Let (X, Y) be a randomly drawn vector from a joint distribution, and let 

X be the thicker-tailed of the two in the sense that5 

I· P(Y ~ x) 0 un --+ . 
xroo P(X ~ x) 

(A.3) 

Let X have dominatedly varying tails, i.e. for all a > 0 and some non-negative a we have6 

P(X ~ ax) < K -a 
P(X ~ x) - a . (A.4) 

Then even when Y > «)0 the upper (lower) tail of the distribution of the sum is unaffected 

byY: 

1. P(X + Y ~ x I Y > 0) 
1m --+ 1, 

xroo P(X ~ x) 
(A.5) 

1. P(X + Y ::; x I Y < 0) 
1m --+ 1. 

xl-oo P(X ::; x) 
(A.6) 

Proof: We prove the case where Y > O. We immediately have 

5 A sufficient condition for this is that both variables are Pareto distributed with X having the lower tail 
exponent. 

6This class comprises the Pareto-type class of distributions (notably when K = 1) and a fortiori the classical 
Pareto (when P(X > x) = x-Q). See Bingham et aI. (1987). 
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P(X + Y > x I Y > 0) ?:. P(X > x), (A.7) 

implying that 
lim P(X + Y > x I Y > 0) > 1. 
"'ioo P(X > x) -

(A.S) 

To get an inequality in the other direction, we first note that, in the case we are interested in 

(Le. deep in the right-hand tail), x is positive. We then use 

P(X + Y > x I Y > 0) :s: P(X > x(l- a» + P(X :s: x(l - a), Y > ax) 

:s: P(X > x(l- a» + P(Y > ax). 

Dividing both sides by P(X > x) we get 

P(X + Y > x I Y > 0) 
P(X > x) 

lim _P-,,( X_+~Y:-=:>_x---'-,I :-Y_>~O) 
xioo P(X > x) 

:s: P(X> x(l - a» + P(Y > ax) 
P(X > x) P(X> x) 

P(X > x(l - a» P(Y > ax) P(X > ax) 
P(X > x) + P(X > ax)' P(X> x) 

Ii P(X > x(l - a» 0 K -a :s: m + . a 
"'ioo P(X > x) 

:s: Ii P(X > x(l - a» 
"'i~ P(X > x) , 

(A.9) 

where the third line uses (AA) and (A.3). Taking a to be arbitrarily small, results (A.S) and 

(A.9) imply (A.5). QED. 

The proof of proposition 2 follows immediately. If Er has the higher tail exponent relative 

to b, the tails of the density of the forward premium is determined by the density of !r. QED 

Proof of Proposition 3. 

In the table below, we set out the critical values for E'S conditional probabilities and partial 

means in each of the four cases when I P I (i. e. I S* - b I) exceeds x-<iepending on the sign 

of b, and, for each of these cases, first for the right and then the left tail: 

partitioning of the probability partial mean of S' 
S* high-I P I events conditional on b 

case 1: S' - b > X with b = +0' d! 00 d! 00 

i.e. E > X - Its + (1 - 8)0' d;! €l 
11'1 ~ J f(€)d€ 11'1.(/LS + 80') + PI, PI ~ J €f(€)d€ 

£, £1 

case 2: S' - b < -X with b = +0' d£! £2 d f £2 

i.e. E < -y - Us + (1 - 8JO' ~ €2 
11'2 = J f(€)d€ 11'2.(/LS + 80') + P2, P2 ~ J €f(€)d€ 

-00 -00 

case 3: S' - b > X with b = -0' de! 00 d f 00 

i.e. E > Y - Us - (1 - 8)0' d;! €3 
11'3 = J f(€)d€ 11'3.(/LS - 80') + P3, P3 ~ J €f(€)d€ 

£3 £3 

case 4 S' - b < -X with b = -0' d£! £. d f £. 

i.e. E < X - Its - (1 - 8)0' d;! €4 
11'4 = J f(€)d€ 11'4.(/LS - 80') + P4,P4 ~ J €f(€)d€ 

-00 -00 
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The familiar solution for the conditional variances of a Bernouilli b is 

var(b I hi) = 462 .7l"(b = 61 hi).[l - 7l"(b = 61 hi)], (A.10) 

and likewise for var(b 110). Note that 7l".(1 - 7l") is maximal for 7l" = 1/2. With the above 

definitions of the events, the probability of b = +6, conditional on a high I PI, is given by 

7l"(b = 6 I hi) = 7l"1 + 7l"2 . 
(7l"1 + 7l"2) + (7l"3 + 7l"4) 

(A.1l) 

The sign of 7l"(b = 6 I hi) - 1/2 is the sign of (7l"1 + 7l"2) - (7l"3 + 7l"4) or, equivalently, of 

(7l"2 - 7l"4) - (7l"3 -7l"t). The latter can be interpreted as 

-)(-/L+(1-8)8 )(-/L+(1-8)8 

J f(€)d€ - J f(€)d€, (A.12) 

-)(-/L-(1-8)8 )(-/L-(1-8)8 

which is negative (Figure A1): both areas are 2(1 - B)6 wide, but in a symmetric, unimodal 

distribution, if JiB > 0 then the area above [-X - JiB - (1 - B)6, -X - JiB + (1 - B)c5], being 

more off-center, is smaller than the area above [X - JiB - (1- B)6,X - JiB + (1 - 8)c5]. Thus, 

7l"(b = 6 I hi) < 1/2. Similarly, when JiB is negative, we have 7l"(b = 6 I hi) < 1/2. Therefore 

var(b I hi) < c)2 = var(b). 

Also from proposition 2, the probability of a positive b when I P I is low is given by 

7l"(b=61Io)= 1-(7l"1+7l"2) 
[1- (1r1 + 1r2)] + [1- (7l"3 + 7l"4))" 

(A.13) 

If JiB > 0, then 7l"(b = 6 110) > 1/2, meaning likewise that var(b 110) < 62 = var(b). Initially, 

this phenomenon becomes more important the higher the cut-off value. However, for large X, 

the high-I P I sample becomes so small that more and more of the "b = -6" observations 

end up in the low-I P I sample. That is, all 7l"iS shrink. In the limit, with a very strict 

definition of " hi" , almost the entire distribution of P is classified as low-I PI, and 7l"(b = 6 110) 

again approaches the marginal mean, 1/2. Thus, for increasingly stricter definitions of "hi" , 

var(b 110) first falls and then inches up again to var(b) = 62. QED. 

Proof of Proposition 4. 

Th ' f (- -b I h·)' th th' f de! COV(eS'lhi) th d·t· I . e SIgn 0 COV €, t IS e same as e SIgn 0 {hi = variblhi)' e con I IOna regresSIOn 

coefficient of i on b. As b can assume only two values, this regression coefficient can be written 

as the slope of the line through the points (6, E(i I hi n b = 6)) and (-6, E(i I hi n b = -6)). 
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Using the definitions of the table in Proposition 3, the events" hi n ii = Ii" and" hi n ii = -Ii" 

can be rewritten as "€:::; f2 U € 2: f1" and "15:::; €4 U € 2: f3", respectively. Thus, 

def cov(€, S' I hi) E(€ I € :::; f2 U € 2: €I) - E(€ I € :::; f4 U € 2: (3) 
"(hi = var(ii I hi) = 21i . (A.14) 

We now show that the numerator on the right hand side is negative. Let 

f (f) = the density of €, symmetric and unimodal with mean zero 

'Trb = F(fb) , the probability that €:::; fb 

?fa = 1 - F(fa), the probability that € 2: fa 

¢( fj fa, fb) = the density of € given that € is in the tails, i.e. (€:::; fb U € 2: fa) 

We easily establish the relationship between F(€) and iI>(fj fa, fb)-see Figure A2: 

• on [fb,t"a), (?fa +'Trb).iI>(€j fa, fb) remains fiat while F(f) rises from 1fb to l-?fa, i.e. by an 

additional (1 -?fa - 1fb)j 

• beyond fa, (?fa + 'Trb).iI>(fj fa, fb) again rises in step with F(f) but from a level that is 

(1 -?fa - 'Trb) below F(f). 

In short, 

{ 
7i'~i€~b for € :::; fb, 

iI>( fj fa, fb) = .!(+€b) for fb < € < fa, 
7l'a 7rb 

F(€)-(l-7i'a-1l"b) _ F(€)-l + 1 £ - < 
1l"a+1l"b - ;ra+1l"b or f _ fa· 

(A.15) 

We need to rank E(€ I € :::; f2 U € 2: €I) versus E(€ I € :::; f4 U € 2: (3) where €4 < f2 < f1 and 

t"4 < f3 < fl· The expectation of € given that € :::; fb or € 2: fa can be derived from 

+00 

E(€ I €:::; €b U € 2: fa) = J f¢(fj fa, €b)df(€) 
-00 
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+00 J [1- 4'>(Ej Ea, Eb))d!(E), (A.16) 
-00 

where the second line, a familiar result, follows from partial integration. We now establish 

that over the entire integration range we have 4'>(Ej El, E2) > 4'>(Ej E3, £4), which is a sufficient 

condition for the ranking E(€ I €..:; E2 U € :::: E1) < E(€ I €..:; q U €:::: E3). We start with the case 

J.!s > 0 and use the result from Proposition 3 that, 

(A.17) 

From this it immediately follows that, below q and beyond E1, we have 4'>(Ej E1, E2) > 4'>(Ej E3, £4) 

(Figure A3): 

• on [-00, £4), both 4'>s rise in €, with 

• on [E1, (0), both 4'>s also rise in €, with 

Equations (A.18) and (A.19) trivially imply 

4'>(E4jE1,E2) > 4'>(E4j E3,E4), 

4'>(E1jE1,E2) > iI>(E1j E3,E4). 

(A.18) 

(A.19) 

(A.20) 

(A.21) 

It then follows that also on [E4,E1) we have 4'>(EjE1,E2) > iI>(Ej E3, £4). This is because, as 

illustrated in Figure A2, 

• on [E4,E2),iI>(EjE1,E2) goes on rising (from a higher starting point, see (A.18)), while 

iI>( Ej E3, E4) initially stays fiatj 

• on [E3, E1), 4'>(Ej 03, q) starts rising, but in light of of (A.19) it never quite catches up with 

4'>( Ej E1, E2) even in the range where the latter is fiat. 

Thus, when J.!S > 0, then everywhere we have iI>(EjEl,E2) > 4'>(EjE3,£4), implying, from (A.16), 

that E(€ I €..:; E2 U €:::: E1) < E(€ I € ..:; E4 U €:::: E3). This establishes the proof when J.!s > O. 

Next suppose that J.!s < o. Then 

(A.22) 
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We now use the symmetry-around-zero property for f(f) to restate the problem: 

-E(€ I € ~ -fa U€ ~ -fb) 

-E(€ I € ~ e: U€~ €b), (A.23) 

where ~ ~ fb and €b d~ fa. Thus, the ranking E(€ I € ~ f2 U € ~ (1) < E(€ I € ~ f4 U € ~ fa) 

is equivalent to the ranking E(€ I € ~ €i u € ~ f'2) > E(€ I € ~ f3 U € ~ f'4), and a sufficient 

condition for the latter is that, everywhere, W(f; ft, (2) < W(f; fa, (4)' Figure A4 pictures the 

critical points in the original and the restated problem. We see that the critical range for the 

lower-probability event is now to the right of the range of the higher-probability event, as was 

the case when /-ts > O. Tlrus, mutatis mutandis the previous proof still applies. 

Technical Note on the Simulations 

Define w ~ cov(S*, b)/vax(S*) and z ~ vax(b)/vax(S*). Consider the regression S* = {3P+v 

where 
l-w 

{3 = "'-1---2:-w-+-z (A.24) 

We work with the grid of {3s and zs explained in the main text (Table 2), and determine 

the implied values of w, (J, and vax(€). We then generate a simple U-shaped distribution for 

"6, as follows. Let U = U( -a, +a) be uniformly distributed on [-a, a] where a > 6. Then 

11"( -6 ~ U ~ +6) = ~, which then implies 

- - 1 ( 6) 1I"(U < -6) = 1I"(U > +6) = 2 1 - ~ . 

We generate b as 

! -6 

b~ :, 

if fJ ~-6 

if - 6 < fJ < +6 ,density = 2~' 

This implies a mean and variance given by 

E(b) 

vax(b) = E(b2 ) 

(A.25) 

(A.26) 

(A.27) 

(A.28) 

(A.29) 

(A.30) 
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The above implies that we need to pre-set one additional variable, which we chose to be 

8/ a. This ratio indicates how much of the mass of b is on the bounds, ±8. The limiting cases 

are (i) [a -> 00,8 > 0] (implying 8/a = 0), a binomial distribution with variance &lj and (ii) 

a = 8, a continuous uniform distribution with variance 82/3. The implied value of 8 is found 

from 

var(b) = z = 82 (1- ~~) (A.31) 

implying 

(A.32) 
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F· 1 b d f3 £ . de! vax(b) 
19ure : Ollll S on or Val"lOUS Z = vax(s.) 
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The figure shows the highest and lowest possible values of beta for various levels of the noise-to-signal variance 
ratio. 

Figure 2: bounds on fJ for various z d,:j ;:';~1) for the il!.." = .9 

The figure shows the highest and lowest possible values of beta for various levels of the noise-tO-Signal variance 
ratio when the R2 between signal and noise is at most .90. 
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Figure Al 
In a symmetric, unimodal distribution, the area below the curve of width 2(1 - O)e is larger than another one 

with the same width is the former is closer to the center. 

A\, /1\, 
-X-J.l±(I-B)3 0 X-J.!±(I-6)3 -X-).L:!:(1-9)8 X-J.!±(1-B)3 

Figure A2: The link between F(t) and <I>(t Ita, tb) 

FigureA3 

Figure A4: Restating the problem when J.! < O. 
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