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Abstract

Recently, Hjort and Claeskens (2003) developed an asymptotic theory for model

selection, model averaging and post-model selection/averaging inference using likeli-

hood methods in parametric models, along with associated confidence statements. In

this paper, we consider a semiparametric version of this problem, wherein the likeli-

hood depends on parameters and an unknown function, and model selection/averaging

is to be applied to the parametric parts of the model. We show that all the results

of Hjort and Claeskens hold in the semiparametric context, if the Fisher information

matrix for parametric models is replaced by the semiparametric information bound for

semiparametric models, and if maximum likelihood estimators for parametric models

are replaced by semiparametric efficient profile estimators. The results also describe

the behavior of semiparametric model estimates when the parametric component is

misspecified, and have implications as well for pointwise consistent model selectors.

KEY WORDS: Akaike Information Criterion; Bayes Information Criterion; Efficient semi-
parametric estimation; Frequentist model averaging; Model averaging; Model selection; Pro-
file likelihood; Semiparametric model.
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1 Introduction

We consider semiparametric models where the responses Y are related to a vector of co-

variates Z, and where at the same time there is an unknown nonlinear relationship to a

covariate X. Thus the model has a parametric component in Z and β and a nonparametric

component θ(X). With normal errors, a typical example is a partially linear model where

Yi = ZT
i β + θ(Xi) + εi. In generalized linear models, or in general likelihood problems, we

start with a likelihood function
n∑

i=1

L{Yi, Zi, βtrue, θtrue(Xi)}, (1)

where the value of βtrue as well as the function θtrue are unknown.

Our goal is to perform variable selection in the parametric part of the model, without

assuming the nonparametric part to be known, and to obtain correct inference in the selected

model.

Most other results in semiparametric model selection only consider the partially linear

models. Shi and Tsai (1999) use B-splines to estimate the nonparametric function θ(·)
and develop a small sample adjustment to Akaike’s information criterion AIC. Recently,

Fan and Li (2004) use local polynomial estimators in a longitudinal data setting and select

the variables of the parametric part of the partially linear model by means of a penalized

least squares criterion. Simonoff and Tsai (1999) developed an improvement to the AIC for

variable selection in semiparametric and additive models. Naik and Tsai (2001) developped

an AIC-type information criterion for use in single-index models, with extension to partially

linear models. None of these papers, however, deals with inference in the selected model.

An exception is Bunea (2004) who studies post model selection inference in, again, partially

linear regression models using penalized least squares estimation in combination with a

construction of sieves.

In this paper, in particular, we go further than model selection by extending the frequen-

tist model averaging results of Hjort and Claeskens (2003) to semiparametric models. By

appropriate use of profile likelihood methods, we show that their results continue to hold,

provided parametric likelihood ratio methods are replaced by semiparametric profile likeli-

hood methods, and in addition that quantities related to the Fisher information matrix in
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parametric models are replaced by a suitable profile information matrix, namely the semi-

parametric information bound. Our methods of proof employ Le Cam’s contiguity lemmas,

leading to transparent results.

Definitions and notation are given in Section 2. The asymptotic results are split in

two parts. First, we focus on the nonparametric part of the model, for which we use local

linear estimators. The parametric model part is dealt with in Section 3.2. All technical

details, as well as regularity conditions, are collected in the appendix. The distributions of

estimators in submodels there obtained are combined in Section 4 to give the main results

on the distribution of model averaged estimators. The distribution of estimators post-model

selection is a special case. The applicability of the method is illustrated in a simulation study

in Section 5, where we also show that BIC has poor behavior, despite it being a consistent

model selector. Final comments, along with a brief discussion of the problems with pointwise

consistent model selectors, are given in Section 6.

2 Definitions and Model Assumptions

The true model (1) contains the parameter vector βtrue, of which some components might

be zero, and the unknown curve θtrue(·). Since it is unsure whether all components of β

are needed in the model, a model selection criterion is applied. For simplicity we consider

the case of two models of interest: (1) a reduced model where βT
red = (αT, 0T

q ), and (2)

a full model where βT
full = (αT, γT). As in Hjort and Claeskens (2003) we make the local

misspecification assumption: the q-dimensional vector γtrue = δ/
√

n. This implies that the

true model is a distance O(1/
√

n) away from the reduced model.

Under the full model, we have a set of responses Y and covariates Z, other covariates X,

a parameter β and a function θ(·), with a log-likelihood function L{Y, Z, β, θ(X)}. The true

values are βtrue and θtrue(·). Partial derivatives of the log-likelihood function are denoted

Lθ{Y, Z, β, θ(X)} =
∂

∂v
L(Y, Z, β, v)

∣∣∣∣∣
v=θ(x)

;

Lβ{Y, Z, β, θ(X)} =
∂

∂β
L{Y, Z, β, θ(X)}.

The second derivatives are denoted by Lββ(·), etc.
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In general, for any function F , we will use the following notation for partial and total

derivatives

∂

∂β
F{β, θ(x, β)} =

∂

∂u
F{u, θ(x, β)}u=β = Fβ{β, θ(x, β)};

d

dβ
F{β, θ(x, β)} =

∂

∂u
F{u, θ(x, β)}u=β +

∂

∂v
F{β, v}v=θ(x,β)

∂

∂β
θ(x, β)

= Fβ{β, θ(x, β)}+ Fθ{β, θ(x, β)} ∂

∂β
θ(x, β).

The key assumptions that will hold in likelihood problems are that

0 = E [Lθ {Y, Z, βtrue, θtrue(X)} |X, Z] ; (2)

0 = E [Lβ {Y, Z, βtrue, θtrue(X)} |X,Z] . (3)

Here and elsewhere in the paper, the expectation is with respect to the true distribution of

the data Y . Assumption (2) implies that E [Lθ {Y, Z, βtrue, θtrue(X)} |X] = 0. Define θ(x, β)

as the solution to

E[Lθ{Y, Z, β, θ(X, β)}|X = x] = 0. (4)

Of course, θ(·, βtrue) = θtrue(·).
Let the subscript S refer to either the reduced model, where γ = 0q, or to the full model

including all q γ-components. We define θ̂(x, βS) as the local linear estimator of θ(·) at

location x, when β = βS. Specifically, {θ̂(x; βS), θ̂1(x; βS)} is the maximizer, with respect to

(ψ0, ψ1), of

n−1
n∑

i=1

L{Yi, Zi, βS, ψ0 + ψ1(Xi − x)}Kh(Xi − x), (5)

where for a kernel function K and bandwidth h, Kh(·) = K(·/h)/h. If the first partial

derivatives of the likelihood exist, we have the following set of estimating equations in the

semiparametric model:

0 = n−1
n∑

i=1

Lθ{Yi, Zi, βS, ψ0 + ψ1(Xi − x)}Kh(Xi − x)(1, Xi − x)T.

The covariate X has density function fX(·). Given the estimator θ̂(x, βS), we define the

(generalized) profile likelihood estimator β̂S as the solution to

0 = n−1
n∑

i=1

d

dβ
L{Yi, Zi, βS, θ̂(Xi, βS)}
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= n−1
n∑

i=1

[
Lβ{Yi, Zi, βS, θ̂(Xi, βS)}+ Lθ{Yi, Zi, βS, θ̂(Xi, βS)} ∂

∂βS

θ̂(Xi, βS)

]
.

For any given X, were θtrue(·) known, the Fisher information matrix would be calculated

as follows. The matrix of conditional expected values of second derivatives given X is denoted

by G(X). This matrix, as well as its inverse, is partitioned as

G = G(X) =




Gββ Gβθ

Gθβ Gθθ


 , and G−1 = G−1(X) =




Gββ Gβθ

Gθβ Gθθ




with

Gββ = E[Lββ{Y, Z, βtrue, θtrue(x)|X],

Gβθ = E[Lβθ{Y, Z, βtrue, θtrue(x)|X],

Gθθ = E[Lθθ{Y, Z, βtrue, θtrue(x)|X],

Gθβ = GT
βθ, and Gββ = (Gββ−GβθG

−1
θθ GT

βθ)
−1. In parametric likelihood models in β induced

by distributions given X, −G(X) is the Fisher information matrix.

3 Asymptotic Results

3.1 Introduction

The reason for considering model selection is that we wish to estimate a specific function

µ(β), though do not know whether all of the components of β are needed. Our interest is in

the distribution of µ(β̂) where β̂ is obtained via a model selection procedure. We obtain this

distribution in several steps. First we study the nonparametric part of the model since an

estimator of θtrue(·) is necessary to define the profile likelihood function. Next, we continue

with the parametric part. Via some lemmas we arrive at the distribution of the profile

likelihood estimator β̂ in both reduced and full models, under the local misspecification

assumptions. Technical details are given in an appendix.

Our study of the profile likelihood estimator β̂ will make frequent use of the derivative

of the curve θ(x, β) with respect to β, of which we prove the following result.
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Lemma 3.1 The derivative of the curve θ(x, β) satisfies

∂

∂β
θ(x, βtrue) = G(x) = −Gβθ(x)/Gθθ(x).

Proof. The lemma follows by differentiating (4) with respect to β and solving the resulting

equation.

3.2 Main Results

Our main results are stated as a series of Theorems. We first define the semiparametric

information bound S(β) = cov{ d
dβ
L{Y, Z, βtrue, θ(X, βtrue)} and partition this matrix as well

as its inverse in the following way,

S(β) =

(
Sαα(β) Sαγ(β)

Sγα(β) Sγγ(β)

)
, S−1(β) =

(
Sαα(β) Sαγ(β)

Sγα(β) Sγγ(β)

)
.

We give a basic expansion of the profile kernel method, first in the full model, then in the

reduced model. Recall that βtrue = (αT
true, δ

T/
√

n)T.

Theorem 3.1 Under the local misspecification assumption and when working in the full

model, assuming conditions (C1)–(C4),

n1/2(β̂full − βtrue) = S−1(βtrue)n
−1/2

n∑

i=1

d

dβ
L{Yi, Zi, βtrue, θ(Xi, βtrue)}+ oP (1).

The limiting distribution of β̂full can now immediately be constructed: n1/2(β̂full − βtrue) ⇒
Normal{0, S−1(βtrue)}.

Theorem 3.2 If the reduced model holds, that is γ = 0q,

n1/2(α̂red − αtrue) = S−1
αα(αtrue, 0q)n

−1/2
n∑

i=1

d

dα
L{Yi, Zi, (αtrue, 0q), θ(Xi, αtrue, 0q)}+ oP (1).

Moreover, n1/2(α̂red − αtrue) ⇒ Normal(0, S−1
αα).

The proof of the first statement is very similar to the proof of Theorem 3.1. The second part

follows immediately from the central limit theorem.

We now state two results describing what happens under the local model misspecifica-

tion, one concerning the reduced model estimate when the full model holds, and the other

describing the relationship between the full and reduced model estimates in this case.

6



Theorem 3.3 If the local misspecified model holds, that is γtrue = n−1/2δ,

n1/2(α̂red − αtrue) = S−1
αα(βtrue)Sαγ(βtrue)δ

+ n−1/2
n∑

i=1

S−1
αα(βtrue)

d

dα
L{Yi, Zi, βtrue, θ(Xi, βtrue)}+ oP (1)

⇒ Normal{S−1
αα(βtrue)Sαγ(βtrue)δ , S−1

αα(βtrue)}.

Theorem 3.4 Under the local misspecification assumption,

n1/2(α̂full − αtrue) = n1/2(α̂red − αtrue)− S−1
αα(βtrue)Sαγ(βtrue)δ

+Sαγ(βtrue){Sγγ(βtrue)}−1n1/2(γ̂full − γtrue) + oP (1),

and the estimators γ̂full and α̂red are asymptotically uncorrelated.

The above discussion is summarized in the following theorem, which describes what

happens to estimates of functions of the parameters under local model misspecification.

Theorem 3.5 Under the local misspecification assumption,

n1/2{µ(β̂full)− µ(βtrue)} ⇒ Λfull =
∂µ

∂β
Normal{0, S−1(βtrue)}

n1/2{µ(β̂red)− µ(βtrue)} ⇒ Λred =
∂µ

∂α
Normal{S−1

αα(βtrue)Sαγ(βtrue)δ, S
−1
αα(βtrue)} − ∂µ

∂γ
δ.

Proof. Follows immediately via the delta method, and Theorems 3.1 and 3.3.

4 Model Averaging and Inference

4.1 Limit Results and Confidence Sets

Theorem 3.5 is the main ingredient to obtain the distribution of estimators after model

selection. Here we follow the approach leading to Theorem 4.1 of Hjort and Claeskens

(2003), with the approach to inference following their Section 4.3.

We consider cases where model selection and model averaging are based on weights de-

pending on δ̂full = n1/2γ̂full ⇒ D = Normal(δ, Sγγ), see below for more discussion. Estimators

after model selection take the form

µ̂ = c(δ̂full)µ(β̂full) + {1− c(δ̂full)}µ(β̂red),
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where the data-driven weights c(δ̂full) are between zero and one. We then immediately have

the following result.

Theorem 4.1 Recall that D is the limiting distribution of n1/2γ̂full, and that Λfull and Λred

are described in Theorem 3.5. Then, under the local misspecification assumption, n1/2{µ̂ −
µ(βtrue)} ⇒ c(D)Λfull + {1− c(D)}Λred.

We can combine Theorem 4.1 with the methods in Section 4.3 of Hjort and Claeskens

to develop asymptotically correct confidence limits for µ(βtrue). This is simply a matter

of making identifications of notation. In our case, let µα(βtrue) = {∂µ(βtrue)}/∂α and let

µγ(βtrue) = {∂µ(βtrue)}/∂γ. Define τ 2
0 = µT

α(βtrue)S
−1
ααµα(βtrue), ω = SγαS−1

ααµα(βtrue) −
µγ(βtrue), κ = (τ 2

0 + ωTSγγω)1/2 and replace their δ̂n(D) by Q(D) = c(D)D. Then their

equation (4.8) gives asymptotically correct confidence statements for µ(βtrue), when estimates

are substituted at β̂full.

It is obvious from these calculations that the weights need only equal c(δ̂full) + op(1).

Thus, for example, these results apply if one uses AIC or BIC based on the semiparametric

profile loglikelihood

n−1
n∑

i=1

L{Yi, Zi, βS, θ̂(Xi, βS)},

see for example equation (6) of Murphy and van der Vaart (2000).

Post-model selection estimators take indicator functions as weights, pointing to the se-

lected model. The theory also applies with more general weighting schemes, allowing to

average estimators across models.

5 Simulation Example

We performed a small simulation study for the partially linear Gaussian model:

Yi = ZT
i B + θ(Xi) + εi,

where Zi = (Zi1, Zi2)
T, εi = Normal(0, σ2), B = (B1,B2), β = (σ2,BT), α = (σ2,B1) and ;

γ = B2. In the simulation, we took σ2 = 0.20, B1 = 1, n = 100, 200, θ(x) = sin(8x − 2),
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Xi uniform on [0, 1] and Zi bivariate normal with mean zero, variances 1/12 and correlation

0.70. We varied B2 = cn−1/2 for c = 0.0, 0.5, 1.0, . . . 10.0. The experiment was repeated

2, 000 times in each configuration. We use the Epanechnikov kernel function. To cut down

on Monte-Carlo variability, the same random numbers were used for each value of c.

In our calculations, we estimated the bandwidth as follows. First, we regressed Y , Z1

and Z2 separately on X, using the DPI bandwidth selection method of Ruppert, Sheather

and Wand (1995) to form different estimated bandwidths on each. We then calculated the

residuals from these fits, and regressed the residual in Y on the residual in (Z1, Z2) to get

a preliminary estimate β̂start of β. Following this, we regressed Y − ZTβ̂start on X to get a

final common bandwidth, and then reestimated β.

The calculations are relatively straightforward. It is readily seen that the profiled log-

likelihood is L(β) = −(1/2)log(σ2) − (2σ2)−1(Ry − RT
z B)2, where Ry = Y − E(Y |X) and

Rz = Z − E(Z|X). The score then is

[−(2σ2)−1 + (2σ4)−1(Ry −RT
z B)2

(σ2)−1Rz(Ry −RT
z B)

]
,

and the information bound then becomes

[
(2σ4)−1 0

0 σ−2E(RzR
T
z )

]
=

[
(2σ4)−1 0

0 σ−2Ω

]
.

Our goal is to estimate B1 = (0, 1, 0)β. This means that µγ(βtrue) = 0 and that µα(βtrue) =

(0, 1)T.

When we used the model-averaged AIC estimator, the coverage properties were quite

good. In all situations, for both n = 100 and n = 200, the actual coverage of the nominal

90% intervals ranged between 0.88 and 0.89, while the actual coverage of the nominal 95%

intervals ranged between 0.935 and 0.940. These intervals were fairly close to being the same

as intervals based on fitting the full model only. In contrast, when we selected the model

and then used the standard errors from that selected model, neither AIC nor BIC performed

well. The former had minimum coverage of 0.71 for a nominal 95% interval, while the latter’s

coverage had minimum value 0.46. BIC in particular had significant bias for estimating B1.
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6 Discussion

In this paper, we have computed the limit distributions and asymptotic expansion for general

semiparametric models with misspecified parametric components, results that are summa-

rized in Theorem 3.3 and Theorem 3.5. Our method of argument is to exploit the contiguity

of locally misspecified models. In effect, we show that the results are the same as what

one would expect in fully parametric models, as described by Hjort and Claeskens (2003),

but with the Fisher information matrix for parametric models replaced by the semiparamet-

ric information bound for semiparametric models, and with maximum likelihood estimators

for parametric models replaced by semiparametric efficient profile estimators. These results

form the model misspecification and model selection analogue of the correct model profile

likelihood results of Murphy and van der Vaart (2000).

Our work has focused on the case that X is scalar, although because of the contiguity

argument employed we expect the results to hold when X is multivariate. Other special

cases await further development, e.g., the partially linear additive model with mean ZTβ +
∑m

j=1 θj(Xj).

Finally, in our simulation we found that BIC estimates and confidence intervals had

bias and very poor coverage probabilities, as low as 46% for a nominal 95% interval. This

may seem somewhat surprising, given that BIC is known to be a consistent model selector.

As Leeb & Pötscher (2005) point out in parametric problems, however, and as our results

verify in semiparametric problems, BIC is not a uniformly consistent model selector. That

is, for fixed misspecification, BIC can consistently distinguish between models, but for local

misspecification, it cannot consistently distinguish between models. This lack of uniform

consistency translates into the bias and poor coverage that we observe for BIC. Of course,

this problem is not restricted to BIC, and can be shown using our asymptotic theory on a

case-by-case basis to hold for other so-called consistent model selectors.
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Appendix

Regularity conditions

(C1) The bandwidth sequence hn → 0 as n →∞, in such a way that nhn/log(n) →∞ and

hn ≥ {log(n)/n}1−2/λ for λ as in condition (C4).

(C2) The kernel function K is a symmetric, continuously differentiable pdf on [−1, 1] taking

on the value zero at the boundaries. The design density fX is differentiable on B =

[b1, b2], the derivative is continuous, and infx∈B fX(x) > 0. The function θ(·, β) has 2

continuous derivatives on B and is also twice differentiable with respect to β.

(C3) For β 6= β′, the Kullback-Leibler distance between L{·, ·, β, θ(·, β)}, and L{·, ·, β′, θ(·, β′)}
is strictly positive. For every (y, z), third partial derivatives of L{y, z, β, θ(x))} with

respect to β exist and are continuous in β. The 4th partial derivative exists for almost

all (y, z). Further, mixed partial derivatives ∂r+s

∂βr∂vsL{y, z, β, v)}|v=θ(x), with 0 ≤ r, s ≤
4, r + s ≤ 4 exist for almost all (y, z) and E{supβ supv

∣∣∣ ∂r+s

∂βr∂vsL{y, z, β, v)}
∣∣∣
2} < ∞.

The Fisher information, G(x), possesses a continuous derivative and infx∈B G(x) > 0.

(C4) There exists a neighborhood N{βtrue, θtrue(x)} such that

max
k=1,2

sup
x∈B

∥∥∥∥∥ sup
(β,θ)∈N{βtrue,θtrue(x)}

∣∣∣∣∣
∂k

∂θk
log{L(Y, Z, β, θ)}

∣∣∣∣∣

∥∥∥∥∥
λ,x

< ∞

for some λ ∈ (2,∞], where ‖ · ‖λ,x is the Lλ-norm, conditional on X = x. Further,

sup
x∈B

Ex

[
sup

(β,θ)∈N{βtrue,θtrue(x)}
| ∂3

∂θ3
log{L(Y, Z, β, θ)}|

]
< ∞.
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Asymptotic Theory For The Nonparametric Part of the Model

For each fixed value of β, the local linear estimator θ̂(x, β) exists and is a strongly

consistent estimator of θ(x, β) defined in (4). This follows from local likelihood calculations.

See for example Theorem 2.1 in Claeskens and Van Keilegom (2003); precise regularity

conditions are formulated above. We summarize the strong uniform consistency result in

the first part of Lemma A.1, and add a result about the derivatives with respect to the

parameters β.

Lemma A.1 As n → ∞, and under regularity conditions (C1)–(C4) on the kernel, band-

width and likelihood function, θ̂(x, β) and θ̂1(x, β) exist and supx |θ̂(x, β) − θ(x, β)| =

O[{nh/log(n)}−1/2 +h2] almost surely. For the estimator of the derivative of the curve it fol-

lows that supx |θ̂1(x, β)− ∂
∂x

θ(x, β)| = O({nh3/log(n)}−1/2 +h2) almost surely. Furthermore,

∂
∂β

θ̂(x, β) exists, is strongly consistent and supx | ∂
∂β

θ̂(x, β)− ∂
∂β

θ(x, β)| = OP [{nh/log(n)}−1/2+

h2] and for some δ > 0, supx | ∂2

∂x∂β
θ̂(x, β)− ∂2

∂x∂β
θ(x, β)| = op(n

−δ).

Proof. The first part of the lemma has been shown in Theorem 2.1 in Claeskens and Van

Keilegom (2003). For the part about the derivatives with respect to β, define (for fixed x)

the function

u(βS, ψ0) = n−1
n∑

i=1

Lθ{Yi, Zi, βS, ψ0 + θ̂1(x, βS)(Xi − x)}Kh(Xi − x).

By the first part of this lemma, θ̂1(x, βS) is a strongly consistent estimator of θ1(x, βS). Since

by assumption (C3) the Fisher information matrix is positive definite, and the design density

fX(x) > 0 (C2), the implicit function theorem implies that the function βS → θ̂0(x, βS) is a

C1 function. As a consequence there exists a neighborhood of β̂S such that for all βS in this

neighborhood,

0 =
d

dβ
u{βS, θ̂0(x, βS)} =

∂

∂β
u{βS, θ̂0(x, βS)}+

∂

∂θ
u{βS, θ̂0(x, βS)} ∂

∂β
θ̂0(x, βS).

It follows that
∂

∂β
θ̂0(x, βS) = −G−1

n,θθGn,βθ,
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where

Gn,θθ(x) = n−1
n∑

i=1

Lθθ{Yi, Zi, βS, θ̂0(x, βS) + θ̂1(x, βS)(Xi − x)}Kh(Xi − x);

Gn,βθ(x) = n−1
n∑

i=1

Lβθ{Yi, Zi, βS, θ̂0(x, βS) + θ̂1(x, βS)(Xi − x)}Kh(Xi − x).

Application of the inverse function theorem (for example as in Foutz, 1977), yields strong

consistency of the estimator. Using the proof of Corollary 2.1 of Claeskens and Van Keilegom

(2003),

sup
x
|Gn,θθ(x)−Gθθ(x)fX(x)| = OP (

√
log(n)/(nh) + h2) = sup

x
|Gn,βθ(x)−Gβθ(x)fX(x)| .

This proves the statement about ∂
∂β

θ̂0(x, βS). A similar proof can be constructed for

∂2

∂x∂β
θ̂0(x, βS).

Inference on the parametric part in a semiparametric model via (local) profile likelihood

estimation involves the concept of a least favorable curve. Define the score function for β

d

dβ
L{Y, Z, β, θ(X, β)} = Lβ{Y, Z, β, θ(X, β)}+ Lθ{Y, Z, β, θ(X, β)} ∂

∂β
θ(X, β).

The least favorable curve θ∗(·, β) is this curve for which

E[
d

dβ
L{Y, Z, βtrue, θ

∗(X, βtrue)} d

dβ
L{Y, Z, βtrue, θ

∗(X, βtrue)}T|X] (A.1)

is minimal. In other words, −Lθ{Y, Z, βtrue, θ
∗(X, βtrue)} ∂

∂β
θ∗(X, βtrue) is the projection of

Lβ{Y, Z, βtrue, θ
∗(X, βtrue)} onto the space spanned by Lθ{Y, Z, βtrue, θ

∗(X, βtrue)}, as implied

by (A.1).

Lemma A.2 The local linear estimator, defined as the maximizer of (5), is a consistent

estimator of the least favorable curve which minimizes (A.1).

Proof. Via the projection interpretation it follows immediately that for a least favorable

curve θ∗(·, βtrue),

0 = E
([
Lβ{Y, Z, βtrue, θtrue(X)}+ Lθ{Y, Z, βtrue, θtrue(X)} ∂

∂β
θ∗(X, βtrue)

]

×Lθ{Y, Z, βtrue, θtrue(X)}|X
)
.
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Bartlett’s identities together with Lemma 3.1 show that

∂

∂β
θ∗(X, βtrue) =

∂

∂β
θ(X, βtrue).

The proof ends by application of Lemma A.1.

We have now shown that the conditions NP of Severini and Wong (1992) hold.

Asymptotic Theory For The Parametric Part of the Model

Lemma A.3 Assume that regularity conditions (C1)–(C4) hold. The (generalized) profile

likelihood estimator of βtrue in the full model is consistent.

Proof.

This follows from Lemmas 3.1, A.1 and A.2, which show that for the local linear likelihood

estimator the Severini-Wong conditions of their Proposition 1 hold.

Proof of Theorem 3.1. Via a Taylor expansion we obtain that

0 =
d

dβ
L{Yi, Zi, β̂, θ̂(Xi, β̂)}

=
d

dβ
L{Yi, Zi, βtrue, θ̂(Xi, βtrue)}+

d2

dβdβT
L{Yi, Zi, β̂

∗, θ̂(Xi, β̂
∗)}(β̂full − βtrue),

where β̂∗ lies in between β̂ and βtrue. Lemma A.3 implies that β̂∗ → βtrue in probability as

n →∞. Using assumption (2) it follows that the total score function satisfies

E[
d

dβ
L{Y, Z, βtrue, θ(X, βtrue)}|X, Z] = 0.

This implies that

S(βtrue) = −E[
d2

dβdβT
L{Yi, Zi, βtrue, θ(Xi, βtrue)}].

The theorem is proven if the following equations hold

n−1/2 d

dβ
L{Y, Z, βtrue, θ̂(X, βtrue)} = n−1/2 d

dβ
L{Y, Z, βtrue, θ(X, βtrue)}+ oP (1)

sup
β

∣∣∣∣∣n
−1 d2

dβdβT
L{Yi, Zi, β, θ̂(Xi, β)} − n−1 d2

dβdβT
L{Yi, Zi, β, θ(Xi, β)}

∣∣∣∣∣ + oP (1).

This follows by the same line of arguments as in Proposition 2 of Severini and Wong (1992).
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The asymptotic distributions of the estimators β̂full and β̂red will be derived under the

misspecification assumption by showing that the distributions are contiguous.

Contiguity follows from Le Cam’s first lemma provided we can show that, under the

reduced model, for some positive value σ2
LC , as n →∞,

n∑

i=1

[
L{Yi, Zi, βtrue, θtrue(Xi)} − L{Yi, Zi, (αtrue, 0q), θtrue(Xi)}

]
⇒ Normal(−1

2
σ2

LC , σ2
LC).(A.2)

Lemma A.4 Equation (A.2) holds with σ2
LC = δTE{Lγ(Y, X, (αtrue, 0q), θtrue(X)}δ.

Proof. Via a Taylor series expansion

n∑

i=1

[
L{Yi, Zi, βtrue, θtrue(Xi)} − L{Yi, Zi, (αtrue, 0q), θtrue(Xi)}

]

= n−1/2δT
n∑

i=1

Lγ{Yi, Zi, (αtrue, 0q), θtrue(Xi)}+
1

2
n−1

n∑

i=1

δTLγγ{Yi, Zi, (αtrue, 0q), θtrue}δ
+ oP (1).

The first term above converges in distribution to

Normal
(
0 , δTE

[
Lγ{Yi, Zi, (αtrue, 0q), θtrue(Xi)}Lγ{Yi, Zi, (αtrue, 0q), θtrue(Xi)}T

]
δ
)
,

while the second term converges in probability to

1

2
δTE

[
Lγγ{Yi, Zi, (αtrue, 0q), θtrue(Xi)}

]
δ,

which equals −1
2
σ2

LC under the likelihood assumptions.

We shall apply Le Cam’s third lemma to derive the distribution of the estimator α̂red

under the full model. To establish this result we first show the following lemma.

Lemma A.5 The vector n1/2(α̂red − αtrue) and the log-likelihood difference in (A.2) are

jointly asymptotically normal under the reduced model. The limiting distribution has mean

vector (0,−1
2
σ2

LC) and covariance matrix

(
S−1

αα(αtrue, 0q) S−1
αα(βtrue)Sαγ(βtrue)δ

δTSαγ(βtrue)S
−1
αα(βtrue) σ2

LC

)
.
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Proof. Via the Cramér-Wold theorem it remains to compute the covariance matrix. We

use the asymptotic expansion in the proof of (A.2) together with Lemma 3.1 applied to the

reduced model to yield the result.

Le Cam’s third Lemma immediately yields the distribution of α̂red under the local mis-

specification assumption.

Proof of Theorem 3.3. The convergence in distribution follows from Le Cam’s third

Lemma, using Lemma A.5. Theorem 3.2 together with a Taylor series expansion give that

Sαα(αtrue, 0q)n
1/2(α̂red − αtrue)

= n−1/2
n∑

i=1

d

dα
L{Yi, Zi, βtrue, θ(Xi, βtrue)}+ n−1

n∑

i=1

Lαγ{Yi, Zi, βtrue, θtrue(Xi)}δ

+ n−1
n∑

i=1

∂
∂α

θ(Xi, βtrue)LT
θγ{Yi, Zi, βtrue, θtrue(Xi)}δ

+ n−1
n∑

i=1

Lθ{Yi, Zi, βtrue, θtrue(Xi)} ∂2

∂α∂γ
θ(Xi, βtrue)δ + oP (1).

Lemma 3.1 applied to the reduced model gives that ∂
∂α

θ(Xi, βtrue) = −Gαθ/Gθθ. We use

this result to show that the sum of the last three terms in the above expansion converge in

probability to

δE[Lαγ{Yi, Zi, βtrue, θtrue(Xi)}] + δE
[

∂
∂α

θ(Xi, βtrue)LT
θγ{Yi, Zi, βtrue, θtrue(Xi)} = −δSαγ

Proof of Theorem 3.4. We start from the expansion in Theorem 3.1 which is in matrix

notation equal to

(
n1/2(α̂full − αtrue)

n1/2(γ̂full − γtrue)

)

= n−1

(
Sαα(βtrue) Sαγ(βtrue)

Sγα(βtrue) Sγγ(βtrue)

)
n∑

i=1

( d
dα
L{Yi, Zi, βtrue, θ(Xi, βtrue)}

d
dγ
L{Yi, Zi, βtrue, θ(Xi, βtrue)}

)
+ oP (1).

It now follows that

n1/2(α̂full − αtrue)− Sαγ(βtrue){Sγγ(βtrue)}−1n1/2(γ̂full − γtrue)

= ( I Sαγ(βtrue){Sγγ(βtrue)}−1 ) n1/2(β̂full − βtrue)

= {Sαα(βtrue)− Sαγ(βtrue){Sγγ(βtrue)}−1Sγα(βtrue)}n−1
n∑

i=1

d

dα
L{Yi, Zi, βtrue, θ(Xi, βtrue)}.
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Since {Sαα(βtrue) − Sαγ(βtrue){Sγγ(βtrue)}−1Sγα(βtrue)} = S−1
αα , the first result follows after

application of Theorem 3.3. The correlation is computed as (SγαSαα + SγγSγα)S−1
αα and

equals zero by definition of S−1.
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