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Abstract 

We investigate multiperiod portfolio selection problems in a Black & Scholes type 
market where a basket of 1 riskless and m risky securities are traded continuously. We 
look for the optimal allocation of wealth within the class of 'constant mix' portfolios. 
First, we consider the portfolio selection problem of a decision maker who invests 
money at predetermined points in time in order to obtain a target capital at the end 
of the time period under consideration. A second problem concerns a decision maker 
who invests some amount of money (the initial wealth or provision) in order to be able 
to fullfil a series of future consumptions or payment obligations. Several optimality 
criteria and their interpretation within Yaari's dual theory of choice under risk are 
presented. For both selection problems, we propose accurate approximations based 
on the concept of comonotonicity, as studied in Dhaene, Denuit, Goovaerts, Kaas & 
Vyncke (2002 a,b). Our analytical approach avoids simulation, and hence reduces the 
computing effort drastically. 

1 Introduction 

Strategic portfolio selection is the process used to identify the best allocation of wealth 
among a basket of securities for an investor with a given consumption/saving behavior over 
a given investment horizon. The basket of available securities will typically be a selection of 
risky assets such as stocks, bonds and real estate, and risk-free components such as cash and 
money market instruments. The individual investor or the asset manager chooses an initial 
asset mix and a particular tactical trading strategy within a given set of strategies, according 
to which he will buy and sell risky and risk-free assets, during the whole time period under 
consideration. 

The simplest case is a static strategy called 'buy and hold': the investments are performed 
according to a given strategy and no rebalancing is performed during the investment period. 
Single-index benchmarking, e.g. replicating a single stock market index, is a buy-and-hold 
strategy in case the index weights are not changed over the investment period. 

Other strategies are called dynamic in the sense that they imply a periodic rebalancing 
process of the assets. A 'constant mix' strategy implies keeping the initial proportions 
constant, as opposed to a 'buy and hold' strategy where the initial quantities are kept 
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constant through time. As the prices of assets evolve randomly over time, a constant mix 
strategy requires buying and/or selling at each time instant in order to keep the fractions at 
the predetermined level. Such a strategy implies a 'buy low and sell high' rule in the sense 
that price and asset-purchase are counter-varying: if the price of a single asset goes up while 
the prices of the other assets remain constant, then the quantity of the single asset should 
be decreased and vice versa. Furthermore, if the stock market has decreased, one has to buy 
stocks against the riskfree component, whereas if the stock market has increased one has 
to sell stock and buy riskfree instruments. Multiple-index benchmarking, e.g. replicating 
a benchmark which consists of the average of a stock benchmark and a bond benchmark, 
implies a constant mix strategy in order to stick to the benchmark proportions. 

In this paper we will investigate multi-period optimal portfolio selection problems in a 
Black & Scholes (1973) lognormal setting. We will assume that the investor has to choose 
the optimal investment strategy for a given consumption or savings pattern, within the class 
of constant mix strategies. We will consider two general types of problems, which will be 
referred to as the terminal wealth problem and the reserving problem respectively. 

In the terminal wealth problem, the decision maker will invest a given series of positive 
saving amounts ao, aI, ... ,an-l at predetermined times 0,1, ... ,n - 1 such that his termi
nal wealth at time n will reach or exceed some target capital K with a sufficiently large 
probability. 

As terminal wealth is a sum of dependent lognormal random variables, its distribution 
function cannot be determined exactly and is too cumbersome to work with. Therefore, 
we will present accurate approximations for the distribution function at hand. The first 
approximation that we will consider for the distribution of terminal wealth will be called the 
'comonotonic upper bound' as it is an upper bound for the exact distribution in the convex 
order sense. It is derived by keeping the marginal distributions exact but approximating the 
copula that describes the dependency structure between the random accumulation factors 
involved by the comonotonic copula. 

Our second approximation for the exact distribution is based on the technique of condi
tioning. In this approach, the marginal distributions are changed and as a result the copula 
describing the dependency structure is replaced by the comonotonic copula. We will call this 
the 'comonotonic lower bound' approach as it can be proven that it is a lower bound in 
the sense of convex ordering. Especially this lower bound will perform very accurately as an 
approximation to the exact distribution. 

The approximations that we propose have several advantages. First, for any given in
vestment strategy they provide an accurate and easy to compute approximation for any 
risk measure that is additive for comonotonic risks, such as distortion risk measures (VaR 
and TailVaR for instance). Second, it turns out that for the comonotonic approximations 
we propose, the optimal investment mix can be found on the mean-variance efficient fron
tier. Third, the comonotonic approximations reduce the multivariate randomness of the 
multiperiod problem to a univariate randomness. 

The optimal investment mix could be defined as the one that requires the smallest con
stant amount a that has to be invested from period to period in order to reach a final wealth 
of at least K with a probability of at least 1 - E. Or, one could define the optimal mix as 
the one that maximizes the probability of reaching terminal wealth of at least K for a given 
investment of a per month. 
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The proposed methodology can be used to solve several personal finance problems. A 
first problem is what one could call the 'saving for retirement problem'. In this case, one 
wants to retire in n years with a 'nest egg' of K - in real terms, i.e. in today's Euro's. How 
much does one have to save monthly - in real terms - in order to assure a (1 - E) chance to 
reach the retirement financial goal? Clearly the answer will depend on the investment mix. 
The theory on comonotonicity gives a quick, elegant and accurate answer to this question. 

A second personal finance problem where the methodology can be used is the situation 
where an individual underwrites an n year loan of K at a yearly interest rate of i. The 
first way to pay back the loan is by a classical annuity where the lender pays at the end 
of each of the coming n years a fixed amount of a~i. From the viewpoint of the lender, an 

annuity loan is equivalent with a loan with yearly interest payments of K i while a yearly 
amount of L - K i is invested in an amortization fund with a fixed return of i. At the end 

anli 
of the n year period the amortization fund will have grown to the required amount of K. 
An alternative is to pay the yearly interest of K i and in addition, invest a yearly amount a 
in an amortization fund with future stochastic returns. The amount a is chosen such that 
the probability that the value of the amortization fund at time n will exceed the amount K 
will be sufficiently large. 

In the reserving problem, which is in some sense dual to the final wealth problem, the 
decision maker targets a given series of future consumptions aI, aI, ... , an at times 1,2, ... , n. 
He sets up an initial reserve Ro and wants to invest this amount in such a way that the 
possibility of reaching his targets is maximized. 

For this type of investment problems, the optimal investment mix could be defined as 
the one that leads to the largest survival probability, given the initial reserve. Or, one could 
fix the required survival probability and determine the optimal investment strategy as the 
one that minimizes the required initial reserve. 

One possible application is the problem of the decision maker who is faced with a series 
of deterministic obligations or liabilities due at predetermined fixed points in time. He wants 
to determine the reserve (and/or total balance sheet capital requirement) and selects the 
optimal investment portfolio such that the possibility of ruin is minimized. 

An application in the area of personal finance is the annuitization problem where an 
initial amount Ro is invested and used to enable a series of future periodic payments. A 
somewhat related problem is the so-called 'after-retirement problem'. The difference with 
our setting is that in the after-retirement problem the time-horizon is random and equal 
to the remaining life time. This problem is considered in Milevsky, Ho & Robinson (1997) 
and Milevsky & Robinson (2000). These authors take the investment strategy as given and 
find the corresponding probability of lifetime ruin. Young (2004) on the other hand finds the 
optimal dynamic investment strategy as the one that minimizes the probability of lifetime 
rum. 

As the time horizon that we consider is long (typically 10, 20 or more years), assuming 
a Gaussian model seems to be appropriate, at least approximately, by the Central Limit 
Theorem. In order to verify whether the theoretical setup can be approximately compared 
with the data generating mechanism of real situations, we refer to Cesari & Cremonini 
(2003). They investigate four well-known stock market indices in US dollars, from Morgan 
Stanley: MSCI World, North America, Europe and Pacific, covering all major stock markets 
in industrial as well as emerging countries. For the period 1997-1999, the authors conclude 
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that weekly (and longer period) returns can be considered as normal and independent. Daily 
returns on the other hand are both non-normal and autocorrelated. 

The paper is organized as follows. In Sections 2 and 3 we present some results concerning 
risk measures, comonotonicity, the Black & Scholes setting, constant mix portfolios and 
mean-variance analysis that will be used throughout the paper. Next, the problem of finding 
optimal investment strategies in a general multivariate final wealth model with savings at 
discrete points in time is analyzed in Section 4. The dual problem of setting an initial 
provision and optimizing investments in a general model with consumptions at discrete points 
in time is considered in Section 5. Final conclusions and some possible generalizations are 
discussed in Section 6. 

To the best of our knowledge, determining optimal investment strategies for terminal 
wealth and optimal provision problems by means of the comonotonic approach, as presented 
in Sections 4 and 5, is new. The research was motivated by our practical experience con
cerning optimal portfolio selection problems of some banking and insurance institutions in 
Belgium. 

2 Risk measures and comonotonicity 

In this section, we will introduce some definitions and present some results related to risk 
measures and comonotonicity that will be used throughout this paper. More details about 
comonotonicity can be found in Dhaene, Denuit, Goovaerts, Kaas & Vyncke (2002a,b), more 
details about the relation between risk measures and comonotonicity can be found in Dhaene, 
Vanduffel, Tang, Goovaerts, Kaas & Vyncke (2004). 

2.1 Risk measures 

A risk measure summarizes the information contained in the distribution function of a ran
dom variable in one single real number. For a random variable X, the p-quantile risk measure 
is defined as 

Q p [X] = inf {x E IR I F x (x) ~ p} , 

where Fx(x) = Pr [X S x] and by convention, inf {¢} 
denoted by Q: [X] and is defined by 

Qt [X] = sup {x E IR I Fx(x) S p}, 

P E (0,1) , (1) 

= +00. A related risk measure is 

P E (0,1) , (2) 

where by convention sup {¢} = -00. Note that only values of p corresponding to a hori
zontal segment of Fx lead to different values of Qp [X] and Q: [X]. Hence, if Fx is strictly 
increasing, both risk measures will coincide for all values of p. In this case, we can also define 
the (1 - p )-quantiles by 

Ql_p[X]=suP{XEIRIFx(x)~p}, pE(0,1), (3) 

where Fx(x) = 1 - Fx(x). 
In the sequel, we will always consider random variables with finite mean. The Conditional 

Tail Expectation (CTE) at level p will be denoted by CTEp [X]. It is defined by 

CTEp [X] = E[X I X > Qp [X]], P E (0,1) . (4) 
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The CTE measures the right tail of the distribution function. We will also need a risk 
measure that measures the left tail of the distribution function. Therefore, we introduce the 
Conditional Left Tail Expectation, which is defined by 

CLTEp [X] = E [X I X < Q; [Xl] . (5) 

One can prove that the following relation holds between CTE and CLTE: 

CLTEI _ p [X] = -CTEp [-X], P E (0,1) . (6) 

2.2 Comonotonic bounds for sums of dependent random variables 

A random vector Y = (Yo, Yi, ... ,Yn ) is said to be comonotonic if 

(7) 

where U is a random variable which is uniformly distributed on the unit interval and where 

the notation ~ stands for 'equality in distribution'. 
For any random vector X = (Xo, Xl,··· ,Xn ), we will call its comonotonic counterpart any 
random vector with the same marginal distributions and with the comonotonic dependency 
structure. The comonotonic counterpart of X = (Xo, Xl,··· ,Xn ) will be denoted by Xc = 
(X8, Xl, ... ,X~). Hence for any random vector X = (Xo, Xl, ... ,Xn ), we have 

(8) 

It can be proven that a random vector is comonotonic if and only if all its marginals are 
non-decreasing functions (or all are non-increasing functions) of the same random variable. 

The random variable X is said to precede the random variable Y in the stop-loss order 
sense, notation X ~sl Y, if X has lower stop-loss premiums than Y: 

- 00 < d < +00. (9) 

On the other hand, X is said to precede Y in the convex order sense, notation X ~cx Y, 
if X ~sl Y and in addition E[X] =E[Y]. An introduction to ordering of (distributions 
of) random variables, with actuarial applications, can be found in Chapter 10 of Kaas, 
Go ovaerts , Dhaene & Denuit (2001). 

Theorem 2.1 (Convex bounds for sums of random variables). For any random vector 
(Xo, Xl,··· ,Xn ) and any random variable A, we have that 

n n n 

LE[Xi I A] ~cx LXi ~cx LFx:(U). (10) 
i=O i=O i=O 

The theorem above states that the least attractive random vector (Xo, Xl,· .. ,Xn ) with 
given marginals FXi' in the sense that the sum of its components is largest in the convex 
order, has the comonotonic joint distribution, which means that it has the joint distribution 
of (Fx:(U), FX11(U),·.· ,Fx~(U)). The components of this random vector are maximally 
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dependent, all components being non-decreasing functions of the same random variable. 
The random variable se = I:~=o Fx} (U) will be called the comonotonic upper bound of 
S = L:~=o Xi, whereas the random variable Sl = r:.~=o E [Xi I A] will be referred to as a 
lower bound for S. 
The random vector (E [Xo I A], E [Xl I A] , ... ,E [Xn I AD will in general not have the same 
marginal distributions as (Xo, Xl, ... ,Xn). If one can find a conditioning random variable A 
with the property that all random variables E [Xi I A] are non-increasing functions of A (or 
all are non-decreasing functions of A), then the lower bound Sl = r:.~=o E [Xi I A] is a sum 
of n comonotonic random variables. In the sequel, we will often use a comonotonic approx
imation for a sum of non-independent random variables. The advantage of the comonotonic 
dependency structure is that any distortion risk measure of a sum of comonotonic random 
variables equals the sum of the risk measures of the marginals involved. For the quantile 
risk measures defined above, we find for all p E (0,1) : 

n 

(11) 
i=O 

n 

Q; [se] = LQ; [Xi]. 
i=O 

For the CTE and the CLTE a similar result can be proven, provided all marginal distributions 
F Xi are continuous: 

n 

CT Ep [se] = 2:= CT Ep [Xi], provided all FXi are continuous, 
i=O 

n 

CLTEp [se] = 2:= CLTEp [Xi], provided all FXi are continuous. 
i=O 

2.3 Sums of lognormal random variables 

Consider the sum 
n 

S = 2:= CYi eZi 

i=O 

(12) 

(13) 

where the CYi are non-negative constants and the Zi are linear combinations of the components 
of the random vector (Yi, Y2,··· , Y",J which is assumed to have a multivariate normal 
distribution: 

n 

Zi = LAij Yj. 
j=l 

(14) 

Let U be uniformly distributed on the unit interval. The comonotonic upper bound se = 

r:.~=o F~\Zi (U) of S is given by 

n 

se = L CYi eE[Zi]+azi q,-l(U). (15) 
i=O 
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Taking into account the additivity property, the following expressions can be derived for the 
risk measures associated with se: 

n 

Qp [se] = Q~ [se] = L ai eE[Zi]+O"Zi q,-l(p) , (16) 
i=O 

P E (0,1) . 

In order to define a comonotonic lower bound SI for S, we choose a conditioning random 
variable A which is a linear combination of the }j: 

n 

A=LPj}j. (17) 
j=l 

After some computations, we find that the lower bound SI = 2:~=o ai E [e Zi I A] is given by 

n 
SI = L ai eE[Zi]+H 1-rnO"~i +ri O"Zi q,-l(U), (18) 

i=O 

where the uniformly distributed random variable U follows from <1>-1 (U) - A-~(A), and ri is 
the correlation between Zi and A. 

If all ri are positive, then SI is a comonotonic sum, which means that quantiles and 
conditional tail expectations related to SI can be computed by summing the associated risk 
measures for the marginals involved. Hence, assuming that all ri are positive, we find the 
following expressions for the risk measures associated with SI: 

(19) 
i=O 

P E (0,1) . 

The correlation coefficients ri follow from the correlations between the random variables 
Yi. In the special case that all Yi are i.i.d., we find 

2:7=1 Aij Pj 
ri= ~======~r====== 

j2:7=1 A;j j2:7=1 PI' 
i = 1, 2, n. (20) 

As we have that 
Var[S] = Var [SI] +E[Var[S I A]], (21) 
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it seems reasonable to choose the coefficients (3j in (17) such that the variance of 51 is max
imized. Determining these optimal coefficients (3j would require tim-consuming numerical 
calculations. However, we can approximate the optimal coefficients by deriving an approxi
mate expression for Var [51]. From Dhaene, Denuit, Kaas, Goovaerts & Vyncke (2002), we 
find that Var [51] is given by 

n n 

Var [5 1] ""' ""' E[Z;]+E[Zjl+!(a~+a~) (TiTJ.az.az. 1) = L L DiDj e ' J e 'J - (22) 
i=O j=O 

n n 
""' ""' E[Zil+E[Zjl+! (a~ +a~) 

~ L L DiDj e ' J rirjO"ZiO"Zj 

i=O j=O 

~ (carr [t "i e"IZ<i+,a" Zi; A]) 2 .v ar [t "i eE1Z,I+,a"Zi] . 

This approximation will perform well, provided 0" Zi 0" Zj is sufficiently small. In the special 
case that all Yi are i.i.d., this comes down to requiring that the variance of the Yi is small 
enough. 
The approximation for Var [51] is maximized by choosing the correlation coefficient equal 
to 1. Hence, by chosing A equal to 

n 

A - ""' . E[Zil+!a~ z. - LD~ e , ~, (23) 
i=O 

which means that the (3r coefficients are given by 

n 

(3 - ""' \ E[Zil+-21 az2 . 
j - L Di /\ij e ' . (24) 

i=O 

3 Stochastic return processes 

3.1 The Black & Scholes setting 

Throughout the paper, we will assume the classical continuous-time framework that was 
pioneered by Merton (1971) and is nowadays mostly referred to as the Black & Scholes 
(1973) setting. Vie suppose that there is a market in which (m + 1) securities (assets or 
investment accounts) are traded continuously. One of the assets is the riskfree asset. Let 
PO(O) = pO > 0 be the current price, at time 0, of 1 unit of the riskfree asset, whereas PO(t) 
is its price at time t. This price is assumed to evolve according to the following ordinary 
differential equation: 

(25) 

with r > O. On the other hand, let Pi(O) = pi > 0 be the current price, at time 0, of 1 unit of 
risky asset i, whereas pi(t) is the price at time t (including reinvestment of dividend income) 
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of one unit of risky asset i. The price process Pi(t) evolves according to a geometric Brownian 
motion stochastic process, represented by the following stochastic differential equation: 

i = 1,··· ,m, (26) 

where (Wl(T), W2(T),··· , Wd(T)) is a d-dimensional standard Brownian motion process. 
The Wi ( T) are mutually independent standard Brownian motions. 

The m-dimensional vector p7 = (JLl ... JLm) is called the drift vector of the risky assets. 
We will assume that JL =/=r 1, with IT = (1 1 ... 1). 

The (m x d) matrix ~ defined by 

ell (712 ~ld ) 

~= 
(721 CT22 (72d 

CTm l CTm 2 CTmd 

(27) 

is called the diffusion matrix. Further, we define the (m x m) matrix ~ as 

( 

(72 

:E =~ . ~T = (7;1 

~~1 (7m2 

(28) 

with coefficients (7ij and (7; given by (7ij = :L~=1 CTik CTjk and (7; = (7ii. We have that (7ij = 

(7ji. The matrix ~ is called the variance-covariance matrix. We will assume that ~ is positive 
definite. This means that for all non-zero vectors 7fT = (7fl' 7f2,··· , 7fm ) we have that 

7fT . ~ . 7f > O. (29) 

In particular, this assumption implies that all (7i are strictly positive. Hence, all m risky 
assets are indeed risky. It also implies that ~ is non-singular, meaning that its determinant 
is strictly positive, and hence ~ has a matrix inverse ~-1. As we will see further on, the 
elements of the matrix ~ describe the covariances between the yearly returns of the different 
investment accounts. 

We define the process Bi ( T) by 

(30) 

It is straightforward to verify that all Bi (T) are (correlated) standard Brownian motions, 
with 

t, s ;:::: o. (31) 

Rewriting equation (26), we find 

dpi(t) i 

Pi(t) = JLi dt + (7i dB (t), i = 1,··· ,m. (32) 
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The solution to equation (32) is 

. . ( I 1 2\ . 1 
P2(t) = p2 exp l \,ui - ~O"i ) t + O"i B2(t) J ' (33) 

which means that p~~t) is lognormally distributed with parameters (,ui - ~O"n t and O"T t, 
respectively. This implies that the expectation and standard deviation of the price of asset 
i at time t are given by 

E [pi(t)] = pi eMit, (34) 

0" [pi (t)] = pi eMit J eur t - 1. 

Let k = 1,2, .... Investing an amount of 1 at time k - 1 in investment account i will grow to 
the random amount eYk at time k, where Y~ denotes the yearly return in year k of account 
i. One finds that 

(35) 

Hence, it follows that the random yearly returns Y~ of asset i are independent and have 
identical normal distributions with 

[ i] 1 2 E Yk =,ui - 2"O"i , 

[ i] 2 Var Yk = O"i' 

Cov [Y~, Y;J] = { ~ij k=/=l 
k = l 

(36) 

As stated earlier, the matrix ~ is the variance-covariance matrix of the yearly return vector 
(YkI, yk2 , ..• ,Yt). More details on the translation between the two formalisms (26) and (32) 
for describing the multivariate asset process can be found e.g. in Bjork (1998). 

3.2 Constant mix strategies 

Assume one can invest wealth in one or more of the m+1 assets as defined above. Let 7f(t? = 

(7fl (t), 7f2 (t), ... , 7f m (t)) be the vector describing the portfolio process, i.e. 7fi (t) is the 
fraction ofthe wealth that is invested in risky asset i at time t. The residual, i.e. 1-L~=1 7fi(t) 

is invested in the riskfree asset, or, if negative, finances the risky asset purchases. A negative 
proportion invested in the riskfree asset means borrowing (going short) on the risk free asset. 

We will restrict to constant portfolios 7f(t? = 7fT = (7fl' 7f2,··· , 7fm ), which means that 
the fractions invested in the different assets remain constant over time. Investing according 
to a constant portfolio process implies that one has to follow a dynamic trading strategy. 
Indeed, as the risky asset returns evolve randomly, one has to trade at each instant in order 
to keep the fractions invested in the different assets constant. Such investment strategies 
are known as constant mix strategies, or also as constant proportional investment strategies. 
Optimality of constant mix strategies in a utility theory setting is considered in Merton 
(1971). 
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Let us now consider one unit of a security that is constructed according to the contin
uously rebalanced investment strategy (7rl' 7r2,'" , 7rm ), and let P(t) be the price of that 
unit at time t, with P(O) = P. One can prove that the price process P(t) evolves according 
to the dynamics 

(37) 

For a non-zero vector 7r, define the process B ( T) by 

(38) 

One can verify that B ( T) is a standard Brownian motion. Equation (37) can then be rewri t
ten as 

dP(t) 
P(t) = I-" (7f) dt + 0" (7r) dB(t) (39) 

with 
(40) 

where 1 is the m - vector (1 1·· ·1). Hence, we find that when the portfolio is rebalanced in 
continuous time in order to keep the fractions constant, the portfolio return is also lognor
mal distributed. Recall that we assumed that the variance-covariance matrix ~ is positive 
definite. This means that any non-zero combination 7r of the risky assets is also risky in the 
sense that 0"2 (7f) > O. The solution to equation (39) is 

P(t) = P exp { (I-" (7f) - ~0"2 (7r)) t + 0" (7r) B(t)} , (41) 

with expectation and standard deviation given by 

E [P(t)] = P e!l(7r)t, (42) 

0" [P(t)] = P e!l(7r)tVecy2 (7r)t - 1. 

The stochastic differential equation (39) was derived by Merton (1971, 1990), see also Rubin
stein (1991). It can also be derived using elementary arguments by taking limits of lognormal 
sums, see Milevsky & Posner (1998). 

Let k be a strictly positive integer. Investing according to investment strategy 7r, an 
amount of 1 at time k - 1 will grow to the random amount eYk (7r) at time k, where Yk (7r) 
denotes the yearly return in year k of investment strategy 7f. One finds that 

( 43) 
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Hence, the random yearly returns Yk (n) of the constantly rebalanced portfolio n are inde
pendent and identically distributed normal random variables with 

1 
E [Ydn)] = /-L (n) - 2(j2 (n), (44) 

VaT [Ydn )] = (j2 (n). 

Note that this observation about the yearly returns also holds in case n equals the zero 
vector. The price P(k) can be written in terms of the yearly returns as follows: 

P(k) = P exp (Y1 (n) + Y2 (n) + ... + Yk (n)) . (45) 

3.3 Markowitz mean-variance analysis 

In 1990, Harry M. Markowitz received the Nobel Prize in Economics (shared with William 
F. Sharpe and Merton H. Miller) for his theory on portfolio selection under uncertainty. The 
contribution for which he received the award was first published in Markowitz (1952) and 
more extensively in Markowitz (1959). As mentioned in the press release of the Royal Swedish 
Academy of Sciences, Markowitz's theory can be considered as the first approach to solving 
the problem that each investor faces, namely how to find the optimal trade-off between 
risk and return, i.e. how to find the optimal investment strategy under the two conflicting 
objectives of high expected return versus low risk of the investment portfolio. Markowitz 
proposed a way to reduce the complicated and multidimensional problem of finding the 
optimal portfolio with respect to a large number of different assets to a conceptual simple 
two-dimensional problem, known as mean-variance analysis. The Markowitz approach has 
become very popular due to the fact that it combines algebraic simplicity and suitability 
for practical applications. The mean-variance approach provides a fundamental basis for 
portfolio selection in a single period. A selected overview of the tremendous amount of 
research initiated by Markowitz's seminal work can be found in Steinbach (2001). 

Several variants of the classical single-period mean-variance problem exist. Here, we will 
consider the formulation that we will need later on in the paper. Among all constant mix 
portfolios n with a given portfolio drift /-L (n) = /-L, we look for the one with the smallest 
volatility (j (n). Hence, for any given value of /-L, we want to find the solution of the following 
problem: 

Min7r (j2 (n) subject to /-L (n) = /-L. (46) 

Vie will denote the portfolio that corresponds to the rninimum in (46) by nIL. 
The assumption that /-L i= TI, together with the assumptions that the variance-covariance 
matrix is positive definite and that short-selling is allowed implies that there exists a unique 
local global minimum for problem (46). A Lagrange optimization yields: 

(j2 (nIL) = (/-L - T) 2 

(/-L - TI)T . :E-1 . (/-L - TI) 
(47) 

and 

(48) 

12 



Note that 0-2 (7rI-i) and 7r1-i are well-defined, because the inverse of a positive definite matrix 
is also positive definite. 

The efficient frontier refers to the set of all solutions {( 0- (7rI-i) , J-L)} for the optimization 
problem (46). From (47) we see that the efficient frontier consists of two straight lines in the 
(0-, J-L)-plane: 

J-L = r + V(J-L - rlf . :E-1 . (J-L - rl) 0- (7rI-i) , 

J-L = r - V(J-L - rlf . :E-1 . (J-L - rl) 0- (7rI-i) , 

J-L 2:: r, 

J-L ~ r. 

(49) 

The portfolios 7r1-i belonging to the efficient frontier are called mean-variance efficient port
folios. Portfolios on the lower branch are irrelevant from a mean-variance optimization 
viewpoint as they lead to a positive volatility while their drift is lower than r. The upper 
branch {( 0- (7rI-i) , J-L) I J-L 2:: r} is referred to as the 'Capital Market Line'. 

In the following, we will call portfolios 7r that fulfill the condition IT X '!r = 1 risky-assets
only portfolios because such portfolios consist only of risky assets. It can be proven that if 
we only consider risky-assets-only portfolios, the efficient frontier is a hyperbola in the mean 
- standard deviation space (provided there are at least two risky assets with different drift). 
Now consider the risky-assets-only global minimal variance portfolio '!r(m) , i.e. the portfolio 
that is the solution of the following problem: 

Min7r 0-2 ('!r ) subject to IT. 7r = l. (50) 

This portfolio and its drift are given by 

(m) _ :E-1 . I 
'!r - IT . :E-1 . I' (51) 

I T ~-l 

J-L ('!r(m)) = . ~ . J-L. 
IT. :E-1 . I 

One can prove that under the condition 

(52) 

the Capital Market Line is at a tangent to the upper branch of the hyperbola that corresponds 
to the efficient frontier ofrisky-asset-only portfolios. When J-L ('!r(m)) < r, the decreasing part 
of the efficient frontier (49) will be tangent to the lower branch of the hyperbola. 
Let us now assume that J-L ('!r(m)) i- r. The portfolio that corresponds to the point of inter
section between the efficient frontier (49) and the risky-assets-only efficient frontier is called 
the 'tangency portfolio', and is denoted by '!r(t). The assumption that J-L ('!r(m)) i- r implies 
that J-L ('!r(t)) i- r. One can easily verify that '!ret) is given by 

'!ret) = :E-1 . (J-L - rl) . 
IT. :E-1 . (J-L - rl) 

(53) 

Note that (48) can be rewritten as 

( J-L-r ) 7r1-i -
- J-L(7rt ) - r 

(54) 
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This means that every mean-variance efficient portfolio nJ.L consists of a fraction (J.L( ;1~)-r ) 

invested in the risky-assets-only portfolio n(t) and a fraction (1 - J.L(;1~)-r) invested in the 

riskfree asset. Mean-variance optimizing investors only differ in terms of which fraction of 
their wealth they put in the tangency portfolio. 
The result that all mean-variance investors will hold only two kinds of portfolios (or mutual 
funds), the exclusively risky portfolio n(t) and the riskfree asset, is often called a Mutual 
Fund Theorem or a Two Fund Separation Theorem. Note that in case j1 (n(m)) = r, there is 
no tangency portfolio, but any portfolio on the efficient frontier can still be constructed as 
a linear combination of two basic portfolios on the efficient frontier. 

In case j1 (n(m)) > r is fulfilled, also the inequality j1 (n(t)) > r holds. The Capital 
Market Line can then be rewritten as 

(55) 

This equation describes the drift of the return for an investor as related to the volatility 
( (t)) 

that he is willing to accept. The slope J.L 11"( t -r is referred to as the 'Sharpe ratio'. It can 
(J" 11" ) 

be interpreted as the price of risk reduction: It shows by how much the drift increases if the 
volatility increases by 1 unit. 

Many papers have been published that consider variants of the classical mean-variance 
portfolio selection criterion, where the variance is replaced by an alternative asymmetric risk 
measure that measures downside risk, in order to avoid penalization due to over-performance, 
see e.g. Emmer, Khippelberg & Korn (2001) or Li, Ng, Tan & Yang (2003). Note that 
Markowitz (1959) already introduced the idea to replace the variance by an alternative 
asymmetric risk measure in a more general mean - risk approach. 
The single period mean-variance model was soon extended to multiperiod portfolio selection. 
Research on multiperiod portfolio selection has been dominated by the idea of maximizing 
expected utility functions of terminal wealth. Markowitz (1959) already considered long
term investment planning by considering multi period models based on attaching a utility to 
the levels of consumption of wealth over time. 

4 Saving and terminal wealth 

4.1 General problem description 

In this section, we will consider the problem of how to invest periodic saving amounts in 
order to reach some target capital at a predetermined future time n. Let CY i be the positive 
amount that will be invested at time i, (i = 0, 1, 2 ,'" , n). We assume that these amounts 
are invested according to a constant mix portfolio n as defined in Section 3.2. The choice of 
the constant portfolio mix has to be made at time O. An amount of 1 unit invested at time 
i will grow to the random amount eI: j=i+ 1 Yj(11") at time n. 
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Let Wj (n) be the wealth at time j, defined by the following recursive relation: 

j = 1,··· ,n, (56) 

with initial value Wo (n) = ao. Hence, Wj (n) is the wealth that will be available at time j, 
including the savings amount aj at time j. The realization of Wj (n) will be known at time 
j, and depends on the investment returns (stochastic part) and on the savings (deterministic 
part) in the past. Note that the random variables 1j (n) are i.i.d. and normal distributed 
with parameters J.L (n) and () (n) as defined in (40). 

From the recursion (56) for the wealth process, we find the following explicit expression 
for terminal wealth Wn (If): 

n 

Wn (n) = L ai e2:.i=i+l Yj(n). 

i=O 

By convention, 2::~=m bi is set equal to 0 if m > n. 

(57) 

Within the expected utility theory framework of Von Neumann & Morgenstern (1947), 
the investor could choose the investment strategy n that maximizes his expected utility of 
final wealth: 

maxE [u(Wn (n))] , (58) 
n 

where u is the utility function he uses to appreciate the different levels of final wealth. 
Another approach, within the framework of Yaari's (1987) dual theory of choice under 

risk, is to choose the optimal investment strategy as the one that maximizes the distorted 
expectation of final wealth: 

maxPi [Wn (n)] , 
n 

(59) 

where j is the investor's distortion function and Pi is the 'distorted expectation', determined 
with j (Pr (Wn (n) > x)) : 

Pi [Wn (n)] = - (f: 1 - j (Pr (Wn (n) > x))) dx + 100 

j (Pr (Wn (n) > x)) dx. (60) 

While in utility theory, choosing among risks is performed by comparing expected values 
of transformed wealth levels (utilities), in Yaari's theory the quantities that are compared 
are the 'distorted expectations' of wealth levels. The distorted expectation of final wealth 
Wn (n) can be interpreted as an expectation of Wn (n) evaluated with a 'distorted probability 
measure' in the sense of a Choquet-integral, see Denneberg (1994). The decision maker acts 
in order to maximize the distorted expectation of final wealth. 

For a distortion function jp, 0 < p < 1, given by 

we find 

{ 0 :O::;x<p 
jp(x) = 1: p ::; x ::; 1 

Pip [Wn (n)] = Qtp [Wn (n)] 

= sup {x E IR I Pr (Wn (n) > x) 2: p} . 
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The optimization problem (59) with distortion function given by (61) determines the optimal 
investment strategy as the one that maximizes the largest amount that will be reached with 
a probability of at least p. 

For the convex distortion function gp, 0 < p < 1, given by 

{ 
0 :O::;x<p 

gp(x) = ~=~: p::; x::; 1 (63) 

we find 
(64) 

In Yaari's theory, a decision maker is called risk-averse if he has a convex distortion function. 
Hence, the optimization problem (59) with distortion function (63) can be interpreted as the 
problem to be solved by a risk-averse decision maker with distortion function gpo The optimal 
investment strategy is the one that maximizes the conditional expected value of final wealth, 
given that the p-target capital is not reached. 

For a more detailed comparison between the two theories of choice under risk and their 
relation to risk measures, see e.g. Dhaene, Vanduffel, Tang, Goovaerts, Kaas & Vyncke 
(2004). 

4.2 The case of a single investment 

4.2.1 Time and portfolio diversification 

Emmer, Kltippelberg & Korn (2001) remark that there seems to be common wisdom that long 
term stock investment leads to an almost sure gain over locally riskfree bond investments. 
In the long run stock indices are growing faster than riskfree rates, despite the repeated 
occurrence of stock market declines. The conventional perception therefore holds that the 
longer the investment horizon, the greater should be one's proportion invested in risky assets. 
In order to verify if this common wisdom holds true, we will consider the terminal wealth 
problem with a single investment of 1 at time O. Hence, ao = 1 and al = a2 = ... = an = O. 
We will assume that one can invest in one riskfree asset pO (t) and in m risky assets pi (t) 
as explained in section 3.1. We will also assume that J1 (n(m)) > T holds, which implies that 
J1 (n(t)) > T. 

The distribution function of final wealth Wn (n) follows from 

(65) 

Within the framework of expected utility theory, one determines the optimal constantly 
rebalanced portfolio as the one that maximizes the investor's expected utility of final wealth: 

maxE [u (Wn (n))]. (66) 
1[ 

For the logarithmic utility function u( x) = In( x), one finds that the optimal portfolio n* lies 
on the Capital Market Line and is given by 

n* = (67) 
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Note that within the logarithmic utility framework, the optimal strategy (67) is independent 
of the investment horizon. For more details, see e.g. Merton (1990). 

Within Yaari's dual theory of choice under risk, let us now consider the optimization 
problem 

maxQtp [Wn (7f)] 
7T 

(68) 

with ~ < p < 1. The quantiles of final wealth Wn (7f) are given by 

(69) 

One can easily verify that for a fixed value of f.L (7f), the quantile is decreasing in (J" ( 7f). On 
the other hand, for a fixed value of (J" (7f), the quantile is increasing in f.L (7f), implying that 
the optimal portfolio of (68) will correspond to a point on the Capital Market Line and is 
given by 

1 
"2 < p < 1, (70) 

where (x)+ stands for max(O, x). From (70) it follows that in this setting, increasing the 
investment time horizon transforms the optimal investment strategy into a more risk-taking 
one. Hence, investors with a longer time horizon should have a larger exposure to stocks 
relative to investors with a shorter time horizon. The optimal risky proportion converges to 
the optimal growth portfolio (67). We can conclude that in case the time horizon becomes 
infinitely large, the optimal growth portfolio will outperform any other portfolio, with respect 
to optimality criterion (68). 

Next, consider the optimization problem of a risk averse decision maker who determines 
the optimal investment strategy as the solution of the following maximization problem: 

maxCLTE1_ p [Wn (7f)]. 
7T 

From (16) we find that 

CLTE1_ p (Wn (7f)) = enJL(7T) 1- <I> (yin; (7f) + <I>-l(p)) 
-p 

(71) 

(72) 

One can again verify that for a fixed value of f.L (7f), the CLTE1_ p is decreasing in (J" (7f), 
while for a fixed value of (J" (7f), it is increasing in f.L (7f). This implies that the optimum of 
problem (71) will also correspond to a point on Capital Market Line. 

Another way to look at the time diversification effect is to consider the 'Equity Shortfall 
Risk' of the investment portfolio. Following Milevsky (2003), we define the Equity Shortfall 
Risk over a given investment period n and for a given investment strategy 7f by 

(73) 

Hence, ESR( 7f, n) is the probability that the risky investment strategy 7f will underperform 
the riskfree investment strategy over a time horizon n. It can be interpreted as the probability 
of regretting the investment, where the investor regrets his choice 7f compared to the riskfree 
strategy if this last strategy will have performed better than the risky investment strategy. 
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The concept of Expected Shortfall Risk was introduced in the financial literature by Roy 
(1952), in a one-period discrete-time setting. 
A straightforward calculation leads to 

(74) 

From this expression, we see that, provided J-L (7r) - ~a (nl > T, increasing the time horizon 
n will decrease ESR( 7r, n). Moreover, when the time horizon goes to infinity, the Expected 
Shortfall Risk disappears and the risky investment strategy 7r will outperform the risk
free investment strategy with probability 1. Important to note however is that when the 
portfolio variance a (7r)2 becomes large relative to J-L (7r) - T, ESR( 7r, n) increases with the 
time horizon and reaches level 1 at infinity. We can conclude that the general perception of 
time-diversification expressed in terms of decreasing Expected Shortfall Risk is in accordance 
with the theory, provided the expected yearly returns E [Yk (7r) 1 exceed the risk free yearly 
return T. 

Comparing the optimal investment strategies (67) and (70), we can conclude that the 
time diversification benefit strongly depends on the optimality criterion that is considered. 
It has to be mentioned that the belief in time-diversification is not general and that the 
(non-) existence of a time-diversifying benefit is the subject of a heavy debate. The topic is 
considered in Samuelson (1989), Marshall (1994), Bodie (1995), Jagganathan & Kocherlakota 
(1996) and Milevsky (2003), amongst others. 

Milevsky (2003) also considers the concept of space diversification, by which he means 
the diversification effect caused by increasing the number of risky assets in the investment 
portfolio. Provided J-L ( 7r) > T, we find that decreasing the portfolio volatility a (7r) will, 
ceteris paribus, lead to an increase of the argument in the q, (.) function in (74). Hence, 
any increase of the number of risky assets which allows to reduce the portfolio volatility 
while keeping the portfolio drift constant (or increasing it) will decrease ESR( 7r, n). In other 
words, a better space-diversified portfolio implies a lower Equity Shortfall Risk. 
This phenomenon can easily be illustrated in the case of a homogeneous market (i.e. all 
securities have equal drift and variance, all correlations are equal and positive) and applying 
the 'naive' constant mix strategy where all proportions are kept equal: 7ri = 1... In this 

m 
particular case, it is straightforward to prove that increasing the number of securities m will 
keep the portfolio drift constant while decreasing the portfolio variance. 
The interrelationship and trade-off between the two possible dimensions of diversification, 
i.e. the number of stocks in a portfolio and the number of periods over which an investment 
is held, is investigated in detail in Milevsky (2003). 

4.2.2 Numerical illustration 

Consider a Black & Scholes market with a riskfree asset with a yearly return T = 0.03 and 
two risky assets with yearly drifts equal to J-Ll = 0.06 and J-L2 = 0.10 respectively. The 
volatilities of the risky assets are given by al = 0.10 and a2 = 0.20. Pearson's correlation 
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p n=l n = 10 n = 20 n= 40 n = 100 
0.99 0 0 0 0.33 1.23 
0.97 0 0 0 0.80 1.52 
0.95 0 0 0.33 1.04 1.68 
0.90 0 0.08 0.87 1.43 1.92 

Table 1: Optimal portfolios 7f* in case of maximizing Ql-p[Wn(7f)] 

p n=l n = 10 n = 20 n = 40 n= 100 
0.99 0 0 0 0 0.96 
0.97 0 0 0 0.43 1.37 
0.95 0 0 0 0.47 1.50 
0.90 0 0 0 0 0.96 

Table 2: Optimal portfolios 7f* in case of maximizing CLTE1_p[Wn(7f)] 

coefficient ...£.lL is given by 0.5. From (53) we find that the tangency portfolio is given by 
ala2 

7f(t) = (~,~) with drift fL (7f(t)) = 7/90 and volatility (J(7f(t)) = J2i~o' 
We consider a single investment at time O. In Table 1 and Table 2 we present the optimal 

risky proportions 7f* with respect to the optimization problems (68) and (71), for different 
values of the probability level p and the investment period n. 

The figures in Table 1 and Table 2 illustrate that increasing the time horizon leads to 
an increased optimal proportion invested in the risky asset. Also, the lower the probability 
level p with which we want to reach the target, the higher the proportion to be invested in 
the risky asset. Finally observe that the maximization of CLTE1_p[Wn (7f)] leads to lower 
optimal risky proportions as compared to the maximization of Qtp [Wn (7f) J . 

4.3 Comonotonic approximations for the general problem 

Let us now consider the general terminal wealth problem as described in Section 4.1. From 
(57), we see that Wn (7f) is a sum of non-independent lognormal random variables. As it 
is impossible to determine the distribution function of Wn (7f) analytically, we will derive a 
convex order upper bound W~ (7f) and a convex order lower bound W~ (7f) for Wn (7f). 
Rewriting Wn (7f) as 

n 

Wn (7f) = 2:>~i eZi , 

i==O 

we see that we can apply the results of Section 2.3 with 

Zi = Yi+l (7f) + Yi+2 (7f) + ... + Yn (7f) , 

E [ZiJ = (n - i) [fL (7f) - ~(J2 (7f)] , 

(J~i = (n - i) (J2 (7f). 
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It follows that the comonotonic upper bound W~ (n) for Wn (n) is given by 

n 

W e ( ) = ""' . (n-i) [J.L(71")_~0-2(71")]+~ o-(71")q,-l(U) nn Late . (77) 
i=O 

For p E (0,1), the quantiles of W~ (n) are given by 

n 

Qtp [W~ (n)] = Q1-p [W~ (n)] = L ai e(n-i) [J.L(71")_~0-2(71")]_~ o-(71")q,-l(p), (78) 
i=O 

while CLTEp [W~ (n)] is given by 

(79) 

In order to define a convex lower bound W~ (n) for Wn (n), we choose the conditioning 
random variable as follows: 

n 

(80) 
j=l 

where the coefficients (3j (n) follow from (24). Notice that the lower bound approximation 

W~ (n) = E [Wn (n) I A (n)] (81) 

is only determined up to a linear transformation of A (n). Hence, we propose the following 
coefficients: 

j-1 

(3j (n) = L ak e-k J.L(71") (82) 
k=O 

for the conditioning random variable A ( n) . It follows that for this choice of the parameters 
(3j (n), the variance of the lower bound will be close to the variance of Wn (n), provided 
(J2 (n) is small enough. 
From Section 2.3, we find 

n 
W~ (n) = L ai e(n-i) J.L(71")-~T;(71") (n-i) 0-2(71")+Ti(71")~ 0-(71") q,-l(U) (83) 

i=O 

where the coefficients 'ri (n) are given by 

(84) 

Note that the correlation coefficients 'ri (n) are non-negative which implies that Wi (n) is a 
comonotonic sum of lognormal random variables. 
The following expression can be derived for the risk measure Qtp(W~ (n)), p E (0,1): 

n 

Qtp [W~ (n)] = Q1-p [W~ (n)] = L ai e(n-i) (J.L(71")-~T;(71") 0-2(71"))-Ti(71") ~ 0-(71") q,-l(p), (85) 
i=O 
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while for C LT E1- p [W~ (n) ] we find 

CLTE1_p [W~ (n)] = t (Xi e(n-i) fL(-rr) 1 - <I> (ri (n) ~ (J (n) + <{>-l(p)) . (86) 
i=O 1- p 

From Theorem 2.1 we find that 

(87) 

This implies that 

CT Ep [-W~ (n) ] :::;. CT Ep [-Wn (n)] :::; CT Ep [-W~ (n)] , 0< p < 1, (88) 

see e.g. Dhaene, Vanduffel, Goovaerts, Kaas, Vyncke (2004). Using (6) we find 

CLTE1_ p [W~ (n)] :::; CLTE1_ p [Wn (n)] :::; CLTEi-p [W~ (n)] , O<p<1. (89) 

Note however that the approximations Ql-p(W~ (n)) and Ql-p(W~ (n) for the quantiles 
Ql-p(Wn (n)) are not necessarily ordered in the same way. 

4.4 Determining the investment strategy that maximizes the tar-
get capital, for a given probability level 

4.4.1 The p - target capital 

For a given probability level ~ < p < 1 and a given investment strategy n, we define the 
p-target capital K as the (1 - p)-th order "+"-quantile of terminal wealth: 

K = Qtp [Wn (n)]. (90) 

One immediately finds that 

K = sup {x E lR I Pr [Wn (n) > x] 2: p} . (91) 

Hence, the target capital at probability level p can be interpreted as the maximal amount 
that will be available at time n, with a probability of at least p. 

Now assume that a probability level p is fixed and that the optimal investment strategy 
n* is determined as the one that maximizes the p- target capital. Denoting the optimal 
target capital by K*, we have 

K* = maxQtp [Wn (n)]. 
-rr 

(92) 

Note that from (59) and (62), it follows that this optimization problem can be interpreted 
in terms of Yaari's dual theory of choice under risk. 
Solving (92) is from a computational point of view a complicated problem because of the 
multi-dimensionality involved. Indeed, a 'time-dimensionality' occurs because Wn (n) is a 
sum of n dependent accumulation factors. There is also a 'portfolio-dimensionality' involved 
as the maximum has to be determined over all portfolios n. In the following sections we will 
show how to get rid of this 'curse of dimensionality'. 
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4.4.2 The comonotonic upper bound for Wn Crr) 

As it is impossible to determine Qtp(Wn (7r)) analytically, we propose to approximate 7r* by 
7rc , where 7rC is the investment strategy that maximizes Qtp(W~ (7r)). The optimal target 
capital K* is approximated by KC, which is given by: 

K C = maxQtp [W~ (7r)]. 
7r 

(93) 

As we assumed that ~ < p < 1, it follows from (78) that for a given value of J.L (7r), the 
quantile Qp(W~ (7r)) is a decreasing function of a (7r). Hence, the (approximate) optimal 
portfolio 7rC can be found on the efficient frontier (49). On the other hand, for a given value 
of a (7r), the quantile Qp(W~ (7r)) is an increasing function of J.L (7r). This implies that the 
portfolio 7rC will correspond to a point on the Capital Market Line. The solution of the 
general maximization problem is then found to be the portfolio on the Capital Market Line 
that maximizes the quantile Qtp(W~ (7r): 

K C = max Q+ [WC (7rJ.L)] > I-p n , 
J.L_T 

(94) 

where the portfolio 7rJ.L is given by (48). 

4.4.3 The comonotonic lower bound for Wn (7r) 

We also propose to approximate the optimal investment strategy 7r* by 7r l , where 7r l is 
the investment strategy that maximizes Qtp(W~ (7r)). The p - target capital K* is then 
approximated by Kl, which is given by 

Kl = maxQtp [W~ (7r)] . 
7r 

(95) 

It follows from (85) that for a given value of J.L ( 7r ), the correlation coefficient is fixed and 
the quantile Qp(W~ (7r)) is a decreasing function of a (7r). Hence, 7rl is an element of the set 
of efficient portfolios. The general maximization problem can be reduced to the following 
maximization problem: 

(96) 

The approximated optimization problems (94) and (96) solve the curse of dimensionality. 
The multi-dimensionality caused by time n is reduced to one dimension by introducing the 
comonotonic dependency structure. Also the portfolio-dimensionality m is reduced to one 
dimension because the optimal solutions are to be found on the efficient frontier. 

4.4.4 Constant savings amounts 

In this subsection, we consider the special case that the saving amounts are constant. For 
each investment strategy 7r we look for the required periodic saving amount a that leads to 
a p -target capital equal to 1. From (90) we find that this saving amount a is given by 

1 
a (7r) = Qtp [W n (7r)]' (97) 
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with W n (n) given by 
n 

Wn (n) = LeYi+l(7r)+Yi+2(7r)+'+Yn(7r). (98) 
i=O 

The optimal investment strategy is now defined as the one that minimizes the period savings. 
Denoting the minimal saving amount by a*, we have 

a* = min a (n). (99) 
7r 

Note that in the case of constant saving amounts, the investment strategy that maximizes 
the p - target capital K for given saving amounts a is identical to the investment strategy 
that minimizes the periodic savings a for a given target capital K. 

Now we approximate Wn (n) by W~ (n) as explained in (77). The minimal periodic 
savings amount a* is then approximated by a C which is given by 

(100) 

Next, we approximate Wn (n) by W~ (n) as explained in (83). The minimal periodic 
savings amount a* is then approximated by a l which is given by 

I. 1 
a = mIn . 

IL Qi-p [W~ (nIL)] 
(101) 

4.4.5 Numerical illustration 

Consider the Black & Scholes type market with one riskfree and two risky assets as explained 
in Subsection 4.2.2. We assume saving amounts ai = 1 for i = 0,1, , ... ,39, while CX40 = o. 
As we have seen, the solutions of the problems (93) and (95) are to be found on the efficient 
frontier. Because of the Two Fund Theorem, any portfolio on the efficient frontier can be 
expressed as a linear combination of the riskfree portfolio and the tangency portfolio n(tl. 
Hence, we can reduce the market to a market consisting of one riskfree asset with r = 0.03 
and one risky asset with drift and volatility equal to the corresponding values of the tangency 
portfolio in the original setting. 
In Figure 1 we show the comonotonic lower bound approximations Qo.05[Wlo (nIL)] (solid 
line) and the comonotonic upper bound approximations QO.05[W~0 (nIL)] (dashed line) for the 
0.95 target capital QO.05[W40 (nIL)], for different values of the risky proportion nIL invested 
in the tangency portfolio n(tl, i.e. for the different portfolios on the mean-variance efficient 
set. We compare these quantiles with the simulated quantiles QO.05 [WIo (nIL)] (dotted line). 
The simulation was performed by generating 20,000 paths using antithetic variables. We 
observe that the lower bound approximation is very close to the results obtained by simula
tion. Indeed the maximum of the relative deviations I QO.05[Wlo(7rlLl]-Qo.o5[W,fo(7rlLl]I is less than 

, QO.05 [w,fo (7rlLl] 

0.9%. The maximum of the respective curves correspond to the (approximated or simulated) 
optimal portfolio. 
For the comonotonic lower bound approximation we find that the optimal 0.95 - target cap
ital KI is given by KI = 89.78. This target capital corresponds to a fraction n l = 0.92 
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Figure 2: The minimal savings amount 0/ (solid line - left scale) and the optimal risky 
proportion n l (dashed line - right scale) as a function of p. 

invested in the tangency portfolio. 
The comonotonic upper bound approximation gives rise to an optimum (nC, KC) = (0.51,82.25). 
The simulated optimum is reached in (nS, KS) = (0.92 ,89.52). 
We can conclude that the lower bound approximation for the optimal investment strategy 
performs very well, compared to the simulated solution. From Figure 1 we also see that 
increasing the risky proportion increases the target capital until a certain level. Further in
creasing the investment in the risky asset decreases the target capital again. This observation 
is in accordance with intuition about optimal investment strategies. 

In Figure 2, we consider the same market as above. We assume constant saving amounts 
a at times 0, 1, , ... ,39 and a target capital equal to 1 to be reached at time 40. We consider 
the investment strategy that minimizes the yearly savings amount for different probability 
levels p of the target capital. The computations were performed with the lower bound ap-

proximation W~o (n) for W 40 (7r). 
The solid line represents the (approximated) minimal savings amount a l for different proba
bility levels p of a target capital equal to 1 (left scale). As we see from the figure, increasing 
the required probability of reaching the target of 1, increases the optimal savings amount. 
Note that the required savings amount in case of the riskfree investment, i.e. the one that 
corresponds to p = 1, is given by 0.0127. 
The dashed line represents the (approximated) optimal risky proportion n l to be invested 
in the tangency portfolio, for different probability levels p (right scale). As could be ex
pected, increasing the probability of reaching the target capital decreases the optimal risky 
proportion in the portfolio. 
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4.4.6 Maximizing the CLTE 

The optimal investment strategy 1f* can also be defined as the one that maximizes the CLTE 
for a given value of p: 

CLTE1_p [Wn (IT*)] = maxCLTE1_p [Wn (IT)]. (102) 
rr 

Note that this optimization problem can be interpreted in terms of Yaari's dual theory of 
choice under risk. It is the problem faced by a risk averse decision maker with distortion 
function (64) who wants to optimize the distorted expectation of his final wealth. The 
optimization problem in this case can be expressed as follows: the decision maker with 
target capital Qi-p (Wn (IT)) maximizes the expected value of final wealth, given that the 
target capital is not reached. 

Approximating Wn (1f) by W~ (IT) or W~ (IT) and using the results of the previous sections, 
leads to approximate solutions similar to the one derived above for problem (92). Indeed, the 
CLTE's of both approximations can be written as sums of CLTE's of lognormal random vari
ables. The n-dimensional maximization problem can again be reduced to a one-dimensional 
optimization problem over all portfolios on the mean-variance efficient set. Derivation of the 
results is left as an exercise to the reader. 

4.5 Determining the investment strategy that maximizes the prob-
ability level for a given target capital. 

4.5.1 The probability of reaching the target 

In this subsection, we will assume that the target capital K > 0 is given. For a given 
investment strategy 1f, the probability of reaching this target is given by 

(103) 

where FWn(rr)(x) 1 - FWn(rr)(x) = Pr (Wn (IT) > x). Now we propose to determine the 
optimal investment strategy 1f* as the one that maximizes the probability of reaching the 
target K. Denoting this optimal probability level by p*, we have that 

p* = max FWn(rr) (K) . 
rr 

(104) 

One possible choice for the target capital K is the final wealth that would arise if all savings 
were invested in the riskfree asset: 

n 

K r _ """'"" (n-i)r 
- LIY-i e . (105) 

i=O 

Extending definition (73), the equity shortfall risk of a given investment strategy is now 
defined as 

(106) 

which is the probability that the investment strategy will underperform the riskfree invest
ment strategy. Solving the maximization problem (104) with K = Kr comes down to finding 
the investment strategy that minimizes the equity shortfall risk. 
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4.5.2 The comonotonic upper bound for Wn CIT) 

Neither the decumulative distribution function FWn(n)(x), nor its quantiles can be determined 
analytically. Therefore, we will introduce the comonotonic approximations for FWn(n) (K). 

The approximation 7fC for the the optimal investment strategy 7f* of the problem (104) 
is defined as the investment strategy that maximizes FW:i(n) (K). The approximation pC for 
the optimal probability level p* is then given by 

pC = max FWc(n) (K) . 
n n 

(107) 

For any investment strategy 7f, with (J (7f) > 0, it follows from (7S) that Qp (W~ (7f)) is a 
continuous and strictly increasing function of p, mapping (0,1) in (0, 00). This implies that 
F W:i (n) (x) is a strictly increasing and continuous function of x. Hence, for any K, we find 
that FW:i(n)(K) is the unique solution of the equation QPWri (1r)(K) = K, which can be written 
as 

n L ai e(n-i) [J.L(n)-~a2(n)1-.Jn=i a(n) ip-l(Fwri (1r)(K)) = K. (lOS) 
i=O 

Now we assume that the target capital K is small enough, in the sense that there exists 
at least one portfolio 7f such that FW:i(n)(K) 2: ~. Then it can be proven from (lOS) that 
the solution of the maximization problem (107) can be found among the portfolios on the 
efficient frontier: 

(109) 

4.5.3 The comonotonic lower bound for Wn (7f) 

On the other hand, the approximation 7f1 for 7f* is the investment strategy that maximizes 
FW~(n) (K). The approximation pI for the optimal probability level p* is then given by 

(110) 

For any investment strategy 7f, with (J (7f) > 0, it follows from (S5) that Qp (W~ (7f)) is a 
continuous and strictly increasing function of p, mapping (0,1) in (0, 00). This implies that 
FWA(n)(x) is a strictly increasing and continuous function of x. Hence, for any K, we find 
that F WI (n) (K) is the unique solution of the equation Q F I = K, which is equivalent to 

n W n (1r)(K) 

(111) 

Under the assumption that K is small enough, in the sense that there exists at least one 
portfolio 7f such that FW~(n)(K) > ~, it can be proven that th maximization problem (110) 
reduces to the following one-dimensional optimization problem: 

I -
P = m::xFw~(nl") (K). (112) 

We can conclude that the (time- and portfolio-) curse of dimensionality of optimal investment 
problem (104) can also be reduced by the comonotonic approximations. 
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Figure 3: The maximal probability pI of reaching the target capital (solid line - left scale) 
and the optimal risky proportion 7f1 (dashed line - right scale) as a function of the target 
capital K. 

4.5.4 Numerical illustration 

Assume the Black & Scholes market as described in Subsection 4.2.2. Consider saving 
amounts CYi = 1 for i = 0,1, , ... ,39, while CY40 = O. We want to determine the solution of 
problem (110) for different values of the target capital K. 
Provided K is small enough, the solution of (110) is to be found on the efficient frontier. 
Hence, it suffices to consider portfolios being linear combinations of the riskfree asset and 
the tangency portfolio 7f et). 

In Figure 3 we show the maximal probability pI of reaching the target capital and the 
optimal risky proportion 7f1 to be invested in the tangency portfolio, as a function of the 
target capital K. The solid line represents the (approximated) maximal probability levels 
pI of reaching a given target capital K (left scale), whereas the dashed line represents the 
(approximated) corresponding optimal risky proportion 7f1 (right scale). The figure shows 
that increasing the level of the target capital leads to decreasing optimal probability levels 
and increasing risky proportions. Note that the riskfree investment corresponds to a target 
capital equal to 78.50 that is reached with probability equal to 1. 
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5 Reserves for future obligations 

5.1 General problem description 

Consider a given set of deterministic obligations, i.e. a series of deterministic non-negative 
payments 0'.1,0'.2,· .. ,an, that are due at times 1,2,· .. ,n, respectively. Being able to meet 
these future obligations requires an appropriate funding, this means that appropriate assets 
has to be available to set up a reserve and a solvency margin. Following Atkinson & Dallas 
(2000), the reserve is defined as the amount of funds that have to be set aside as a liability in 
order to meet future obligations, whereas the solvency margin is the capital that regulators, 
rating agencies or the company itself deem necessary for the company to be able to withstand 
reasonable fluctuations in financial results. 
At current time 0, assets of value Ro are set up in order to be able to meet these future 
obligations. We will call Ra the initial reserve. It can be interpreted as the reserve as defined 
above, or also as the total balance sheet requirement, i.e. reserve and solvency margin. We 
will assume that this reserve can be invested according to one of the constant mix portfolios 
1f as defined in the Section 3.2. This investment strategy has to be chosen at time O. Starting 
from the initial reserve Ra and investing according to 1f, we define Rj (Ra, 1f) at time j by 
the following recursion: 

j = 1,··· ,n, (113) 

with Ra (Ra, 1f) = Ra. Hence, R j (Ra, 1f) is the value of the assets that will be available at 
time j, after the payment of O'.j, given that Ra (Ra, 1f) = Ra is the initial reserve at time 
o. The realization of Rj (Ra, 1f) will be known at time j, and depends on the investment 
returns (stochastic part) and on the payments (deterministic part) in the past years. Often 
we will call R j (Ra, 1f) the (retrospective) reserve available at time j. Note that the random 
variables }j (1f) are i.i.d. and normal distributed with parameters fL (1f) and (J (1f) as defined 
in (40). Solving the recursion (113), we find that the value of the assets available at time n 

is given by 
n 

Rn (Ra, 1f) = Ra eL J=l Yj(7r) - LO'.i eLJ=i+l Yj(7r). (114) 
i=l 

The random variable Sj (K) is defined as the stochastically discounted value of all future 
payment obligations from time j on, given that the investment strategy is zr:: 

n 

Sj ('if) = L ai e-(Yj+l(7r)+Y2(7r)+··+Yi(7r)). (115) 
i=j+l 

This random variable will be called the 'stochastic future obligations' at time j. The following 
relation holds between Sj (1f), Rj (Ra, 1f) and Rn (Ra, 'if): 

(116) 

This relation implies that 

j = 0,··· ,n - 1. (117) 
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Hence, 

Pr [Rn (Ro, 7T) ~ 0] = Pr [Rj (Ro, 7T) ~ Sj (7T), j = 0, ... ,n - 1] (118) 

= FS(n:) (Ro ) . 

Results similar to (118), applied in an obligation-based solvency framework for pension 
annuities can be found in Olivieri & Pitacco (2003). Results in case of 'deterministic future 
obligations' can be found in Vanduffel, Dhaene, Goovaerts & Kaas (2003). 

An investor will be interested in the probability p = Pr [Rn (Ro, 7T) ~ 0] of "reaching the 
finish", for different choices of the reserve Ro and the investment strategy 7T. 
For a given initial reserve Ro, one could look for the investment strategy 1[ that maximizes 
the probability level p. Or, for a given probability level p, one could look for the investment 
strategy 1[ that minimizes the initial reserve Ro. These problems will be considered in the 
following sections. 

5.2 The case of a single obligation 

In this subsection, we consider the special case of setting a reserve at time 0 for a single 
payment obligation at time n. Hence, al = a2 = an-l = 0 and an = 1. The distribution 
function of the stochastic provision So (7T) follows from 

(119) 

For a given investment strategy 7T and a given probability level p with ~ < p < 1, we 
determine the initial reserve Ro as the p-quantile of S ( 7T): 

Ro = Qp [So (7T)]. 

This reserving principle clearly makes sense, as one can easily prove that 

Qp [So (7T)] = inf {x I Pr [Rn (x, 7T) ~ 0] ~ p}. 

(120) 

(121) 

This means that for a given investment strategy 7T, the p-quantile reserving principle deter
mines the initial reserve as the "smallest" amount such that the probability of "reaching the 
finish" is at least p. From (15) it follows that the quantile Qp [So (7T)] is given by 

(122) 

The optimal investment strategy 1[* is defined as the one that minimizes Qp [So (7T)]. The 
initial provision R'O is then set equal to this minimal quantile: 

(123) 

As 

(124) 

with Qi-p [Wn (7T)] given by (69), we find that the optimal portfolio of problem (123) is 
identical to the optimal portfolio of problem (68). Hence, 7T* is given by (70). 
We can conclude that increasing the investment time horizon transforms the optimal invest
ment strategy into a more risk-taking one. Investors with a longer time horizon should have a 
larger exposure to stocks relative to investors with a shorter time horizon. The optimal risky 
proportion converges to (67), which corresponds to the so-called optimal growth portfolio. 
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5.3 Comonotonic approximations for the general case 

From (118) we see that in order to compute the "probability of reaching the finish" Pr [Rn (Ro, 1f) ~ 0] 
for a given pair (Ro, 1f), we have to determine the dJ. of So (1f). However, the random vari-
able So (1f) is a linear combination of dependent lognormal random variables. This implies 
that it is impossible to determine the distribution function of So (1f) analytically. Therefore, 
we will consider a convex order upper bound se (1f) and a convex order lower bound Sl (1f) 
for S (1f). Rewriting So (1f) as 

n 

i=l 

we can apply the results of Subsection 2.3 with 

Zi = - Y1 (7r) - Y2 (1f) - ... - Yi (1f) , 

E [Zi] = -i [fL (1f) - ~cr2 (1f)] , 

cr~i = i cr2 (1f) . 

The comonotonic upper bound So (1f) = 2:7=1 F~lezi (U) for So (1f) is given by 

while for p E (0,1), the quantiles and GTE's of So (1f) are given by 

n 

Qp [So (7r)] = Lai e-i J-L(7r)+~i a 2(7r)+v'i a(7r) cp-l(p) , 

i=l 

(125) 

(126) 

(128) 

In order to define a convex lower bound S6 (1f) for So (1f), we choose a conditioning random 
variable as follows: 

n 

A (1f) = L!Jj (1f) lj (1f). (129) 
j=l 

From (24) it follows that the optimal coefficients are given by - 2:~=j ak ek (-J-L(7r)+a2 (7r)) ~ 
- 2:~=j ak e-k J-L(7r). Therefore, we propose the following coefficients: 

n 

!Jj (1f) ~ - L ak e-k J-L(7r). 

k=j 

It follows that for this choice of the parameters !Jj (1f), the variance of the lower bound will 
be close to the variance of So (1f), provided cr2 (1f) is small enough. Hence, the lower bound 

S~(1f) = E[So(1f) I A (1f)] (130) 
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will have a distribution function that is close to the distribution function of So (7f), provided 
IT (7f) is small enough. From Section 2.3, we find 

n 

56 (7f) = ~ai e-i f.L(7r)+(l-~rf(7r)) i 0-2(7r)+ri(7r)v'i 0-(7r) q,-l(U) (131) 
i=l 

where the coefficients Ti (7f) are given by 

(132) 

Note that the correlation coefficients Ti (7f) are non-negative. This implies that 51 (7f) is a 
comonotonic sum of lognormal random variables. From Section 2.3, we find the following 
expressions for the risk measures Q p (Sb (7f)) and CT Ep (Sb (7f)), p E (0, 1): 

n 

Qp [56 (7f)] = ~ai e-i f.L(7r)+(l-~rf(7r))i 0-2(7r)+ri(7r) v'i a-(7r) q,-l(p), (133) 

i=l 

From Theorem 2.1 we find that 

(134) 

This implies that 

(135) 

see e.g. Dhaene, Vanduffel, Goovaerts, Kaas & Vyncke (2004). Note however that the 
approximations Qp [56 (7f)] and Qp [So (7f)] for Qp [So (7f)] are not necessarily ordered in the 
same way. 

5.4 Determining the investment strategy that mInImizes the p-
quantile initial reserve for a given probability level 

5.4.1 The p-quantile reserving principle 

As in Section 5.2, we set the initial reserve for a given investment strategy 7f and a given 
probability level p, with ~ < p < 1, equal to the p-quantile of So (7f): 

Ro = Qp [So (7f)]. (136) 

As we noted in Section 5.2, the p-quantile reserving principle determines the initial reserve 
as the "smallest" amount such that the probability of "reaching the finish" is at least p, see 
(121). 
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For a given probability level p, we now determine the optimal investment strategy 7f* as 
the one that minimizes Q p [So (7f)]. The initial reserve R~ is then set equal to this minimal 
quantile: 

R~ = minQp [So (7f)]. (137) 
7r 

Similar to the optimization problem (92), the optimization problem (137) suffers from a 
'curse of dimensionality', both in time (as So (7f) is a sum of n terms) and in portfolio size 
(as 7f is an m-dimensional vector). The dimensionality problem will be solved by introducing 
comonotonic approximations for the stochastic provision So (7f). 

5.4.2 The comonotonic upper bound for So (7f) 

First, we propose to approximate the optimal investment strategy 7f* by 7fe, which is the 
investment strategy that minimizes Qp [So (7f)], and we approximate the initial provision R~ 
by Reo which follows from: 

where the quantiles Qp [So (7f)] are given by (128). 
As we assumed that ~ < p < 1, it follows from (128) that for a given value of J.L (7f), the 

quantile Q p [So (7f)] is an increasing function of ()" (7f). Hence, the portfolio 7fe can be found 
on the efficient frontier (49). Further, for a given value of ()" (7f), the quantile is decreasing in 
J.L (7f) which implies that 7fe can be found of the Capital Market Line: 

(138) 

5.4.3 The comonotonic lower bound for So (7f) 

Secondly, we propose the approximation 7f1 for 7f*, where 7f1 is the investment strategy that 
minimizes Qp [Sb (7f)] , and we approximate the initial provision R~ by Rb which follows from 

Rb = minQp [Sb (7f)] . 
7r 

The quantiles Qp [Sb (7f)] are given by (133). 
Note that the correlations Ti (7f) defined in (132) are non-negative and constant for a 

given value of J.L (7f). From (133) we find that for a given value of J.L (7f) also Qp [Sb (7f)] is 
an increasing functions of ()" (7f). Finding the approximation 7f1 for the optimal investment 
strategy again boils down to finding the minimal quantile among all efficient portfolios 7ff.L: 

(139) 

The approximations (138) and (139) reduce both the time- and portfolio multidimen
sionality of problem (137) to dimension 1. 
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line) and the simulated reserve QO.95 [S8 (nJ.L)] (dotted line) as a function of the risky propor
tion nJ.L. 

5.4.4 Numerical illustration 

Consider the Black & Scholes market as considered in Section 4.2.2. consisting of one riskfree 
asset and two risky assets. We want to solve (approximately) problem (137) in case of a series 
of obligations ai that are all equal to 1, for i = 1, , ... ,40. As the solutions of the problems 
(138) and (139) are to be found on the efficient frontier, we can again restrict to the case of 
a market consisting of the riskfree asset and a risky asset that corresponds to the tangency 
portfolio. 

In Figure 4, the comonotonic lower bound approximation QO.95 [S6 (nJ.L)] and the comonotonic 
upper bound approximation QO.95 [S8 (nJ.L)] are given for different values of the risky pro
portion nJ.L invested in the tangency portfolio. Also the corresponding simulated quantiles 
QO.95 [So (nJ.L)] are given. The simulation is obtained by generating 20,000 paths using anti
thetic variables. We can conclude that the lower bound approximation performs extremely 
well. Indeed the maximal value of the relative deviation I QO.95[sb(71'1")]-QO.95[Sg(71'1")] I was found 

, QO.95 [sg (71'1")] 

to be as small as 0.12%. 
The minimum of the respective curves corresponds to the (approximated or simulated) 

optimal portfolio. For the comonotonic lower bound approximation we find that the optimal 
proportion invested in the tangency portfolio is given by n l = 0.35. This corresponds to an 
optimal initial reserve given by Rb = 22.442. 
The comonotonic upper bound approximation gives rise to an optimum (n C , R8) = (0.015, 22.945). 
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Figure 5: The minimal Qp~reserve Rb (solid line ~ left scale) and the optimal risky proportion 
7r1 (dashed line - right scale) as a function of p. 

The simulated optimal values are given by (7r8 , Ro) = (0.345,22.444). 
In Figure 5, we consider the same obligations pattern and determine the investment 

strategy that minimizes the initial p-quantile reserve for different probability levels p. The 
computations were performed using the lower bound approximation Sb (7r) for So (7r). The 
dashed line represents the (approximated) optimal risky proportion 7r1 to be invested in the 
tangency portfolio, for different probability levels p (right scale). The solid line represents 
the (approximated) initial reserve for different probability levels p (left scale). In accordance 
with intuition, we find that increasing the probability of reaching the finish will increase the 
optimal initial reserve and decrease the optimal risky proportion. 

Note that if one sets the probability level p equal to 1, the investment strategy is com
pletely riskfree. The initial reserve is in this case given by 22.946. 

5.5 Determining the investment strategy that minimizes the CT Ep
quantile initial reserve for a given probability level 

5.5.1 The CT Ep-quantile initial reserve 

In this subsection we will set the initial reserve, for a given probability level p E (~, 1), and 
a given investment strategy 7r, equal to CTEp (S (7r)): 

(140) 
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One can prove that 

where Rn is given by 
(142) 

The second term in (141) can be interpreted as the expected discounted shortfall, given that 
the initial reserve is set according to the p - quantile reserving principle and given that there 
is a shortfall. Hence, with the CT Ep reserving principle the initial reserve is set equal to the 
sum of the p - quantile initial reserve and the expected discounted conditional shortfall of 
the p - quantile initial reserve. 

Assuming that the probability level p is fixed, the optimal investment strategy 7f* is now 
determined as the one that minimizes CT Ep [So (7f)]. The initial provision Ro is set equal to 
this minimal conditional tail expectation: 

R~ = minCTEp [So (7f)]. (143) 
7r 

As the Conditional Tail Expectations cannot be determined analytically, we again propose 
several approximations for this minimization problem. 

5.5.2 The comonotonic upper bound for So (7f) 

We propose to approximate the optimal investment strategy 7f* by the investment strategy 
7fC that minimizes CTEp [S8 (7f)]. The initial reserve Ro is approximated by Rg : 

Ro = min CT Ep [So (7f)]. 
7r 

(144) 

The quantities CTEp [S8 (7f)] can be determined from (128). 
It follows from (128) that for a given value of fL (7f), CT Ep [S8 (7f)] is an increasing function 

of CJ (7f). Hence, finding the approximation 7fC for the optimal investment strategy again boils 
down to looking for the optimal on the mean-variance efficient frontier: 

RQ = min CT Ep [So (7fJ1-)]. 
J1-

(145) 

5.5.3 The comonotonic lower bound for So (7f) 

Next, we propose to approximate 7f* by 7fl which is the investment strategy that minimizes 
CT Ep [Sb (7f)]. The initial reserve Ro is then approximated by 

R~ = minCTEp [Sb (7f)] . 
7r 

(146) 

The quantities CTEp [Sb (7f)] are given by (133). 
The n-dimensional minimization problem can again be reduced to the following one

dimensional problem: 
R~ = minCTEp [Sb (7fJ1-)] . 

J1-
(147) 
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Figure 6: The minimal CT Ep-reserve Rb (solid line - left scale) and the optimal risky 
proportion n l (dashed line - right scale) as a function of p. 

It is straightforward to prove that the following inequalities hold for any investment 
strategy n: 

CTEp [5b (n)] :S CTEp [50 (n)] :S CTEp [58 (n)]. (148) 

These inequalities imply 
(149) 

5.5.4 Numerical illustration 

Consider the Black & Scholes market as presented in Section 4.2.2. Now we want to solve 
(approximately) problem (143) in case of a series of obligations D:i that are all equal to 1, 
for i = 1" ... ,40. As the solution of problem (147) is a portfolio on the efficient frontier, we 
can again restrict to the case of a market consisting of the riskfree asset and a risky asset 
that corresponds to the tangency portfolio. 

In Figure 6, we consider the investment strategy that minimizes the initial CT Ep- reserve 
for different values of the probability level p. The computations were performed with the 
lower bound approximation 51 (n) for 5 ( n). 
The dashed line represents the (approximated) optimal risky proportion n l to be invested in 
the tangency portfolio, for different probability levels p (right scale). As could be expected, 
increasing the required probability level of reaching the finish will decrease the optimal risky 
proportion in the portfolio. 
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The solid line represents the (approximated) GTE-reserve for different probability levels p 
(left scale). As we see from the figure, increasing the probability will increase the optimal 
reserve. 

5.6 Determining the investment strategy that maximizes the prob-
ability level, for a given initial reserve. 

5.6.1 The probability of reaching the finish 

From (118), we find that for a given investment strategy n and a given initial reserve Ro, 
the probability p of "reaching the finish" is given by 

(150) 

In this subsection, we will assume that the initial reserve Ro > ° is given. We propose to 
determine the optimal investment strategy n* as the one that maximizes the probability of 
"reaching the finish" in relation (150). Denoting this maximal probability by p*, we find 

p* = max FSo(7r) (Ro). 
7r 

(151) 

Neither the probabilities FSo(7r) (Ro), nor the quantiles Qp [So (n)] can be determined an
alytically. Moreover, solving optimization problem (151) by simulation is extremely time
consuming, due to the multi-dimensionality in time and portfolio choice. Therefore, we will 
again propose comonotonic approximations for n* and p*. 

5.6.2 The comonotonic upper bound for So (n) 

A first approximation consists in approximating the optimal investment strategy n* by the 
investment strategy nC which is the one that maximizes FS8 (7r) (Ro). The probability of 
"reaching the finish" p* is then approximated by pC, which follows from 

(152) 

For any investment strategy n, with (J (n) > 0, it follows from (128) that Qp (So (n)) is a 
continuous and strictly increasing function of p, mapping (0,1) in (0, (0). This implies that 
FS8(7r)(x) is a strictly increasing and continuous function of x. Hence, for any Ro, we find that 
FS8 (7r)(Ro) is the unique solution of the equation QpS8(7T)(Ro) = Ro, or equivalently, FS8(7r)(Ro) 
is the unique solution of 

(153) 
i=l 

Now, we assume that the initial provision is large enough, in the sense that there exists 
at least one portfolio n such that FS8 (7r) (Ro) 2:: ~. This is equivalent to assuming that there 
exists at least one portfolio n for which E [Yk (n)] 2:: 6, with 6 defined by 

n 

~ -is R Lai e = o. (154) 
i=l 
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Then it can be proven that the maximization problem in (152) reduces to the following 
maximization problem: 

c ., (~) p = max 1'se(1[I") lto , 
J.l 0 

(155) 

with 7["J.l the mean-variance efficient portfolio as defined in (48). 

5.6.3 The comonotonic lower bound for So (7[") 

The approximation 7["1 for 7["* is the investment strategy that maximizes FSb(1[) (Ro). The 
probability of "reaching the finish" p* is then approximated by pi, which is given by 

pi = m;x FSb(1[) (Ro). (156) 

Provided (J" (7[") > 0, one finds that F SI (1[) (Ro) is the unique solution of the following equation: 

(157) 
i=l 

Now we assume that the initial provision is large enough, in the sense that there exists at 
least one portfolio 7[" such that FSb(1[) (Ro) ~ ~. Then it can be proven that the maximization 
problem in (156) reduces to the following maximization problem: 

(158) 

5.6.4 Numerical illustration 

Consider again the Black & Scholes market as introduced in Section 4.2.2.We want to find 
the optimal investment strategy determined by (151) for a series of future obligations ai that 
are all equal to 1, for i = 1, , ... ,40. We propose to approximate the exact solution by the 
solution of problem (158). As the solution of problem (158) is a portfolio on the efficient 
frontier, we can again restrict to the case of a market consisting of the riskfree asset and a 
risky asset that corresponds to the tangency portfolio. In Figure 7 we show the maximal 
probability pi of reaching the finish (solid line - left scale), as well as the optimal risky 
proportion 7["1 (dashed line - right scale), as a function of the initial reserve Ro. 
The figure shows that increasing the level of the initial reserve will lead to an increase of the 
maximal probability of reaching the finish. On the other hand, increasing the initial reserve 
will lead to an optimal investment strategy that is less risky. 

6 Final remarks 

In this paper we considered the problem of how the available funds should be allocated 
among a basket of riskfree and risky assets, when the available investment strategies are to 
be chosen within the class of constant mix strategies. Two general asset allocation decision 
problems were distinguished. The terminal wealth problem considers the optimal investment 
mix in a situation where at regular points in time saving amounts are added to the available 
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funds. The reserving problem describes situations where funds are set up and invested in 
order to be able to fulfill a future deterministic consumption pattern. For both problems 
several optimization criteria were considered. 

These portfolio selection problems can be considered as multidimensional in two direc
tions. First, they are multidimensional in terms of time as n yearly returns Yi (7f) are involved. 
They are also multidimensional in terms of portfolio choice as the proportions related to the 
m + 1 assets have to be chosen. 

The classical way to solve the problems we considered in this paper is via Monte Carlo 
simulation. Take as an example the final wealth problem described in (92). Such a strategy 
starts with simulating series of outcomes (Ul' U2, ... ,un) of the multivariate random vector 
(Ul , U2 , '" , Un) with mutually independent marginals that are uniformly distributed on 
the unit interval. From these simulated values, one determines series of yearly returns 
(Yl (7f), Y2 (7f), ... , Yn (7f)) for each possible portfolio 7fT = (7fl' 7f2,'" , 7fm ). This leads 
to a simulated value of the quantiles QT-p(Wn (7f)) for all portfolio choices. The optimal 
investment strategy is then the one that correspond to the largest quantile. Because of the 
multiple simulations and calculations involved, this method is extremely time-consuming, 
with a trade-off to be made between speed and accuracy. 

In this paper we proposed a way to escape this' curse of dimensionality'. The comonotonic
ity approach reduces the time-dimensionality to one dimension, as the randomness of the n -
dimensional vector of yearly returns is reduced to the randomness of one single uniform vari
able U. Moreover, the comonotonicity technique avoids simulation as analytical expressions 
for approximations of the quantiles are available. These expressions can be computed very 
quickly and are highly accurate at the same time. Also the portfolio-dimension is reduced to 
a single dimension, as we have proven that the optimal (approximate) quantities correspond 
to portfolios on the Markowitz mean-variance efficient frontier. 

Many of the results presented in this paper can be generalized in several directions. A 
first immediate generalization consists in finding optimal investments mixes when restrictions 
are set on the proportions held in the different asset classes. E.g. there may be general linear 
constraints on the weights 7fi, such as 

lj :::; ab + 7fT X (aj-ab 1) :::; Uj, j = 1,'" ,c, (159) 

with a j = (aI, a2, ... , am). These bounds might express restrictions on the individual weights, 
such as 'the fraction of the portfolio in property must be between 0% and 15%' or 'a fixed 
percentage of the fund should be available in cash' and 'there shall be no short-selling of 
assets'. But also more general linear restrictions such as 'the total fraction of the portfolio 
allocated to all international assets must not exceed 40%' can be expressed by a constraint of 
the form (159). With constraints of this type, the approximations for the investor's optimal 
portfolio choice of all problems considered in this paper will be found on the adjusted mean
variance efficient frontier {((j (7f IL ) ,p)} where for a given level of the drift p, the mean
variance efficient portfolio 7fIL is now defined by 

Min7rER 172 (7f) subject to p (7f) = p, (160) 

where R is the set of all portfolios 7f fulfilling the constraints (159). Note however that in this 
case, the efficient frontier cannot be expressed analytically anymore and the special structure 
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of the efficient frontier is destroyed. However, the optimization problem is still quadratic 
convex and powerful numerical methods are available to solve the mean-variance problem 
(160). 

In this paper, we restricted the optimization function to be a quantile, or a conditional 
(left) tail expectation. Many results can be generalized to the case where the optimization 
function is a distortion risk measure. Indeed, as is explained in Dhaene, Vanduffel, Tang, 
Goovaerts, Kaas & Vyncke (2004) for instance, any distortion risk measure of a sum of 
comonotonic random variables such as W~(1f), W~(1f), SbClr) and S8(1f) can be expressed as 
the sum of the distortion risk measure of the (lognormal) random variables involved. 

We considered the portfolio selection problem within the framework of a Black & Scholes 
market. In particular we assumed that the drift and volatility of the different asset classes 
are constant over time and that the yearly returns are lognormally distributed. The results 
can be generalized in a straightforward way to take into to account the time-dependency of 
drifts and volatilities. Also many of the results presented here can be generalized to other 
than normal distributions for the yearly investment returns. In particular, many results can 
be generalized in a Levy-type or elliptical-type world. Comonotonic approximations for sums 
of random variables with distributions of this type are considered in Valdez & Dhaene (2004) 
and Albrecher, Dhaene, Goovaerts & Schoutens (2004). 
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