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Abstract

In order to cope with the uncertainty inherent in practical project

management, proactive and/or reactive strategies can be used. Proactive

strategies try to anticipate future disruptions by incorporating slack time

or excess resource availability into the schedule, whereas reactive strategies

react after a disruption happened and try to revert to a feasible sched-

ule. Traditionally, reactive approaches have focused on obtaining a good

schedule with respect to the original objective function or a schedule that

deviates as little as possible from the baseline schedule. In this paper, we

present various approaches, exact as well as heuristic, for optimizing the

latter objective and thus encouraging schedule stability. Furthermore, in

contrast to traditional rescheduling algorithms, we present a new heuristic

that also takes future uncertainty into account when repairing the sched-

ule. We consider a variant of the resource-constrained project scheduling

problem in which the uncertainty is modeled by means of unexpected re-
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source breakdowns. The results of an extensive computational experiment

are given to compare the performance of the proposed strategies.

1 Introduction

Construction, IT and many other sectors operate in a project-based environ-
ment. Projects consist of a set of activities that are undertaken to achieve an
objective conforming to specific requirements including constraints of time, cost
and resources (ISO, 1990). Because companies seldom work on only one project
at a time and often subcontract activities to third parties, it is of prime im-
portance to have a good plan at one’s disposal throughout project execution in
order to coordinate the activities of the involved parties. This baseline sched-
ule specifies the starting time of each activity and indicates which resources
will be required at what time. It thus enables the project manager to coordi-
nate resources over several projects, to make agreements with subcontractors,
to evaluate performance, to quote reliable milestone completion times to the
client and to provide an overview of future activities to internal and external
parties (Aytug et al., 2005).

Traditional scheduling methods have only focussed on deterministic environ-
ments in which all information is given in advance and is not subject to change.
However, this will seldom be the case in practice. Delays may be caused by bad
weather conditions, resource failures, absenteeism, activity duration increases,
etc. In case the project does not share resources with other projects, is executed
without resorting to third parties and proprietary resources are insensitive to
schedule changes, these disruptions will only have an impact on the total project
duration. This situation is unfortunately all but realistic. In practice, starting
activities later than planned will often translate into higher work-in-process in-
ventory costs, penalties for occupying resources longer than required, penalties
for having subcontractors start later than originally agreed, etc.

On the other hand, starting them earlier than originally envisaged is also not
always without costs. One example is the use of large prefabricated construction
elements on a building site. Having the subcontractor deliver those elements
earlier than needed will increase inventory costs such as the rental of additional
storage space. Another example is the hard to estimate cost that results from
schedule nervousness because employees will be unprepared to execute the task
at an earlier time than originally planned.
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In general, those types of deviation costs can be aggregated into a weighted
instability performance criterion. This objective measures project nervousness
as the sum of the weighted deviations between the original baseline schedule S0

that is constructed before project execution starts and the expected actually
realized schedule E(S). The starting times of the activities in S will depend on
the originally planned starting times as described by S0, on the disturbances
encountered throughout project execution and on the reactive strategy that is
used to restore feasibility, when for example resource breakdowns occur.

The weights in this objective function reflect each activity’s flexibility. The
flexibility of an activity represents the cost to execute that activity at an earlier
or later point in time than was planned in the baseline schedule. For example,
activities that are executed by resources that are expensive to rent or by subcon-
tractors, will usually have a higher instability weight than activities executed by
standard, company-owned resources. The instability weight of the dummy end
activity represents the importance of meeting the project due date. Because
meeting this due date is usually deemed more important than starting each
activity at the planned starting time, the instability weight of the dummy end
activity is often far higher than the instability weights of the other activities.

We propose the use of predictive-reactive approaches for solving the problem
of resource-constrained project scheduling with the aim of minimizing schedule
nervousness due to unexpected resource breakdowns. Predictive approaches in-
dicate how to build a preschedule that meets the temporal relations between
activities and respects the resource availabilities as well as the due date set by
the project’s client. Furthermore, these predictive approaches can try to avoid
the occurrence of disruptions during project execution by building in some form
of protection turning them into proactive approaches. Unfortunately, in prac-
tice it will not be possible to protect the project in such a way that breakdowns
can never occur (Davenport and Beck, 2002) because of the prohibitive cost
that would result from such an extensive protection. This implies that reac-
tive strategies will always be needed in order to indicate how to revert to a
feasible schedule that respects the new constraints created by the disruption
and that does not deviate too much from the baseline schedule S0. Proactive-
reactive project scheduling thus implies a combination of a proactive strategy for
generating a protected baseline schedule and a reactive strategy to resolve the
schedule infeasibilities caused by the disturbances that occur during schedule
execution.

In this paper, we focus exclusively on the reactive strategy. Vieira et al.
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(2003) introduced a framework for rescheduling manufacturing systems that can
also be applied to project scheduling. The first dimension is the rescheduling
environment, identifying the set of jobs that are to be scheduled. The authors
make a distinction between static and dynamic environments. Here, we assume
that the set of activities is known in advance, limiting our scope to the static
environment. The second dimension is the rescheduling strategy. It determines
whether or not a preschedule is generated. Above, we gave a number of rea-
sons why the use of a preschedule is often preferable in practice. We chose to
only focus on scheduling with a baseline schedule. The third dimension, the
rescheduling policy, specifies when to reschedule. Vieira et al. (2003) mention
two extremes: periodic rescheduling and event-driven rescheduling. Periodic
rescheduling only reschedules after a certain time period whereas event-driven
rescheduling reschedules whenever a given event (such as a machine failure) oc-
curs. Because the latter approach often gives rise to an excessive amount of
rescheduling passes, a combination is often used in practice. Hybrid reschedul-
ing reschedules the system periodically and also when major events occur. Our
problem forces us to reschedule whenever an infeasibility occurs. However, a
hybrid approach will be introduced that uses different rescheduling strategies
depending on the severity of the disruption. Finally, rescheduling methods tell
us how a schedule can be generated or repaired. The proposed repair strate-
gies are right-shift rescheduling, partial rescheduling and complete regeneration.
Right-shift rescheduling postpones each non-finished job by the amount of time
needed to solve the conflict and as such restores schedule feasibility. Partial
rescheduling only considers the affected jobs and total rescheduling calculates a
totally new schedule.

In the next section, we give an overview of research covering rescheduling in
machine and project scheduling environments. The problem we want to solve
is formally stated in the third section. In the fourth section, the experimental
setup that is used to compare the algorithms is described. A number of exact as
well as sub-optimal algorithms to solve the rescheduling problem are introduced
in section 6. This set of algorithms is extended in section 7 with procedures for
incorporating proactivity when repairing a schedule.
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2 Literature overview

The rescheduling problem has been extensively studied in a machine scheduling
environment. For project scheduling on the other hand, this subject is virtually
void.

Wu et al. (1993) introduce heuristics for rescheduling on a single machine
after a machine breakdown with the simultaneous objectives of efficiency (i.e.
minimizing the makespan) and stability (i.e. minimizing the deviation from the
baseline schedule measured in terms of job starting times and job sequence). To
solve this bi-criterion problem, local search heuristics are used. These heuristics
start with the optimal solution for the minimal makespan problem (using the
procedure described in Carlier (1982)) and the minimal deviation schedule (be-
ing the right-shift schedule for the sequence deviation criterion and the schedule
minimizing the sum of absolute lateness for the starting time deviation crite-
rion). The heuristics generate a set of non-dominated schedules using adjacent
or general interchanges.

Abumaizar and Svestka (1997) compare a number of reactive strategies
for rescheduling a job shop subject to machine breakdowns. In ‘right-shift
rescheduling’ the current schedule is shifted to the right by the duration of the
repair. In ‘total rescheduling’ the initial schedule is disregarded and the only fo-
cus is on the efficiency measure (in their case minimizing the makespan). Finally,
‘affected operations rescheduling’ means that only operations that are directly
or indirectly influenced by the disruption are rescheduled in order to minimize
both the increase in makespan and the deviation from the initial schedule by
minimizing the starting time deviation and reducing the sequence deviation to
zero. The authors conclude that ‘affected operations rescheduling’ outperforms
‘right-shift rescheduling’ for the efficiency criterium but does not perform sig-
nificantly better than ‘total rescheduling’. For starting time deviation however,
‘affected operations rescheduling’ strongly outperforms the other strategies.

Qi et al. (2006) consider rescheduling for machine planning subject to devi-
ation costs between the original and the planned schedule. Only cases in which
the shortest processing time (SPT) rule is optimal for the original problem are
considered. Machine breakdowns as well as job duration changes are allowed.
The new schedule is evaluated using the original objective function as well as the
deviation cost from the original schedule. The authors distinguish between post-
disruption management and predictive disruption management. In the first case
the disruption was not foreseen and one has to react after it happened. In the
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second case one knows in advance which job or machine will be disrupted and
can consequently accommodate the disruption. Optimal policies are presented
for the single machine and parallel machine problems. The authors conclude
that rescheduling problems corresponding to a rather easy original problem (e.g.
a problem for which the SPT rule turns out to be optimal) are not too diffi-
cult to solve. However, they are not able to predict what would happen if the
original problem were NP-hard.

Approaches for project scheduling subject to general disruptions were de-
veloped by Yu and Qi (2004) and Wang (2004). Yu and Qi (2004) introduce
a disruption management approach for repairing disrupted project schedules
for a resource-constrained project scheduling problem with multiple possible
execution modes per activity. Their objective is to minimize the cost of the
new schedule as well as the deviation from the baseline schedule. The authors
consider project network, activity, resource and milestone disruptions. Sched-
ule feasibility can be restored by changing the execution mode of an activity,
rescheduling an activity or temporarily increasing the resource availability. The
objective function is a weighted combination of the performance of the new
schedule, the costs of changing execution modes, the costs of additional resource
availability as well as earliness and tardiness penalties. A hybrid mixed integer
programming/constraint propagation approach is used to solve the rescheduling
problem formulated as an ILP.

Wang (2004), on the other hand, considers the project rescheduling problem
as a dynamic constraint satisfaction problem. Unexpected events such as shifts
of activity starting times, changes in activity durations, resource breakdowns
and additions or removals of temporal constraints during project execution are
modeled as additions or deletions of constraints. Resource constraints are re-
garded as soft constraints that can be violated at a cost, whereas the due date
constraint is a hard constraint (and the due date thus becomes a deadline).
In order to repair the schedule, a metaheuristic is presented for generating a
feasible schedule that minimizes the weighted resource constraint violation.

Finally, Van de Vonder et al. (2006a) introduce several heuristic approaches
for rescheduling a project subject to activity duration disruptions in order to
minimize weighted instability. Four reactive approaches are introduced. First
of all, simple priority rules are used in conjunction with a schedule generation
scheme. The second approach is to fix resource allocations in advance, effec-
tively eliminating the need to consider resources during schedule execution and
reducing the problem to a resource-unconstrained project rescheduling prob-
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lem that is solved by right-shifting the affected activities such that a feasible
schedule is generated. A third procedure is a sampling approach that consid-
ers several alternative solutions (obtained by combining various priority lists
with various schedule generation schemes) at each decision time and selects the
best amongst those. Time window sampling is a modification of this sampling
approach that focuses on the activities planned to start within a certain time
window from the rescheduling point in order not to adhere too much impor-
tance to activities for which a great deal of uncertainty remains regarding their
actual starting times. Finally, a heuristic procedure for solving the resource-
constrained project scheduling problem with weighted earliness and tardiness
penalties (RCPSP-WET or m, 1|cpm|early/tardy in the notation of Herroelen
et al. (2000)) is used for fully rescheduling the project. The results of a com-
putational experiment show that among the priority rule-based procedures, a
priority list in which activities are ordered according to non-decreasing earliest
baseline starting times performs best. Fixing resource allocations greatly speeds
up the rescheduling process at the expense of a substantially worse instability
cost. Unsurprisingly, both sampling approaches outperform simple priority list
based policies. The best performing approach was the one based on the RCPSP-
WET heuristic.

3 Problem statement

The objective of the proactive-reactive project scheduling problem is to min-
imize schedule nervousness while meeting precedence, resource and due date
constraints. This objective is measured by the sum of the weighted deviations
between the original baseline schedule S0 that is constructed before project
execution starts and the expected actually realized schedule E(S):

minimize
∑
i∈N

wi|E(si)− s0i | (3.1)

where s0i denotes the planned starting time of activity i in the baseline sched-
ule S0, E() denotes the expectation operator, si denotes the actually realized
starting time of activity i during project execution and the activity weight wi

denotes the per unit starting time disruption cost for activity i.
In section 1 we already stated that the real starting times S are stochastic

variables that depend on the originally planned starting times as described by
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S0, on the disturbances encountered during project execution and on the reac-
tive strategy that is used to restore feasibility. We will now briefly cover these
three factors.

In this paper we will not focus on the construction of the baseline schedule
S0 but assume this is given. For an overview of approaches for determining
baseline schedules for various variations of the project scheduling problem in a
deterministic setting we would like to refer the interested reader to Brucker et al.
(1999), Herroelen et al. (1998) and Demeulemeester and Herroelen (2002). The
stochastic setting, on the other hand, is extensively covered by Leus (2003),
Leus and Herroelen (2004), Van de Vonder et al. (2005) and Van de Vonder
et al. (2006b) for the case of uncertain activity durations and by Lambrechts
et al. (2007a) and Lambrechts et al. (2007b) if the resources are subject to
unexpected breakdowns. This baseline schedule is represented by means of
a vector of activity starting times S0 = (s01, s

0
2, ..., s

0
n) and has to satisfy the

precedence constraints, the resource constraints and the due date constraint.
The precedence constraints represent temporal relations between the activities
constituting the project. We assume zero-lag finish-start precedence relations,
implying that if activity j is a direct successor of activity i (j ∈ SUCCi) then
j can only start after activity i, with a duration equal to di, is completed, or
formally:

sj > si + di ∀(i, j) ∈ A with i, j ∈ N (3.2)

with A the set of arcs representing the precedence relations and N the set of
nodes representing the activities in the commonly used graph-based activity-
on-the-node representation of a project network (G = (N,A)).

We assume R different renewable resource types with a per-period availabil-
ity of ak. The resource constraints then imply that for each time period t and
for each resource type k the cumulative resource requirements of the activities
that are in progress during period t (i ∈ St) cannot exceed these availabilities
or:

∑
i∈St

rik 6 ak ∀k,∀t (3.3)

Finally, the due date constraint states that the project has to end before
time δ:

sn 6 δ (3.4)
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with n the dummy end activity (and 1 correspondingly the dummy start activ-
ity) having a duration and resource use equal to 0.

The second determinant of S is the disturbance scenario. We consider the
case of unexpected resource disruptions. Each of the R resource types is modeled
as a set of ak resource units that are each subject to breakdowns. In case one
of these resource units breaks down, it may well be possible that the project
schedule is rendered infeasible because one or more resource constraints are
violated. This means that the resource availability of each resource type k

during each period t is actually a stochastic variable akt 6 ak.
In case an infeasibility occurs due to a resource breakdown, schedule feasi-

bility needs to be restored by postponing one or more of the offending activities
in progress on the resource type causing the infeasibility during the period the
disruption occurs. This brings us to the final factor determining S. Postpon-
ing this activity or these activities will of course also have an impact on the
remainder of the project and therefore all the affected activities will potentially
have to be rescheduled in order to obtain a new schedule that respects all con-
straints. Our global objective is to minimize schedule instability. In case the
encountered disruption is the last disruption until project completion, the opti-
mal policy will be to create a feasible schedule for which the weighted deviation
from the preschedule is as small as possible. We call this case problem P1
and will extensively study it in section 6. However, in practice, we will usually
continue facing resource breakdowns. Analytically determining the impact of a
rescheduling decision on the future expected project stability is computation-
ally too demanding. An alternative would be simulation. In practice, however,
this will be impractical due to the large number of rescheduling decisions that
needs to be taken throughout schedule execution. Therefore, we present a bi-
objective approach in section 7 that tries to generate a schedule that is feasible,
does not deviate too much from the original baseline schedule and is well pro-
tected against the occurrence of future disruptions measured by means of a
surrogate robustness metric. This problem is then called P2.

Before moving on to the actual solution procedures for P1 and P2, we will
formally describe both problems.

First, however, we need to define the relationship between time points and
time periods. The need for this distinction stems from the fact that an activity
starts and ends at a specific point in time whereas a resource is available or
unavailable during a certain time period. In project scheduling literature it is
usually assumed that the project starts at time point 0. A number of integer
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time points are then specified over the project time horizon. In this paper,
we denote the time period between the starting time of the project (t = 0)
and the first such time point (t = 1) as time period 0. This means that if an
activity starts at time t and has a duration of d time units, it is assumed to
start execution at the beginning of time period t and to finish at the end of time
period t+ d− 1.

Let St∗ = st∗

1 , ..., s
t∗

n be the current schedule for the time period t∗ in which
the infeasibility occurs. The set C includes the activities that were finished by
the beginning of this time period (C = {i ∈ N : st∗

i + di 6 t∗}), its complement
is the set NC = N\C. In period t∗ we know the realizations of akt up to the
current period, since for P1 the current disruption is assumed to be the last,
the future resource availabilities are known and equal to the availability ak in
case no information is assumed to be given regarding the potential duration of
a breakdown (this assumption will be dropped in the computational experiment
of section 7). The real resource availability vector a′kt can then be written as:
a′kt = akt for t 6 t∗ and a′kt = ak for t > t∗. Our objective is to find a new,
repaired schedule S′t

∗
that satisfies the adapted resource constraints and is as

close as possible to the baseline schedule S0.
Problem P1 can then be written as:

minimize
∑

i∈NC

wi|s′t
∗

i − s0i | (3.5)

subject to

s′t
∗

i + di 6 s′t
∗

j ∀(i, j) ∈ A (3.6)∑
i∈St

rik 6 a′kt ∀t,∀k (3.7)

s′t
∗

i = st∗

i ∀i ∈ C (3.8)

Problem P2 is an extension of problem P1. The main difference is that the
objective function now tries to minimize the deviations between the expected
realized schedule and the baseline schedule instead of the repaired schedule
and the baseline schedule. Therefore, the procedures considered in section 7
simultaneously try to minimize the deviation from the baseline schedule caused
by the repair action and to maximize the robustness of the repaired schedule.
Furthermore, a′kt becomes akt for t > t∗ instead of ak.
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Table 1: Parameter settings for the 480 test instances
Number of activities (excl dummies) 30
Activity durations Randomly from [0,10]
Number of resource types 4
Network Complexity 1.5, 1.8 or 2.1
Resource factor 0.25, 0.50, 0.75 or 1.00
Resource strength 0.20, 0.50, 0.70 or 1.00
Instability weights non-dummy P (wi = x) = 0.21− 0.02x
Instability weight dummy-end 10E(wi)
Mean times to failure Uniformly from [smin

n ,2smin
n ]

Mean times to repair Uniformly from [1,5]

4 Experimental setup

In the following two sections, the reactive approaches for P1 and P2 will be
presented together with computational results from an experiment we set-up in
order to be able to assess the efficiency and effectiveness of each approach. For
each instance, a baseline schedule is generated according to a certain proactive
strategy. This baseline schedule is then executed until a resource disruption
occurs or until the project finishes. Each time a resource breakdown causes
an infeasibility, this infeasibility is resolved by means of a reactive strategy.
Note that we assume that whenever an activity is preempted in order to solve
a conflict, it needs to be restarted from scratch (preempt-repeat assumption)
and that activities can never start before their baseline starting time: si > s0i
(railroad scheduling assumption) unless the opposite is indicated.

We used the test instances contained in the well-known PSPLIB set of project
network instances (Kolisch and Sprecher, 1997). Because of the demanding
computation time of the exact reactive procedure, we restricted our research to
the 480 30-activity networks of PSPLIB. However, there is no reason to believe
the same results do not hold for 60, 90 and 120 activity networks. Furthermore,
in more computationally demanding cases suboptimal approaches may be used
instead of exact ones (see e.g. Van de Vonder et al. (2006a)).

The parameter settings used to generate the instances are shown in Table 1,
with smin

n the minimal makespan for the deterministic problem, i.e. the optimal
solution of the resource-constrained project scheduling problem.

We combined three proactive baseline scheduling procedures (described in
section 5) with the exact and suboptimal procedures described in sections 6
and 7. Each combination of a proactive policy and a reactive policy was tested
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using 10 replications for each problem instance, each having different mean times
to failure (MTTFk) and mean times to repair (MTTRk). The distribution
of these parameters is shown in Table 1. These values then unambiguously
define the breakdown and repair process for each resource unit if we assume
that repair times and times to breakdown are exponentially distributed (the
rationale for this assumption is given in Lambrechts et al. (2007a)). Finally, the
project due date is derived from the minimal makespan schedule. In a static
and deterministic environment, the lower bound on the makespan corresponds
to the makespan of the schedule obtained when optimally solving the RCPSP.
It seems reasonable to assume that the project manager will prefer a makespan
that does not deviate too much from this lower bound. Therefore, we set the
due date of the robust schedule 30% above the minimal makespan of the project.

5 Proactive baseline scheduling procedures

In this section we give a short overview of the various proactive strategies we
used for generating a baseline schedule. A more extensive treatment can be
found in Lambrechts et al. (2007a). In our proactive baseline generation process
three choices need to be made.

First of all, one has to decide whether to start from a minimal makespan
schedule that is short but usually also very dense and therefore prone to dis-
ruption or, alternatively, from a schedule in which activities with a high impact
on total project instability are scheduled as early as possible in time (‘highest
cumulative instability weight (CIW) first’ ) in order to decrease the probability
that these activities get disrupted due to the disruption of an activity earlier in
the schedule.

Secondly, it has to be decided whether to apply resource buffering to this
initial schedule. Resource buffering boils down to planning the project using a
resource availability that is lower than the actual resource availability ak. Since
we assume that uncertainty is modeled by means of resources that are subject
to random breakdowns, using less resources per time unit than the maximal
availability can prevent the negative impact of these breakdowns.

Finally, time buffering can be added. This implies that we explicitly insert
idle time into the schedule based on the estimated size and impact of activity
disturbances on the objective function. In the end, this gives us a total of 23

different strategies.
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6 Reactive procedures

In this section we present a number of procedures for optimally or sub-optimally
solving problem P1. Recall that the aim of P1 is simply to restore schedule fea-
sibility while minimizing the weighted sum of deviations between the new, re-
paired schedule S′t

∗
and the initial, baseline schedule S0. We first introduce an

exact algorithm that reduces the problem to the resource-constrained project
scheduling problem with weighted earliness-tardiness penalty costs (RCPSP-
WET). Because this approach is computationally very intensive, we also intro-
duce a number of priority list-based heuristic procedures that yield an acceptable
solution with minimal computational effort. Finally, a strategy is introduced
combining optimal and suboptimal procedures in order to yield good solutions
within an acceptable time frame.

We introduce the example network in Figure 1 to illustrate the various strate-
gies we present in this paper. This graph represents a project consisting of 10
activities. Above each activity node, we indicate its planned duration, its re-
source requirement of a single renewable resource type with a deterministic per
period availability of 8 units (each subject to breakdowns) and its instability
weight. Note that activities 1 and 10 are dummy activities with a duration and
a resource usage of 0. Activity 1 indicates the start of the project, whereas
activity 10 signals the end. The instability weight for activity 10 is much larger
than the other instability weights in order to reflect the fact that in practice
meeting the project due date is often deemed more important than meeting
planned activity starting times. In this example we assume a project due date
of 18. The baseline starting time of the dummy start activity is then set to the
release date of the project (time period 0), whereas the dummy end activity
is assumed to end at the project due date. Note that for ease of notation and
illustration only one resource type is considered, but the examples as well as the
algorithms presented in this paper are easily extensible to and will be tested for
the multi-resource case.
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Figure 1: Example project network

6.1 Exact solution procedure

To gain a better understanding of the problem and to be able to quantify the
performance gap for the heuristic procedures that we will present in the fol-
lowing subsections, we will now introduce an exact approach for solving the
rescheduling problem P1.

At first sight, there are quite some resemblances with the well known RCPSP-
WET problem. The RCPSP-WET is an extension of the traditional RCPSP
(Demeulemeester and Herroelen, 2002). Activities have individual due dates
with associated earliness and tardiness penalty costs. Instead of the usual ob-
jective of makespan minimization, we now want to find a schedule for which
the weighted penalty cost is minimal. Earliness (ei) and tardiness (ti) costs
are assumed to be linearly related to the number of time units an activity is
completed respectively before or after its due date (ddi).

The main difference between our approach and the RCPSP-WET is that
in our approach some activities have fixed starting times (i.e. the activities
in C and the activities that are in progress during period t∗ but that are not
preempted) and the addition of the non-retroactivity constraint (Van de Vonder
et al., 2006a). This constraint prevents that activities are scheduled in the past.
Consider for example activity i which was supposed to start at s0i but was
preempted a number of times. In case we do not add any additional restrictions
on the starting time of i, it could possibly be scheduled at s′t

∗

i < t∗.
An example is shown in Figure 2. The horizontal axis represents time,

whereas the vertical one represents resource usage. Two unrelated activities,
activity 1 and activity 2 are executed in parallel. The first activity has a duration
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of 5 and a resource usage of 3, the second activity has a duration of 4 and a
resource usage of 1. Their respective instability weights are 10 and 1.

The baseline schedule is depicted in the top left chart. Both activities are
scheduled to start at the beginning of the time period 0. However, as is shown
in the second chart, a resource breakdown of one unit occurs during this period
forcing the preemption of activity 2 (since this results in the lowest total insta-
bility cost) and postponing activity 2 until period 1. A similar situation occurs
in periods 1, 2 and 3. In each time period activity 2 is preempted and has to be
repeated from scratch. In period 4 however, two units break down. This means
that postponing activity 2 is not sufficient for solving the conflict and that we
will postpone activity 1. In case no additional constraint is imposed on the
starting time of activity 2, this activity will be scheduled again in time period
0. Clearly, this is not possible in practice as one cannot schedule activities in
the past. Therefore, we solve a reduced problem when faced with problem P1,
which only includes the non-completed activities and which starts at time point
t∗. Because of this starting time, no activity can be scheduled earlier than the
period during which the disruption occurs, meaning that the non-retroactivity
constraint will be satisfied.

Figure 2: Illustration of the non-retroactivity constraint

When solving P1 we need to solve a number of RCPSP-WET instances,
namely one for each preemption alternative. A preemption alternative is defined
as a subset P of the set of activities in progress during period t∗ (P ⊂ St∗)
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so that the cumulative resource requirements of the non-preempted activities
(i ∈ St∗\P) do not exceed the real availabilities a′kt∗ in period t∗. We only
need to consider minimal preemption alternatives, i.e. preemption alternatives
for which it is impossible to remove a single activity from the subset and still
retain a preemption alternative satisfying the adapted resource constraints. It
can easily be shown that non-minimal preemption alternatives can never lead
to a better solution value because instability weights are assumed to be non-
negative. A full enumeration scheme is used to determine the set of all minimal
preemption alternatives Ψ as can be seen in line 5 of Algorithm 1.

In our algorithm, S′t
∗

best represents the best repaired schedule over all pre-
emption alternatives and I(S′t

∗

best) the corresponding objective function value.
When solving problem P1, |Ψ| reduced RCPSP-WET instances will be

solved. Each of those reduced instances considers a scheduling problem from
the time of disruption onwards. Therefore, the completed activities (i ∈ C) are
removed from the network (line 9-11). For activities that were busy at t∗ but
that are not preempted (i ∈ St∗\P), no scheduling decision needs to be made as
non-preemption implies that s′t

∗

i = st∗

i . However, in order to correctly incorpo-
rate the constraints this decision imposes on the rest of the problem, we need to
represent this in the network. The activities representing the non-preemption
decisions have a modified duration that is obtained by subtracting the executed
part of their duration from their original durations. Furthermore, these activi-
ties are supposed to start at time 0 with an earliness cost and a tardiness cost set
to infinity and a due date set to the time corresponding to their original finishing
time st∗

i +di−t∗ (line 14-18). This means that we only need to consider busy but
preempted as well as not-yet-started activities for rescheduling. Both types will
incur tardiness penalty costs that are derived from their corresponding instabil-
ity weights. In case the railroad scheduling assumption is imposed, all earliness
costs will be set equal to infinity. If not, the instability weight is used. The
activity due dates are derived from the baseline schedule (ddi = s0i + di − t∗) or
set to 0 if ddi would become negative otherwise (line 20-22). Arcs are removed
as needed and inserted between the dummy start activity and those activities
that have no predecessors any longer because of activity removal for generating
the reduced network. Finally, a dummy activity x is included that represents
the reduced resource availability due to the breakdown causing the infeasibility.
This activity has a resource usage equal to the number of broken down resource
units, a duration equal to the duration of the resource disruption (which we
assume to be 1 for the moment as indicated above) and its starting time is fixed
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Algorithm 1 Exact algorithm for P1
1: t∗ := time period for which ∃k :

∑
i∈St∗

rik > a′kt∗

2: C := {i ∈ N : st∗

i + di 6 t∗}
3: NC := N\C
4: I(S′t

∗

best) := ∞
5: Ψ := {P :

∑
i∈St∗\P

rik 6 a′kt∗ AND @j ∈ P :
∑

i∈St∗\{P\{j}}
rik 6 a′kt∗}

6: while Ψ 6= ∅ do
7: pick P from Ψ and Ψ := Ψ\P
8: G′ = (N ′, A′) := G = (N,A)
9: for i := 2 to n do

10: if i ∈ C then
11: remove i from G′

12: dd1 := 0, e1 := ∞, t1 := ∞
13: for i ∈ N ′\{1, n} do
14: if i ∈ St∗\P then
15: di := st∗

i + di − t∗

16: ddi := di

17: ei := ∞
18: ti := ∞
19: else
20: ddi := max(0, s0i + di − t∗)
21: ei := ∞ OR ei := wi

22: ti := wi

23: ddn := max(0, s0n − t∗), en := ∞, tn := wn

24: add dummy activity x to N ′: dx := duration breakdown, rxk := ak−a′kt∗

25: A′ := A′ ∪ {(1, x), (x, n)}
26: ddx := dx, ex := ∞, tx := ∞
27: solve RCPSP-WET yielding schedule SWET

28: for i := 1 to n do
29: if i ∈ C OR i ∈ St∗\P then
30: s′t

∗

i := st∗

i

31: else
32: s′t

∗

i := sWET
i + t∗

33: if I(S′t
∗
) < I(S′t

∗

best) then
34: I(S′t

∗

best) := I(S′t
∗
)

35: S′t
∗

best := S′t
∗

36: S′t
∗

:= S′t
∗

best
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at time 0 in a similar way to that of the busy but non-preempted activities (line
24-26).

We will illustrate this approach on the disrupted schedule for our example
network that is shown in Figure 3.

Figure 3: Minimal makespan schedule disrupted by the breakdown of 3 resource
units in period 8

The schedule is disrupted because of the one-period breakdown of 3 re-
source units in period t∗ = 8 resulting in a violation of the resource constraints:∑
i∈S8

ri = 8 > a′8 = 5. The preemption alternatives are then: (3), (6), (3, 6),

(3, 7), (6, 7) and (3, 6, 7), of which clearly only (3) and (6) are minimal. Let
us consider the reduced network corresponding to preemption alternative (3)
shown in Figure 4. Above each activity we indicate its parameters as follows:
di, ri, ei, ti, ddi.
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Figure 4: Reduced network for t∗ = 8 with P = (3)

In order to optimally solve the RCPSP-WET, the exact branch-and-bound
algorithm by Vanhoucke et al. (2001) is used. This solution procedure com-
putes lower bounds using an exact recursive search algorithm for the resource-
constrained project scheduling problem with weighted earliness and tardiness
penalties. Resource conflicts are resolved by adding extra precedence relations
based on the concept of minimal delaying alternatives (Demeulemeester and
Herroelen (1992) and Demeulemeester and Herroelen (1997)).

For our example, the results of optimally solving the reduced network in-
stances corresponding to both minimal preemption alternatives are shown in
Figure 5. The top schedule corresponds to preemption alternative (3) and has
an objective function value equal to 264, whereas the bottom schedule corre-
sponds to alternative (6) and performs far better with an objective function
equal to 18.
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Figure 5: Optimally repaired schedule for P = (3) (above) and P = (6) (below)

Note that it is possible that this procedure requires a prohibitively long
computation time. In that case the branch-and-bound approach is truncated
by terminating it after a chosen period of time, yielding the best solution that
was found so far. Results from Vanhoucke et al. (2001) show that for their test
setting all problems with 10 activities could be solved to optimality within 1
second of CPU time on a Pentium III, 800 Mhz processor. This was the case
for 91% of the 20 activity-problems and for 85.9% of the 30 activity-problems.
Because the project parameters are quite comparable with those of our problem
setting, because we use a faster machine and because in our setting usually only
a reduced problem (i ∈ NC) needs to be tackled, we chose to terminate the pro-
cedure after 0.5, 1 or 2 seconds of CPU time. The results are shown in Table 2.
For each proactive policy type we show the average weighted instability objec-
tive function value taken over all repetitions over all project network instances
for the three different cut-off time values. The average objective function value
per reactive strategy over all proactive policies is indicated in italics at the end
of each row.

Note that for each combination of a proactive policy, a project network
instance and a disruption scenario, the RCPSP-WET procedure is invoked a
number of times (once for each preemption alternative at each disruption time).
The procedure to solve P1 is thus used as a myopic procedure that tries to
restore feasibility with minimal deviation from the original schedule, while ig-
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Table 2: Experimental results for the exact procedure

no time buffering time buffering
no res buffering res buffering no res buffering res buffering
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Optimal (0.5s) 163.17 123.09 61.50 63.16 97.79 86.44 44.46 51.84 86.43
Optimal (1s) 161.93 121.21 60.86 62.72 97.22 85.90 44.37 51.50 85.71
Optimal (2s) 160.84 120.53 60.68 62.86 97.01 85.62 44.31 51.08 85.37

Table 3: Percentage of times the reduced problem is solved to optimality

Optimal (0.5 s) 92.5 %
Optimal (1 s) 93.9 %
Optimal (2 s) 94.9 %

noring the potential occurrence of future disruptions. This means that it is only
optimal as long as no more disruptions occur, but might well be suboptimal in
case this assumption is dropped. How well it performs compared with a reac-
tive procedure that tries to protect against future disruptions will be shown in
section 7.

As expected, the procedure performs better, the longer it is allowed to run
before being truncated. However, the difference between 0.5 s and 1 s is more
pronounced than the one between 1 s and 2 s. In Table 3 we show the fraction of
the number of times that the branch-and-bound approach for solving RCPSP-
WET was invoked and that it actually found the optimal solution within the
allotted time. From both tables we can conclude that truncating the procedure
after 1 second seems reasonable.

Furthermore, in Table 4 the results are shown for the exact procedure trun-
cated after 1 second with and without the railroad scheduling assumption.

Perhaps surprisingly, dropping the railroad scheduling assumption actually
yields worse results in some cases. The reason might be that although a bet-
ter solution can be found for problem P1, this does not necessarily hold when
considering iterative rescheduling along the project horizon because built-in pro-
tection is partially lost by scheduling activities earlier than originally planned.
Nevertheless, for three proactive strategies (of which two are actually the best
performing ones overall) allowing activities to be scheduled earlier than their
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Table 4: Optimal procedure with or without railroad scheduling

no time buffering time buffering
no res buffering res buffering no res buffering res buffering
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Optimal (1s, RR) 161.93 121.21 60.86 62.72 97.22 85.90 44.37 51.50 85.71
Optimal (1s, no RR) 171.40 124.85 62.37 62.03 99.22 87.09 44.19 50.34 87.69

Table 5: Computation times for the optimal procedure

Optimal (0.5s) 0.088 s
Optimal (1s) 0.141 s
Optimal (2s) 0.222 s

Optimal (1s and no railroad) 0.191 s

baseline starting time proved to be slightly better.
The average computation times over all project instances for all the proce-

dures we presented in this section are shown in Table 5.

6.2 Heuristic procedures

Clearly, optimally solving problem P1 will not always be feasible in practice.
The computational requirements of the exact branch-and-bound approach ren-
der it unsuitable for large project networks. In order to overcome this problem,
we present a number of fast solution procedures that are able to generate a
repaired schedule with a reasonable instability cost in a short amount of time.

6.2.1 List scheduling

Inspired by the promising results of the use of priority lists in machine and
project scheduling, we propose to use a simple reactive strategy relying on list
scheduling. First of all, a random precedence feasible priority list is included for
benchmarking purposes. However, we expect far better results from a scheduled
order list that allows us to reschedule the activities in the order dictated by
the baseline schedule (the lowest activity number being the tie-breaker), while
taking into account the new, reduced resource availabilities. More specifically,
when a disruption occurs in period t∗, we create a priority list L including the
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activities that are not yet completed at t∗ (i ∈ NC), ordered in non-decreasing
order of their baseline starting times s0i .

This priority list is then decoded into a feasible schedule S′t
∗

using a modified
serial schedule generation scheme that takes the known resource availabilities
a′kt up to the current time period t∗ into account. The modification of the serial
schedule generation scheme has to do with the case where the current activity
taken from the list is in progress but not yet completed when the infeasibil-
ity occurs. This activity can be left unchanged, or it can be interrupted and
repeated (recall that we assumed a preempt-repeat setting). The pseudocode
for this procedure is given in Algorithm 2. The new activity starting times are
denoted as s′t

∗

i and the set of direct predecessors of activity i as PREDi. Note
that in Algorithm 2 it is required that the list L is precedence feasible. This
means that an activity is never allowed to be included in L in front of one of
its predecessors. This condition will automatically be satisfied for the sched-
uled order list because precedence feasibility of a schedule implies precedence
feasibility of the corresponding starting time based ordering of the activities.

Algorithm 2 Modified Serial Schedule Generation Scheme
1: t∗ := time period for which ∃k :

∑
i∈St∗

rik > akt∗

2: C := {i ∈ N : st∗

i + di 6 t∗}
3: NC := N\C
4: L := precedence feasible ordered list with activities i ∈ NC
5: for i := 1 to n do
6: if i ∈ C then s′t

∗

i := st∗

i

7: for p := 1 to |L| do
8: if st∗

L(p)
< t∗ then s′t

∗

L(p)
:= st∗

L(p)

9: else s′t
∗

L(p)
:= max{s0L(p)

, t∗,maxi∈PREDL(p)
(s′t

∗

i + di)}
10: while ∃k, t :

∑
i:i∈St

rik > a′kt do

11: if s′t
∗

L(p)
= st∗

L(p)
then s′t

∗

L(p)
:= t∗ + 1

12: else s′t
∗

L(p)
:= t+ 1

Activities selected from the list are scheduled as early as possible. For activ-
ities that are in execution during the time of disruption t∗, this means that the
procedure first tries the current scheduled starting time st∗

i . If this turns out to
be infeasible, the procedure searches for feasibility by starting the activity in the
next time period (t∗+1) and subsequent time periods if necessary. For activities
that did not start yet, it is only necessary to consider the earliest precedence

23



feasible starting time (or the current time period t∗ if the latter turns out to
be larger). Note that, as we stated before, we never allow an activity to start
before its baseline starting time s0i .

6.2.2 Tabu search based improvement heuristic

The scheduled order list approach is able to very quickly generate feasible solu-
tions with a reasonable quality. However, solutions may be improved by super-
imposing a tabu search based improvement heuristic (Glover and Laguna, 1993)
on the priority list rule. This procedure will try to improve the starting solution
by iteratively executing the best precedence feasible interchange of two activities
in the priority list that does not lead to a state included in the tabu list. The
objective is to find a precedence feasible ordering of activities corresponding to
a feasible schedule that deviates as little as possible from the baseline schedule
S0. The advantage of tabu search is that by using a tabu list (a list of moves
or states that are forbidden for a number of iterations) the procedure can also
choose non-improving moves so that it avoids getting stuck in local optima like
traditional local search approaches. The procedure is explained in Algorithm 3.

Our implementation considers a maximum number of iterations (MAXITER)
that has to be executed before the procedure ends and includes a frequency based
penalty function to further prevent cycling. The length of the tabu list is set
to |L|. The best solution that is found so far is stored in Lbest and the corre-
sponding schedule S′t

∗

best has an objective function value equal to I(S′t
∗

best). Itemp

then is the objective function value of the best (adjacent) interchange found so
far in the current iteration. The frequency based penalties are stored per pair
(i, si) in the variables Fi,si . Likewise, the tabu status is stored in the variables
Ti,si . Observe that an aspiration criterion is included: in case a tabu solution
L has an objective function that outperforms the best solution value that was
found so far (I(S′t

∗
) < I(S′t

∗

best)), then the tabu status will be overridden and
the solution will be stored anyway.

6.2.3 Results

If we apply the scheduled order procedure to the disrupted schedule that was
shown in Figure 3, we obtain the priority list L = (3, 6, 7, 8, 9, 10). Feeding this
priority list into the modified serial schedule generation scheme yields the same
schedule as the one obtained when using the exact procedure, shown as the
bottom schedule of Figure 5.
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Algorithm 3 Tabu search based reactive procedure
1: t∗ := time period for which ∃k :

∑
i∈St∗

rik > a′kt∗

2: C := {i ∈ N : si + di 6 t∗}
3: NC := N\C
4: set Lbest := L , I(S′t

∗

best) := I(current solution) , T := |L|, iter := 0
5: while (iter < MAXITER) do
6: Itemp := ∞, i∗ := 0, j∗ := 0
7: for i := 1 to |L| − 1 do
8: for j := i+ 1 to i+ 1 (adj interchanges) OR |L| (all interchanges) do
9: if feasible swap then

10: exchange L(i) and L(j)

11: generate S′t
∗

by applying the modified SSGS to L
12: if I(S′t

∗
) + FL(i),s

′t∗
L(i)

+ FL(j),s
′t∗
L(j)

< Itemp then

13: if (iter > TL(i),s
′t∗
L(i)

AND iter > TL(j),s
′t∗
L(j)

) OR I(S′t
∗
) <

I(S′t
∗

best) then
14: store i→ i∗, j → j∗

15: Itemp := I(S′t
∗
)

16: exchange L(i) and L(j)

17: if i∗ 6= 0 then
18: FL(i∗),s

′t∗
L(i∗)

:= FL(i∗),s
′t∗
L(i∗)

+ 1 , FL(j∗),s
′t∗
L(j∗)

:= FL(j∗),s
′t∗
L(j∗)

+ 1

19: TL(i∗),s
′t∗
L(i∗)

:= iter + T , TL(j∗),s
′t∗
L(j∗)

:= iter + T

20: generate S′t
∗

by applying the modified SSGS to L
21: if I(S′t

∗
) < I(S′t

∗

best) then
22: I(S′t

∗

best) := I(S′t
∗
) AND Lbest := L

23: iter := iter + 1
24: generate S′t

∗
by applying the modified SSGS to L
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Table 6: Experimental results for the list scheduling based heuristics

no time buffering time buffering
no res buffering res buffering no res buffering res buffering
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random 655.00 594.21 243.33 249.90 479.14 456.68 192.37 226.78 387.18
scheduled order 212.53 168.82 73.75 77.71 124.58 114.05 52.28 64.43 111.02

TS - adj - 50 reps 168.91 127.13 63.01 64.32 100.68 90.68 46.30 53.67 89.34
TS - adj - 100 reps 167.17 126.39 62.59 63.18 99.66 89.69 46.27 53.08 88.50
TS - adj - 200 reps 165.65 125.61 62.35 63.13 99.63 88.96 46.12 53.06 88.06
TS - all - 50 reps 157.59 120.13 60.52 62.00 96.06 86.37 44.73 52.03 84.93
TS - all - 100 reps 157.07 119.67 60.58 61.99 95.86 85.78 44.84 52.09 84.74
TS - all - 200 reps 156.53 119.48 60.62 61.73 95.73 85.93 44.88 52.02 84.62

Table 7: Computation times for the list scheduling based heuristics

random 0.000 s
scheduled order 0.000 s

TS - adj - 50 reps 0.015 s
TS - adj - 100 reps 0.022 s
TS - adj - 200 reps 0.035 s
TS - all - 50 reps 0.026 s
TS - all - 100 reps 0.044 s
TS - all - 200 reps 0.078 s

The results of the procedures based on a random priority list, a scheduled
order priority list and a scheduled order priority list that is improved by means
of tabu search are shown in Table 6. For the tabu search procedure a distinction
is made between the results obtained when the procedure is terminated after 50,
100 or 200 iterations and whether only adjacent interchanges or all interchanges
are considered. The corresponding computation times per procedure call are
shown in Table 7.

Basic list scheduling policies are very fast. All strategies perform signifi-
cantly better than the random list strategy. It can be observed that scheduled
order list scheduling performs quite well given the time necessary to execute
the algorithm. However, even when only allowing for adjacent interchanges and
50 iterations, tabu search outperforms random as well as scheduled order list
scheduling. These results can even be improved by allowing for general inter-
changes and more iterations. Surprisingly, when allowing for 200 iterations, the
tabu search procedure even sometimes outperforms the exact approach. The
reason for this is twofold. First of all, the exact approach is truncated for some
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Table 8: Experimental results for the list scheduling based heuristics when
dropping the railroad scheduling assumption

no time buffering time buffering
no res buffering res buffering no res buffering res buffering
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scheduled order 211.28 167.35 73.35 77.00 123.82 113.21 51.96 63.82 110.23
TS - all - 200 reps 155.44 118.16 60.51 60.95 94.29 84.76 44.64 51.36 83.76

instances, potentially leading to a far worse solution than the one that could
be found by tabu search in a comparable timespan. Secondly, optimally solving
problem P1 is no guarantee for obtaining the lowest instability value after a
number of iterative rescheduling passes for the same project because of multiple
disruptions.

It is interesting to evaluate the performance impact of dropping the rail-
road scheduling assumption. We modify the adapted serial schedule generation
scheme in such a way that it tries to schedule each activity in L as close as pos-
sible to its baseline starting time (see also Van de Vonder et al. (2006a)). The
difference with the procedure described in Algorithm 2 resides in the scheduling
of the activity in case the starting time obtained in lines 8-9 is not feasible. In
this case, the approach we use here will first try to schedule the activity one
time period earlier if feasible, if this also turns out to infeasible, one period later
will be tried. The procedure continues to iteratively try to schedule the activity
respectively x = 1, 2, 3, 4, ... periods earlier or later than its baseline scheduling
time until a feasible solution is found. The results are shown in Table 8. We
observe that the results hardly change. A slight improvement is obtained for
most cases at the expense of a slightly larger computation time for the tabu
search procedure (0.091 s versus 0.078 s).

6.3 Hybrid procedure

In the previous two sections we presented computationally intensive but exact
solution procedures as well as fast but heuristic algorithms for solving problem
P1. In practice, a project manager will spend less time and effort on small
disruptions than on disturbances having a major impact on project stability.
Therefore, we present a new approach combining elements from both the ex-
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Table 9: Experimental results for the hybrid procedure

no time buffering time buffering
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Hybrid (10%) 164.34 124.81 60.52 62.66 98.90 87.17 44.02 51.37 86.72
Hybrid (25%) 174.41 129.71 61.70 64.09 103.21 91.03 45.25 53.34 90.34
Hybrid (50%) 185.89 134.24 63.42 65.57 111.03 95.29 46.13 55.30 94.61
Hybrid (100%) 193.26 143.82 66.54 68.08 117.14 100.80 48.03 58.63 99.54
Hybrid (200%) 203.16 152.65 69.10 69.93 123.36 107.90 49.25 60.50 104.48

act and the heuristic solution procedures. Whenever an infeasibility occurs,
a repaired schedule is quickly generated using the ‘scheduled order’ list-based
heuristic. The weighted instability cost I(S′t

∗
) of this new, repaired schedule

S′t
∗

is then compared with the instability cost of the previous, but now infea-
sible schedule St∗ . In case I(S′t∗ )−I(St∗ )

I(St∗ )
> ε, we repair the schedule using the

exact branch-and-bound procedure described in section 6.1. If not, S′t
∗

is re-
tained. The parameter ε is a user-defined cutoff percentage used to determine
when a simple heuristic suffices and when an exact approach is required. The
pseudocode for this procedure is shown in Algorithm 4.

Algorithm 4 Hybrid reactive procedure
1: t∗ := time period for which ∃k :

∑
i∈St∗

rik > a′kt∗

2: C := {i ∈ N : si + di 6 t∗}
3: NC := N\C
4: L := list with activities i ∈ NC ordered according to non-decreasing si

5: generate S′ by applying the modified SSGS to list L
6: if I(S′)−I(S)

I(S) > ε then
7: determine S′ using the exact RCPSP-WET procedure

It can be expected that this solution procedure is able to yield good results in
terms of stability and this within acceptable computation times. This hypothesis
is tested by means of a computational experiment. We consider the following
values for ε: 10%, 25%, 50%, 100%, 200%, we terminate the exact procedure after
1 s and use the settings described in section 4. The results of the computational
experiment are given in Table 9, the computation times are shown in Table 10.

As expected, the results lie between those of optimal rescheduling and those
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Table 10: Computation times for the hybrid procedure

Hybrid (10%) 0.129 s
Hybrid (25%) 0.111 s
Hybrid (50%) 0.087 s
Hybrid (100%) 0.060 s
Hybrid (200%) 0.039 s

of the scheduled order priority list. With only a small increase in required
computation time, the procedure is able to yield significantly better results than
the simple list scheduling heuristic. However, tabu search based improvement
of the scheduled order heuristic still seems to be the most attractive option.

7 Rescheduling for stability and robustness

The approaches we studied up to now for P1 were myopic strategies insofar
that they try to optimize the global objective of weighted deviation between
the baseline schedule and the finally realized schedule by locally minimizing the
difference between the baseline schedule and the repaired schedule. However,
minimizing the weighted deviation between the rescheduled and the planned
activity starting times is no guarantee for optimizing the global objective. It
seems naive to assume that schedule uncertainty ceases to exist after sched-
ule feasibility has been restored. Resources remain subject to breakdowns, re-
work is still an issue and unexpected activity duration increases may still occur.
Therefore, it is worthwhile to develop a rescheduling approach that does not
only look backwards in time but also adequately tries to protect the schedule
from disruptions that might still occur at some future point in time beyond the
current disruption. It might be argued that the predictive schedule that was
constructed before the project started execution remains well protected in case
no new information becomes available during schedule execution. It is exactly
this hypothesis that will be tested in this section.

In this section we present a metaheuristic that optimizes the bi-objective
problem of weighted deviation minimization combined with robustness maxi-
mization. O’Donovan et al. (1999) define robustness as the ability of a schedule
to absorb disruptions without affecting planned external activities while main-
taining high shop performance. This robustness can be measured by the ex-post
stability measure. Unfortunately, evaluation of this objective is very computa-
tionally intensive if done through simulation. Therefore, we use a surrogate
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measure based on the expected duration increase of an activity due to resource
breakdowns.

We extend the tabu search based procedure of section 6.2 by using a bi-
objective criterion instead of the single objective of weighted deviation. Our
new objective will be a weighted combination of instability (I) and robustness
(R):

z = κI(S) + (1− κ)R(S) (7.1)

However, because of differences in order of magnitude of both criteria we
chose to use relative improvement measures with respect to the starting solution:

z = κ
I(S)− I(S0)

I(S0)
+ (1− κ)

R(S0)−R(S)
R(S0)

(7.2)

In our computational experiment we assume exponential times to failure and
exponential repair times. This allows us to use theorem 1 to derive the expected
duration increase E[δi] for each activity.

Theorem 1. In a preempt-repeat environment with fixed resource allocations,
the expected duration extension due to breakdowns for an activity with duration
di and resource usage rik of renewable resource type k for which the time to
failure of each resource unit is exponentially distributed with parameter λk and
the time to repair with parameter µk is given by:

ψ

1− ψ
(

1∑
k

λkrik
+

∑
k

λkrik
µk

∑
l

λlril
)− di (7.3)

with ψ = 1− e
−di

P
k

λkrik

.

This theorem is proven in Lambrechts et al. (2007c) and its results are used
to calculate the following schedule robustness measure:

∑
i∈NC

∑
j∈PREDi

max(wi(sj + dj + E[δi]− si), 0) (7.4)

In order to assess the impact of varying the weight attributed to schedule
robustness in rescheduling we run a number of simulations with different levels
of κ. The results are shown in Table 11.

We see that the procedures always perform worse than a pure instability-
based strategy such as the tabu search procedure introduced in section 6.2. This
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Table 11: Experimental results for the reactive-proactive procedure

no time buffering time buffering
no res buffering res buffering no res buffering res buffering
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IW

κ = 0.2 272.91 195.05 89.31 85.04 201.18 151.60 71.45 76.29 142.85
κ = 0.4 209.69 150.77 72.11 70.47 142.33 111.87 53.43 61.06 108.97
κ = 0.6 178.32 131.36 65.77 65.67 114.45 95.84 48.53 55.64 94.45
κ = 0.8 164.39 123.44 62.61 63.13 101.42 88.74 46.04 52.68 87.81
κ = 0.95 159.36 120.22 61.42 61.78 96.44 85.80 45.05 51.72 85.22

is no doubt due to the fact that we only penalize deviation from the starting
schedule. The only thing that matters in our objective function is the finally
obtained schedule because this fully determines the objective function value. If
the baseline schedule was well protected, the realized schedule usually deviates
little from this baseline schedule. However, if it was not well protected, inserting
protection during the rescheduling pass only allows us to decrease the number
of rescheduling actions, but not to reduce the final instability function value.

For illustration purposes, we also tried to determine the impact of incorpo-
rating an estimate of the breakdown duration in the procedure. If a number of
resource units are down in period t∗, we assume they remain down up to period
t∗ +µk − 1. The results when we accept this assumption are shown in Table 12.
The corresponding computation times are shown in Table 13. Unsurprisingly,
the instability performance is far worse.

Things change considerably, however, if we do not only consider instability
performance but also penalize the number of rescheduling actions. It does not
seem unreasonable to assume that whenever a rescheduling action needs to
be performed, this will give rise to extra costs. The result will be that the
attractiveness of incorporating proactivity in a reactive strategy will depend
on the ratio of rescheduling versus instability costs. The average number of
rescheduling passes per project instance is shown in Table 14. We see that
rescheduling for robustness reduces the number of rescheduling actions required
per instance. The same holds for incorporating extra information regarding
breakdown durations.
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Table 12: Experimental results for the reactive-proactive procedure taking ex-
pected breakdown durations into account

no time buffering time buffering
no res buffering res buffering no res buffering res buffering
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κ = 0.2 283.97 209.28 109.99 100.13 210.99 167.44 88.60 89.71 157.51
κ = 0.4 227.48 167.36 89.51 86.97 157.22 128.49 71.10 75.59 125.46
κ = 0.6 197.99 148.55 81.70 79.75 129.32 110.30 62.41 69.46 109.94
κ = 0.8 180.51 138.37 78.40 76.55 115.83 102.64 58.96 65.55 102.10
κ = 0.95 175.34 136.48 76.78 76.16 109.94 99.70 58.46 65.35 99.78

Table 13: Computation times for the reactive-proactive procedure

no breakdown estimate breakdown estimate
κ = 0.2 0.070 s 0.074 s
κ = 0.4 0.071 s 0.074 s
κ = 0.6 0.070 s 0.074 s
κ = 0.8 0.070 s 0.074 s
κ = 0.95 0.069 s 0.074 s

Table 14: Average number of times the reactive procedure was invoked per
project instance

no breakdown estimate breakdown estimate
κ = 0.2 3.57 1.75
κ = 0.4 3.65 1.79
κ = 0.6 3.71 1.81
κ = 0.8 3.75 1.82
κ = 0.95 3.76 1.83
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8 Conclusion

In this paper we gave an extensive overview of various reactive strategies that
can be used during project execution when the project is subject to disruptions
due to unforeseen resource breakdowns. We saw that the cost of those break-
downs can be rather high due to the propagation of the resulting disruptions
throughout the schedule. Unfortunately, totally eliminating their occurrence is
economically unviable. Project managers are therefore forced to accept them
as an integral part of project management in practice. In order to reduce the
costs these breakdowns generate, one can resort to techniques taking this uncer-
tainty into account while building the project schedule and to good rescheduling
techniques enabling the project manager to restore feasibility while incurring an
instability penalty that is as small as possible.

In this paper, we exclusively focused on reactive strategies. On the one
hand, simple rescheduling heuristics based on a modified serial schedule gener-
ation scheme combined with a priority list ordered according to non-decreasing
baseline starting times were able to generate reasonably repaired schedules with
minimal computational effort. The alternative is to use a dedicated optimal al-
gorithm for solving the RCPSP-WET, effectively generating a feasible schedule
that is as close as possible to the original schedule. The drawback of the latter
approach is the computational effort required to calculate this schedule. This
computational effort can be reduced by using a tabu search heuristic to improve
the schedule obtained when using the scheduled order heuristic. A hybrid al-
gorithm combines the extremes of optimal but slow scheduling and sub-optimal
but fast scheduling by specifying a cutoff instability cost increase for deciding
whether or not an optimal algorithm should be used. Finally, we introduced a
metaheuristic that generates schedules that are close to the baseline schedule as
well as robust. The attractiveness of those procedures strongly depend on the
cost of rescheduling actions.
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